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In this article, a two-layer vertical equilibrium model for the injection of carbon
dioxide into a low-pressure porous reservoir containing methane and water is
developed. The dependent variables solved for include pressure, temperature and
CO2–CH4 interface height. In contrast to previous two-layer vertical equilibrium
models in this context, the compressibility of all material components is fully
accounted for. Non-Darcy effects are also considered using the Forchheimer equation.
The results show that, for a given injection scenario, as the initial pressure in the
reservoir decreases, both the pressure buildup and temperature change increase. A
comparison was conducted between a fully coupled non-isothermal numerical model
and a simplified model where fluid properties are held constant with temperature.
This simplified model was found to provide an excellent approximation when using
the injection fluid temperature for calculating fluid properties, even when the injection
fluid was as much as ±15 ◦C of the initial reservoir temperature. The implications
are that isothermal models can be expected to provide useful estimates of pressure
buildup in this context. Despite the low viscosity of CO2 at the low pressures studied,
non-Darcy effects were found to be of negligible concern throughout the sensitivity
analysis undertaken. This is because the CO2 density is also low in this context.
Based on these findings, simplified analytic solutions are derived, which accurately
calculate both the pressure buildup and temperature decline during the injection
period.

Key words: geophysical and geological flows, low-Reynolds-number flows, porous media

1. Introduction

The potential for storing carbon dioxide (CO2) in geological reservoirs continues to
attract the attention of national greenhouse gas emission reduction strategies around
the world. Reservoir types under consideration include saline aquifers, depleted oil
reservoirs and depleted gas reservoirs. Saline aquifers have the advantage of being
ubiquitous across the world (Bentham & Kirby 2005). However, depleted oil and
gas reservoirs are often heralded due to advantages associated with better levels of
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current characterization (as a result of previous oil and gas production) and reduced
uncertainty associated with the cap-rock integrity – the trap mechanism has already
been demonstrated through the presence of hydrocarbon product originally deposited
millions of years earlier (Loizzo et al. 2009). Many depleted gas reservoirs have
the added advantage of exceptionally low abandonment pressures along with highly
compressible formation fluids (gas as opposed to oil and water). Estimated CO2
storage capacities for depleted gas reservoirs have been found to be as much as
13 times higher than those estimated for saline aquifers of equivalent geometries
(Barrufet, Bacquet & Falcone 2010).

Gas reservoirs within the UK continental shelf are typically located between 700
and 3600 m below sea level (Gluyas & Hichens 2003). Reservoir net thicknesses
range from 20 to 300 m, with gas saturations, fairly uniformly distributed within the
reservoir units, representing between 50 and 85 % of the available pore space (Gluyas
& Hichens 2003). The remainder of the pore space is generally filled with residually
trapped brine. Reservoir geometries vary considerably, with the most common being
domes or gently tilted slabs, covering regions of up to 250 km2 (Gluyas & Hichens
2003).

Prior to production, gas reservoirs typically exhibit pressures at or above hydrostatic
pressure (generally greater than 10 MPa). Many such reservoirs are highly
compartmentalized, exhibiting poor levels of aquifer influx. Consequently, at
abandonment, reservoir pressures are often found to be close to atmospheric
conditions. Around the world, gas reservoir abandonment pressures commonly range
between 0.35 and 0.8 MPa (MacRoberts 1962; Okwananke, Yekeen Adeboye &
Sulaimon 2011). Note that, in compartmentalized reservoirs, gas saturations tend to
change very little following reservoir depletion, owing to the increase in gas volume
associated with the pressure decline.

A number of recent simulation studies have discussed the interesting thermal effects
that develop as a consequence of CO2 injection into geological reservoirs. These
include cooling due to expansion, heating due to compression, heating and cooling
due to dissolution and vaporization, respectively, differences in temperature associated
with injection and reservoir fluids, and heating due to viscous heat dissipation
(Oldenberg 2007; Andre, Azaroual & Menjoz 2010; Han et al. 2010). Owing to the
Joule–Thomson coefficient of CO2 being larger at lower pressures, such processes are
likely to be of greater significance in low-pressure depleted gas reservoirs as opposed
to hydrostatic or overpressured saline aquifers (Mathias et al. 2010).

Most previous simulation work relating to CO2 storage has focused on pressures
greater than 10 MPa (e.g. Andre et al. 2010; Mathias et al. 2013a). Exceptions
to these include Han et al. (2012), who considered a minimum initial pressure of
6.89 MPa, Ziabaksh-Ganji & Kooi (2014), who assumed an initial pressure of 6 MPa,
Afanasyev (2013), who assumed a minimum initial pressure of 4.5 MPa, and Singh,
Goerke & Kolditz (2011) and Singh et al. (2012), who considered an initial pressure
of 4 MPa. However, depleted gas reservoirs are often abandoned at pressures lower
than 1 MPa. Mukhopadhyay, Yang & Yeh (2012) presented numerical simulations
concerning CO2 injection into a depleted gas reservoir at 0.5 MPa. However, they
ignored thermal effects and considered the reservoir to be of infinite extent. This
study seeks to explore the importance of heat transport coupling on pressure buildup
estimation during CO2 injection in low-pressure depleted gas reservoirs. Furthermore,
non-Darcy effects associated with high velocities around the injection well are
incorporated using the Forchheimer equation.

Significant temperature changes are most likely to occur when pressure gradients
(in time and space) are sharpest. This will mostly be the case during the injection
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period. Consequently, although many previous CO2 storage studies have studied the
long periods of time after CO2 injection has ceased (e.g. Hesse et al. 2007; Hesse, Orr
& Tchelepi 2008; MacMinn, Szulczewski & Juanes 2010, 2011), here it is pertinent
only to consider the time prior to injection ceasing.

