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SUMMARY 

Understanding the effect of attack angle on aerodynamic properties of a gap flow in 

thermal protection systems of reentry vehicles is crucial for their design. A 

two-dimension mathematical model has been developed to explore the effect of a gap 

on the flow field and aerodynamic properties with different attack angles. The 

governing differential equations for flows at all speeds are derived, and its finite 

volume difference formulations are programmed in FORTRAN. The effect of attack 

angles on the flow field and aerodynamic surface quantities such as Mach number, 

velocity, temperature and heat flux is presented at the vicinity of a gap under 

conditions of Mach 5. The numerical results point out that a closed vortex forms at the 

entrance of a gap and becomes weakened with the increasing of airflow attack angle, 

and the maximum values of the heat loads present at the windward corner of a gap. 
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1. INTRODUTION 

Thermal protection systems of high speed vehicles are generally consist of thermal 

insulation tiles in the form of splicing together. To avoid that these thermal insulation 

tiles extrude and break against each other due to thermal expansion, gaps are left 

between these thermal insulation tiles. The gaps can cause local aerodynamic heating. 

The high temperature air could flow into these gaps and damage the fuselage. Besides 

that, gaps could disturb the flow field and bring up severe local aerodynamic thermal 

effect [1]. Firstly, boundary layer of airflow separates and attaches again at the 

entrance of gaps, which could bring up the increase of local heat flux. Secondly, gaps 

may rise turbulivity, and promote the transition of the boundary layer. Thirdly, gaps 
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are generally very narrow and radiative heat transfer may be blocked. Even if the heat 

flux in a gap is not high, the gap walls are likely to reach a high temperature.  

Gap flow is a special case of cavity flow. Many flow characteristics of cavity 

flow have not been understood clearly owing to the flow complexity. Similarly, gap 

flow is extremely complicated and hard to be studied by theory analyses. 

Unfortunately, the narrow gap makes it hard to observe flow characteristics in the gap 

by experiments. The great majority of research work of gap flow is done by the USA 

national aeronautics and space administration (NASA) using the ground experiments 

from the 1970s to the 1990s. The experiments mostly contain wind tunnel 

experiments and arc jet tests. The study parameters include gap geometry shape, 

height-over-width gap ratio, boundary layer state (laminar or turbulent), etc. But these 

experiments also have their own limitations. For example, the empirical formula 

proposed by Nestlter [2] is only used to evaluate the heat flux at the bottom of a gap, 

which could not obtain the heat flux on other walls of a gap or flow characteristics in 

a gap. So far, there have been some disputes about the heat transfer mechanism in a 

gap. Most scholars believe that the thermal convection plays a leading role in the heat 

transfer mechanism of gap flows [3-5]. However, Brewer [6] pointed that the bottom 

of a gap were mainly heated by the thermal radiation from side walls of a gap. The 

experimental result by Pitts [7] showed that the thermal convection was very weak 

and gap walls were heated by the thermal conduction from the outer high temperature 

thermal insulation tiles. Not only heat transfer mechanism needs to be further studied, 

but also the effect of a gap width on heat flux inside a gap [8, 9]. In a word, ground 

experiments have limitations. Although some scholars [10, 11] presented new 

experimental technique to simulate the gap flow, the applicability and precision of 

their methods are still open to question.  

By experiment the flow characteristics in a gap are hardly to be observed 

generally. Numerical simulation could make up for the shortage of experiments, so in 

recent years, a few scholars adopt numerical methods to study the gap flow. Jackson 

[12] studied laminar cavity flows at hypersonic speeds. The width-to- depth of the 

cavity in his work equals to 1, while the width-to-depth of a gap is usually less than 

0.1. Many cavity flow characteristics could not be used to analyze the gap flow 

directly. Shen [13] analyzed the flow and heat characteristics of seal structure with a 

gap and a cavity under the impact of high speed airflow. He obtained the temperature 

distribution in a gap with no flow characteristics. However, the impact on the flow 



field and aerodynamic properties due to variations in airflow attack angles has not 

been studied yet. In this paper, two-dimensional physical model of gap flow is 

established, and the effect of airflow attack angle on the flow field and the thermal 

environment in a gap is mainly studied by the finite volume method and the 

preconditioning technique for flows at all speeds. Flow field characteristics and 

heating environment in a gap are both analyzed.  

