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Abstract 9 

 Peatlands are important terrestrial carbon stores and dissolved organic carbon (DOC) is one 10 

of the most important contributors to carbon budgets in peatland systems. Many studies have 11 

investigated factors affecting DOC concentration in peatland systems, yet hillslope position has been 12 

thus far overlooked as a variable that could influence DOC cycling. This study investigates the 13 

importance of hillslope position with regard to DOC cycling. Two upland peat hillslopes were studied 14 

in the Peak District, UK, to determine what impact, if any, hillslope position had upon DOC 15 

concentration. Hillslope position was found to be a significant factor affecting variation in soil pore 16 

water DOC concentration, with bottom-slope positions having significantly lower DOC 17 

concentrations than up-slope because of dilution of DOC as water moves down-slope and is flushed 18 

out of the system via lateral throughflow. Water table drawdown on steeper mid-slopes increased 19 

DOC concentrations through increased DOC production and extended residence times allowing a 20 

build-up of humic-rich DOC compounds. Hillslope position did not significantly affect DOC 21 

concentrations in surface runoff water because of the dilution of near-surface soil pore water by 22 

precipitation inputs, while stream water had similar water chemistry properties to soil pore water 23 

under low-flow conditions. 24 
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1. Introduction 26 

Peatlands are one of the most important global terrestrial carbon (C) stores due to the 27 

accumulation of organic material over time in these ecosystems. An estimated 446 Gt C is stored 28 

across a global peatland area of 3 813 553 km2 (Joosten, 2009) and the United Kingdom (UK) is 29 

estimated to store 1.745 Gt C in peat soils (Joosten, 2009).The UK holds 14.8% of Europe’s soils with 30 

an organic C content of greater than 25% (Montanarella et al., 2006). In the UK, blanket bogs 31 

represent the largest proportion of the peatland area, an estimated 85-92% (Clark et al., 2010b; 32 

Lindsay, 1995) and are typically found in upland environments, where cooler temperatures and high 33 

levels of rainfall favour formation of peat soils. 34 

Dissolved organic carbon (DOC) is a large component of peatland C budgets and can 35 

influence the size of the C sink or source. Studies from ombrotrophic systems in North America and 36 

Europe suggest DOC represents 17-37% of annual net ecosystem exchange (Dinsmore et al., 2010; 37 

Koehler et al., 2011; Roulet et al., 2007; Worrall et al., 2009a; Worrall et al., 2003) and up to 54.3% 38 

of total aquatic C losses (Dinsmore et al., 2013). An increase in DOC concentrations has been 39 

observed for many UK upland streams in recent decades: a 65% increase in DOC concentration was 40 

observed over a 12 year period (Freeman et al., 2001a), whilst Worrall et al. (2004), stated there was 41 

a 77% increase in DOC across 198 catchments over a period of between 8-42 years. It is therefore 42 

important to develop as thorough an understanding as possible of the processes that drive the 43 

production and transport of peatland DOC.  44 

The processes driving DOC export from peatlands are numerous, with multiple biotic and 45 

abiotic controls affecting DOC concentrations and the flux of DOC from peatland catchments. 46 

Freeman et al. (2001b) and Fenner and Freeman (2011) argued that water table drawdown in 47 

peatlands would provide aerobic conditions to allow phenol oxidase to reduce the concentration of 48 

phenolic compounds, thus leading to greater hydrolase enzyme activity and ultimately higher levels 49 

of DOC production that would continue even in anaerobic conditions, i.e. once water tables have 50 
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risen. Alternatively, water table drawdown may cause oxidation of sulphur to sulphate which in turn 51 

acts to suppress the solubility of DOC (Clark et al., 2005; Daniels et al., 2008). Increased SO4
2- content 52 

in catchments with a high density of gullying has resulted in lower concentrations of DOC compared 53 

to catchments with a low density of gullying (Daniels et al., 2008). Declining atmospheric deposition 54 

of sulphate has been linked to increased solubility of DOC in peatlands (Monteith et al., 2007; Evans 55 

et al., 2012). Rising temperatures have been shown to enhance DOC concentration (Clark et al., 56 

2005; Freeman et al., 2001a) and is linked to increased biological activity (Dinsmore et al., 2013). The 57 

sensitivity of DOC production to temperature is affected by the water level within the soil (Clark et 58 

al., 2009). Moreover, increasing evapotranspiration with climate change may negate and perhaps 59 

lower DOC export despite increasing temperatures (Pastor et al., 2003). 60 

Land management can also affect DOC production and transport. Dissolved organic carbon 61 

export was shown to be significant from urban and grazed land on mineral and organo-mineral soils, 62 

but not arable land (Worrall et al., 2012), while moorland burning has been suggested to affect DOC 63 

concentration (Yallop and Clutterbuck, 2009) and composition (Clutterbuck and Yallop, 2010) but 64 

may only be evident over short timescales (Clay et al., 2009) and may not be apparent over long 65 

time periods if the degree of burning has not changed over time (Chapman et al., 2012). Peat 66 

drainage has also been shown to influence the production and export of DOC, with enhanced 67 

drainage increasing DOC production and therefore DOC concentration through increased 68 

decomposition of peat in the greater aerobic zone; therefore drain blocking has the effect of 69 

reducing aerobic decomposition of peat and production of DOC, thus lowering DOC concentration 70 

(Höll et al., 2009; Turner et al., 2013; Wallage et al., 2006). Others have argued that management 71 

intervention techniques do not decrease production but alter the yield of DOC (Gibson et al., 2009), 72 

while DOC concentrations can increase post blocking due to accumulation of dissolved organic 73 

matter at depth (Glatzel et al., 2003). 74 
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If It is possible that features such as drainage ditches can affect the production and cycling of 75 

DOC then one aspect of the landscape that has been overlooked with regards to DOC dynamics in 76 

peatland systems is the potential impact of hillslope position. Hillslope position could have an 77 

important influence upon DOC in peatlands for a number of reasons. Hillslope position is a control 78 

upon water table depth (WTD) and can affect flowpath and runoff generation (Holden, 2009; Holden 79 

and Burt, 2003), meaning that hillslope position could influence the transport of DOC from shedding 80 

to accumulating areas at the base of the hillslope. Preferential flow routes could also affect the 81 

transfer of C across the hillslope. Soil pipe networks, which have been shown to vary with hillslope 82 

position (Holden, 2005a), act as conduits for C export, including DOC (Holden et al., 2012), which can 83 

be dominated by near-surface, young, C sources (Billett et al., 2012). Conversely, runoff generation 84 

and the style of runoff event can be controlled by such variables as the nature of the rainfall, i.e. a 85 

factor independent of hillslope position (Heppell et al., 2002). Hillslope position will be an important 86 

feature of blanket bogs, yet it may have been neglected previously due to the study of raised bogs. 87 

It has been argued that understanding of the effect water movement has upon DOC 88 

retention and release is limited (Holden, 2005b; Limpens et al., 2008) and topographic variation 89 

could be amongst the unknown controls (Clark et al., 2010a). As such, investigating the role of 90 

hillslope position will improve the understanding of C cycling in peatlands. Furthermore, 91 

understanding of DOC dynamics has been improved by assessing the role of hillslope for non-peat 92 

soils (Creed et al., 2013; McGlynn and McDonnell, 2003), with changes in DOC concentration 93 

between upland hillslope areas and flatter riparian zones observed (Mei et al., 2012; Morel et al., 94 

