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ABSTRACT

Ribo-Seq maps the location of translating ribosomes on mature mRNA transcripts. While during normal translation, ribosome
density is constant along the length of the mRNA coding region, this can be altered in response to translational regulatory
events. In the present study, we developed a method to detect translational regulation of individual mRNAs from their
ribosome profiles, utilizing changes in ribosome density. We used mathematical modeling to show that changes in ribosome
density should occur along the mRNA at the point of regulation. We analyzed a Ribo-Seq data set obtained for mouse
embryonic stem cells and showed that normalization by corresponding RNA-Seq can be used to improve the Ribo-Seq quality
by removing bias introduced by deep-sequencing and alignment artifacts. After normalization, we applied a change point
algorithm to detect changes in ribosome density present in individual mRNA ribosome profiles. Additional sequence and gene
isoform information obtained from the UCSC Genome Browser allowed us to further categorize the detected changes into
different mechanisms of regulation. In particular, we detected several mRNAs with known post-transcriptional regulation, e.g.,
premature termination for selenoprotein mRNAs and translational control of Atf4, but also several more mRNAs with hitherto
unknown translational regulation. Additionally, our approach proved useful for identification of new transcript isoforms.
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INTRODUCTION

Recent studies have shown that only 30%–60% of the varia-
tion in cellular protein levels can be attributed to gene expres-
sion levels (Tian et al. 2004; Vogel et al. 2010). The remainder
ismost likely due to post-transcriptional regulation, including
mRNA transcript–specific regulation of translation and pro-
tein degradation (Cho et al. 2006; Brockmann et al. 2007;
Sutton et al. 2007; Sonenberg and Hinnebusch 2009; Rogers
et al. 2011). While translational regulation occurs largely dur-
ing initiation (Richter and Sonenberg 2005), recent experi-
mental and computational studies have discovered that
regulation of elongation also plays an important role, by
means of cis-regulatory elements on the transcripts, codon
bias, or mRNA structure (Arava et al. 2005; Dittmar et al.
2006;Kudla et al. 2009; Tuller et al. 2010; Leprivier et al. 2013).

Ribosome profiling (Ribo-Seq)—a technique based on
deep-sequencing of mRNA regions protected by ribosomes,
which provides the positions of ribosomes on the entire tran-
scriptome (ribosome profiles)—has enabled the study of
translation regulation at the genome-wide level (Ingolia
et al. 2009, 2012). Analysis of Ribo-Seq data sets using novel
bioinformatic algorithms led to the identification of cis-regu-
latory elements that control the speed of elongation (Ingolia
et al. 2011; Stadler and Fire 2011; Li et al. 2012), the sequence
of events inmiRNA regulation of translation (Guo et al. 2010;
Bazzini et al. 2012), and new translation initiation sites (TISs)
(Ingolia et al. 2011; Lee et al. 2012). The full scope of ribo-
some profiling studies is presented in a recent review
(Ingolia 2014). A recent study of proteotoxic stress revealed
a decrease in ribosome density on ribosome profiles of affect-
ed mRNA transcripts (Liu et al. 2013). However, despite bi-
ological relevance, to date no systematic genome-wide search
for changes in ribosome density has been performed.
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The aim of the present workwas to develop a computation-
al approach for detecting translational regulation, especially
regulation during elongation, from ribosome profiles. We
started from the assumption that most translational regulato-
ry events (e.g., ribosome stalling, alternative termination, or
alternative initiation) cause changes in ribosomedensity along
the translated mRNAs. After determining by mathematical
modeling that it is theoretically possible to discriminate be-
tween different forms of translational regulation based on
the patterns of ribosome density, we used a change point
(CP) algorithm (Erdman and Emerson 2008) to find changes
in ribosome density within ribosome profiles using Ribo-Seq
data generated for mouse embryonic stem cells (mESCs)
(Ingolia et al. 2011). This analysis detected many mRNAs
with known translational regulation, as well as new transla-
tional regulation targets of alternative termination, alternative
initiation, and ribosome drop-off. In addition, the analysis re-
vealed the presence of several new transcript isoforms.

RESULTS

Simulation of protein synthesis and translational
regulation

To analyze the effects of translational regulation on protein
synthesis and ribosome profiles, we built a family of totally
asymmetric simple exclusion process (TASEP)models of pro-
tein translation (Fig. 1; Supplemental File 1; Lakatos and
Chou 2003; Shawet al. 2003). Themodels include two species:
mRNA molecules with N codons and (an infinite pool of) ri-
bosomes of size L codons. Free ribosomes bind to the available
initiation codon of the mRNA at rate kI, before progressing
along the mRNA at a codon-specific rate kEi (i = 1,2,...,N)
and leaving the mRNA at the last codon at rate kT. Each ribo-
some is allowed to progress only if there is no steric hindrance
from the ribosome in front. Additional reactions, some of
which have not been addressed previously with TASEP mod-
els, include scanning past the canonical TIS to an alternative

TIS in the coding region of the mRNA (CDS) at rate kAlt
and ribosome drop-off or alternative termination at rate kDi.
Depending on initiation, termination, and (codon-specif-

ic) elongation rates, different regimes of elongation are possi-
ble, which result in significantly different protein synthesis
rates and different ribosome profiles (Lakatos and Chou
2003; Shaw et al. 2003). If, at first, we assume the elongation
rate is codon independent, then at low initiation rates the
mRNA is sparsely populated by ribosomes, and the protein
synthesis rate is low. Increasing initiation rate increases ribo-
some density and protein synthesis, until steric hindrance
between ribosomes prevents a further increase (Fig. 2A;
Supplemental Fig. S1). Conversely, slow termination leads
to low protein synthesis as a result of ribosome queuing; in-
creasing termination eliminates the queues. Any further in-
crease in termination does not change the density of protein
synthesis (Fig. 2C; Supplemental Fig. S1). The oscillations ap-
parent for low kT are due to a queue of ribosomes spanning the
length of the mRNA (Fig. 2C).
If the elongation rate is codon dependent, there are several

possible scenarios. Slow codons at 5′ positions have effects
similar to slow initiation; slow codons at 3′ positions, effects
similar to slow termination (Supplemental Fig. S2). Slow co-
dons in the central region of the CDS, with elongation rates

FIGURE 1. TASEP model of translation. Model reactions include ca-
nonical translation—i.e., initiation by free ribosomes at the canonical
TIS, codon specific elongation, and termination at canonical termina-
tion site (with production of full-size peptide)—and additional transla-
tional regulation events, i.e., alternative initiation downstream from the
canonical TIS, ribosome drop-off, and alternative termination.