 

2. MODEL 

2.1 Physical model 

In the actual flight of vehicles, high speed airflow impacts upon a gap on the surface 

of vehicles at a certain angle. For convenient description of airflow direction, define 

attack angle α  as the angle between the airflow direction and the vehicle surface, 

and deflection angle φ  as the angle between gap extension direction and airflow 

projection along vehicle surface. Attack angle α  and deflection angle φ  are shown 

in Fig. 1(a). If φ  is not equal to 900, airflow in a gap presents three-dimensional flow 

characteristics. While φ  is equal to 900, a three-dimensional problem could be 

reduced to a two-dimensional one which is shown in Fig. 1(b). In this paper, the 

numerical simulation has been done in the case that φ  equals to 900.  

 

Fig. 1. Physical model 

 

The computational domain is shown in Fig. 1(b). The width of the gap is defined 

as the characteristic length L
∞, and the width-to-depth ratio of the gap has the value 

of 1/12.5. The height of the computational domain is 20L
∞  long. The lengths of the 

upstream and the downstream are 40L
∞ , 20L

∞ , respectively. At the boundary of the 

external flow field, the far field boundary condition is used. The attack angle α  of 

airflow ranges from 00 to 350 and takes values at regular intervals 50. The parameters 

of free stream are listed in Table 1. Ma∞ , Re  and T∞  are Mach number, Reynolds 

number, temperature of free stream, respectively. At the wall, no-slip velocity and 

isothermal wall boundary condition with wall temperature 473.15K are adopted. 



Table 1. Parameters of free steam 

Ma∞  Re  T∞  α   

5 5.6×104 473.15K 00~350 

 

For conveniently describing the location of gap walls, the body-fitted curvilinear 

coordinate of a gap is established, which is shown in Fig. 1(c). The four corners of the 

gap are marked by O, A, B and C, respectively. Total length of segment O-A-B-C is L. 

Along the segment O-A-B-C, the distance from the point O is denoted by S. Hence, 

the location of a certain point on gap walls can be defined by S/L ranging from 0 to 1. 

 

2.2. Mathematical model 

2.2.1 Compressible Navier-Stokes equations 

As the external flow outside a gap is at supersonic speeds, it should be solved by 

compressible Navier-Stokes equations. 2D integral Navier-Stokes (N-S) equations are 

described as 
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d ds ds
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where U  is the vector of conservative variables, and Ω  represents an area of 
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where u , v , ρ , T , P , E , xxτ ( xyτ , yxτ , yyτ ), k  are x-component of velocity, 

y-component of velocity, density, temperature, pressure, total energy per unit mass, 

viscous stresses, thermal conductivity coefficient, respectively. Equations (1) are 

nondimsionalized as follows. /x x L∞=% , /u u U∞=% , /v v U∞=% , /t tU L∞ ∞=% , 

/ρ ρ ρ∞=% , /T T T∞=% , ( )2/P P Uρ∞ ∞=% . The quantities with superscript “ ∞ ” 



represent the quantity value of free stream. The quantities with superscript “~” are the 

dimensionless quantities. The nondimsionalized N-S equations have the same form of 

equations (1). In the following text, the superscript “~” is removed from 

dimensionless quantities for writing conveniently. Except special statement, 

parameters in the formulas are dimensionless. The viscous stress xxτ , xy
τ , yx

τ , yy
τ  

and thermal conductivity coefficient k  are respectively defined by 
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where P
C , L

µ , T
µ , Pr

L , Pr
T  are specific heat coefficient at constant pressure, 

laminar dynamic viscosity coefficient, turbulent dynamic viscosity coefficient, 

laminar Prandtl number, turbulent Prandtl number, respectively. For air, Pr 0.77
L

= , 

Pr 0.9
T

= . L
µ  is given by Sutherland formula defined as 
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where s
T  is Sutherland constant. For air, 124

s
T K= . T

µ  is given by the turbulence 

model. 

 

 

2.2.2 Preconditioning methods for flows at all speeds 

In the computational fluid dynamics, the problem of high speed flow should be solved 

by the compressible flow equations, while the incompressible flow equations in low 

speed flow. However, in the problem of gap flow studied in this paper,  there are 

both high speed flow and low speed flow. The external flow outside a gap is at 

supersonic speed, while velocity of flow in a gap is very low. In theory, the problem 

of low speed flow could be solved by compressible flow equations, but the numerical 

algorithms for compressible flow equations face difficulties for low Mach number 

conditions. This is because that the magnitude of the flow velocity becomes small in 

comparison with the acoustic speed in the low subsonic Mach number regime of a gap, 

the convective terms of the governing equations (1) become stiff, which slows down 

the convergence to steady state [14]. In order to solve nearly incompressible flows 

with numerical algorithms designed for the compressible flows, preconditioning 

techniques is used. As time derivative terms are multiplied by the preconditioning 



matrix, the eigenvalue system of primitive equations (1) can be changed, and stiff 

problem could be solved. There are various preconditioning matrixes, and in the 

present study, the preconditioning matrix proposed by Weiss et al [15] is used. The 

equations (1) are described to be 
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derivative by the preconditioning matrix Γ , and the equations (5) is changed into  

