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Abstract The particle-in-cell method is generally considered a flexible and robust method to model the
geodynamic problems with chemical heterogeneity. However, velocity interpolation from grid points to par-
ticle locations is often performed without considering the divergence of the velocity field, which can lead to
significant particle dispersion or clustering if those particles move through regions of strong velocity gra-
dients. This may ultimately result in cells void of particles, which, if left untreated, may, in turn, lead to
numerical inaccuracies. Here we apply a two-dimensional conservative velocity interpolation (CVI) scheme
to steady state and time-dependent flow fields with strong velocity gradients (e.g., due to large local viscos-
ity variation) and derive and apply the three-dimensional equivalent. We show that the introduction of CVI
significantly reduces the dispersion and clustering of particles in both steady state and time-dependent
flow problems and maintains a locally steady number of particles, without the need for ad hoc remedies
such as very high initial particle densities or reseeding during the calculation. We illustrate that this method
provides a significant improvement to particle distributions in common geodynamic modeling problems
such as subduction zones or lithosphere-asthenosphere boundary dynamics.

1. Introduction

Chemical heterogeneities play an important role in mantle dynamics and an accurate numerical method to
treat them in geodynamic models is of prime importance [Tackley, 1998; McNamara and Zhong, 2004]. Sev-
eral techniques are used to track the composition field in computational fluid dynamics, and the particle-in-
cell method (PIC), which advects composition-carrying particles with the ambient velocity field, is found to
be a very flexible and robust method to model many geodynamical problems [Van Keken et al., 1997; Tack-
ley and King, 2003] and is commonly used in the mantle convection community [e.g., Van Keken et al., 1997;
Schmeling, 2000; Gerya and Yuen, 2003b; Moresi et al., 2003; Tackley and King, 2003; Ballmer et al., 2009].

The algorithm of the PIC method to track the composition field typically involves (1) velocity interpolation
from a grid of computational nodal points (hereafter collectively referred to as the mesh) to the particle
locations, (2) time-integrated advection of the particles, and 3) interpolation of the particle information to
the mesh. For most problems, a second or fourth-order Runge-Kutta scheme usually proves to be suffi-
ciently accurate to advect the particles [Gerya and Yuen, 2003b; Moresi et al., 2003; McNamara and Zhong,
2004]. Although a commonly used bilinear or biquadratic velocity interpolation to the particles may be
sufficiently accurate for many flow problems [Van Keken et al., 1997; Gerya and Yuen, 2003b; Tackley and
King, 2003], these methods interpolate the velocity components independently, without considering the
divergence of the velocity field. Such interpolation schemes might induce nonphysical clustering of the
particles, depending on the flow field [Jenny et al., 2001; Meyer and Jenny, 2004]. This effect may not be
significant or obvious when the velocity field is rather smooth, but an unphysical distribution of the particles
can become significant if strong velocity gradients are present. Ultimately, this may result in grid cells or
elements totally void of particles, which are sometimes remedied using locally very high mesh resolutions
and/or particle densities, or various ad hoc solutions, such as assuming a default composition for those
empty cells, or repeated reseeding with additional particles [Poliakov and Podladchikov, 1992; Weinberg and
Schmeling, 1992; Edwards and Bridson, 2012]. As we will illustrate below, this problem can be particularly
severe in case of geodynamical applications with sharp viscosity contrasts and thus strong velocity
gradients, such as plate interfaces in subduction zones.
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An improved velocity interpolation scheme that conserves the divergence of the flow field has been devel-
oped by Jenny et al. [2001] and the simplified scheme for incompressible flow (i.e., divergence free) has
been demonstrated that it largely eliminates the spurious distribution of particles for 2-D incompressible
flow problem [Meyer and Jenny, 2004]. Other types of divergence-free interpolations have also been pro-
posed for specific 2-D incompressible flow field [Vennell and Beatson, 2009; McNally, 2011], although equiva-
lent schemes for 3-D flow are often absent. Impressed by the simplicity of the scheme in 2-D Cartesian
coordinate system as described by Meyer and Jenny [2004], we test it in our code and further develop the
equivalent 3-D scheme in this study. We illustrate that the divergence-free interpolations (i.e., conservative
velocity interpolation for incompressible flow) in both 2-D and 3-D calculations are very successful in many
geodynamical scenarios where large local viscosity contrasts are common.