FIGURE 2. TASEP simulations of translational regulation. Ribosome
density along the mRNA coding region for different rates of (A) canon-
ical initiation, (B) elongation of the first 30 codons—ramp, (C) termi-
nation, (D) elongation of a central codon, (E) ribosome drop-off, and
(F) alternative initiation downstream from canonical TIS. Unless stated
otherwise, kEi = 1, kI = 0.1, kT = 1, kAlt = 0, kDi = 0. For all simulations,
N = 500, L = 10, n = 100,000 (number of samples taken from the
simulation).
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higher than the initiation rate, cause a peak in the ribosome
profile at their respective positions; lower elongation rates
cause a queue behind the stalled ribosome, with few ribo-
somes in front; and, finally, at very low elongation rates the
queue reaches to the first codon and begins to limit initiation
(Fig. 2D).
A special case of putative regulation of ribosome progres-

sion along the mRNA is the “ramp,” a stretch of the first 30 to
50 CDS codons that are more likely to include rare codons,
which was discovered by ribosome profiling in yeast and fur-
ther investigated in a computational study of codon bias
(Ingolia et al. 2009; Tuller et al. 2010). Decreased elongation
rates of the first 30 codons are associated with increased ribo-
some density (Fig. 2B). Nevertheless, since similar increased
ribosome density is also predicted when initiation rates are
high and elongation rates normal (cf. Fig. 2A,B), rare codons
may not in fact be the cause of the ramp. Alternatively, the
“high initiation rate” ramp may be caused by boundary ef-
fects of the finite TASEP and occurs if translation is occurring
at close maximal coverage of the mRNA with ribosomes.
Since the ramp associated with rare codons can occur at
any coverage, we propose that measuring ribosome coverage
could be used to differentiate between the two possible na-
tures of the ramp and the corresponding mechanisms.
We also found that all other simulated cases of translation

regulation had significant effects on ribosome density, indi-
cating that the analysis of changes in ribosome density could
indeed lead to identification of translationally regulated
mRNAs. Alternative initiation results in a step-like increase
in density, while ribosome drop-off and alternative termina-
tion result in a step-like decrease (Fig. 2E,F).

CP algorithm robustly detects translation regulation
from in silico generated data

After performing the simulations, we tested whether the CP
algorithm could detect the changes in ribosome density in
computationally generated ribosome profiles. In brief, the al-
gorithm detects points along the length of the mRNA where
the ribosome density is changed, while ignoring the effects of
noise (see Materials and Methods). If the change is abrupt,
the CP position can be determined very exactly, while for
slower changes, one or more CPs may be detected with larger
positional uncertainty. Although the algorithm can detect
very small changes, in this work we limited the search to
only those changes that were >33%, and so, only CPs most
likely to include strong translation regulation were included
in the analysis.
The CP algorithm provided a robust method for detecting

changes in density for all the translational regulation modes
that we tested. A single slow elongation codon, slow termina-
tion, alternative initiation, and ribosome drop-off/alternative
termination all led to step-like changes in ribosome densities
and were also detected as such. Slow termination and slow
elongation that led to ribosome stalling, and queues were de-

tected as oscillations in ribosome density (with the caveat that,
for detecting ribosome queues, different algorithm parame-
ters had to be used; see Materials and Methods). The mini-
mum/maximum parameters at which CP detection was
robust are presented in Supplemental Table S1, with example
outputs from the CP analysis in Supplemental Figure S3.

Bias in ribosome profiling

The next step was to use the CP algorithm to detect transla-
tion regulation events in a Ribo-Seq data set. We chose a re-
cent mESC study (Ingolia et al. 2011) because it included
both Ribo-Seq and RNA-Seq data sets obtained from the
same cell culture. A recent analysis of a different Ribo-Seq
data set from the same study indicated that ribosome flux in-
creased along the translated mRNAs (Dana and Tuller 2012).
This implied that more ribosomes translated the 3′ regions of
the CDSs than the 5′ regions, a feature that is inconsistent
with current biophysical models of translation. Since such a
ribosome profiling bias would likely result in a high number
of false positives detected by the CP algorithm, we decided to
search first for potential bias in our data set.
From the combined Ribo-Seq/RNA-Seq data set, 8933

well-expressed mRNA transcripts were selected with high
enough signals in both Ribo-Seq and RNA-Seq (Supplemen-
tal Table S2). The averaged ribosome and RNA-Seq profiles of
the 8933 highly expressed mRNAs confirmed the presence of
bias in the data sets. The ribosome density was highest at ini-
tiation and termination codons and then dropped toward the
middle of the CDS.However, unexpectedly, the central region
of the CDS exhibited higher ribosomal density than the 5′ and
3′ ends (Fig. 3A). It should be noted that this bias toward high
ribosome density in the central region of the CDS is much
more apparent if the analyzedmRNAs are normalized accord-
ing to the length of their CDS before averaging ribosome den-
sity, rather than if ribosome density is averaged for the first
and last 50 codons, as was done in the original Ribo-Seq study
(cf. Fig. 3A and Supplemental Fig. S4; Ingolia et al. 2011).
Importantly, the average ribosome profile matched the aver-
age RNA-Seq profile very well, suggesting that the ribosome
profiling bias is caused by a factor common to Ribo-Seq
and RNA-Seq. Indeed, dividing the average ribosome profile
with the average RNA-Seq profile results in a ribo/RNA aver-
age profile that is consistent with current biophysical models
of translation in which ribosome density decreases slowly
from the initiation to the termination codon as a result of
either very low-level spontaneous ribosome drop-off (Kur-
land 1992; Arava et al. 2005) or a slight increase in ribosome
speed (Fig. 3A; Bonderoff and Lloyd 2010; Dana and Tuller
2012). When we fitted the TASEP model to the normalized
ribosome profile, a ribosome drop-off rate of 0.3% best pre-
dicted the data.
Additionally, analyzing individual ribosome (and RNA-