0P
v

d ds ds
t ∂Ω ∂Ω

∂
Ω + ⋅ − ⋅ =

∂∫ ∫ ∫
U

Γ F n F n� �                  (6) 

with 

2

0 0

0

0

1
2

T

u
u

T

v
v

T

b
H u v

T

ρ
θ

ρ
θ ρ

ρ
θ ρ

ρ
θ ρ ρ

 
− 

 
 −
 

=  
 −
 
 
 − −
 

Γ                      (7) 

where H  is total enthalpy. b  and θ  are described as 
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where a denotes the speed of sound, and 
2

rMa  is the preconditioning parameter 

which is related to the local Mach number. In order to avoid strangeness of 

preconditioning matrix in the vicinity of stagnation regions, 
2

r
Ma  should be limited. 

There are several approaches for limiting 
2

r
Ma  [16], the control method proposed by 

Turkel [17] is used in this study, which is described to be 
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 =                    (10) 

where k  is an user-specified constant. It would be advantageous to select this 

constant to be as small as possible and k  has the value of 31.0 10 −×  in this study. 

Equations (6) is written as 
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where the term 1−QΓ is called the conservative variable preconditioning matrix.  



 

2.2.3 Turbulence model 

In Section 2.2.1, it is mentioned that T
µ  is given by the turbulence model. There are 

various turbulence models. In this paper, the K ω−  Shear Stress Transport (SST) 

two-equation model of Menter is used. The SST turbulence model merges the K ω−  

model of Wilcox with a high Reynolds number K ε−  model, which combines the 

positive features of both models. So it is applicable in the both boundary layer and the 

external flow field. The dimensionless transport equations of SST turbulence model 

are described to be 
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where K  represents the turbulent kinetic energy, and ω  denotes the rate of 

dissipation per unit turbulent kinetic energy. The parameters Tµ , Kσ , ωσ , 2ωσ , β , 

β ∗ , Pω , KP , 1f  have been given in Ref. [18], which are not listed detailly in this 

paper. The boundary conditions for the turbulent kinetic energy K  and the specific 

dissipation ω  at solid walls are  

0K =                                    (14) 
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where 1
d  is the distance of the first node from the wall and 1

β  has the value of 

0.075. The location of the grid node nearest the surface has a nontrivial effect on the 

accuracy of surface heat flux. For hypersonic flows, Marvin [19] recommended the 

stringent condition 0.3y+ < , which is satisfied in this study. y+ is the dimensionless 

distance from the surface and has the form of  

1
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d
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The parameters of SST model for free stream are listed in Table 2. 

 



Table 2. Parameters of SST model for free stream 

K∞  ω∞  T
µ ∞  

99 10−×  61 10−×  39 10−×  

 

3. Numerical approach 

3.1 Spatial discretization 

The Advection Upstream Splitting Method (AUSM) meets the goals of efficiency, 

accuracy, and robustness, which is often used in solving high speed flow. 

AUSM-family schemes have various developed forms. Liou [20] proposed a new 

scheme named AUSM+-up for the low Mach number limit, which can be used to solve 

flows at all speed. Considering the condition that there are both high speed flow and 

low speed flow in the computational domain, so AUSM+-up scheme is used to 

discretizing the convection flux ⋅F n  in the equations (11). The discretization of 

⋅F n  by AUSM+-up scheme is defined as follows.  
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As AUSM+-up scheme only has the first order accuracy, the Monotone 

Upstream-centered Scheme for Conservation Laws (MUSCL) interpolation [21] is 

adopted in the present study to improve accuracy of AUSM+-up scheme to second- 

order accuracy. In order to prevent the generation of oscillations and spurious 

solutions in regions with large gradients, second-order discretization of convective 

flux requires the use of limiter functions. In this paper, the Van Albada limiter 

function based on original variables is adopted. MUSCL interpolation with Van 

Albada limiter function is defined to be 
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where U  represents ρ , u , v , P , respectively. 1i i iU U
−

−∆ = − , 1i i iU U
+

+∆ = − . 



ψ  is the Van Albada limiter function with the form of  
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The viscous flux v
⋅F n  in equations (11) is discretized by the second-order 

central difference scheme. The discretization of convection flux in SST model is 

different from equations (11). The convection flux in equations (12) and (13) are 

discretized by first order upstream scheme. The discretization of viscous flux in 

equations (12) and (13) is the same with the one of equations (11), which are 

discretized by the second-order central difference scheme.  