The outline of this article is as follows. Firstly, the governing equations concerning
mass conservation are presented for a system whereby pure CO2 is injected into
a low-pressure closed reservoir containing methane (CH4) and residually trapped
water. Expressions for vertically integrated fluxes are derived following the adoption
of the Forchheimer equation along with an assumption of vertical equilibrium. A
corresponding energy conservation statement is presented. Details of the solution
procedure are provided followed by details concerning the obtaining of relevant
thermodynamic properties. Further insight is then sought by deriving simplified
analytic solutions for heat transport and pressure buildup. A sensitivity analysis is
then conducted to explore the role of initial pressure and heat flow coupling on
pressure buildup during CO2 injection into low-pressure depleted gas reservoirs.
Finally the article summarizes and concludes.

2. The mathematical model

Consider a fully penetrating vertical injection well of radius rw [L] located at the
centre of a horizontally oriented, homogeneous and isotropic, confined cylindrical
reservoir of thickness H [L] and radial extent re [L]. Four material components are
considered and referenced by the subscript i, which takes the values c for CO2,
m for CH4, w for water and r for rock. A mixture theory is assumed such that all
components are considered to exist at every point in space with some volume fraction
θi. The four material components must satisfy the volume constraint

∑
i θi = 1.

The reservoir is initially filled with CH4 alongside a uniform residual saturation of
water with volume fraction θw [–]. The H2O is assumed to be residually trapped and
immobile such that θwρw is constant (Singh et al. 2011, 2012). The volume fraction
of the rock is θr = 1 − φ, where φ [–] is the porosity, and the product θrρr is also
constant. The compressibility of all components is allowed for, although, as shown
later, in the context of this study, the compressibility and thermal expansion of the
water and rock are negligible owing to the relatively small pressure and temperature
changes involved.

The CO2 is injected at the origin at a constant mass flow rate M0 [M T−1]. Although
the CO2 and CH4 are miscible (Ren et al. 2000), for simplicity, dispersion and mixing
of the two components are ignored and a sharp interface is assumed, located at an
elevation of hc [L] above the base of the reservoir (similar to Nordbotten & Celia
2006). At 35 ◦C, for pressures ranging between 0.7 and 15 MPa, the densities of CO2
and CH4 are in the ranges 12–815 kg m−3 and 4–111 kg m−3, respectively (Lemmon,
McLinden & Friend 2013). The ranges of the corresponding dynamic viscosities for
CO2 and CH4 are 15.5–73.6 µPa s and 11.6–16.2 µPa s, respectively (Lemmon et al.
2013). Because the CO2 is denser than the CH4, hc represents the thickness of the CO2
layer. The thickness of the CH4 layer is then hm =H − hc.

Let us denote P(r, t) [M L−1 T−2] and T(r, t) [2−1] as the pressure and temperature
at the location of the CO2–CH4 interface, respectively, where r [L] is the horizontal
radial distance from the centre of the injection well and t [T] is time after
commencement of injection.

In most cases of physical interest, re�H, so it is convenient to make a shallowness
assumption (Nordbotten & Celia 2006; Hesse et al. 2007, 2008; MacMinn et al.
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FIGURE 1. Schematic diagram of conceptual model.

2010, 2011). This can be rigorously derived as an expansion in H/re � 1, but the
result is equivalent to assuming vertical equilibrium. It is therefore assumed that
the temperature is uniform vertically and identical in the rock, CO2, CH4 and water.
The densities ρi [M L−3] for each fluid species are also assumed to be constant
vertically and given by the equation of state evaluated at the interface, that is,
using P and T . The vertical momentum equation is then simplified by assuming an
equilibrium between gravity and hydrostatic pressure such that (Hesse et al. 2007)

P(r, z, t)=
{

P(r, t)+ ρcg(hc − z), 0 6 z 6 hc,

P(r, t)+ ρmg(hc − z), hc < z 6 H,
(2.1)

where P [M L−1 T−2] is the local pressure, ρc [M L−3] and ρm [M L−3] are the
densities of CO2 and CH4, respectively, g [L T−2] is gravitational acceleration
and z [L] is the height above the base of the reservoir. After depth integrating,
the primary dependent variables of our model then become P(r, t), T(r, t) and
hc(r, t). Some general features of the conceptual model are illustrated further in
figure 1.

Note that, by assuming the fluids are incompressible, ignoring heat transport
and temperature changes, and ignoring the density difference between the different
components, such a problem reduces to the classic equation of Buckley & Leverett
(1942), where relative permeability is assumed to be a linear function of hc and hc
is equivalent to fluid saturation.

2.1. Mass conservation
The depth-integrated mass conservation equation for the CO2 and CH4 can be written
as

∂

∂t
(θiρihi)=−1

r
∂

∂r
(rρiQi)≡ Ri, (2.2)

where Ri [M L−2 T−1] denotes the right-hand side of (2.2) and the vertically integrated
volume fluxes Qi [L2 T−1] are defined as

Qc =
∫ hc

0
qc dz and Qm =

∫ H

hc

qm dz, (2.3a,b)

and qi [L T−1] are the respective volume fluxes.
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2.1.1. Determination of the vertically integrated volume fluxes
Volume fluxes, in the context of simulating CO2 storage problems, are generally

calculated using Darcy’s law. However, owing to the lower dynamic viscosity of CO2
at the relevant pressures of concern, it is pertinent to consider non-Darcy losses using
the Forchheimer equation (Zeng & Grigg 2006). Therefore, the fluxes qi are defined
by the Forchheimer equation