2009). Furthermore, hillslope position can be quantified and incorporated in C budget models, just 95 

as altitude in Worrall et al. (2009b). Slope position also influences other biogeochemical cycles, such 96 

as the transport of nitrates (Castellano et al., 2013). However, little work has been conducted to 97 

assess the exact role of hillslope in peatland catchments, which could be expected to behave 98 

differently.  99 
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This study will assess the role of hillslope position on DOC concentrations in soil pore water 100 

and surface runoff water in peatland catchments across 24 months and determine how water 101 

chemistry varies along the hillslope and relate this to changes in flowpath and compositional mixing. 102 

 103 

2. Materials & methods 104 

2.1 Study sites 105 

The study was conducted across two hillslopes, Featherbed Moss and Alport Low (Figure 1) 106 

in the Peak District National Park, Derbyshire. Featherbed Moss is a round ridge connecting Kinder 107 

Scout and Bleaklow that acts as a watershed separating the River Ashop and Shelf Brook, and is 108 

underlain by soft Pendle or Shale Grits (Tallis, 1973) Featherbed Moss is Eriophorum spp. dominated 109 

and has a northerly aspect (Table 1). Peat depth on Featherbed Moss was between 1.60 – 2.79m. 110 

Alport Low is steeper than Featherbed Moss, with slope angles exceeding 10° from horizontal and 111 

has suffered from more extensive erosion than Featherbed Moss. Erosion of peat at Alport Low has 112 

led to the formation of gullies, with two distinct types formed dependent upon topography. Type I 113 

gully erosion (Bower, 1961) occurs on areas with low slope angles of <5° where erosion of peat is 114 

extensive, leading to a network of branching and dissecting gullies that are dendritic in nature. Type 115 

II gully erosion occurs on steeper ground and typically takes the form of linear, unbranched gullies 116 

that run straight down the hillslope. Alport Low is underlain by the Millstone Grit Series, with thin 117 

periglacial deposits overlying the bedrock. Alport Low has a mixture of vegetation, with Eriophorum 118 

spp., Vaccinium myrtillus and non-Sphagnum mosses, owing to greater variation in slope angle and 119 

the presence of erosional gullies. Alport Low has a southerly aspect with Eriophorum spp. 120 

dominating flatter areas on the top and bottom of the hillslope , while Vaccinium myrtillus and non-121 

Sphagnum mosses were present on the mid-slopes, particularly in areas with hummocky topography 122 
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(Figure 1). Peat depth varied between 1.23 – 2.96m on Alport Low in Experiment 1 (section 2.2) and 123 

0.82 – 2.73m in Experiment 2. The deepest deposits were at the bottom of the hillslope.  124 

 125 

2.2 Experimental design. 126 

Two studies were conducted across two years: June 2010 – June 2011, hereafter called 127 

Experiment 1; and September 2011 – August 2012, hereafter called Experiment 2. Experiment 1 was 128 

conducted on both Featherbed Moss and Alport Low, with slope position divided into top-slope, 129 

mid-slope and bottom-slope. The mid-slope was further subdivided into upper and lower mid-slope 130 

sections so as to increase monitoring on the slope and capture a better resolution of slope and 131 

altitudinal variation (Table 1). Each slope position had six study plots, which were subdivided into 132 

two groups of three. This created a further sub-slope category nested within slope position to 133 

capture better spatial resolution within the slope positions, given the heterogeneous nature of 134 

peatlands and the variation in conditions at a plot scale. The sub-slope positions were separated 135 

with an arbitrary designation of ‘A’ and ‘B’. On Alport Low, the top-slope and bottom-slope had two 136 

further sub-slope designations of ‘C’ and ‘D’ to account for extra plots distinguishing Eriophorum spp. 137 

and hummock plots. Percentage of Eriophorum spp. dominance, recorded from a vegetation survey 138 

in August 2011, was incorporated as a covariate in the experimental design. On the Alport Low mid-139 

slope the sub-slope plots were separated onto different interfluves and each sub-slope plot was 140 

more than two metres away from either side of a gully to avoid possible water table drawdown as a 141 

result of gully edge effects (Allott et al., 2009). 142 

Experiment 2 was conducted on Alport Low, with the four hillslope positions realigned into a 143 

transect from the top-slope to the riparian zone (Figure 1). This experiment was conducted to 144 

increase vertical resolution and investigate the connection between the hillslope and stream 145 

network. Twelve hillslope positions were used as part of the slope transect (Table 2), numbered 1 – 146 

11 (including 1-E Eriophorum spp. plots and 1-H hummock plots) from the top-slope to riparian zone. 147 
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The top-slope, mid-slope and bottom-slope ostensibly had four individual hillslope positions (Figure 148 

2), supported by altitudinal and slope angle variation (Table 2), whereby change in elevation was 149 

more rapid between slope positions 4 – 7 which also had slope angles more than 5°. Slope position 150 

9, on the bottom-slope, was located in a small depression and consequently had a larger slope angle 151 

of 6.4° compared to other bottom-slope positions. The number of study plots per slope position was 152 

decreased to three per slope position in Experiment 2. Two stream points were used to collect 153 

samples for water quality analysis; one from a stream draining the catchment and another directly 154 

draining the bank of peat adjacent to slope position 11. Vegetation surveys were conducted for each 155 

plot in November 2012 to determine the percentage cover of Eriophorum spp. classed as dominant 156 

vegetation to be used as a covariate in statistical analysis. 157 

Study plots across both study years were comprised of a 1 metre uPVC dipwell and a surface 158 

runoff trap. For the dipwells, holes were drilled into the tube every 10 cm to allow the inflow of 159 

water from surrounding peat and the water level in the dipwell to equilibrate with the surrounding 160 

peat, thus allowing an accurate measurement of WTD. Dipwells were open-ended and used to 161 

collect soil pore water. Runoff traps were closed with bungs at both ends to prevent inflow of soil 162 

pore water and precipitation. Holes were drilled in the runoff traps and the traps inserted into the 163 

ground until the holes sat flush with the ground surface to allow the inflow of water from across the 164 

ground surface.  165 

During Experiment 2, additional 10 cm depth water traps were installed in March 2012. 166 

These traps were designed to assess mixing between water sources and changes in flowpath and the 167 

change in water chemistry and DOC concentration that can occur with depth (Adamson et al., 2001; 168 

Clark et al., 2008). Two 10 cm depth traps were installed at each slope position, in between plots 1 – 169 

2 and plots 2 – 3. The 10 cm depth traps were composed of uPVC runoff traps with holes drilled so 170 

that when installed the holes were 10 cm below the peat surface. Just as for the surface runoff traps, 171 

bungs were inserted at both ends to prevent mixing with soil pore water from other depths in the 172 



8 
 

peat profile other than 10 cm, or mixing with precipitation. Samples were gathered from these 10 173 

cm depth samplers for five months between April – August 2012.  174 

All study plots were left for a minimum of one month following installation to allow 175 

dissipation of installation effects prior to regular monitoring. 176 

 177 

2.3 Analyses 178 

Water table depth was measured by conductivity probe with values corrected each month 179 

