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Abstract 

 

The aim of this study was to evaluate the erosion-inhibiting effect of two toothpastes on 

the development of erosion-like lesions, by a Confocal Laser Scanning Microscope 

(CLSM). Forty human enamel blocks were divided into five groups (n=8), in 

accordance to evaluate the GC MI Paste Plus and Oral B with stannous fluoride, 

applied as slurries and associated with toothbrush. Specimens were submitted to an 

erosion challenge from citric acid (0,5%, pH=2,8), for 5 minutes, 6 times a day, 

alternating in artificial saliva immersions. Reference group was not exposed to 

treatment. Part of specimens (Groups 02 and 03) was exposed twice daily just to 

slurries, for 2 minutes, therefore specimens from Groups 04 and 05 were also abraded, 

for 30 seconds. The enamel surfaces were morphological characterized using CLSM 

images, with mineral loss being measured using the resulting 3D images referenced to 

an un-challenged portion of the sample. Step values were compared using the One 

Way ANOVA test. CLSM was shown to be a viable, non-contact and simple technique 

to characterize eroded surfaces. The statistical difference in the step size was 

significant between the groups (p=0.001) and using multiple comparisons a statistically 

significant protective effect of toothpastes was shown when these were applied as 

slurries. Although groups submitted to tooth brush showed mineral loss similar to 

reference control group, due to the damages of abrasion associated.  

 

Key Words: Fluoride, Tooth erosion, enamel surface 

 

 

 



3	
	

Introduction 

There is evidence that the prevalence of dental erosion is steadily increasing 

(Jaeggi and Lussi, 2006) and its management has becoming an important aspect of the 

long-term health of dentition around the world. In the light of the difficulties involved in 

clinically detecting, monitoring and managing dental erosion, researchers are actively 

searching for new agents for the prevention, or repair, of dental erosion lesions and 

recently several strategies have been tested aiming to limit enamel erosion (Huysmans 

et al.; 2011; Moretto et al., 2010; Ranjitkar et al., 2009; Rios et al.; 2006). 

It has been shown in vitro that fluoride treatments, such as sodium fluoride, 

amine fluoride or acidulated phosphate fluoride, form CaF2-like layers on the tooth 

surface, which is unlikely to provide a preventive effect against erosion, as an acidic 

drink will rapidly dissolve the accessible CaF2 and remove traces of any previous 

topical fluoride treatment (Larsen and Richards, 2002). In recent years several 

research groups (Ganss et al., 2011; Wiegand et al., 2010; Schlueter et al., 2009; Rees 

et al.; 2007; Magalhães et al., 2007) have investigated the preventive effects of 

different fluoride formulations on dental erosion in order to identify preparations or 

compounds that form precipitates other than CaF2-like layers. 

Agents based on milk products have been investigated for many years and 

currently, several different paste formulations are available as variations of MI Paste 

Plus (GC Corporation, Tokyo, Japan), which is based on a nano-complex of the milk 

protein casein phosphor-peptide (CPP) with amorphous calcium phosphate (ACP). 

CPP binds to form nano-clusters of ACP preventing their growth to the critical 

size required for nucleation and phase transformation (Reynolds, 1998). The complex 

compound thus formed has demonstrated preventive and re-mineralization properties 

in the caries process (Reynolds et al., 1999). It has been claimed that CPP-ACP 



4	
	

promotes a supersaturated state close to dental hard tissues, making remineralisation 

of surface enamel possible (Rahiotis and Vougiouklakis, 2007).  

One other agent that has shown promise under both mild and severe erosive 

conditions is the stannous ion (Ganss et al., 2004; Tinanoff, 1995). The application of 

tin-containing solutions leads to deposits on the tooth surface (Hove et al., 2008; 

Willumsen et al., 2004) and there are indications that these deposits are relatively 

resistant to acid dissolution (Hjortsjö et al., 2009). It is known that the stannous ion 

reacts with pure hydroxyapatite (Schlueter et al., 2007; Young et al., 2006) on the 

surface of the dental hard tissue (Willumsen et al., 2004), resulting in reduced solubility 

of hydroxyapatite or enamel (Tinanoff, 1995). 

While good oral hygiene is of proven value in the prevention of periodontal 

disease and dental caries, frequent tooth brushing with abrasive oral hygiene products 

may enhance tooth damage (Lussi et al., 2011). Several studies have shown that 

softened enamel (such as that caused by acidic drinks) is very susceptible to 

scratching (Eisenburger et al., 2003; Jaeggi and Lussi, 1999; Lippert et al., 2004) and 

also highly unstable and can be easily removed by short and relatively gentle physical 

action (Eisenburger et al., 2003). Tooth brushing of eroded enamel thus leads to minor 

changes in its surface morphology and mechanical properties (Lippert et al., 2004). 