µiqi

kkrg
+ ρibqi|qi| + ∂P

∂r
= 0, 0 6 z 6 hc when i= c,

hc < z 6 H when i=m, (2.4)

where k [L2] is the reservoir permeability, krg [–] is the relative permeability of the gas,
which is treated as uniform and constant, b [L−1] is the Forchheimer coefficient and
µi [M L−1 T−1] are the dynamic viscosities of CO2 and CH4. Denoting J= ∂P/∂r< 0,
the appropriate positive real root can be written as

qi =−kkrg

µi

(
2J

1+ (1− εiJ)1/2

)
, (2.5)

where

εi = 4ρib
(

kkrg

µi

)2

. (2.6)

A Maclaurin series expansion about small εiJ leads to

qi =−[1+ εiJ/4+O(ε2
i J2)]kkrgJ

µi
, (2.7)

from which it can be seen that the accuracy of the Darcy approximation is given
by the size of the non-dimensional group εiJ. The issue for radially divergent (and
convergent) flow problems is that J becomes very large as one approaches the origin
(the injection well in this case). Therefore, it is not clear whether non-Darcy effects
can be ignored from information about εi alone.

Note that the uniform relative permeability values, krg, assumed for CO2 and
CH4 are equivalent to the end-point relative permeability for gas in a two-phase
relative permeability function, krg0 [–] (e.g. Mathias et al. 2013a). In this article, for
simplicity, CO2 and CH4 are assumed to have the same relative permeabilities. In
reality, they may have different relative permeabilities due to differences in interfacial
tension (IFT) and contact angle associated with CO2–brine and CH4–brine mixtures.
Bachu & Bennion (2008a) observed a set of krg0 values for the same sandstone
core, ranging from 0.298 to 0.526, for CO2–brine mixtures, with IFT ranging from
56.2 to 19.8 mN m−1, respectively (IFT was varied by increasing the fluid pressure
from 1.378 to 20 MPa). At 40 ◦C and 1 MPa of pressure, the IFT for CO2–water
and CH4–water mixtures are around 90.95 mN m−1 (Bachu & Bennion 2008b) and
69.06 mN m−1 (Ren et al. 2000), respectively. Therefore, the relative permeabilities
for CO2–brine and CH4–brine mixtures can be expected to be quite different. However,
ignoring this difference is unlikely to significantly affect the main findings discussed
hereafter.

The system is assumed to be initially free of CO2. Fluid pressure is assumed
initially uniform in the radial direction, at a value of P0 at the base of the reservoir.
The reservoir is confined on all sides by impermeable boundaries. Following, among
others, Oldenberg (2007), Mathias et al. (2009), Han et al. (2010) and Mukhopadhyay
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et al. (2012), a constant mass flux of pure CO2 is applied at the injection well
boundary. Such conditions are described mathematically as follows:

hc = 0, rw 6 r 6 re, t= 0,
P= P0, rw 6 r 6 re, t= 0,
Qc =M0/(2πrwρc), r= rw, t> 0,
Qm = 0, r= rw, t> 0,
Qc = 0, r= re, t> 0,
Qm = 0, r= re, t> 0,


(2.8)

where P0 [M L−1 T−2] is the initial pressure at the base of the reservoir.
Differentiating (2.1) with respect to r gives

J ≡ ∂P
∂r
=


∂

∂r
(P+ ρcghc)− gz

∂ρc

∂r
, 0 6 z 6 hc,

∂

∂r
(P− ρmghm)− gz

∂ρm

∂r
, hc < z 6 H,

(2.9)

showing that J is a linear function of z given the shallowness assumption that the fluid
densities are uniform with depth. The flux (2.5) can then be substituted into (2.3) and
integrated to give

Qi =−hikkrg

µi

[
(1− εiJi2)

3/2 − (1− εiJi1)
3/2

3ε2
i (Ji2 − Ji1)/4

+ 2
εi

]
, (2.10)

where

Jc1 = ∂

∂r
(P+ ρcghc), Jc2 = Jc1 − ghc

∂ρc

∂r
,

Jm1 = ∂

∂r
(P− ρmghm)− ghc

∂ρm

∂r
, Jm2 = Jm1 − ghm

∂ρm

∂r
.

 (2.11)

As written in (2.10), these fluxes appear singular for εi = 0. However, further
rearranging reveals that

Qi =−hikkrg

µi

(
Xi2 − Xi1

Ji2 − Ji1

)
, Xij =

J2
ij(1− 4εiJij/3)

(1− εiJij)3/2 + 1− 3εiJij/2
, j= 1, 2. (2.12a,b)

Also note that for slightly compressible fluids (i.e. where fluid properties do not
change much with space and time), Ji2− Ji1→0, and (2.12) can be expanded to obtain

Qi =−hikkrg

µi

{
2JiA

1+ (1− εiJiA)1/2
+ JiB

(1− εiJiA)1/2

[
Υi

12
+ Υ

3
i

64
+O(Υ 5

i )

]}
, (2.13)

where

JiA = Ji2 + Ji1

2
, JiB = Ji2 − Ji1

2
and Υi = εiJiB

1− εiJiA
. (2.14a–c)



Carbon dioxide injection into depleted gas reservoirs 95

2.2. Recasting in terms of the primary dependent variables
The left-hand side of (2.2) can be expanded in terms of the primary dependent
variables of our model, P, T and hc, such that

θiρihi

[(
1
θi

∂θi

∂P
+ 1
ρi

∂ρi

∂P

)
∂P
∂t
+
(

1
θi

∂θi

∂T
+ 1
ρi

∂ρi

∂T

)
∂T
∂t
+ 1

hi

∂hi

∂hc

∂hc

∂t

]
= Ri, (2.15)

where
∂hi

∂hc
=
{

1, i= c,
−1, i=m.