(to allow for shrink/ swell of the peat soil) for the height of the dipwell that remained above the 180 

surface. Water samples were collected from dipwells, surface runoff water traps, and, when 181 

installed, the 10 cm depth traps; traps, but not dipwells, were emptied each month.  182 

Prior to analysis, water samples were filtered at ≤ 0.45 µm to remove particulate matter 183 

using cellulose-acetate syringe-filters (VWR International). Electrode methods were used to analyse 184 

pH (HI-9025, Hanna Instruments) and electrical conductivity (HI-9033). UV-visible absorbance was 185 

measured at 400, 465 and 665 nm using a Jenway 6505 UV/Vis. Measurements made at 400 nm 186 

(Abs400) were used to derive a basic colour reading for water samples, whilst measurements at 465 187 

and 665 nm determined the E4:E6 ratio. More mature humic acids are indicated by lower E4:E6 188 

ratios, with high ratios indicative of fulvic acids (Thurman, 1985). Specific absorbance was 189 

established by dividing Abs400 by DOC concentration. 190 

DOC was determined using a colourimetric method (Bartlett and Ross, 1988). Oxalic acid 191 

standards were used to determine a calibration curve of organic carbon and blanks were run 192 

approximately every 12 samples. Detection limits were determined for DOC analysis based upon the 193 

last recorded absorbance value where the lower confidence limit of a given DOC concentration was 194 

still positive. Absorbance values that caused a negative DOC value on the lower confidence limit 195 

were rejected and no DOC concentration data recorded. Anion concentrations of F-, Br-, NO3
-, PO4

3-, 196 
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Cl- and SO4
2- were measured using ion chromatography (Metrohm 761 Compact IC connected to an 197 

813 Compact Auto-sampler). Samples were calibrated against standards with blanks run prior to and 198 

following the standards. Further blanks were run between samples from each slope position. 199 

To compare soil pore water and runoff water to precipitation water chemistry, data 200 

gathered from the River Etherow (DEFRA, 2013) between 07/06/2010 – 04/01/2012 was used, 201 

covering the study period up of experiments 1 and 2 until no more data was available. The River 202 

Etherow drains the northern part of Bleaklow Plateau and the monitoring station was located 203 

approximately 5.2 and 7.2 km NNE of Alport Low and Featherbed Moss respectively. 204 

 205 

2.4 LiDAR terrain parameters 206 

Environment Agency two-metre ground resolution LiDAR data (with 25 cm vertical accuracy) 207 

of Bleaklow and Kinder Scout, areas of the Peak District, flown in December 2002 and May 2004 208 

(Evans et al., 2005) was used to derive terrain parameters including slope angle, altitude and 209 

wetness index for the two study sites. Terrain Analysis System (TAS), an open-source GIS package 210 

(Lindsay, 2005), was used to ascertain the terrain indices listed above. The LiDAR data had 211 

undergone object removal by the Environment Agency whilst pre-processing was carried out prior to 212 

analysis of the LiDAR digital elevation model (DEM), using the Impact Reduction Approach 213 

recommended by Lindsay and Creed (2005) to remove artefact depressions in the data. Wetness 214 

index (Equation 1) was used as a measure for the propensity to saturation across the hillslope, 215 

accounting for topographic setting using slope and specific catchment area contributing water 216 

supply to a given cell. The wetness index was calculated as: 217 

 218 

                                                                                                                         (1) 219 

 220 
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Where: As = specific catchment area; and S = slope. The FD8 flow algorithm (dispersal in multiple 221 

flow-directions) was used. Terrain indices were determined for each nested sub-slope in the 222 

Experiment 1 dataset using an average value from the cell containing the location of the sub-slope 223 

and the surrounding cells (9 cells including the central sub-slope cell). The terrain indices were 224 

included as covariates in statistical analysis. 225 

 226 

2.5 Statistical analysis 227 

Prior to statistical analysis, values beyond three standard deviations of the mean were 228 

removed being assumed to be extreme outlying values. This was a conservative approach that 229 

removed only a small percentage of data and improved dataset distribution. For experiment 1, from 230 

a dataset of 688 soil pore water samples, 5 (0.73%) were removed; for runoff water, of 518 samples, 231 

9 (1.74%) were removed. No samples were excluded from experiment 2. Values below the limit of 232 

detection (which varied between 0.6 – 3.5 mg C l-1) for DOC concentrations were also removed.  233 

Analysis of variance (ANOVA) and covariance (ANCOVA) were used to assess importance of 234 

factors, their interactions and covariates within the experimental design. The Anderson-Darling test 235 

was used to determine the normality of each dataset; if there was a non-normal distribution, the 236 

data was log transformed. The lowest Anderson-Darling statistic was used as the selection criteria 237 

for the inclusion of covariates. Levene’s test was performed to test the assumption of homogeneity 238 

of variances on both untransformed and log transformed data. Results were also checked using the 239 

non-parametric Kruskal-Wallis test to confirm ANOVA results for slope position if the above tests 240 

failed. Results for all analyses using the Kruskal-Wallis test were the same as those using ANOVA, 241 

confirming the ANOVA results for slope position. 242 

Analysis of variance was undertaken using a General Linear Modelling approach. In 243 

Experiment 1, four factors were considered - study site, month of sampling, slope position and sub-244 

slope position. The study site factor had two levels (Featherbed Moss and Alport Low) and is 245 
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henceforward referred to as the site factor. The seasonal cycle had 12 levels, one representing each 246 

calendar month, and henceforward referred to as the month factor. Slope position had four factor 247 

levels (top-slope, upper mid-slope, lower mid-slope and bottom-slope). Sub-slope position was taken 248 

as a nested factor within the slope position factor and had six levels. The factorial design allowed 249 

testing of significant differences for site, slope, sub-slope, month and interaction effects between 250 

factors. This approach meant that the impact of slope position could be tested having accounted for 251 

the influence of other factors in the model. In particular, note that slope position was replicated 252 

because two sites were included in the analysis.  253 

Within Experiment 1, soil pore water and runoff water DOC were analysed separately using 254 

the factors described above and then in a separate analysis the soil pore water and runoff water 255 

were considered together in a combined analysis with an additional factor – water type – included to 256 

assess whether the relationship between slope position and DOC changed with water type.  257 

Experiment 2 incorporated slope (12 factor levels), month and interactions in the ANOVA 258 

model.  259 

Each analysis of variance was followed by ANCOVA analysis, whereby covariates (percentage 260 

Eriophorum spp., WTD, air temperature, pH, conductivity, E4:E6, Cl-, SO4
2-, NO3

- and terrain 261 

parameters excluding aspect) were included in the model so as to explain any effects that were 262 

attributed to the factors used in ANOVA, including slope position.  263 

Tukey’s post hoc pairwise comparisons were used to identify the locations of the significant 264 

differences identified between factor levels. The proportion of variation in the response variable 265 

that is explained by a given factor, interaction or covariate was determined using the generalised 266 

omega squared statistic - ω2 (Olejnik and Algina, 2003). Significance was, unless otherwise stated, at 267 

the 95% probability of being different from zero. The size of any effect is discussed in main effects 268 

plots using least squares means for factor levels.  269 

Principal components analysis was performed on the Experiment 2 dataset. Water chemistry 270 

variables included in the multivariate datasets were: pH; electrical conductivity; absorbance at 400 271 
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nm (Abs400); E4:E6 ratio (absorbance 465 / 665 nm); specific absorbance (Abs400 / DOC 272 

concentration); DOC concentration; and SO4
2-, Cl-, and NO3

- concentration. The remaining anions of 273 

PO4
2-, F- and Br- were excluded from analysis due to their low concentrations, which were more 274 

often than not below the limit of detection. Prior to analysis, all water chemistry variables were z 275 

transformed to standardise each variable to allow comparison between variables with different 276 

measurement units. The selection of principal components (PCs) used in analysis was based upon 277 

the convention of using all PCs with an eigenvalue >1 and the first PC that has an eigenvalue <1 278 