The structural changes resulting from different challenges and anti-erosive 

treatments can be studied by qualitative methods, such as optical or electron 

microscopy, which can be used either alone or combined with quantitative 

measurements (Schlueter et al., 2011). Confocal laser scanning microscopy (CLSM) is 

a non-destructive 3D technique commonly used in biological imaging, capable of 

producing high-resolution images, by scanning the surface with a highly focused laser 

beam and using the principle of confocal imaging to reject light returned from out of 

focus layers, thus effectively optically sectioning the sample (Sheppard and Shotton, 
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1997). This has been recently applied to the analysis of eroded enamel surfaces to 

assess quantitative of tissue loss (Heurich et al., 2010). More recently, the 3D Focus 

Varying Microscope (FVM) also shows sensitive in detecting structural changes 

following erosive and abrasive processes, and it could also perform optical scans of the 

surface in three dimensions, and calculate surface roughness quantitatively without any 

surface damages (Lima et al., 2013, Passos et al., 2013, Ren et al., 2009). 

The advantages of CLSM are the high resolution (sub-micron) images which 

are similar to low magnification Scanning Electron Microscopy (SEM) but without any of 

the problems of specimen preparation (Field et al., 2010). Systems are routinely 

capable of imaging at in excess of 10 frames per second and thus rapidly record the 

surface topography allowing quantification of the interface step between an eroded 

area and a sound enamel reference. 

Therefore, the purpose of the present study was to perform an in vitro evaluation of 

enamel surfaces subjected to citric acid attack and to quantify the erosion-inhibiting 

and/or re-mineralising potential of specific anti-erosive agents applied with and without 

toothbrush abrasion. We sought (i) to verify if confocal laser scanning microscopy 

identify alterations on enamel structure and then (ii) to evaluate and compare 

the anti-erosive regime/paste efficacy. 

 

Materials and Methods 

Sample Preparation 

Permission was granted by the Ethical Committee of the Federal University of 

Pernambuco - Recife PE, according to approval form (038/2010), and 20 third molar 

teeth were acquired from the tooth bank from the same Institution. All teeth were kept 

in 0.05% Chloramine T (Rio de Janeiro, RJ, Brazil) for 1 week for disinfection and 
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stored in a humid environment during the experimental stages. The selection criteria of 

included the absence of caries, cracks, fractures, grooves or surface decalcification 

under visual observation in natural light. Forty transverse-sectioned enamel specimens 

were prepared from the facial and/or lingual surface of the freshly extracted molars.  

Each sample was embedded in acrylic resin (VIPI CRIL Plus, Pirassununga, 

SP, Brazil) and the natural surfaces were ground flat in a water-cooled mechanical 

grinder and carefully polished with sandpaper of decreasing grit (P600 and P1200 

ground discs Buhler, Illinois, EUA) until the preparation resulted in an experimental 

surface area of at least 4 x 4mm2. Final polishing was performed with a metallographic 

polishing cloth (SUPRA, Arotec, Sao Paulo, SP, Brazil) moistened with 5µm diamond 

polishing oil suspension (Buehler, Illinois, EUA). 

Specimens were randomly divided into five groups initially [n=8]. Each sample 

was attached to a single holder and around one third of the experimental area of each 

specimen was covered by waterproof transparent adhesive tape (3M, St. Paul, 

Minnesota, EUA) to protect the reference area of un-etched enamel from the test 

regimens. To permit simultaneous immersion of all samples in the solution the teeth 

were attached by wire to the caps of the falcon tubes into which the test solutions were 

placed. The caps were then attached to a rod so that the samples could be inserted 

and removed from the solutions simultaneously.  

 

Erosion Cycle 

Before the erosion cycle, samples were soaked in commercially available 

artificial saliva (A.S Orthana Saliva, Andover, Hampshire, UK) for 24 hours. All 

specimens (Groups 1-5) were subjected to a cyclic demineralization and 

remineralisation procedure, with six demineralisation periods per day 5-min each; 0,5% 

citric acid, pH 2.8, (Anhydrous citric acid; Merck KGaA, Darmstadt, Germany), as an 



7	
	

adaptation of previously published method (Schlueter et al., 2009). There was a gap of 

around one and a half hours between each immersion and this cycle was repeated 

over three days.  

The control reference samples were submitted only to cyclic 

demineralization and reinsertion in artificial saliva pH=7,0, for one and a half 

hours between acid attacks to simulate the oral environment. After each 

immersion, the specimens were taken out from the solution, and carefully 

washed using deionised water for 30 seconds to remove any residual acid or 

saliva.  