(2.16)

Imposing the constraints that the products θwρw and θrρr are constant and that∑
i θi = 1, it can be shown that, for i= c or m,

∂θi

∂P
= θw

ρw

∂ρw

∂P
+ θr

ρr

∂ρr

∂P
and

∂θi

∂T
= θw

ρw

∂ρw

∂T
+ θr

ρr

∂ρr

∂T
. (2.17a,b)

Now consider an isothermal compressibility αi [M−1 L T2] and an isobaric
expansivity βi [2−1] for each of the four material components, defined as

αi = 1
ρi

(
∂ρi

∂P

)
T

and βi =− 1
ρi

(
∂ρi

∂T

)
P

, (2.18a,b)

such that substitution of (2.17) into (2.15) leads to

ρi

[
hi

(
αEi
∂P
∂t
− βEi

∂T
∂t

)
+ θi

∂hi

∂hc

∂hc

∂t

]
= Ri, (2.19)

where

αEi = θiαi + θwαw + θrαr and βEi = θiβi + θwβw + θrβr. (2.20a,b)

2.3. Energy conservation
As mentioned above, pressure is assumed to be in a vertical equilibrium, whilst the
temperature and fluid properties are assumed to be vertically uniform. Consequently,
heat transport is a one-dimensional process. An appropriate statement of energy
conservation can therefore (see chapter 2 of Nield & Bejan 2006) be written as

ρEcpE
∂T
∂t
− βET

∂P
∂t
= 1

r
∂

∂r

(
rκE

∂T
∂r

)
−
(
ρccpcQc + ρmcpmQm

H

)
∂T
∂r

+
[
(Tβc − 1)Qc + (Tβm − 1)Qm

H

]
∂P
∂r
≡ Re, (2.21)

where Re [M L−1 T−3] is used to denote the right-hand side of (2.21) and

ρEcpE= θ ′cρccpc + θ ′mρmcpm + θwρwcpw + θrρrcpr,

βE= θ ′cβc + θ ′mβm + θwβw + θrβr,

κE= θ ′cκc + θ ′mκm + θwκw + θrκr,

 (2.22)
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with cpi [L2 T−22−1], βi [2−1] and κi [M L T−32−1] being the constant-pressure
specific heat capacity, thermal expansivity and thermal conductivity for the four
material components, respectively, and θ ′c = θchc/H and θ ′m = θmhm/H are the
depth-weighted volume fractions for the CO2 and CH4, respectively.

Note that the −1 in the (Tβi − 1)Qi terms in (2.21) comes about due to shear
heating associated with fluid movement. See chapter 2 of Nield & Bejan (2006) for
further discussion on this matter.

Also note that the expression for κE represents a significant overestimate of the
conductivity for this composite medium. For further discussion concerning effective
conductivity estimation, the reader is directed to the work of Zimmerman (1989).
However, even with this upper bound estimate, conduction has been found to be of
negligible effect in this context.

The initial and boundary conditions are

T = T0, rw 6 r 6 re, t= 0,
T = Tw, r= rw, t> 0,
∂T/∂r= 0, r= re, t> 0,

 (2.23)

where T0 [2] is the vertically averaged initial temperature of the reservoir and Tw [2]
is the temperature of the injection fluid.

2.4. Solution by method of lines
Equations (2.19) and (2.21) now form a set of three first-order quasi-linear parabolic
partial differential equations (PDEs) that can be written as

 ρchcαEc −ρchcβEc θcρc
ρmhmαEm −ρmhmβEm −θmρm
−βET ρEcpE 0



∂P
∂t
∂T
∂t
∂hc

∂t

=
Rc

Rm
Re

. (2.24)

Equation (2.24) represents a set of three linear equations in the time derivative
of the primary variables P, T and hc, which can be solved to give an equation for
each time derivative separately provided that the Jacobian does not vanish, which
does not occur for 0 < hc < H. A method of lines approach is adopted, using a
first-order backward difference spatial discretization and integrating the resulting set
of ordinary differential equations (ODEs) with respect to time using the MATLAB
ODE solver, ODE15s. A similar approach was previously adopted by Mathias, Butler
& Zhan (2008), Mathias et al. (2009).

2.5. Fluid and rock properties
Because interactions between the CO2, CH4 and H2O are ignored, only pure-
component fluid properties are required. These can be obtained using the National
Institute of Standards and Technology’s online NIST Chemistry WebBook developed
by Lemmon et al. (2013). Parameters available from the web book include ρi, cpi, µi

and κi, in addition to the constant-volume specific heat capacity cVi [L2 T−22−1] and
the Joule–Thomson coefficient µJTi [M−1 L T22]. Invoking the Maxwell relations, the
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compressibility αi and thermal expansivity βi can be obtained from (Cengel & Boles
2002)

αi = Tβ2
i

ρi(cpi − cvi)
and βi = ρicpiµJTi + 1

T
. (2.25a,b)

Intensive lookup tables can be developed for the three fluids for a wide range of
temperatures and pressures, prior to running the numerical model. These can then
be linearly interpolated within the ODE solver during simultaneous solution of the
aforementioned PDEs.

Thermal properties of the reservoir formation are taken from Oldenberg (2007)
where available. These include density ρr = 2600 kg m−3, constant-pressure specific
heat capacity cpr = 1000 J kg−1 K−1 and thermal conductivity κr = 2.51 W m−1 K−1.
A volumetric thermal expansivity of βr = 39 × 10−6 K−1 is assumed, based on the
linear thermal expansion coefficient (TEC) value provided for a water-saturated Berea
sandstone in table IV-2 of Somerton (1992) (see also Somerton, Janah & Ashqar 1981)
– note that the volumetric TEC is three times the linear TEC (see e.g. Zimmerman
2000).

Typically, rock compressibility is parametrized by a coefficient cr = (θr − 1)−1 ×
(dθr/dP)T (e.g. Chen, Huan & Ma 2006). However, in the current situation, the rock
compressibility is defined as αr = ρ−1

r (dρr/dP)T . Given that the rock is static, the
product θrρr must be a constant. Therefore, it can be shown that αr = (1− θr)θ

−1
r cr.