Seq) profiles revealed that ribosome (and RNA-Seq) density
along the transcripts was very rarely constant, as would be
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expected for translation without strong regulation. Instead,
in addition to short peaks and valleys that can be accounted
by slower/faster ribosome speeds at particular codons, many
step-like changes were present in the profiles. Two likely rea-
sons were alignment of RNA reads to multiple genomic re-
gions and assignment of RNA reads aligned to single
genomic regions tomultiple gene isoforms that result fromal-
ternative splicing, which have both featured in the original
study (Fig. 4; Ingolia et al. 2011). The profile of a single
mRNA transcript can thus include not only the counts of its
own reads but also the counts of reads belonging to all alter-
natively spliced isoforms that share the same sequence.

Because the effects of multiple alignments were estimated
to be small in previous studies (Ingolia et al. 2011; Dana
and Tuller 2012), we decided to focus on multiple assign-
ments. We limited the data set to a group of single-exon genes

without known isoforms, for which any multiple assignment
should not be possible. This decreased the bias but did not
eliminate it (Fig. 3B). Interestingly, choosing only long
mRNAs, aswas done in the study that first found the ribosome
profiling bias (Dana and Tuller 2012), also did not eliminate
the bias, but this choice changed the average ribosome densi-
ty: The RNA-Seq profiles for long mRNAs increase from the
initiation to the termination codon, and consequently, the
ribo/RNA profiles fall sharply in the same direction (Fig.
3C). This indicates that the Ribo-Seq and RNA-Seq bias
depend on the length of the transcript.

CP detection in ribosome and RNA-seq profiles

Although multiple assignments could not completely explain
the Ribo-Seq bias that was seen from the average profiles,
they caused undesirable step-like changes in ribosome pro-
files and needed to be removed before the CP analysis.
Therefore, assuming that approximately the same number
of multiple assignments and multiple alignments occurred
in both Ribo-Seq and RNA-Seq, all individual ribosome pro-
files were normalized with the corresponding RNA-Seq pro-
files. In this way, CP analysis of ribosome and RNA-Seq
profiles should detect alternative splicing and translational
regulation, while the analysis of the derived ribo/RNA pro-
files should detect translational regulation only.
The CP algorithm was run for 8933 ribosome profiles,

RNA-Seq profiles, and ribo/RNA profiles using the same
parameter values. As expected, the algorithm detected the
fewest CPs in the ribo/RNA profiles (Ribo-Seq, 15483 CPs;
RNA-Seq, 22342 CPs; ribo/RNA, 8255 CPs) (Supplemental
Table S2). Almost half of the CPs that were found in ribo-
some profiles, but were no longer present in ribo/RNA pro-
files, matched the positions of known exon junctions
(downloaded fromUCSC Genome Browser database, assem-
bly NCBI37/mm9) (Karolchik et al. 2004). The necessity of

FIGURE 3. Average ribosome, RNA-Seq, and normalized profiles.
Average read densities for Ribo-seq, RNA-Seq, and ribo/RNA for (A)
8933 well-expressed mRNAs, (B) 342 single exon mRNAs, and (C)
630 long mRNAs. All read densities are normalized against the mean
number of reads of the profiles and against their length.

FIGURE 4. Multiple alignments and multiple assignments of RNA
reads. (A) If an RNA read matches more than one genomic sequence,
it can be assigned to both positions. (B) If there are more annotated iso-
forms that share the same genomic sequence, RNA reads can be assigned
to all isoforms, leading to step-like changes in the ribosome and RNA-
Seq profiles.
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the normalization approach was also evident when examining
individual transcripts; e.g., nine CPs were found in both the
ribosome and RNA-Seq profiles for ribosome biogenesis reg-
ulator (Rrs1) and were all eliminated by the normalization,
while for glutathione peroxidase 1 (Gpx1), two CPs were
found in both the ribosome and RNA-Seq profiles and one
CP remained after normalization (later identified as a true
translation regulation event) (Fig. 5). Nevertheless, when ex-
amining positions of CPs found in all three types of profiles,
it emerged that normalization not only removed CPs
but also added new ones, particularly in the 5′ and 3′ ends
of the CDSs (Supplemental Fig. S5). As most of these extra
CPs were most likely to be artifacts of normalization, we
took particular care to remove them in subsequent analysis.
In total, 34,844 CPs were found in all the different profiles.

To find mRNA targets with a high probability of translation
regulation, we applied several filters to this CP set. First, we
categorized the CPs based on the profile (ribosome, RNA-
Seq or ribo/RNA) in which they were found (Supplemental
Fig. S6): Translational regulation targets should have CPs
in ribosome profiles but not in RNA-Seq profiles, and nor-
malization of the ribosome profiles with RNA-Seq profiles
should not eliminate the CP. As a second filter, we eliminated
all those CPs that coincided with known exon junctions. We
were left with 815 CPs belonging to 635 mRNAs. From these,
336 CPs that came in pairs (an increase in signal density fol-
lowed by a decrease to the same level, or vice versa) (see Fig.
4, exon 4) were removed as this pattern strongly suggested

alternative splicing coupled with multiple assignment of
RNA reads (see Fig. 4). Gene ontology (GO) analysis of the
remaining translation regulation candidates (479 CPs on
462 mRNAs) showed enrichment of several biological
processes and cellular components, including nucleobase-
containing compound metabolic process (GO:0006139),
translational initiation (GO:0006413), and nuclear part
(GO:0044428) (for a full list, see Supplemental Table S2).