Two preventive products were used: Casein Phosphor Peptide Amorphous 

Calcium Phosphate (CPP-ACP) plus Sodium Fluoride 900ppm available in GC MI 

Paste Plus (Mint flavour, GC Corporation, Tokyo, Japan); Stannous Fluoride 1100ppm 

and Sodium Fluoride 350ppm available in Oral B Pro Health (Proctor & Gamble, 

Weybridge, UK), tested by groups described on table 1. 

Table 1: Specification of preventive products used. 

 

To compare the best treatment for the control or arrest of erosion based 

lesions, samples were subjected to the preventive solution cycling treatment. The 

toothpastes under test were combined into slurries in 1:3 ratio of deionized water and 

the slurries placed on the samples after the first and last erosion period each day, for 2 

Groups Preventive Products Brand Toothbrush 

G 01 ---   

G 02 CPP-ACP NaF 900ppm GC Corporation  

G 03 CPP-ACP NaF 900ppm GC Corporation Phillips Sonicare 

G 04 SnF 1100ppm; NaF 350ppm Proctor & Gamble  

G 05 SnF 1100ppm; NaF 350ppm Proctor & Gamble Phillips Sonicare 
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min on each occasion. Specimens of two groups were also submitted to abrasion by 

tooth brush. For the abrasion test, groups (03 and 05) were also brushed for 30 

seconds within the slurry during the two minute immersion time, using an electrical 

toothbrush (Phillips Sonicare, HX6511/50, Andover, Massachusetts, USA) fixed in a 

mechanical set-up to control the brushing force to 2N.  

Procedures were started in the morning, with the erosive solution renewed at 

the beginning of each day. The pH of all solutions was measured and controlled on 

each experimental day. All procedures were performed, avoiding agitation, at room 

temperature (20°C).  

CLSM Measurements  

Each sample was analysed by CLSM after the three days of erosive and 

preventive regime. Moving the microscope objective through the optical axis, it was 

possible to produce successive focal optical section at 1 micron step intervals and thus 

reconstruct a 3D image of the tooth. From the image stack it was then possible to 

quantify the height differences between the eroded and reference area.  

The images were taken using a Nikon D-Eclipse C1 confocal microscope 

(NIKON Instruments Inc. Melville, New York, USA), with a 405 nm, 25 mW laser 

(Coherent, Santa Clara, California, USA) used to illuminate and excite the tooth 

samples with the power on the sample limited to around 100 µW. Fluorescence from 

the sample was detected in two different channels: blue (515-530 nm) and green (590-

650 nm). An apochromatic 60x water dipping objective lens with an NA of 1.0 was used 

unless otherwise stated and optical sections were recorded at 1 micron depth intervals 

(accuracy of depth sections being +/- 50 nm). From the resulting image stack 

measurements could then be made on the height differences between the eroded and 

un-damaged areas along with a qualitative assessment of the surface finish of the 

samples.  
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Images Analysis  

Images were plotted using Image J public domain software 

[http://rsbweb.nih.gov/ij]. The individual image slices were initially combined into an 

image stack for each series of confocal sections and the resulting stacks then used for 

the subsequent image qualitative description by observers. Using the 3D reconstructed 

images the XZ (Z being defined as into the tooth) profile was examined and the 

average height difference between the eroded and un-eroded sections measured, 

considering a distance of 40 um from interface, as the point/level of eroded area. No 

other image processing was undertaken on the images and the standard “grayscale” 

look-up table is used in all images presented. 

Statistics  

Data were organized into an Excel spreadsheet (Microsoft Office 2007) and 

analyzed using SPSS 13.0 (Statistical Package for the Social Sciences, Chicago, USA) 

for Windows. Statistical tests were guided after a Komogorov-Smirnov test was used to 

evaluate the normality of the data. The One Way ANOVA test was performed for 

comparison among groups. All tests were applied with 95% confidence. 

 

Results 

 Around 350 images were analyzed and typical images are shown below in 

Figure 1. Figure 1a shows a representative sample of a polished area of sound enamel 

(areas under the protective tape) with the surface appearing quite smooth, the prisms 

and organic matrix not well defined. Both the returned fluorescence and reflected light 

shows little scattering even to a depth of around 25 microns below the surface. The 

absence of clear enamel structure seems to correspond to the aprismatic layer of 

enamel produced during the polishing procedure. 
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The typical appearance of eroded enamel submitted only to citric acid attack is 

shown in Figure 1b and 1c. Samples subjected to the preventive treatments of 

toothpaste slurries showed differences in the resulting enamel morphology. As shown 

in Figure 2a, the sample treated with CPP-ACP NaF (G 02) demonstrated a similar 

appearance to the control-eroded group (Figure 1c), with areas of mineral loss, though 

the XZ section is perhaps not as rough. Samples subjected to toothpaste slurries 

containing SnF2 (G 04) present a lower level of fluorescence (compared to the control 

eroded sample) and it appears as though a thin layer of stannous fluoride is covering 

the enamel surface. The layer is not uniform and appears as a series of swirls, as 

observed on Figure 2b. 