Mathias et al. (2011a) previously assumed θr = 0.8 and αr = 4.5 × 10−10 Pa−1. This
corresponds to a value of αr = 1.125× 10−10 Pa−1.

3. Analytic solutions
3.1. Heat transport

The above problem refers to a system whereby CO2 displaces CH4. However, the
thermal front resulting from CO2 injection is generally behind the CO2–CH4 interface
as a result of heat retardation associated with the specific capacity of the host
rock and residually trapped water. Furthermore, although there are large changes in
pressure resulting from the injection process, for constant mass injection rates, these
mostly occur at the beginning of injection (cf. Mathias et al. 2011a). Consequently,
when considering the development of analytical solutions for heat transport in this
context, Mathias et al. (2010) argue that one can additionally assume that (i) the
presence of the CH4 can be ignored and (ii) the pressure distribution is steady state.
For mathematical tractability, Mathias et al. (2010) further assume the fluid properties
to be constant and uniform, and that heat conduction is negligible. In this way, (2.21)
reduces to

(θcρccpc + θwρwcpw + θrcpr)
∂T
∂t
= ρcqccpc

(
µJTc

∂P
∂r
− ∂T
∂r

)
(3.1)

and the profile for qc becomes

qc = M0

2πHρcr
. (3.2)

Substituting (2.4) into (3.1) then leads to

∂TD

∂τ
+ ∂TD

∂ξ
=− 1

2ξ
− bD

(2ξ)3/2
(3.3)
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subject to the initial and boundary conditions

TD = 0, ξ > 1/2, tD = 0,
TD = TwD, ξ = 1/2, tD > 0,

}
(3.4)

where
τ = M0cpct

2πHr2
w(θcρccpc + θwρwcpw + θrcpr)

, (3.5)

ξ = 1
2

(
r
rw

)2

, TD = 2πHρckkrg(T − T0)

µcµJTcM0
, TwD = 2πHρckkrg(Tw − T0)

µcµJTcM0
, (3.6a–c)

bD = kkrgM0b
2πHµcrw

. (3.7)

The above problem can be solved by the method of characteristics (e.g. Knobel
1999) as follows. The complete derivative of TD with respect to ξ can be written as

dTD

dτ
= ∂TD

∂τ
+ dξ

dτ
∂TD

∂ξ
. (3.8)

Consider dξ/dτ = 1 such that ξ = τ + ξ0, where ξ0= ξ(τ = 0). By setting dξ/dτ = 1
and comparing to (3.3), it can then be said that

dTD

dτ
=− 1

2(τ + ξ0)
− bD

(2(τ + ξ0))3/2
. (3.9)

Integrating (3.9) with respect to τ , applying the initial condition in (3.4) and then
substituting ξ0 = ξ − τ yields

TD(ξ(τ ), τ )=−1
2

ln
(

ξ

ξ − τ
)
+ bD

21/2

[
1
ξ 1/2
− 1
(ξ − τ)1/2

]
. (3.10)

In a similar way, the complete derivative with respect to ξ can be written as

dTD

dξ
= dτ

dξ
∂TD

∂τ
+ ∂TD

∂ξ
=− 1

2ξ
− bD

(2ξ)3/2
. (3.11)

Integrating (3.11) with respect to ξ and applying the boundary condition in (3.4)
yields

TD(ξ , τ (ξ))= TwD − 1
2

ln(2ξ)+ bD

[
1

(2ξ)1/2
− 1
]
. (3.12)

The two solutions are separated in the (ξ , τ ) plane by the characteristic line τ =
ξ − 1/2. It follows that the solution for the domain defined in (3.4) is fully described
by

TD =


−1

2
ln
(

ξ

ξ − τ
)
+ bD

21/2

[
1
ξ 1/2
− 1
(ξ − τ)1/2

]
, ξ − τ > 1

2
,

TwD − 1
2

ln(2ξ)+ bD

[
1

(2ξ)1/2
− 1
]
, ξ − τ 6 1

2
.

(3.13)

When bD= 0, (3.13) is identical to the result previously presented by Mathias et al.
(2010), obtained by Laplace transformation and assuming Darcy’s law.
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3.2. Pressure buildup
Disregarding statements made in the previous section, following Mukhopadhyay et al.
(2012), consider the additional assumptions that (i) the difference between the CH4
and CO2 properties is negligible, (ii) temperature changes are negligible and (iii) the
water and rock are incompressible. The mass conservation equations reduce to

θcρcαc
∂P
∂t
=−1

r
∂

∂r
(rρcqc) (3.14)

subject to the initial and boundary conditions

PI = P0, rw 6 r 6 re, t= 0,
ρcqc =M0/(2πHrw), r= rw, t> 0,
ρcqc = 0, r= re, t> 0.

 (3.15)

The above PDE is nonlinear because of the dependence of ρc, αc and µc on
P. Mukhopadhyay et al. (2012) linearize the above equation by imposing a Pitzer
correlation for the relationship between ρc and P. The linearized PDE is then solved
in Laplace transform space and inverted back to the time domain to obtain an
analytical solution for P in the form of an integral equation, which is evaluated
numerically.