Classification of CPs

By use of a decision tree, the CPs were then classified into the
following groups: alternative termination, alternative ini-
tiation, ramp, drop-off, slow termination, stalling, and false
positives (Supplemental Fig. S7). After automatic classifica-
tion, each mRNA profile was visually inspected and com-
pared with the genomic information available in UCSC
Genome Browser (Meyer et al. 2013). If the CP could be ex-
plained by a factor different from translational regulation
(e.g., by alternative splicing/multiple assignment), it was re-
garded as a false positive.
This analysis discovered six genes with potential for strong

alternative termination: Gpx4, Tmem55b, Atf4, 2700094K
13Rik (also known as SelH), Sep15, and Gpx1 (Fig. 6; Supple-
mental Table S2). For all six genes, the CPs are positioned at
internal stop codons that are distant from exon junctions, in-
dicating they are not artifacts ofmultiple assignments. Four of
the six correspond to selenoprotein genes (Gpx4, SelH, Sep15,
andGpx1) with aUGAcodon in the central region of theCDS.
The presence of a stop codon in the CDS is a characteristic
feature of seleonoprotein mRNAs, where it codes for the ami-
no acid selenocysteine (Hesketh 2008). There are 24 known
mouse selenoprotein genes, but this CP analysis did not detect
the other 20 genes. Likely reasons for this finding include the
following: Only six of the other 20 selenoprotein genes were
well expressed and thus were part of our analysis, with four
of the six (Txnrd1, SelK, SelT, and Vimp [also known as
SelS]) having the selenocysteine codon positioned immedi-
ately before the stop codon, making detection of alternative
termination impossible. In addition, for the remaining two
genes (Sepw1 and Msrb1 [also known as Sepx1]), CPs were
found in ribosome profiles but then lost during normaliza-
tion (Sepx1) or because the UGA was near an exon junction
(Sepw1) (Supplemental Fig. S8).
In contrast to the mRNAs from selenoproteins that were

translated in frame 0, the translation of the remaining two
mRNAs (Atf4 and Tmem55b) was frameshifted (determined
by using a recent algorithm by Michel et al. 2012). For Atf4,
we found two functional TISs, the canonical one and one in
the 5′ UTR in frame −1, indicating high translation of an
uORF. For Tmem55b, we discovered a functional TIS in the
5′ UTR in frame +1, while the canonical one was not func-
tional (Supplemental Fig. S9). For both proteins, the transla-
tion was terminated in themiddle of the annotated CDS, with
potential production of functional peptides.

FIGURE 5. Elimination of artifacts from ribosome profiling. RNA read
densities are shown in blue, and the segments of equal density estimated
by the change point (CP) algorithm are shown in red. After normaliza-
tion by RNA-Seq, artifacts, such as effects of multiple alignments and
assignments, are removed from ribosome profiles. (A) For Rrs1, nor-
malization removed all artifacts from the ribosome profile; consequent-
ly, the CP analysis of the normalized profile resulted in no CPs found.
(B) For Gpx1, a single CP remained after normalization, which we later
showed to be a true translation regulation event. The annotated CDSs
are shown below the density plots in light blue. Green vertical lines in-
dicate annotated start codons, red lines indicate annotated stop codons,
and black lines indicate exon junctions.
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We also discovered 11 genes with potential alternative ini-
tiation in the CDS leading to substantial translation: Lactb2,
Samm50, Mrpl24, Cyr61, Ube2j2, Psmc2, Psmd8, Lsm14a,
Nsmce1, Mylpf, and Echs1 (Fig. 7; Supplemental Table S2).
Of these, five genes (Ube2j2, Psmc2, Psmd8, Nsmce, Mylpf)
were also discovered by Ingolia et al. (2011) when initiation
was stopped with the translation inhibitor Harringtonine.
Most of the discovered mRNAs were expressed in frame 0
in their annotated form; however due to two functional
TISs, the annotated peptide and an alternative peptide were
produced. Psmd8 (and possibly Psmc2) was expressed as an
unknown isoform (Fig. 7).

We then tested whether CP analysis was useful for estab-
lishing the level of translation from alternative initiation sites
predicted previously (Ingolia et al. 2011). We compared all
3426 alternative TISs predicted by Ingolia et al. (2011) to
the positions of the detected CPs in ribosome profiles and
found 13 matches (D10Jhu81e, Laptm4a, Enox1, Eif4g1,
Etv5, Hn1l, Ppp1ca, Hnrnpul2, Hnrpa3, Nrd1, Mtf2, Isg20l1,
and Flna) (Supplemental Fig. S10). Of these, most of the
associated open reading frames (ORFs) were in the canonical
frame and produced truncated proteins, while Mtf2, Isg20l1,
and Ppp1cawere translated in frame +1 and produced a short
peptide only, which can be seen by the decrease in ribosome

density shortly after the alternative initiation/increase in den-
sity (Supplemental Fig. S10).
The analysis found eight genes with potential ribosome

drop-off (Pum2, Cinp, Spin1, Myst4, L3mbtl2, Uhrf1,
Zmat3, and Arpp19) (Supplemental Fig. S11; Supplemental
Table S2). In most cases, the drop in ribosome density was
preceded by a large spike, indicating the drop could be a con-
sequence of stalling at a slow codon. The drop-off group was
enriched for methylated histone residue binding (GO:
0035064; Spin1, L3mbtl2, Uhrf1; FDR = 0.017), indicating a
possible role for particularly slow elongation in the correct
folding of proteins that bind histone residues. However due
to small sample size, this interpretation has to be taken
with due caution. Interestingly, the genomic sequence of

FIGURE 6. Genes with alternative termination. Ribo/RNA profiles are
shown in blue, and the segments of equal density estimated by the CP
algorithm are shown in red. The annotated CDSs are shown below
the profiles plots in light blue. For Atf4 and Tmem55b, the three reading
frames are indicated as 0, −1, and +1. Green vertical lines indicate an-
notated start codons, red lines indicate annotated stop codons and/or
the first stop codon encountered by the ribosome, and black lines indi-
cate exon junctions.