 

3.2. Temporal discretization 

The implicit Lower-Upper Symmetric Gauss-Seidel (LU-SGS) scheme has features of 

high stability, low numerical complexity, and modest memory requirement, which are 

comparable to an explicit multistage. So LU-SGS scheme is implemented to discretize 

temporal term, which is described as follows. The equations (11) are changed into  
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n n= +F F F , , 1 1 2 2v n v vn n= +F F F . The superscripts “n” and 

“n+1” denote the time levels. Hence, n
W  means the flow solution at the present 

time t . Consequently, 1n +
W  represents the solution at the time t t+ ∆ . The residual 

term n
R has the form of  
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Introducing convective flux Jacobians A and viscous flux Jacobians vA , which 

are defined as n= ∂ ∂A F U , ,v v n= ∂ ∂A F U . Hence, equation (21) becomes 
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with 1−′ =A QΓ A , 
1

v v

−′ =A QΓ A . In equation (23), convection flux n′A W  is 

discretized by first-order upstream scheme and viscous flux 
n

v
′A W  by second-order 

central difference scheme. Hence, equation (23) becomes  
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′Λ  is the spectral radius of ′A  and is defined to be 
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In order to accelerate the solution of the governing equations, the local 

time-stepping is adopted, which is defined to be 

( ) ( ), ,i j v i v j

t CFL
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                 (29) 

where Courant-Friedrichs-Lewy (CFL) number has the value of 0.1. 

 

3.3. Solving process 

The solving process of equations (24) is shown as follows.  

Step 1. Compute the right hand items of the equations (24) 
1 n
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given in the section 3.1.  
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Step 4. Time marches. 

1n n n+ = +U U W                           (32) 

The solving process of equations (12) and (13) is the same with the one of 



equations (24). It is supposed to be convergent that the root-mean-square values of 
1 n

ij

−QΓ R  are less than 10-6. The solving process is accomplished by the computer 

program made in FORTRAN language, and the computation process of the program is 

shown in Fig. 2. 

 

Fig.2. Computation process 

 

4. RESULTS 

4.1. Characteristics of gap flow 

In this section, the characteristics of gap flow are analyzed. The Mach number contour 

with airflow attack angle ranging from 00 to 350 is shown in Fig. 3.  



 

Fig.3. Mach number contour 

 

It is can be seen that at lower angle of attack, the external airflow only affects the 

region near the entrance of a gap. As the increasement of attack angle, the affected 

region expands to the inside of a gap. As a gap is very narrow, the external flow 

hardly rushes to the bottom of a gap. When the angle of attack is no more than 350, 

airflow is at low velocity (<0.1Ma) in most regions of a gap. Near the bottom of a gap, 

the velocity of airflow almost equals to zero. In order to illustrate the change of 

characteristics of gap flow clearly, the temperature contour and streamlines with 

attack angle of 00, 50, 100 and 300, respectively, are shown in Fig. 4. Here, the 

temperature is a dimensionless parameter which is nondimensionalized by the 

temperature value of free-stream.  



 

Fig.4. Temperature contour and streamlines 

 

It is can be observed that there is a closed vortex at the entrance of a gap as the 

angle of attack is less than 350. As angle of attack equals to 00, the high-temperature 

air flows through a gap. Then, it would separate and expand into a gap. As the width 

of a gap is very small, the separated gas has collided with the downstream wall of a 

gap, and then returns the upstream wall of a gap. As a result of the shear action of 

external flow, the separated gas flows downstream again. Hence, a closed vortex 

forms at the entrance of a gap. When the angle of attack is greater than 00, the external 

gas could flow into a gap directly. As the angel of attack increases, more and more 

external air flows into a gap, while the vortex becomes smaller and smaller. It is also 

observed from the change of temperature contour. Compared with Fig. 4(a), Fig. 4(d) 

shows that the high-temperature zone of a gap becomes bigger as the increasement of 

airflow attack angle.  

Known from the characteristics of gap flow, the velocity of airflow is very low at 



most regions in a gap except the upper part in the case that airflow attack angle is not 

more than 350. Especially, gas almost keeps static at the bottom of a gap called ‘dead 

water zone’. It is inferred that thermal conduction plays a key role in the heat transfer 

mechanism at the lower part in a gap, while thermal convection at the upper one.  

 

4.2. Characteristics of thermal environment 

Both the computational model with a gap and the one without a gap are solved. 