An arguably more simple route to solution of (3.14) is to invoke the pseudo-pressure
concept of Al-Hussainy, Ramey & Crawford (1966), whereby a pseudo-pressure
ψ [M L−3 T−1] is defined by the derivative

dψ
dP
= ρc

µc
(3.16)

such that the Forchheimer equation, (2.4), along with (3.14) transform to

(ρcqc)

kkrg
+ b
µc
(ρcqc)

2 + ∂ψ
∂r
= 0, (3.17)

θcαcµc
∂ψ

∂t
=−1

r
∂

∂r
(rρcqc). (3.18)

Al-Hussainy et al. (1966) propose that the αcµc term in (3.18) can be approximated
as a constant based on fluid properties obtained at a pressure half-way between the
minimum and maximum pressures being considered. Mukhopadhyay et al. (2012)
identify this feature as a disadvantage. However, application of the pseudo-pressure
concept in conjunction with the pseudo-time concept of Agarwal (1979) leads to a
significant improvement.

Agarwal (1979) provides a pseudo-time η [–] defined by the derivative

dη
dt
= 1
αcµc

(3.19)

such that (3.18) reduces to

θc
∂ψ

∂η
=−1

r
∂

∂r
(rρcqc). (3.20)
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The relationship between ψ and P is obtained by numerically evaluating the integral

ψ =
∫ P

P0

ρc

µc
dP. (3.21)

The relationship between η and t requires more creativity. The difficulty is that µc
and αc vary in both time and space. However, a good approximation for η can be
obtained by assuming that P is uniform in space, such that

πHr2
eθc

dρc

dt
≈M0, (3.22)

which on integration yields

πHr2
eθc(ρc − ρc0)≈M0t, (3.23)

providing an approximate relationship between ρc and t. Note that ρc0 = ρc(P= P0).
Dividing (3.19) by (3.22) leads to

dη
dρc
≈ πHr2

eθc

M0αcµc
, (3.24)

which on integration yields an approximate relationship between η and ρc,

η≈ πHr2
eθc

M0

∫ ρc

ρc0

1
αcµc

dρc. (3.25)

Considering an identical problem but with slightly compressible fluids (e.g. Mathias
et al. 2008; Mijic, Mathias & LaForce 2013), the analytical solution for the problem
defined by the above system of equations can be written as

ψ −ψ0 = M0

2πHkkr

[
W + b̄Drw

(
1
r
− 16

5re
+ 2r

r2
e

− r3

3r4
e

)]
, (3.26)

where

W =


1
2

E1

(
ηer2

4ηr2
e

)
, η0 <η < 0.2423ηe,

2η
ηe
+ r2

2r2
e

− ln
(

r
re

)
− 3

4
, η> 0.2423ηe,

(3.27)

ηe = θcr2
e

kkrg
(3.28)

and
b̄D = kkrgM0b

2πHµ̄crw
, (3.29)

where µ̄c is an estimate of an equivalent constant CO2 viscosity and (Mathias &
Todman 2010)

η0 ≈ ηe

(
rw

re

)2
[
(2π/b̄D)

2

7× 103
+ (2π/b̄D)

1/2

3× 107

]−1

. (3.30)
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Formation thickness H = 150 m
Permeability k= 100 mD
Relative permeability krg = 0.6
CO2 injection rate M0 = 0.3 Mt year−1

Initial pressure P0 = 0.7 MPa
Radial extent of reservoir re = 3000 m
Well radius rw = 0.1 m
Residual water content θw = 0.05
Initial temperature T0 = 35 ◦C
Injection temperature Tw = 35 ◦C
Volume fraction of rock θr = 0.8

TABLE 1. Parameter values assumed for base case.

4. Numerical solutions
Numerical solutions for the full equation were performed to explore and compare

the pressure and temperature responses. Sensitivity analysis was undertaken around
a base case described by the parameters given in table 1. These parameters are
considered to be typical of many depleted gas reservoirs around the UK continental
shelf. The constant CO2 injection rate of 0.3 Mt year−1 is based on a recommendation
made by Mathias et al. (2013b), following a statistical analysis of historical oil and
gas production rates in the UK continental shelf. The numerical models employ a
radial grid, discretized using 200 equal intervals in log10 space, from rw to re. The
Forchheimer parameter b is calculated using the correlation of Geertsma (1974):

b= 0.005 θ−5.5
g (kkrg)

−0.5. (4.1)

Simulation outputs for the aforementioned base case are presented in figure 2.
The constant injection of CO2 leads to an increase in fluid pressure. The CO2 front
pushes the methane radially outwards. Fluid pressure is greatest at the injection
well. Consequently, the CO2 expands as it moves away from the injection well and
experiences lower pressures. This leads to Joule–Thomson cooling, which cools both
the fluid and rock behind the front. These changing temperatures and pressures lead
to increases or decreases in relevant fluid properties, which feed back to the fluid
dynamics of the system.

Figure 2(a) shows the pressure distribution (measured at the base of the reservoir,
i.e. P + ρcghc) at different times. Pressure conforms to a logarithmic relationship,
consistent with radially symmetric problems associated with single-phase and slightly
compressible fluids (e.g. Mijic et al. 2013). The pressure wave meets the outer
boundary of the reservoir, at r = re, just after one year; the pressure is then seen to
increase across the reservoir.

Figure 2(b) shows temperature distributions for different times. Near to the well,
temperature declines with increasing distance according to a logarithmic relationship,
similar to the analytical solution previously derived by Mathias et al. (2010). Finally,
some distance away from the well, temperature recovers back to the initial temperature.
The temperature decline occurs due to the expansion of the CO2 as it migrates away
from the injection well and experiences continuously decreasing pressures.

Figure 2(c) shows the geometry of the CO2–CH4 interface at different times, which
takes the form of a moderately dispersed front. The dispersion is partly due to the
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FIGURE 2. Results from the base case simulation (see table 1) including plots of:
(a) pressure at the base of the reservoir, (b) temperature and (c) the CO2–CH4 interface
height against radial distance for various times, as indicated in the legend.

gravity effects associated with the diffusive-like derivative of hc in (2.11). Dispersion
is also brought about due to the mobility difference between the CO2 and CH4 (cf.
Nordbotten & Celia 2006). As discussed in § 3.1, all the changes in temperature
induced by CO2 injection reside far behind the CO2–CH4 interface owing to the
retarding effect of the combined heat capacity of the rock, water and CO2.