FIGURE 7. Genes with alternative initiation. Ribo/RNA profiles are
shown in blue, and the segments of equal density estimated by the CP
algorithm are shown in red. The annotated CDSs are shown below
the profiles plots in light blue. Green vertical lines indicate annotated
start codons and the newly discovered alternative start codons, while
red lines indicate the annotated stop codons.
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the eight genes around the predicted drop-off was enriched
for G and A nucleotides, in particular the GAA codon
(Supplemental Fig. S12).
We found 97 mRNAs with the ramp–high ribosome den-

sity immediately after initiation (Supplemental Table S2).
When this group was compared with all well-expressed genes
for translational efficiency, no difference was found, indi-
cating that slow elongation at the start of the CDS and not
fast initiation, which was a competing hypothesis brought
forward by the modeling, is the main cause of the ramp
(Supplemental Fig. S13). We also found no enrichment for
rare codons or for any GO terms. Slow termination was pre-
dicted for 45 mRNAs (Supplemental Table S2). We found no
enrichment for any particular stop codon, unusual termina-
tion context, rare codons preceding the stop codon, or any
GO terms for this group. We also found no oscillation in
the ribosome profiles, indicating that there is no significant
ribosome queuing during translation.
Despite efforts to eliminate false positives,∼60% of CPs on

the final list could not be attributed to the tested translational
regulation mechanisms. Detailed manual analysis showed
that many CPs were a consequence of alternative splicing;
however because the CPs found around the known splice
sites were eliminated, only CPs at unknown splice sites
should have remained. By comparing the whole set of 462
candidates for translational regulation with UCSC isoform
information, we found new isoforms for 31 genes (Fig. 8;
Supplemental Table S2), suggesting that CPs could also be
good markers for isoform discovery. We also found eight
novel yet unannotated isoforms, for which there is clear evi-
dence in the mRNA and EST tracks at the UCSC and/or
Ensembl browsers (Supplemental Table S2), which supports
the predictions made by the CP algorithm.

DISCUSSION

In this study we demonstrated how detecting changes in ribo-
some density along mRNAmolecules can be used to find tar-

gets of translational regulation. By focusing on large changes
of ribosome density, we were able to identify mRNA mole-
cules for which translational regulation determines the se-
quence and number of expressed proteins. This approach
detected known, as well as unknown, targets of alternative
termination, alternative initiation, and putative ribosome
drop-off. In addition, during our analysis we determined
that Ribo-Seq suffers from the same experimental bias as
RNA-Seq, and showed the utility and necessity of analyzing
the results of both methods in parallel. Finally, we also dem-
onstrated that changes in ribosome density or RNA-Seq den-
sity can be used to detect new genetic isoforms.
Several studies have used Ribo-Seq to study translational

regulation after different interventions, and most have used
translational efficiency of groups of transcripts as their mea-
sure of interest (Ingolia et al. 2011; Bazzini et al. 2012). One
study that used individual ribosome profiles and position-
based ribosome density in its analysis came to the surprising
conclusion that ribosome flux increased along the transcripts
with more ribosomes present at the 3′ part of the CDS than
the 5′ part (Dana and Tuller 2012). The investigators offered
two explanations for this proposition, either extensive alter-
native initiation from TISs inside the CDS or an unknown
bias present in the data set. Our analysis of the Ribo-Seq
and RNA-Seq data sets identified a bias and provided an ex-
planation. The average ribosome and RNA-Seq profiles had
highest ribosome density in the middle of the CDS, with low-
er density at both the 5′ and 3′ ends (Fig. 3). When the ribo-
some profiles were normalized by corresponding RNA-Seq
profiles, the unusual density distribution disappeared, and
the resulting ribo/RNA profiles had a very small decrease
from the 5′ to the 3′ region. This is consistent with the current
understanding of translation: Either a small fraction of ribo-
somes drop off the mRNA transcripts and do not finish
translation (Kurland 1992) or there is a slight increase in ri-
bosome speed along the mRNA (Bonderoff and Lloyd 2010;
Dana and Tuller 2012). We repeated the analysis using only
long transcripts to better match Dana and Tuller’s analysis.
This time the average Ribo-Seq and RNA-Seq were not so
similar, but normalization still led to the expected ribo/
RNA profiles. The sharper decline in ribo/RNA normalized
profiles for longer mRNAmolecules (cf. Fig. 3A,C) is not sur-
prising. If the slow decrease in ribosome density from 5′ UTR
to 3′ UTR seen in ribo/RNA normalized profiles of all genes
(Fig. 3A,B) is due to a low probability of ribosome dropping
off the transcript, then the faster decrease in the normalized
profiles of longer mRNAs can be explained by their length
alone. Our findings suggest that the increased ribosome
flux reported by Dana and Tuller could be an artifact of the
Ribo-Seq and RNA-Seq protocol used in the original study.
An alternative explanation for the decreasing normalized ri-
bosome profiles is that the Ribo-Seq and RNA-Seq do not
share the same bias: Poly(A)-purification, such as that used
by Ingolia et al. (2011), of the RNA-Seq samples has been
shown to introduce an enrichment of 3′ mRNA fragments

FIGURE 8. Genes with new isoforms. RNA-seq profiles are shown in
blue, and the segments of equal density estimated by the CP algorithm
are shown in red for Hnrdpl (left) and Ubb (right). The annotated CDS
are shown below the profiles in light blue. Green vertical lines indicate
annotated start codons and red vertical lines annotated stop codons,
while black vertical line indicate exon junctions. For both genes, the
CP location differs significantly from the annotated exon junctions
and indicates hitherto unknown spicing sites. The remaining new iso-
forms found are described in Supplemental Table S2.
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compared with the 5′ fragments. Thus, normalization with
so-biased RNA-Seq profiles could also lead to a decrease in
normalized ribosome density along the transcript.
Nevertheless, the similarity between the average ribosome
and RNA-Seq profiles and the fact that the ribosome profiles
post-normalization closely match theoretically expected ri-
bosome profiles supports our interpretation.