(Chatfield and Collins, 1980). All statistical analysis was performed in Minitab (v14). 279 

 280 

3. Results 281 

3.1 Experiment 1 282 

3.1.1 Soil pore water 283 

The DOC concentration in soil pore water varied with hillslope position (Figure 3). Median 284 

DOC concentration was >90 mg C l-1 for both the top-slope and upper mid-slope and decreased 285 

further down-slope to 72.5 mg C l-1 on the bottom-slope. When ANOVA was considered then site, 286 

slope, sub-slope, month and interactions between site and slope, site and month and slope and 287 

month were all significant (Table 3). Slope was the second most important (see ω2, Table 3) factor 288 

after month, i.e. there was a significant difference between the DOC concentrations in soil water 289 

between slope positions that was independent of the site of that slope or of the time of year. The 290 

top-slope (105.2 mg C l-1 , least squares mean – Figure 4a) and upper mid-slope (104.9 mg C l-1) had 291 

significantly higher concentrations of DOC than the lower mid-slope (86.1 mg C l-1), which also had a 292 

significantly higher DOC concentration than the bottom-slope (70.1 mg C l-1).  293 

Least squares mean DOC concentration was significantly higher on Alport Low (104.5 mg C l-294 

1) than on Featherbed Moss (78.6 mg C l-1) and the differences between the two study sites was 295 
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notable with the interaction between site and slope. Whereas DOC concentration decreased 296 

between the top-slope and lower mid-slope on Featherbed Moss (Figure 4a), it increased between 297 

the top-slope and upper mid-slope on Alport Low and was still higher on the lower mid-slope than 298 

the top-slope. Nonetheless, both study sites had a large decrease in DOC concentration between the 299 

top-slope and bottom-slope.  300 

The soil water DOC concentration was lower in the months between December and March 301 

and for the month of May than between June and November. There appeared to be two distinct 302 

phases characterising seasonal change in DOC concentration. Between June and October, DOC 303 

concentrations increased to a maximum of 135.2 mg C l-1 and thereon decreased to 53.8 mg l-1 in 304 

December. This pattern was repeated between January 2011 and April 2011, when DOC 305 

concentration increased, before declining in May. The December DOC concentration of the bottom-306 

slope decreased to a much smaller extent than other slope positions – for example the upper mid-307 

slope decreased by 98.8 mg C l-1 compared to 6.4 mg C l-1on the bottom-slope. 308 

When covariates were included in the analysis (ANCOVA), the amount of variance explained 309 

by each factor was reduced and study site and sub-slope were no longer significant. The most 310 

important covariate was WTD. The negative correlation between depth to the water table and soil 311 

water DOC concentration accounted for the influence of study site and sub-slope. Post hoc 312 

comparisons in the ANCOVA model show that the top-slope had a significantly greater DOC 313 

concentration than all other hillslope positions (Table 3). The least squares mean main effects DOC 314 

concentrations were 103.9, 82.5, 77.5 and 85.3 mg C l-1 for the top-slope, upper mid-slope, lower 315 

mid-slope and bottom-slope respectively. The change in least squares mean values suggests that the 316 

high DOC concentrations on the Alport Low upper mid-slope were caused by deeper water tables at 317 

this site. Accounting for this, the upper mid-slope was no longer significantly different from the 318 

lower mid-slope and bottom-slope. pH and conductivity were positively correlated, while NO3
- was 319 

negatively correlated to soil pore water DOC concentration. Despite the influence of the 320 

hydrochemistry covariates and WTD upon DOC concentration, they did not account for the higher 321 
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DOC concentrations observed on the top-slope. As such, there was a significant effect of slope 322 

position independent of covariates and all other factors and their possible 2-way interactions. 323 

 324 

3.1.2 Runoff water 325 

Median values of runoff water (Figure 3) suggested there was little difference in DOC 326 

concentration with slope position, though the upper mid-slope (77.7 mg C l-1) was higher than the 327 

other slope positions, which ranged from 67.1 – 71.8 mg C l-1. The DOC concentrations were 328 

generally lower in runoff water than soil pore water. Month was the only significant factor in the 329 

ANOVA model (Table 3); no slope effect was found for runoff water DOC. July (114.8 mg C l-1) had 330 

the highest DOC concentration, with the lowest occurring in December (34.6 mg C l-1). In general, 331 

runoff water DOC increased from winter lows to maxima in the summer. DOC concentrations in June 332 

and July significantly higher than both winter and spring months, while DOC in September and 333 

October was higher than winter months. The ANCOVA (Table 3) indicated that conductivity, E4:E6 334 

and SO4
2- were significant covariates. Conductivity was positively correlated with DOC as was SO4

2- 335 

concentration. The positive correlation between DOC and E4:E6 was the reverse of that for soil pore 336 

water. The amount of variation explained by month reduced. 337 

 338 

3.1.3 Water type 339 

 Soil pore water and runoff water were analysed together, to assess whether the relationship 340 

between DOC concentration and water type changed between slope positions. The ANOVA model 341 

(Table 4) indicated that all factors were significant in the model, with significant interactions 342 

between all factors (barring nested sub-slope). The main effects indicated a least squares mean of 343 

82.1 mg C l-1 for runoff water and 90.2 mg C l-1 for soil pore water, while the relationship between 344 

slope and DOC concentration was similar to that in the soil pore water ANOVA model. The DOC 345 
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concentration was significantly higher on the top-slope (97.9 mg C l-1, Figure 4b) and upper mid-346 

slope (96.0 mg C l-1) than the lower mid-slope (78.5 mg C l-1) and bottom-slope (72.3 mg C l-1). Unlike 347 

the soil pore water DOC ANOVA model, there was no significant difference between the lower mid-348 

slope and bottom-slope. The interaction between site and slope showed the same trends as in the 349 

soil pore water model. However, the interaction between slope and water type showed that 350 

although soil pore water had a greater DOC concentration than runoff water for the top-slope to 351 

lower mid-slope, runoff water had a greater DOC concentration than soil pore water on the bottom-352 

slope. 353 

 The addition of covariates in ANCOVA increased the adjusted R2 to 50.94% from 40.91%. The 354 

most important covariate was NO3
- which explained 5.05% of dataset variation and had a negative 355 

correlation with DOC concentration, as in the soil pore water ANCOVA. The E4:E6 explained 3.32% of 356 

variation in the dataset and had a positive correlation to DOC, reflecting its importance in 357 

discriminating runoff water. Conductivity and SO4
2- had significant positive correlations to DOC 358 

concentration, but explained <1% variation combined. The amount of variation explained by water 359 

type increased, as also for the interaction between slope and water type. Main effects indicated a 360 

greater difference in runoff water and soil pore water DOC concentration (62.2 and 97.4 mg C l-1) 361 

compared to the ANOVA model. Significant differences for slope position remained the same as the 362 