In the groups where samples were abraded for 30 seconds during the 

toothpaste slurry treatment, it was possible to distinguish toothbrush effects on the 

eroded enamel. In the CPP-ACP NaF group (G 03) lines of brushing in specific 

directions can be observed, with greater mineral loss at the top of enamel rods, leaving 

the rod boundary well defined (Figure 2c). Samples submitted to tooth brushing during 

the Stannous Fluoride treatment (G 05) showed brushing effects, as a mixed 

appearance with areas of etched prisms combined with areas where a surface layer 

appears to cover enamel (Figure 2d).  

As can be seen in Figure 3 at the interface between the exposed and protected 

enamel during the acid attack a significant step develops. Visually it is clear that the 

stannous containing compound alone (G 04) shows less damage than the samples 

protected by tooth mouse and no protection. 

In order to quantify these visual differences the average height change was 

measured using the XZ projection. Table 2 shows the average height change for each 

group, together with the standard deviation and percentage mineral loss. The statistical 

difference in the step size was significant between the groups, as demonstrated by 
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One Way ANOVA test (p=0.001). The Mann-Whitney test analyzing by multiple 

comparisons showed statistically significant protective effect of SnF2  (G 04, p=0.001) 

and CPP-ACP NaF (G 02, p=0.041) when applied as toothpaste slurries. 

 

Discussion 

This study aimed to elucidate the effects of two different fluoride toothpastes on 

eroded dental hard tissue using confocal laser scanning microscope and quantifiable 

differences were recorded in line with the expected findings. At present there is no 

generally accepted standard protocol used in erosion studies in vitro, nor a previously 

reported reliable method of quantifying mineral loss non-destructively. A representative 

acidic challenge was necessary to promote alterations and facilitate demonstration of 

the effects of preventive agents. Therefore, an immersion time of 5 min cycles was 

selected to simulate clinical conditions, though the precise timings may require further 

optimisation. The erosive cycling model can be considered to be of medium severity, 

with for a daily exposure of 30 minutes - this was repeated for three days.  

The confocal images provide some evidence of the processes taking place 

during the etching cycles. The initial polishing of the samples, to produce a uniform 

starting point left, as anticipated, an aprismatic area, as observed on sound reference 

region. However, the results of eroded surfaces show variations within the group, in 

which, even allowing for the same etch time, the emerging enamel rods have different 

shapes. This variation can be partly explained by the nature of the enamel rod following 

an S-shape course on the horizontal plane from DEJ to the surface. When the enamel 

specimens are prepared, the grinding should ideally occur at 90° to the enamel rods in 

order to achieve an evenly etchable surface (Hjortsjö et al., 2010). Due to the nature 

curvature of the teeth this may not always occur when an area of around 3 x 3 mm is 

required, hence the alignment of the exposed enamel rods in the various samples may 
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be different, thus affecting their etch susceptibility and their response to fluoride 

treatment.  

The eroded surface showed a clearly visible increase in fluorescence, with 

areas of mild alteration of the enamel organic matrix, evidenced by the more apparent 

‘honeycomb’ morphology.  In areas where the eroded enamel prisms were clearly 

exposed, the ‘honeycomb’ morphology was better defined, with an apparently greater 

loss of organic matrix. Erosion of the rod boundary appears as a lower level of detected 

fluorescence from around each prism. The interaction of the light with such microscopic 

surfaces with large changes in the refractive indices of materials is complex and the 

exact reasons for the appearance of features is open to debate but it is clear that the 

method of fluorescence confocal microscopy clearly shows the changes in surface 

morphology. Surface roughness can also be confirmed through the transverse section 

image, and this can again be quantified using more advanced image processing 

methods than used in these preliminary measurements. 

 Previously, studies have assumed that tissue loss values of the order of 10-15 

µm compared to the negative control group are sufficient for demonstration of 

differentiation of agent effects (Ganss et al., 2012). In this study, the erosive procedure 

was more intense, due to an acid etch time of five rather than two minutes, and the 

cycles completed in 3 days rather than 10. However, this resulted in a step height of 

15.3µm (+/-4.8) of similar magnitude to the previous slower etch and perhaps more 

suited to a high throughput initial screen.  