One possible cause of the observed bias could be assign-
ments of RNA reads to multiple genetic isoforms (Fig. 4).
To test this hypothesis, the same analysis was run on only sin-
gle-exon transcripts. This eliminated part, but not all, of the
bias. Another possible source of the bias is the so-called frag-
ment bias (Bohnert and Ratsch 2010; Hansen et al. 2010;
Roberts et al. 2011), which has been shown to depend on
transcript length and could therefore also explain the ob-
served differences in profiles between long and short tran-
scripts. Apart from being a source of part of the Ribo-Seq
bias, multiple assignments also cause step-like changes in ri-
bosome density in individual ribosome profiles. Dividing the
ribosome profiles for each mRNA by its corresponding RNA-
Seq profiles eliminated most of these artifacts, further under-
lining the utility of using RNA-Seq data for Ribo-Seq analysis
(Fig. 5).

After running the CP algorithm, classifying the changes in
density, and manually inspecting the candidates for transla-
tional regulation, we found several groups of mRNAs with
different types of translational regulation. Among the alter-
native termination targets, we found four selenoprotein
mRNAs (Fig. 6; Supplemental Table S2). The investigators
of a recent ribosome profiling study that focused on transla-
tion of selenoproteins also identified a drop in ribosome den-
sity in selenoprotein ribosome profiles (Howard et al. 2013).
Selenoproteins have an internal UGA codon that is recoded
for selenocysteine insertion during translation. UGA recod-
ing is not efficient, and it has been shown that selenocysteine
insertion competes with premature termination (Driscoll
and Copeland 2003). In Howard et al. (2013) and our seleno-
protein ribosome profiles, ribosome density decreased at the
UGA codon but did not disappear, indicating that full-size
selenoprotein production and ribosome drop-off/termina-
tion occur on the same mRNA transcripts. When we ran
the CP algorithm specifically on all selenoproteins, we found
two more instances with the same type of change in density.
Because selenoproteins are known targets of translational
regulation, their identification in our alternative termination
group supports our interpretation of CPs in ribosome pro-
files as sites of translational regulation.

One of the other alternative termination targets,Atf4, is also
a known target of uORF regulation (Vattem and Wek 2004),
which was also confirmed in the original ribosome profiling
study (Ingolia et al. 2011). To our knowledge, translational
regulation has not yet been described for the final target iden-
tified, Tmem55b. The alternative termination of both, Atf4
and Tmem55b, can only be explained by translational frame-
shifting or initiation in a different frame. Therefore, we used a

recent frameshift detection algorithm (Michel et al. 2012) to
search for frameshift sites upstream of the predicted alterna-
tive termination. The successful detection of both is an indi-
rect verification of our approach (Supplemental Table S2).
We are aware of three other studies that have used ribo-

some profiling to find potential TISs (Ingolia et al. 2011;
Fritsch et al. 2012; Lee et al. 2012). In all studies, any site
where ribosomes stalled after applying an initiation blocker
was presumed to be a potential TIS. However, in none of
the studies was the translation associated with each of these
sites systematically quantified. In our analysis, we focused
only on those alternative TISs in the annotated CDS that
are associated with substantial initiation, i.e., where the ribo-
some density changes by at least 33%. We found 11 genes
with potential alternative initiation (Fig. 7), of which five
have previously been reported (Ingolia et al. 2011). A possible
reason why the other six genes were missed by Ingolia et al.
(2011) is that harringtonine does not always halt translation
at near cognate (e.g., cug, gug) TISs (Starck et al. 2008).
While it is possible that some of our 11 genes are false posi-
tives, it should be noted that Ingolia et al.(2011) found 3426
potential alternative TISs in the annotated CDSs. When we
screened these 3426 TISs, we discovered CPs for only 13, sug-
gesting the vast majority of the detected TISs is associated
with only limited translation.
We found a further eight mRNAs with potential ribosome

drop-off, none of which were previously reported to be tar-
gets of translational regulation. The difference between these
and the alternative termination mRNAs was that no stop co-
don was found at the positions of the CP for the latter.
Analysis of the sequence surrounding the drop-off site
showed enrichment for G and A nucleotides and, specifically,
the GAA codon. A similar consensus was found for sites of
ribosome pausing in the original Ribo-Seq study (Ingolia
et al. 2011). It therefore seems that in at least some cases, ri-
bosome stalling can lead to ribosome drop-off in eukaryotes,
as has been suggested (Buchan and Stansfield 2007). Another
possible explanation for the sudden drop in ribosome density
would be ribosome queuing: When ribosomes queue behind
a ribosome at a slow codon or a sequence of slow codons on
the transcripts, a shadow of lower ribosome density can occur
downstream from the slow codon. However, for a shadow of
significant size to occur, there needs to be substantial queu-
ing, which should manifest itself as oscillation in ribosome
density upstream of the slow codons (Supplemental Fig.
S14A). Also, even in this extreme case, the shadow is of finite
size and does not stretch all the way to the stop codon; after
the shadow, the ribosome density returns to prequeue levels.
Since we did not detect any oscillation in the ribosome pro-
files and since the detected decreases in ribosome density for
our ribosome drop-off transcripts are permanent, we feel that
drop-off is the more likely explanation. Additionally, when a
low probability of ribosome drop-off at a slow codon is mod-
eled, the simulated ribosome profiles agree very closely with
the experimental ones (Supplemental Fig. S14B).
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We also found several mRNAs with high ribosome density
at the 5′ (ramp) or the 3′ (slow termination) of the CDS;
however, sequence analysis did not reveal enrichment for
any sequences. Instead of resulting from translation of slow
codons, as in the current hypothesis, the TASEP simulations
of translation have suggested that the ramp could be due to
very fast initiation, but this has not been confirmed by anal-
ysis of translation efficiency. Therefore, slow codons and/or
mRNA tertiary structure remain the most probable causes
of the ramp (Kudla et al. 2009; Tuller et al. 2010).
Although we tried to eliminate changes in density due to