ANOVA model, while DOC concentration in soil pore water was greater across all slope positions 363 

than runoff water having accounted for the effect of covariates. 364 

 365 

3.2 Experiment 2 366 

3.2.1 Soil pore water 367 

Median soil pore water DOC concentration on the slope transect (Figure 3) was largest on 368 

slope position 5 (193.9 mg C l-1) and was very high on slope position 9 (155.7 mg C l-1) and slope 369 

position 4 (150.7 mg C l-1). The DOC concentration was lower on the topmost slope positions (85.8 370 
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mg C l-1, 1-H) and decreased down-slope from slope position 5, to a low at slope position 11 (76.2 mg 371 

C l-1). 372 

Slope, month and a slope-month interaction were significant in the ANOVA model (Table 5) 373 

of soil pore water DOC. Slope positions 4, 5 and 9 all had significantly higher DOC concentrations 374 

than most other slope positions. Unlike in Experiment 1, there was no significant difference in DOC 375 

concentration between top-slope plots and those on the bottom-slope beyond slope position 9. 376 

However, the main effects (Figure SI 1) were broadly similar to the Alport Low site-slope interaction 377 

(Figure 4a) and the decrease in DOC concentration further down the mid-slope was consistent with 378 

results from Experiment 1. Slope position 9 (148.3 mg C l-1) had significantly higher DOC than 379 

adjacent slope positions, perhaps reflecting the importance of microtopographic variation. The DOC 380 

concentrations in the autumn were significantly higher than most months excluding May, showing a 381 

significant decrease in DOC in January. The decrease in DOC between November and January was 382 

consistent between the two datasets of Experiments 1 and 2.  383 

Water table depth, conductivity, NO3
- and SO4

2- were significant covariates (Table 5), 384 

reducing the importance of slope position. The significant differences suggested that 1-H, a top-385 

slope position, was lower in DOC than most others. The high DOC concentrations on the mid-slope 386 

positions were caused by deeper water tables and accounting for WTD and the other hydrological 387 

covariates reduced least squares means of mid-slope DOC concentrations. Indeed, slope position 4 388 

was significantly lower than slope position 5. The high DOC concentrations observed at slope 389 

position 9, a bottom-slope position, were no longer significantly different to adjacent plots having 390 

accounted for WTD. The importance of WTD in controlling DOC concentration and removing most of 391 

the slope effects observed in the ANOVA model corroborated results from Experiment 1. Moreover, 392 

the increased importance of conductivity compared to Experiment 1 may suggest the slope transect 393 

better captured variation in DOC associated with hydrological changes. 394 

 395 
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3.2.2 Runoff water 396 

Runoff water DOC concentration (Figure 3) was lower than that of soil pore water. The 397 

highest median DOC concentration was at slope position 6 (53.6 mg C l-1) and lowest at slope 398 

position 2 (30.2 mg C l-1). Only the month factor was significant in the ANOVA model (Table 5), in 399 

agreement with Experiment 1. The DOC concentration was highest in May and lowest in February 400 

and varied between months with no clear distinction between winter and summer. The covariates 401 

pH, E4:E6, SO4
2- and month were significant in the ANCOVA model. The pH had a negative 402 

correlation to DOC, with a positive correlation for E4:E6 and SO4
2- which agreed with results from 403 

Experiment 1. 404 

 405 

3.2.3 Water type 406 

Median DOC concentration (Figure 5) in soil pore water was 100.5 mg C l-1, smaller than the 407 

median of 106.8 mg C l-1 of 10 cm water, though that was only collected in spring and summer 408 

months. Stream water had a lower DOC concentration than both soil pore water and 10 cm, with a 409 

median of 81.3 mg C l-1 but this was nonetheless higher than that of runoff water, which had the 410 

lowest median concentration at 38.7 mg C l-1. 411 

 412 

3.3 Principal components analysis 413 

 From a total of 650 data points, the first five principal components were used in PCA, 414 

explaining a total of 87.6% variation in the dataset (Table 6). Principal component 1 had high positive 415 

loadings for pH, conductivity and SO4
2-, while negative loadings were dominated by Abs400, specific 416 

absorbance and E4:E6: dissolved organic carbon concentration also had a strong negative loading. 417 

Dissolved organic carbon had the strongest loading on PC2 and Abs400 was correlated with it as well. 418 

However, conductivity, Cl- and SO4
2- also had positive loadings on PC2. The PC3 was dominated by 419 
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negative loadings of NO3
- and E4:E6 ratio and PC4 had positive loadings of Cl- and specific 420 

absorbance and a negative loading for DOC. Chloride and specific absorbance dominated PC5, with a 421 

positive loading for Cl- and negative loading for specific absorbance. 422 

Comparing scores for data on PC1 and PC2 (Figure 6) indicated that PC1 distinguished 423 

between water types and showed minimal overlap between soil pore water and runoff water. 424 

Instead, 10 cm water plotted predominantly between soil pore water and runoff water, reflecting 425 

the transition between the deeper old water and new precipitation inputs and suggesting the mixing 426 

of soil pore water and runoff water predominated in the upper layers. Three end-members were 427 

evident from Figure 6. End-Member-A (EM-A) was a compositional end-member from which soil 428 

pore water and runoff water evolved. The EM-A was represented by two soil pore water samples, 429 

from slope position 2 in June 2012 and slope position 3 in February 2012. The characteristic features 430 

of EM-A were low: conductivity; low SO4
2-, Cl and DOC concentrations; low E4:E6 ratios, Abs400 and 431 

specific absorbance.  432 

Soil pore water composition evolved from EM-A towards end-member B (EM-B – Figure 6), 433 

which was characterised by very high DOC concentrations and specific absorbance but was 434 

particularly distinguished by very high Abs400. The EM-B was typically a deep soil pore water end-435 

member. Slope positions 9, 4 and 5, which had deep water tables, dominated EM-B. Top-slope 436 

positions 1-H and 3 also had some samples located at EM-B. Though stream water DOC 437 

concentrations were between those of soil pore water and runoff water PCA suggested its water 438 

chemistry plotted along the soil pore water trend, due to its typically low conductivity, pH and SO4
2- 439 

and high Abs400 and specific absorbance. 440 

Runoff water evolved from EM-A towards end-member-C (EM-C – Figure 6), where samples 441 

had high conductivity, SO4
2- and pH but very low specific absorbance and Abs400. The composition of 442 

10 cm water helped to demonstrate the change in water chemistry between soil pore water and 443 

runoff water, as shown along the area R-D (Figure 6). Where 10 cm water plotted with runoff water, 444 
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pH was high, as was either SO4
2- or Cl-. Specific absorbance and Abs400 were low where 10 cm water 445 

and runoff water overlapped, but 10 cm water DOC concentration was high; as 10 cm water samples 446 

evolved along PC1 towards a soil pore water composition, specific absorbance and Abs400 increased 447 

(relative for 10 cm water). pH also decreased but was not as low as soil pore water or stream water. 448 