In this study, casein phospho-peptide as a component of a tooth cream in 

combination with ACP, although not indicated for daily use, was investigated for anti-

erosive effects and abrasion prevention. It is known that CPP-ACP limits the free 

calcium and phosphate ion activities, thus helping to maintain a state of super-

saturation, which decreases demineralization (Reynolds, 2008), although there are 
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conflicting results about its effectiveness (Rees et al., 2007; Wang et al., 2011; 

Wegehaupt and Attin, 2010). We observed a weaker protective effect, of 39% mineral 

loss reduction, against acid challenge, although still statistically significant (p=0.041). 

There is preliminary evidence that toothpastes containing the Sn2+ ion could be 

promising agents in the prevention of acid based erosion (Ganss et al., 2008; 

Huysmans et al., 2011). In this study a toothpaste containing stannous fluoride was 

tested and a continuous surface coating appeared on the treated samples. One of the 

suggested mechanisms of erosion prevention of SnF2 is the promotion of a protective 

layer on the tooth surface (Huysmans et al., 2011) and stannous fluoride has been 

demonstrated to be capable of depositing appreciable levels of tin on enamel. Using 

CLSM for surface analysis, we observed an area of minimum fluorescence, similar to a 

dehydrated surface, and as previously described, even when analysed using the water 

dipping objective lens through distilled water the tin protective layer was stable. 

As noted, surfaces treated additionally with tooth-brushing showed decreased 

protection, probably due to the abrasion effects of physical forces. The stannous layer 

was abraded and totally removed in some areas. CLSM XZ sections supported the 

evidence that the SnF2 does form a thin, but not strong, protective layer on the tooth. 

Comparing interface values of the step no statistical difference was found between the 

negative control and the tooth-brushed groups. 

CLSM has high resolution that was sufficient to evaluate erosion effects on 

samples with minimum sample preparation. CLSM was shown to be an alternative to 

scanning electron microscope (in environmental mode) that facilitated evaluation 

without damage. The non-contact method is a significant advance as there is no risk of 

damaging the delicate protein matrix left exposed after erosive attack, which may well 

play a role in supporting the re-mineralisation process. In this limited study toothpaste 

containing SnF2 showed a significant (p=0.001) protective ability of 70% against acid 
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based erosion, though the use of a toothbrush reduced 95% of its effectiveness. 

Abrasion promoted by toothbrush procedures also reduced 80% of the protective 

effects of CPP-ACP NaF.  

 In conclusion, eroded samples showed loss of the organic matrix and exposure 

of enamel rods, increasing the irregularity of the enamel surface. The stannous fluoride 

within the Oral B toothpaste and the CPP-ACP NaF in the Tooth Mousse Plus 

demonstrate mineral loss reduction of 70%, and 39%, respectively. However, abrasion 

damage decreased those protective effects. Confocal microscopy is an excellent non-

contact method for the monitoring of acid erosion and re-mineralisation on enamel. 

This study also shows the potential of this method to quantify the effect of acid based 

erosion in vitro, which may be suitable for high throughput screening of new toothpaste 

formulations in relation to protection against acid attack 
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 Control  

Group 

CPP-ACP 

NaF (S) 

CPP-ACP 

NaF  (TB) 

SnF2 + 

NaF 

(S) 

SnF2 + NaF 

(TB) 

Average Height 

Loss  

15.3 +4.8A 9.3 +4.9B 14.2 +6.8A 4.6 +1.3B 10.3 +3.1A 

% Reduction of 

enamel Loss 

- 39.2% 7.2% 70% 32.7% 
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Figure Legends 

 

Figure 1: CLSM typical images of sound enamel surface (a); soft eroded surface (b); 

and areas of aggressive eroded surface (c). Below each Figures (a), (b) and (c), there 

is a XZ (transversal) section taken from each reconstructed images surface. 
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Figure 2: CLSM of typical enamel surfaces treated with prevention products: (a) G 02: 

CPP-ACP NaF Solution; (b) G 04: Oral B SnF2 Solution; (c) G 03: CPP-ACP NaF 

Tooth-brushed; and (d) G 05: Oral B SnF2 tooth-brushed effects. Below each image, 

there is a transversal XZ section image taken from the reconstructed images. 
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Figure 3: CLSM image on XZ sections of representative interface between sound and 

eroded area of each tested group at the end of cycle regime. (An interface reference 

between change of level is indicated by narrows). 

 

 
 

 

 

 

 

 