Ribo-Seq/RNA-Seq artifacts, a careful analysis showed that
many CPs among the translation regulation candidates
were a consequence of alternative splicing. Because all chang-
es in density close to known exon junctions as annotated in
the UCSC Genome Browser were eliminated from the final
list, the remaining CPs were strong candidates for novel
isoforms. By using this approach, we found 31 genes with
hitherto unknown isoforms from UCSC or Ensembl (Sup-
plemental Table S2) and a further eight for which some evi-
dence already exists (Supplemental Table S2), suggesting that
our method is useful not only for analyzing translational reg-
ulation but also for uncovering novel alternative isoforms, in-
cluding alternative splicing. Indeed, in a very recent study, a
strategy similar to ours has been developed specifically to es-
timate gene isoform expression with very encouraging results
(Suo et al. 2013).
In conclusion, the present study demonstrates that ribo-

some density patterns in the CDSs are a valuable source of in-
formation in the analysis of translational regulation. The CP
approach taken in the study has proven useful in detecting
translational regulation in the mRNA coding region but
would easily be extendable to analysis of 5′ UTR and 3′

UTR regions and to detection of alternative splicing events.

MATERIALS AND METHODS

TASEP models of protein translation

The protein translation models were developed based on the TASEP
with extended particles (Lakatos and Chou 2003). In the models, an
mRNA CDS with N = 500 codons is presented by a chain of 500
sites, while a ribosome attached to the mRNA covers L = 10 codons
(Fig. 1). If the first site of the mRNA is free, a new ribosome attaches
at the initiation with the rate kI. After initiation, the ribosome moves
along the mRNA at a codon-specific rate kEi, again only if its move-
ment is not hindered by another ribosome. When the ribosome
reaches the final codon, it detaches at rate kT from the mRNA to-
gether with a full-size peptide, the results of the translation process.
The dynamics of ribosome progression along the mRNAwas sim-

ulated with the next-reaction Gillespie algorithm (Gillespie 1977),
using custom R code (Supplemental File 1). All simulations started
with an empty mRNA, which was simulated for 1 million ribosome
steps. As the average half-life of a mammalian mRNA is ∼9 h
(Schwanhausser et al. 2011) and the steady-state ribosome density
is achieved in a matter of minutes, according to estimates of elonga-
tion speed of ∼5 aa/sec (Ingolia et al. 2011), the transient lower ri-

bosome occupation of the mRNA (first 100,000 steps) was ignored
in all analyses. The ribosome profiles were determined by random
sampling and averaging of ribosome position along the mRNA
from step 100,000 to the end of the simulation. The protein synthe-
sis rates were determined by dividing the total number of proteins
produced by the total time that has passed from step 100,000 to
the end of the simulation.
When simulating alternative initiation at a TISs other than the ca-

nonical one, the scanning model of translation initiation was as-
sumed (Kozak 1989). Instead of the 80S ribosome coming
together at the canonical TIS, the 40S skips it at rate kAlt and scans
downstream until a suitable TIS is found. In the simulations, we as-
sumed that the 40S scanning occurs at the same speed as elongation
and that it is the same size as the full 80S ribosome, thus providing
the same steric hindrance to other ribosomes. Nevertheless, since
40S ribosomes are not recorded in Ribo-Seq, we ignored them in
the ribosome density calculations (Ingolia et al. 2009).
Ribosome drop-off and alternative termination were modeled as

alternatives to the elongation step occurring at rate kDi; i.e., at any
codon on the mRNA (except the final codon), the ribosome could
either move to the next codon or detach from the mRNA.

CP analysis

In this study, we tested CP algorithms from the changepoint R pack-
age (http://cran.r-project.org/web/packages/changepoint/index.html)
and a Bayesian CP algorithm from the bcp R package (http://cran.r-
project.org/web/packages/bcp/index.html) (Erdman and Emerson
2008; R Development Core Team 2008). In a preliminary run,
both algorithms produced very similar results; however as the bcp
returns the estimates of both the mean and the probability of a
CP for each position in a sequence (whereas changepoint does
not), we decided to use it for the rest of the analysis. The details
of the algorithm are presented by Erdman and Emerson (2008);
therefore, here we only provide a broad overview and the changes
we have made to the algorithm for analysis of our rather specific sig-
nals, ribosome and RNA-Seq profiles.
Ribosome and RNA-Seq profiles are represented as vectors of the

number of RNA reads aligned to specific positions of the mRNA
CDSs yR = [yR1,…,yRn]. The bcp algorithm assumes that there is
an unknown partition, ρ, of each vector into contiguous block,
such the means are equal in each block but different between neigh-
boring blocks. A CP is defined as the position on the mRNA i∈
{1,…,n− 1} that delimits two consecutive blocks. The algorithm be-
gins with a zero partition ρ = (U1, U2,…,Un); Ui = 0; Un = 1 and
then updates it in an MCMC scheme. In each step of the Markov
chain, at each position i, a value of Ui is drawn from the conditional
distribution ofUi given the data and the current partition. The tran-
sition probability, p, of a change at the position i + 1 is obtained
from the following ratio presented by Barry and Hartigan (1993):

pi
1− pi

=
� p0
0 pb 1− p

( )n−b−1
dp

� p0
0

pb−1 1− p
( )n−b

dp
·

�w0

0

w
b/2

W1 + B1w( ) n− 1( )/2
dw

�w0

0

w
b− 1( )/2

W0 + B0w( ) n− 1( )/2
dw

,

where b is the number of blocks, p0 and w0 are parameters used in
the definition of priors that control the sensitivity of the algorithm,
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and W0, B0, W1, and B1 are the within and between block sums of
squares obtained when Ui = 0 and Ui= 1, respectively. In this study,
different values of p0 and w0 were tested, with p0 = 0.001 (the num-
ber of changes in the signal was expected to be low) and w0 = 0.2
(relevant changes were expected to be of reasonable size) producing
reasonable results in detecting changes in the simulated data sets
(Supplemental Fig. S3; Erdman and Emerson 2008). The parameters
were changed to p0 = 0.1, w0 = 0.02 when detecting CPs after slow
elongation and termination; these parameters were found to work
better when the number of changes to be detected was high.