Figure 3 presents results from a sensitivity analysis around the base case described
parametrically in table 1. Panels (a), (c), (e) and (g) show plots of change in bottom
hole pressure in the injection well, i.e. P(r = rw) + ρcghc − P0. Panels (b), (d), (f )
and (h) show plots of temperature against distance after 20 years of injection. The
solid lines are from the fully coupled numerical model (hereafter referred to as
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FIGURE 3. Presentation of the sensitivity analysis around the base case described in
table 1 for: (a,b) permeability, (c,d) injection fluid temperature, (e,f ) non-Darcy effects,
and (g,h) initial pressure, as indicated in the legends. (a,c,e,g) Plots of change in bottom
hole pressure against time. (b,d,f,h) Plots of temperature against radial distance after
20 years of injection. The solid, dotted and dashed lines are from the fully coupled model,
a simplified isothermal model and the analytical solutions, respectively.

non-isothermal). The dotted lines are from a simplified form of the numerical model
whereby all fluid properties are held constant with temperature according to the
injection fluid temperature (hereafter referred to as isothermal). The dashed lines are
results from the analytical solutions presented in § 3.

Figure 3(a,b) shows results looking at sensitivity to permeability. Note that an
increase in permeability has a similar effect to an increase in formation thickness
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and/or a decrease in injection rate. Decreasing permeability leads to increased
well pressures and spatial pressure gradients. Consequently, decreasing permeability
leads to increased temperature loss away from the well. Interestingly, the difference
between the isothermal and non-isothermal simulation results is virtually unnoticeable,
except for the estimated temperature decline associated with the 30 mD model. The
difference between the models is small because the fluid properties change very little
over the temperature range of 30 and 35 ◦C at these pressures. A more significant
difference is observed for the 30 mD models, because the temperature decline is
more severe.

Recall that the dashed lines are results from the analytical solutions. It is clear
from figure 3(a) that the pseudo-pressure and pseudo-time approach is very effective
at predicting the well pressures in this context, despite the fact that it ignores the CH4
fluid properties. The heat transport analytical solution is also seen to be effective here
(see figure 3b).

Note that previously Mathias et al. (2010) observed discrepancies between
numerical simulation and the analytical solution (assuming Darcy flow) for temperature
changes greater than 5 ◦C. It was argued that this was due to applying the initial
pressure for calculating the constant fluid properties used. Here an estimate of the
well pressure half-way through the injection period (i.e. at 10 years) is used, obtained
from the aforementioned analytical solution for pressure buildup, in conjunction with
the injection fluid temperature. This is found to be very effective for all the analytical
solution results presented in figure 3(b,d, f,h).

Recently, Ziabaksh-Ganji & Kooi (2014) argued that a notable deficiency in the
analytical solution of Mathias et al. (2010) (and therefore also the new solution
presented in § 3.1, which uses the Forchheimer equation) was ignoring heating due
to compression. Considering figure 3(a), it can be seen that there are initially large
changes in pressure with time. But after less than a small fraction of a year, the
change in pressure with time is dramatically reduced. In contrast, the large pressure
changes with radial distance persist throughout the injection period (consider again
figure 2a). Consequently, cooling due to expansion as the CO2 moves away from the
injection well has a significantly more dominant effect in this context.

Figure 3(c,d) shows results from similar simulations to those used for figure 3(a,b),
except looking at sensitivity to injection fluid temperature. All model parameters were
set to the values stated in table 1, except for the injection fluid temperature Tw, which
was set to values shown in the legend. Note that the initial reservoir temperature was
fixed at 35 ◦C for all the simulations. It is apparent from figure 3(c) that injection
fluid temperature, ranging from 20 to 50 ◦C, has very little impact on well-pressure
development. Furthermore, it is noted that again there is very little difference between
results from the non-isothermal and isothermal models, and the analytical solutions are
found to provide a good approximation to the well-pressure and temperature response
of the system.

Figure 3(e, f ) explores the importance of non-Darcy effects. Results are presented,
again using the base case described by table 1, using (i) Darcy’s law (i.e. b = 0),
(ii) the Forchheimer equation with the Geertsma (1974) correlation (the base case)
and (iii) a simulation with enhanced non-Darcy effects, obtained by multiplying the
b parameter obtained from the Geertsma (1974) correlation by a factor of 10. There
is no noticeable difference between the Darcy and Forchheimer equation models
using Geertsma (1974) correlation, for both heat transport and pressure. When the
non-Darcy effects are enhanced by a factor of 10, a small increase in pressure
is apparent, along with a corresponding 1.5 ◦C temperature decline. The analytical
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solutions for pressure and heat transport are found to continue to provide good
approximations in this context.

The Geertsma (1974) correlation has been found to correspond to large quantities of
empirical data (Mathias & Todman 2010). Multiplying the correlation by 10 represents
an upper bound on likely non-Darcy effects in this porosity range. Therefore, it can be
concluded that non-Darcy effects are unlikely to be a particular issue in this context.
Their importance can be determined in future studies by considering the dimensionless
group bD defined in (3.7). For all the simulations presented in this paper, with the
exception of the Darcy and the enhanced non-Darcy simulations, bD was found to
range from 0.07 to 0.46. The enhanced non-Darcy simulation corresponded to bD =
2.61.

Originally it was hypothesized that non-Darcy effects would be important because
of the low viscosity of CO2 at the low pressures of interest. However, (2.6) shows that
the significance of non-Darcy effects is also dependent on fluid density. The density
of CO2 must also therefore be sufficiently low in this context, such that non-Darcy
effects are not significant here.