 449 

4. Discussion 450 

The DOC concentration was shown to significantly vary with slope position, independent of 451 

site or available covariates, and decreased down-slope in soil pore water. A slope effect on DOC 452 

concentration and DOC flux has been observed for other, non-peat catchments, with low 453 

concentrations on the hillslope and higher concentrations in riparian zones more important to DOC 454 

export in the stream (Laudon et al., 2011; Mei et al., 2012; Morel et al., 2009). However, these 455 

studies were from catchments where soils on the hillslope were non-peat soils that had low organic 456 

content and lower DOC concentrations as a consequence.  Wetland soils in the riparian zone had 457 

higher organic content and therefore contributed  to higher DOC concentrations in the stream. As 458 

such the impact of hillslope on DOC across the peatland catchments studied here was quite 459 

different. 460 

The importance of hillslope to DOC production and transport in peatland systems can be 461 

explained by several mechanisms. Water table depth exerted a strong control upon DOC 462 

concentration at both sites – likely due to both enhanced oxidative production and increased 463 

residence time leading to a build-up of humic, C-rich compounds. There was also an accumulation of 464 

water at the base of the hillslope, with higher water tables maintained via runoff and throughflow 465 

from upslope locations. The high water tables and throughflow leads to flushing of DOC from the 466 

bottom-slope towards the stream. Furthermore, bottom-slope DOC concentrations are further 467 

reduced by the mixing of soil pore water and precipitation leading to dilution effects. The effect of 468 
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water movement and hydro-chemical mixing upon DOC concentration and composition is reflected 469 

in runoff water, where no significant slope effects were found. The mechanisms that explain the role 470 

of hillslope position in DOC cycling shall be discussed in detail below, yet the influence of hillslope 471 

position could not be fully explained by these mechanisms and processes (there was a slope effect 472 

independent of covariates). 473 

Slope specific DOC effects have been observed across many environments. Boyer et al. 474 

(1997) reported higher DOC concentrations on hillslopes than in the riparian zone due to increased 475 

throughflow of subsurface water flushing DOC into the stream. The results of Boyer et al. (1997) 476 

would support observations found in this study, but the study was not in peatlands and the scale 477 

was limited, classing hillslope as an area 10 metres from the stream where a break in slope was 478 

observed, with the riparian zone on steeper ground. Here, the distance between the top-slope and 479 

bottom-slope on Featherbed Moss and Alport Low in experiment 1 was ~583m and ~393m 480 

respectively. The distance between slope position 1-E and 11 in experiment 2 was ~334m. Other 481 

studies have also commented upon the importance of the riparian zone or wetland areas across 482 

different soil types in contributing to stream water DOC (Hinton et al., 1998; Mei et al., 2012; 483 

Strohmeier et al., 2013), with little effect from the hillslope. Hinton et al. (1998) and Cory et al. 484 

(2007) found mineral soil hillslopes had lower DOC concentrations than lower wetland areas that 485 

had organic rich soils, though Creed et al. (2013) suggested mid-slope areas and lower wetland 486 

zones had lower DOC concentrations than at the base of the hillslope in accumulation areas. 487 

Thus the response of the hillslope and the hydrological connection between the hillslope, 488 

riparian zone and stream can depend upon soil type. For this study, it was evident that DOC 489 

concentrations in peatlands decreased towards the bottom-slope and emphasises both the 490 

importance of monitoring DOC concentrations at the hillslope scale and the dominant effect that 491 

hydrology can have in controlling DOC concentration. Indeed, Experiment 1 suggested that elevated 492 

DOC concentrations on Alport Low compared to Feathered Moss were the consequence of water 493 
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table drawdown and this was confirmed using the slope transect. The significance of WTD to DOC 494 

concentration would imply the importance of oxidative production of DOC (Scott et al., 1998; 495 

Wallage et al., 2006). Increased colour content in water (Mitchell and McDonald, 1995) and seasonal 496 

variation in specific absorbance (Worrall et al., 2006) has been related to water table variation. Thus, 497 

elevated concentrations in soil pore water (as implied by PCA) may reflect increased residence time 498 

and old water rich in colour from humic substances, particularly on mid-slopes where water table 499 

drawdown lead to a build-up of DOC at depth. Furthermore, where 10 cm water plotted adjacent to 500 

soil pore water, it had a higher specific absorbance than when it plotted with surface runoff, 501 

indicating a greater influence of water colour and humic compounds in soil pore water. Wallage and 502 

Holden (2010) also noted a change in the relationship between DOC and colour with depth. As such, 503 

closer to the surface, DOC was composed of labile material with low absorbance. Consequently, the 504 

lower DOC concentrations found in surface runoff were likely due to dilution of near surface water 505 

from precipitation.  506 

The oxidation of sulphur to SO4
2- during water table drawdown has been shown to enhance 507 

soil water acidity and suppress DOC solubility (Clark et al., 2009; Evans et al., 2012). Such an effect 508 

has been observed at Moor House in the North Pennines (Clark et al., 2005) and with the presence 509 

of erosion gullies (Daniels et al., 2008), yet the effect of sulphur oxidation suppressing DOC solubility 510 

is equivocal at these sites, only explaining a small amount of variation in DOC in Experiment 2. It is 511 

likely that the source of SO4
2- was from near surface peat layers given the low concentrations found 512 

in precipitation (mean = 0.52 ± 0.04 mg l-1, DEFRA, 2013) as well as high levels of historic SO4
2- found 513 

in peat deposits in the South Pennines, including on Featherbed Moss (Coulson et al., 2005). Given 514 

the particularly high concentrations of SO4
2- in 10 cm and runoff water, it is probable that SO4

2- was 515 

sourced from the upper layers of peat where sulphur was oxidised and mobilised into 10 cm water 516 

and surface runoff. Indeed, Adamson et al. (2001) observed higher concentrations of SO4
2- at 10 cm 517 

depth than 50 cm in soil pore water, which derived SO4
2- through down profile diffusion. Thus the 518 

significance of SO4
2- in ANCOVA models most likely reflects dilution processes and not any effect 519 
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associated with DOC solubility suppression. Slope position was not significant in explaining variation 520 

in DOC for surface runoff water, due to the uniform dilution of DOC across the hillslope when near 521 

surface water mixed with precipitation.  522 

A flushing mechanism was identified between autumn and winter months, as noted in the 523 

stream water chemistry of Moor House in the North Pennines (Worrall et al., 2005; Worrall et al., 524 

2006) and soil pore water across varying gully morphologies on Bleaklow Plateau in the South 525 