Only CPs with the following properties were included into the
analysis:

• Minimum segment size of at least 10 codons. A sufficient segment
size is intended to guarantee that the detected CPs are not due to
random noise but are genuine translational regulation events.
When segments were smaller, the CPs were combined into a single
CP with the smallest possible increase in mean squared error be-
tween the signal and the estimatedposteriormeansof the segments.

• The change in mean between two neighboring segments of at
least 1/3:

(0.75 . yk/yk+1)||(yk/yk+1 , 1.33).

While smaller changes were detected by the algorithm, they were
ignored in subsequent analysis to decrease the number of false
positives.

• The confidence level of the CP had to be >0.95.

Each detected and accepted CP was assigned an interval, which had
at least 95% probability of encompassing the true CP. The interval
was defined as positions at which CL reached 2.5% and 97.5% of
its final value, respectively.

The algorithm was first tested on 500 randomly chosen RNA-seq
and ribosome profiles. The test revealed that the algorithm is sensi-
tive to peaks in ribosome density. Because they have been studied
before (Ingolia et al. 2011), we were not interested in these so called
“ribosome pauses.” Therefore, we decided to scan the ribosome pro-
files for any peaks (three codons or less wide) where ribosome den-
sity is at least 10-fold or greater than the mean density across the
CDS and replace these peaks with the mean CDS ribosome density.
We then repeated the CP analysis for the whole data set.

Generation of ribosome and RNA-Seq profiles
for individual mRNAs

Our analysis was performed on a Ribo-Seq data set for mESCs
(Ingolia et al. 2011) as submitted to the NCBI Gene Expression
Omnibus (GEO) database (accession no. GSE30839) (Barrett and
Edgar 2006). From the whole set of data generated by Ingolia et al.
(2011), we selected 8933 well-expressed and translated transcripts
with a CDS ribosome density of more than 1/nucleotide, represent-
ing 4784 genes (Supplemental Table S2). For each CDS, the nucleo-
tide reads were transformed into codon reads by averaging the reads
obtained from three nonoverlapping consecutive nucleotides, start-
ing from the annotated start codon and ending at the stop codon.

The average ribosome profiles and RNA-Seq profiles were gener-
ated by first normalizing all individual profiles by length. This was
performed by using function interp1 inMatlabwith “linear” interpo-
lation. The profiles were then normalized against their own mean

profile values, the normalized profiles summed, and the sum divided
by the total number of isoforms. Finally, the ribo/RNA profiles were
obtained by diving the ribosome profiles by the RNA-Seq profiles (to
avoid division by zero, all zeros in the RNA-Seq profiles were re-
placed by the minimum RNA-Seq profiles value above zero).

Eliminating alternative splicing CPs

Based on the profile (ribosome, RNA-Seq, or ribo/RNA) in which a
CP was found, we categorized the CPs into seven different groups
(Supplemental Fig. S6). Group A contains the CPs found only in ri-
bosome profiles—they are not found in RNA-Seq profiles—that are
eliminated by normalization. These are most likely to be caused by
noise, short segments of slow/fast codons, or weak multiple assign-
ments detected in ribosome profiles, but not RNA-Seq profiles (vice
versa for group B). Groups D and G contain CPs found in ribosome
profiles (D,G), RNA-Seq profiles (D,G), and ribo/RNA profiles (G).
These are most likely due to multiple alignments/assignments.
Groups C and F are most likely false positives caused by normaliza-
tion itself (C) or noise (F). We are thus left with the most likely tar-
gets for translation regulation, Group E: 1355 CPs (4%) found in
ribosome and ribo/RNA profiles, but not in RNA-Seq profiles.

This group was reduced further by eliminating all CPs that were
fewer than three codons away from a known exon junction and
CPs that came in pairs (a rise/drop at first CP countered by a
drop/rise to the same level at second CP, a pattern typical of for mul-
tiple assignments).

Categorization of translational regulation candidates

CP properties and genomic sequence data were used to categorize
CPs into groups with different translational regulation events.
Increased ribosome density was taken as a sign of alternative initia-
tion or slow termination, with decreased density indicating alterna-
tive termination, ribosome drop-off, or ramp. The position of the
CP was taken into account when distinguishing between, e.g., alter-
native initiation (more probable at 5′ ends of the CDS) and slow ter-
mination (3′ ends of the CDS). We scanned the genomic sequences
surrounding the detected CPs for potential stop codons and strong
initiation sequences (consensus sequence taken from Ingolia et al.
2011) in any reading frame. We also calculated the periodicity tran-
sition score (script downloaded from http://lapti.ucc.ie/bicoding/
Rscripts/PTS.R in September 2013), a measure of how the nucleo-
tide triplet periodicity (i.e., RNA reads being assigned either to the
first, second, or third nucleotide of a codon) changes in the ribo-
some profiles (Michel et al. 2012). If PTS > 10, we considered the
possibility of a frameshift. The above data were fed into a decision
tree (Supplemental Fig. S7) to classify the CPs automatically.
Afterward, each transcript profile was visually inspected and com-
pared with the genomic information available in UCSC Genome
Browser, especially information on all gene isoforms (Meyer et al.
2013). If the CP could be explained by a factor other than transla-
tional regulation, it was regarded as a false positive.

GO analysis

Identified sets of genes were compared with the group of all well-ex-
pressed genes for GO enrichment with the web-based tool GOrilla,
using the default settings (Eden et al. 2009).
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