The value of heat flux on the gap walls is denoted with q . The heat flux 

corresponding to point O at flat plates is denoted with 0q . The 0q  with angle of 

attack ranging from 00 to 350 is shown in Fig. 5. Here, 0q  is a dimensionless quantity. 

As the angle of attack increases from 00, airflow rushes to flat plates and is 

compressed more and more seriously. So aerodynamic heating becomes more and 

more serious, and 0q  increases with the angle of attack rising up. 

 

Fig.5. Flat heat flux at point O 

 

In order to represent the enhancement effect of aerodynamic heating due to a gap, 

the heat flux ratio 0q q  is introduced. The 0q q  with the attack angle of airflow 

having the value of 00, 50, 100, and 300, respectively, is shown in Fig. 6. In Fig. 7(a), 

the result of numerical simulation is compared with that of the supersonic wind tunnel 

test from the ref. [22]. It can be seen from Fig. 7(a) that the simulation result is 

consistent with the experimental one. 



 

Fig.6. Heat flux ratio 

 

Although the angle of attack varies, some similar laws can be got from Fig. 6. 

The heat flux in a gap is “U” shaped distributed. It decreases to almost zero as the 

increasement of depth in a gap. This is because that the external high-temperature 

airflow hardly rushes to the bottom of a gap. Energy attenuates gradually as the 

increasement of depth in a gap. The most severe aerodynamic heating occurs at the 

windward corner of a gap. The heat flux rises up suddenly near the windward corner. 

Airflow is compressed severely at the windward corner, which causes heat flux to go 

up. In the design of thermal protection system, the high heat flux zone at corners of a 

gap should be considered. It is advised that the corners of a gap could be designed 

into arc shapes to reduce heat flux. 

The enhancement effect of aerodynamic heating under various angles of attack is 

different. The maximum of heat flux ratio 0
q q  with angle of attack ranging from 00 

to 350 is shown in Fig. 7. It is shown that the maximum of 0
q q  goes up with the 

increasing of attack angles, which means that the higher attack angle of airflow causes 

more severe aerodynamic heating. 



 

Fig.7. Maximum of heat flux ratio 

 

Calorically perfect gas model is used in this paper, which is appropriate generally 

in the case that Mach number of free stream is no more than 5. However, in the case 

of higher Mach number of free stream, the high temperature air could undergo 

chemical reaction, dissociation and ionization. Thus calorically perfect gas model is 

no longer applicable, and chemistry model should be adopted. 

 

5. CONCLUSIONS 

This study applies the finite volume method and the preconditioning technique in 

order to investigate the flow field and aerodynamic surface quantities of supersonic 

gap flow. The calculations provide a detailed description of the flow field and heat 

environment with different attack angle. Performance results for a gap are compared 

to those of a flat plate without a gap. It is observed that a closed vortex forms at the 

entrance of a gap and becomes weakened with the increasing of attack angle of 

airflow. Since a gap is very narrow, external high-temperature airflow has little 

influence on the deep regions in a gap. The heat flux in a gap is “U” shaped 

distributed, and the most severe aerodynamic heating occurs at the windward corner 

of a gap.  
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NOMENCLATURE 

A      convective flux Jacobians 



vA     viscous flux Jacobians 

a      speed of sound 

a′      corrected speed of sound in preconditioning techniques 

PC      specific heat coefficient at constant pressure 

E       total energy per unit mass 

F       vector of connective flux 

vF       vector of viscous flux 

H       total enthalpy 

K       turbulent kinetic energy 

Ma      Mach number 

n        unit normal vector of control volume face 

P        pressure 

Pr       Prandtl number 

q        heat flux 

0q       heat flux of flat plate 

Re      Reynold number 

t        time  

t∆      time step 

T       temperature 

u       x-component of velocity 

U      vector of conservative variables 

PU     vector of primitive variables 

v       y-component of velocity 

y+      dimensionless distance of the first node from the wall 

α       angle of attack 

γ        ratio of specific heat coefficient 

ε        rate of turbulent energy dissipation 

′Λ      spectral radius of convective flux Jacobianis 

v
′Λ      spectral radius of viscous flux Jacobianis 

µ       dynamic viscosity coefficient 

ρ       density 

τ       viscous stresses 

φ       angle of deflection 

ψ       Van Albada limiter function 



ω       rate of dissipation per unit turbulent kinetic energy 

 

Superscripts 

n       previous time level 

n+1     new time level 

 

Subscripts 

L        laminar 

T        turbulent  

i , j      index of a control volume 

1 2i +    the interface of cells 

n       normal direction of control volume face 

∞       in far field 
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