Pennines (Clay et al., 2012). Increased precipitation likely diluted DOC concentrations and explained 526 

the large decrease in DOC between November and December in Experiment 1, which was nearly 100 527 

mg C l-1 on the upper mid-slope. Dissolved organic carbon concentrations on the top-slope and mid-528 

slopes were lower than the bottom-slope during December – indicating seasonal variation in the 529 

relationship between hillslope position and DOC concentration. The above results could suggest that 530 

the flushing mechanism did not dilute DOC concentrations on the bottom-slope to the extent of 531 

other slope positions, perhaps because some DOC on the bottom-slope had already been removed 532 

due to water movement from upslope and saturated water tables.  533 

In peatlands, DOC concentration could be expected to decrease with increased discharge 534 

due to dilution by precipitation and mixing with surface runoff water (Clark et al., 2008; Stutter et 535 

al., 2012). The lower DOC concentrations observed in the stream may be consistent with this, yet 536 

stream water retained the high Abs400 and low pH of soil pore water and plotted along the soil pore 537 

water trend in PCA. Indeed, given that mean Abs400 was higher than soil pore water but DOC lower, 538 

stream water had a higher specific absorbance. This was because sampling took place under low 539 

flow conditions (the author’s observation). The Abs400 may have been diluted with increased inputs 540 

from surface runoff water and near surface throughflow, and therefore a higher resolution sampling 541 

strategy when assessing stream water chemistry would have provided important insights into the 542 

change in water chemistry at high flow during rainfall events, as shown by Gazovic et al. (2013). 543 
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The link between the hillslope and stream could have important implications for the export 544 

of DOC to the stream. Although slope positions higher upslope had higher DOC concentrations in soil 545 

pore water, their contribution to stream water DOC is likely lower than on the bottom-slope, where 546 

high water tables and water movement from upslope diluted and flushed DOC from the soil towards 547 

the stream. Parry et al. (2015) studied DOC concentrations from spot samples in peatland 548 

catchments and related it to topography and vegetation. It was found that slope angle was the most 549 

important factor that influenced stream water DOC concentration, with a negative correlation 550 

indicating that DOC concentration in streams was greatest in areas with low slope angles. It was 551 

suggested that this was because gently sloping areas could accumulate more DOC due to lower 552 

runoff rates and were more favourable to peat formation than steeper slopes, providing more peat 553 

that can be decomposed to produce DOC that is transported to streams. This paper has found that 554 

steeper slopes have higher DOC concentrations because of very low water tables allowing both a 555 

greater aerobic zone for oxidative decomposition of peat producing DOC and the accumulation of 556 

humic compounds with a long residence time. Nonetheless, the interpretation that the bottom-557 

slope contributes more to DOC flux to streams is consistent with the findings of Parry et al. (2015) 558 

given that the flushing of DOC from the bottom-slope to the stream will increase the amount of DOC 559 

in the stream. Furthermore, it is possible that the alongside the removal of DOC to the stream, if 560 

phenolic compounds that inhibit peat decomposition (Freeman et al., 2001b) are also exported to 561 

the stream, it could enhance anaerobic production of peat and increase DOC production, providing 562 

further DOC that is exported to the stream. A further consideration is the effect that hillslope 563 

position has on C budgets. Dissolved organic carbon flux is a major component of peatland C budgets 564 

and can affect the size of a C sink or convert catchments into sources of C for some years (Koehler et 565 

al., 2011; Nilsson et al., 2008; Roulet et al., 2007). Hillslope position could therefore be used to 566 

improve C budget models by increasing the spatial representation of DOC flux and could be 567 

incorporated into models such as Worrall et al. (2009b). 568 

 569 
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5. Conclusions 570 

 Hillslope position was a significant factor controlling soil pore water DOC concentrations 571 

across two hillslopes and two study years, but not for surface runoff water DOC concentrations. 572 

There was a large decrease in DOC down-slope. Water table drawdown increased DOC 573 

concentration, due to enhanced DOC production and increased residence time leading to the build-574 

up of humic-rich DOC compounds, particularly on the steeper, eroded slopes. Decreasing soil pore 575 

water DOC down-slope and the much lower concentrations of DOC in runoff suggested dilution of 576 

DOC as water moves down-slope, caused by rising water tables towards the surface and flushing by 577 

lateral throughflow of water.  578 

Water sampled at 10 cm depth was shown to be intermediate in composition between soil 579 

pore water and surface runoff water, characterised by higher SO4
2- concentrations, conductivity and 580 

pH than soil pore water but also much higher DOC concentrations than found in surface runoff 581 

water. As such, surface runoff water originated from near surface layers but DOC was diluted 582 

relative to 10 cm water. As water transferred to the stream, DOC concentrations were reduced 583 

relative to soil pore water, yet stream water retained the chemical signature of soil pore water 584 

under low flow conditions and had higher colour content than soil pore water. 585 

Dissolved organic carbon is an important component of peatland carbon budgets and can 586 

affect whether catchments are sources or sinks of carbon. Hillslope position has been shown to 587 

affect DOC concentrations and should be incorporated into carbon budget models to improve spatial 588 

predictions. 589 
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Table 1. Experiment 1 slope position details by study site. Eriophorum dominance numbers refer to 797 

plots 1; 2; 3 or 4; 5; 6. 798 

Site Slope position X Y Plot 
Eriophorum 

dominance (%) 
Altitude 

(m) 
Aspect 

(°) 
Slope 

(°) 
Wetness 

index 

Featherbed 
Moss 

Top-slope 
409045 392108 1-3 96; 96; 100 543.7 152.2 1.0 6.5 

409064 392097 4-6 88; 88; 96 543.7 51.8 1.1 5.6 

Upper Mid-slope 
408960 392276 1-3 100; 100; 84 535.0 294.6 4.2 6.9 

408969 392285 4-6 100; 92; 100 535.1 302.3 3.8 7.2 

Lower Mid-slope 
408903 392413 1-3 96; 88; 100 525.8 331.0 3.4 7.6 

408914 392420 4-6 100; 28; 96 525.9 326.6 3.6 7.9 

Bottom-slope 
408797 392611 1-3 100; 72; 100 514.9 291.5 3.8 7.7 

408808 392616 4-6 96; 100; 100 515.4 303.5 3.3 7.3 

Alport Low 

Top-slope 
(Hummock) 

410027 394271 1-3 48; 36; 68 564.1 151.0 4.1 4.0 

410031 394270 4-6 12; 8; 12 563.9 188.6 4.3 5.1 

Top-slope 
(Eriophorum) 

410035 394263 1-3 100; 100; 100 563.7 166.9 4.4 4.8 

410053 394255 4-6 100; 68; 96 562.6 150.9 6.1 4.5 

Upper Mid-slope 
410108 394216 1-3 0; 0; 40 557.5 131.3 7.4 7.1 

410069 394165 4-6 64; 48; 48 555.4 145.7 10.8 5.6 

Lower Mid-slope 
410102 394100 1-3 80; 100; 100 538.8 148.5 10.1 6.4 

410071 394065 4-6 64; 16; 28 537.8 143.1 10.6 6.1 

Bottom-slope 
(Eriophorum) 

410086 393925 1-3 100; 96; 96 522.8 136.7 4.3 5.4 

410100 393892 4-6 96; 100; 100 521.0 146.7 2.5 5.3 

Bottom-slope 
(Hummock) 