The final panels, figure 3(g,h), show sensitivity due to initial pressure, as indicated
by the values in the legend. The change in pressure in the well is found to decrease
with increasing initial pressure. This is due to the fluid density increasing with
pressure, which leads to a reduction in volumetric injection rate. The temperature
change is close to zero for the 10 MPa example. The temperature decline increases
with decreasing initial pressure. This is due to the increased pressure gradients that
occur due to the increased volumetric injection rate, combined with the increased
Joule–Thomson coefficient of the CO2 (associated with lower pressures).

The performance of the analytical solution for pressure buildup is found to reduce
with increasing initial pressure. The main reason is that higher initial pressures
correspond to a larger mass of residing CH4. Consequently, the effect of ignoring
CH4 fluid properties (in the analytical solution) becomes more important. This is
less of an issue with regard to the analytical solution for heat transport because
temperature changes are significantly reduced at higher pressures.

Zeidouni, Nicot & Hovorka (2013) previously used the analytical solution of
Mathias et al. (2010) to verify their non-isothermal simulations obtained using
CMG’s GEM. They noted that the analytical solution underestimated cooling and
heating due to the neglect of brine vaporization and CO2 dissolution, respectively.
The neglect of partial miscibility (vaporization and dissolution) between the CO2 and
the residual brine represents a limitation of the numerical simulations conducted in
the current study as well.

Andre et al. (2010) studied effects associated with partial miscibility in this context
at a reservoir pressure of 15 MPa and an injection temperature of 40 ◦C. They
found temperature variation due to vaporization and dissolution to be around 1–3 ◦C,
respectively. Inspection of the empirical equation for the solubility limit of CO2 in
water proposed by Spycher, Pruess & Ennis-King (2003) suggests that dissolution is
likely to be an order of magnitude less in the context of the low-pressure environments
considered in this article. Conversely, the work of Spycher et al. (2003) suggests that
the reduction in pressure from 15 to 0.7 MPa would lead to a doubling in the amount
of water evaporated. However, evaporation of residual water around the injection well
would lead to an increase in gas relative permeability. This in turn would give rise
to lower pressure gradients (cf. Mathias et al. 2011a) and hence less Joule–Thomson
cooling.

At this stage it is interesting to compare some of the above features with those
associated with CO2 injection into brine aquifers. For brine aquifers, the pore



106 S. A. Mathias, J. N. McElwaine and J. G. Gluyas

space is predominantly filled with brine, which has a larger viscosity and lower
compressibility than the injected CO2. For compartmentalized aquifers, this gives rise
to a significant restriction on the amount of CO2 that can be injected, if pressures are
to be constrained below fracture pressure limits (Mathias et al. 2013a). Consequently,
throughout the injection duration, the vast majority of the reservoir pore space
continues to be occupied by brine. Therefore, in contrast to depleted gas reservoirs,
the compressibility of the injection fluid is found to have very little impact on
pressure buildup (Mathias et al. 2011b). Furthermore, because of the much larger
viscosity difference between the CO2 and the brine, along with the IFT that develops
between the CO2-rich and aqueous fluid phases, the mobility difference between the
injection and reservoir fluids has a much more significant impact on the pressure
buildup process (Mathias et al. 2009, 2013a).

5. Summary and conclusions

In this article, a two-layer vertical equilibrium model for the injection of CO2 into a
porous reservoir containing methane and water is developed. The dependent variables
solved for include pressure, temperature and CO2–CH4 interface height. In contrast to
previous two-layer vertical equilibrium models in this context, the compressibility of
all material components is fully accounted for. Non-Darcy effects are also considered,
which may become important for low-viscosity fluids. With some approximations,
analytic solutions for both the pressure buildup and heat transport are derived and
shown to capture the main dynamics and agree well with the numerical solutions.

The results show that, for a given injection scenario, as the initial pressure in
the reservoir decreases, both pressure buildup and temperature change increase. A
comparison was conducted between a fully coupled non-isothermal numerical model
and a simplified model where fluid properties are held constant with temperature.
This simplified model was found to provide an excellent approximation when using
the injection fluid temperature for calculating fluid properties, even when the injection
fluid was as much as ±15 ◦C of the initial reservoir temperature. The implications
are that isothermal models can be expected to provide useful estimates of pressure
buildup in this context.

Non-Darcy effects were incorporated using the Forchheimer equation with the
Forchheimer parameter b calculated using the Geertsma (1974) correlation. An
expression for a dimensionless Forchheimer parameter bD was provided (recall (3.7)),
which can be used to assess the importance of non-Darcy effects. Non-Darcy effects
are likely to be negligible providing bD < 1. Despite the low viscosity of CO2 at
the low pressures studied, non-Darcy effects were found to be of negligible concern
throughout the sensitivity analysis undertaken. This is because the CO2 density is
also low in this context.

The analytical solution for pressure buildup, using the pseudo-pressure and pseudo-
time concepts of Al-Hussainy et al. (1966) and Agarwal (1979), respectively, was
found to provide a good approximation of the fully coupled numerical model for
initial pressures 6 3 MPa. However, for higher pressures, the approximation was less
accurate. The main reason for this is that the analytical solution ignores the presence
of the reservoir gas, CH4. Larger initial reservoir pressure corresponds (for a fixed
volume saturation) to a larger mass of residing CH4, leading the CH4 to play a more
important role concerning pressure buildup.

The analytical solution for heat transport was found to be a good approximation
throughout the sensitivity analysis. However, it was found to be important to apply a
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sensible reference pressure and temperature for calculating the CO2 properties. Fluid
properties for this purpose were calculated using the injection fluid temperature with
an estimate of well pressure half-way through the injection period, obtained using the
analytical solution for pressure buildup with pseudo-pressure and pseudo-time.
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