410100 393900 1-3 72; 88; 52 521.2 175.6 3.1 5.7 

410106 393888 4-6 96; 32; 80 520.7 147.1 2.7 7.2 
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Table 2. Experiment 2 slope position details by study site. 1-E = Eriophorum and 1-H = hummock 807 

plots. Eriophorum dominance numbers refer to plots 1; 2; 3. 808 

Slope 
position 

X Y 
Eriophorum 

dominance (%) 
Altitude 

(m) 
Aspect 

(°) 
Slope 

angle (°) 
Wetness 

index 

1-E 410035 394263 100; 100; 100 563.7 166.9 4.4 4.8 

1-H 410053 394255 24; 32; 20 563.9 188.6 4.3 5.1 

2 410065 394244 20; 56; 80 561.8 136.1 4.0 4.4 

3 410086 394231 88; 68; 80 560.4 108.0 3.8 5.9 

4 410108 394216 24; 40; 48 557.4 131.3 7.4 7.1 

5 410139 394190 12; 60; 52 552.3 144.2 11.3 5.9 

6 410170 394165 68; 20; 24 544.5 142.3 11.2 6.2 

7 410198 394137 20; 44; 100 537.1 135.1 10.2 6.7 

8 410203 394095 100; 68; 56 532.5 135.0 4.1 6.0 

9 410235 394059 24; 60; 92 529.5 176.8 6.4 7.9 

10 410240 394062 96; 100; 96 527.4 146.3 4.8 7.3 

11 410264 394029 76; 88; 100 525.0 145.9 4.5 6.9 

 809 

 810 

 811 

 812 

 813 

 814 

 815 

 816 

 817 

 818 



31 
 

Table 3. Experiment 1 soil pore water and runoff water DOC ANOVA/ANCOVA: ω2 = percentage 819 

variance; R2 = adjusted R2. Only significant factors shown. 820 

Soil pore water DOC ANOVA Soil pore water DOC ANCOVA 

Factor P ω
2
 Factor / covariate P ω

2
 

Site <0.0001 4.31% WTD <0.0001 17.30% 

Slope <0.0001 6.51% pH 0.001 1.37% 

Sub-slope <0.0001 0.48% LnConductivity <0.0001 0.21% 

Month <0.0001 23.61% LnE4:E6 0.004 0.04% 

Site*Slope <0.0001 5.96% NO3
-
 <0.0001 9.61% 

Site*Month <0.0001 4.23% Slope <0.0001 5.06% 

Slope*Month <0.0001 5.51% Month <0.0001 15.52% 

   
Slope*Month <0.0001 3.01% 

N 683 
 

R
2
 50.63% N 598 

 
R

2
 52.16% 

Runoff DOC ANOVA Runoff DOC ANCOVA 

Factor P ω
2
2 Factor / covariate P ω

2
 

Month <0.0001 24.81% LnConductivity 0.001 11.67% 

   
E4:E6 <0.0001 6.73% 

   
LnSO4

2-
 0.016 1.62% 

   
Month <0.0001 22.57% 

N 509 
 

R
2
 24.85% N 394 

 
R

2
 42.65% 
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Table 4. Experiment 1 water type DOC ANOVA/ANCOVA: ω2 = percentage variance; R2 = adjusted R2. 831 

Only significant factors shown. 832 

DOC ANOVA DOC ANCOVA 

Factor P ω
2
 Factor P ω

2
 

Site <0.0001 1.17% LnConductivity 0.005 0.74% 

Slope <0.0001 3.04% E4:E6 0.011 3.32% 

Sub-slope 0.005 0.11% LnSO4
2-

 0.002 0.19% 

Water type 0.002 1.07% NO3
-
 <0.0001 5.05% 

Month <0.0001 22.21% Site 0.006 0.91% 

Site*Slope <0.0001 3.76% Slope <0.0001 2.70% 

Site*Water type <0.0001 0.86% Sub-slope 0.025 0.62% 

Site*Month <0.0001 1.46% Water type <0.0001 3.99% 

Slope*Water type 0.001 0.86% Month <0.0001 18.65% 

Slope*Month <0.0001 3.02% Site*Slope <0.0001 4.24% 

Water type*Month <0.0001 2.30% Site*Water type <0.0001 1.48% 

Slope*Water type*Month 0.015 1.02% Site*Month <0.0001 2.84% 

   Slope*Water type <0.0001 1.78% 

   Slope*Month <0.0001 2.68% 

   Water type*Month <0.0001 1.73% 

N 1192  R
2
 40.91% N 1061  R

2
 50.94% 
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Table 5. Experiment 2 soil pore water and runoff water DOC ANOVA/ANCOVA: ω2 = percentage 843 

variance; R2 = adjusted R2. Only significant factors shown. 844 

Soil pore water DOC ANOVA Soil pore water DOC ANCOVA 

Factor P ω
2
 Factor P ω

2
 

Slope <0.0001 19.61% WTD <0.0001 27.27% 

Month <0.0001 24.56% LnConductivity <0.0001 8.78% 

Slope-month 0.001 9.55% NO3
-
 <0.0001 7.21% 

   
LnSO4

2-
 0.014 0.52% 

   
Slope <0.0001 4.78% 

   
Month <0.0001 7.44% 

   
Slope-month <0.0001 10.26% 

N 411 
 

R
2
 53.78% N 371 

 
R

2
 66.32% 

LnRunoff water DOC ANOVA LnRunoff DOC ANCOVA 

Factor P ω
2
 Factor P ω

2
 

Month <0.0001 13.13% pH <0.0001 0.22% 

   
LnE4:E6 <0.0001 14.75% 

   
LnSO4

2-
 <0.0001 19.02% 

   
Month 0.019 3.49% 

N 292 
 

R
2
 13.17% N 215 

 
R

2
 37.59% 
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Table 6. The first five principal components of Experiment 2 dataset. 855 

Variable PC1 PC2 PC3 PC4 PC5 

pH 0.476 -0.013 0.128 -0.080 -0.183 

Cond 0.381 0.469 -0.176 0.079 -0.242 

Abs400 -0.415 0.397 0.037 -0.052 -0.246 

E4:E6 -0.313 0.078 -0.435 -0.097 -0.094 

DOC -0.264 0.487 0.023 -0.557 0.250 

Specific Absorbance -0.346 0.056 -0.034 0.512 -0.558 

SO4
2-

 0.404 0.364 -0.202 -0.125 -0.301 

Cl
-
 0.059 0.452 0.000 0.622 0.591 

NO3
-
 0.045 -0.198 -0.848 0.014 0.160 

% Variance 39.1% 54.9% 67.1% 78.2% 87.6% 
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Figure 1. Map of study sites in Peak District, Derbyshire, UK. Boxes in left panel show extent of study 870 

plots in right panels. 871 

Figure 2. Experiment 2 slope positions & altitude, separated into top-slope, mid-slope and bottom-872 

slope. 873 

Figure 3. Box-whisker plot of DOC concentration: a = experiment 1 soil pore water; b = experiment 1 874 

runoff water; c = experiment 2 soil pore water; d = experiment 2 runoff water. The box represents 875 

the interquartile range with median line; the whiskers represent the range of values. 876 

Figure 4. (a) Experiment 1 soil pore water and (b) Experiment 1 water type: DOC ANOVA main effects 877 

(given as least squares means) & interaction plot: significant differences for the main effects 878 

denoted where letters are not shared between slope positions. 879 

Figure 5. Box-whisker plot of experiment 2 DOC concentration by water type: SPW = soil pore water; 880 

RO = runoff water; 10 cm = 10 cm water (April-August 2012). The box represents the interquartile 881 

range with median line; the whiskers represent the range of values. 882 

Figure 6. Scatterplot of experiment 2 PC1 & PC2: SPW = soil pore water; RO = runoff water; 10 cm = 883 

10 cm water; prefix EM = end-member; prefix R = region; A-D = labels. 884 

Figure SI 1. Experiment 2 soil pore water DOC ANOVA main effects (given as least squares means) 885 

plot. 886 
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