2. Method

2.1. Governing Equations
To illustrate the concept of particle divergence in an incompressible, infinite Prandtl-number flow field, the
following standard nondimensional governing equations for conservation of mass, momentum, energy,
and composition are solved under the Boussinesq approximation:

r � u50; (1)

2rP1r g ru1ruT
� �� �

1 RaT2RbCð Þez50; (2)

@T
@t

1u � rT5r2T ; (3)

@C
@t

1u � rC50: (4)

where u, P, g, T, C, t, Ra, and Rb represent velocity, pressure, viscosity, temperature, composition, time, the
thermal, and compositional Rayleigh number, respectively, and ez is the vertical unit vector positive
upward.

For the steady state flow problems in section 3, analytical solutions for equations (1) and (2) are applied at
the nodes at every time step. In that case, particles are passively advected through the interpolated velocity
field and do not affect the flow. For the time-dependent flow problems in section 4, the flow field is solved
numerically using a Cartesian finite element code Citcom [Moresi and Solomatov, 1995; Zhong et al., 2000].
In the case of active particles, the composition field carried by the particles can have a feedback on the solu-
tion of equations (2) and (3).

Equation (4) is solved by a particle-tracking technique, in which the particles are advected at every time
step by a second-order Runge-Kutta scheme with interpolated velocities based on the node velocities from
equations (1) and (2). The compositional value is then interpolated to the finite element integration points.

2.2. Velocity Interpolation Scheme
The nonconservative interpolation from nodal points of a local finite element to any point within the ele-
ment is done using a bilinear (in 2-D) or trilinear (3-D) interpolation scheme with second-order accuracy. In
the general 3-D case, this interpolated velocity UL is defined as

Ui
L x1; x2; x3ð Þ5 12x1ð Þ 12x2ð Þ 12x3ð ÞUa

i 1x3Ue
i

� �
1x1 12x2ð Þ 12x3ð ÞUb

i 1x3Uf
i

� �

1 12x1ð Þx2 12x3ð ÞUc
i 1x3Ug

i

� �
1x1 x2 12x3ð ÞUd

i 1x3Uh
i

� �
;

(5)

where Ui is the ith-component of the velocity field at local coordinates (x1, x2, x3) and superscripts a-h refer
to the nodal points of the unit cell, as illustrated in Figure 1. The improved conservative interpolation can
be derived by adding a correction term to conserve the divergence velocity field after the interpolation.
The 2-D case for the incompressible flow is provided by Meyer and Jenny [2004], in which correction terms
are added to the bilinear interpolations (equation (5)):

Ui5Ui
L1DUi; (6)

with DUi is a correction term. Here we derive the general, 3-D version of this correction term for
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incompressible flow as

DU15x1 12x1ð Þ C101x2C12ð Þ

DU25x2 12x2ð Þ C201x3C23ð Þ

DU35x3 12x3ð Þ C301x1C31ð Þ;

(7)

where the coefficients (C10, C12, C20, C23, C30, and C31) are defined as (see supporting information):
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(8)

In 2-D, the interpolation and correction schemes simplify significantly by ignoring all terms associated to
the third dimension (i.e., x3 5 0 and Ui

e5Ui
f 5Ui

g5Ui
h50), in which case equation (7) simplifies to the 2-D

incompressible scheme of Meyer and Jenny [2004].

Adding these corrections does not improve the order of accuracy of the interpolation (it remains a second-
order accurate scheme), but they ensure a divergence-free velocity field over the cell.

3. Steady State Flow Experiments

In this section, two 2-D steady state flow problems with analytical solutions are used to illustrate and test
the nonconservative and conservative velocity interpolation, hereafter called n-CVI (equation (6) with
DUi 5 0) and CVI (equation (6) with DUi 6¼ 0), respectively. The flow in these problems is incompressible, so
ideally, no particle convergence or divergence should occur.

3.1. Couette Flow
The first test is a simple laminar flow of viscous fluids between two relatively moving parallel plates, known
as Couette flow. This flow is characterized with a constant shear stress throughout the flow domain, so ana-
lytical solutions for different viscosity layering are easily derived. We imposed the analytical solution of the

velocity field for a Couette flow with two different vis-
cous fluids (viscosity ratio of 103) in a unit model
domain. The flow is at a 458 angle to the boundaries of
the domain, as shown in Figures 2a and 2b. To clearly
illustrate the potential problem with n-CVI scheme, a
very course mesh of 8 3 8 cells is used and an initially
randomly distributed set of 104 particles. To provide a
continuous solution in time, particles are allowed to
flow into and out of the model domain at every time
step.

When the n-CVI is used, a significant pattern develops
in the particle distribution, since the sharply contrast-
ing velocities of the four corners of any cell that lies
across the two viscosity domains will result in spurious
velocities inside the cell due to the imperfect interpola-
tion (Figure 2a). The particle dispersion and clustering

Figure 1. Schematic diagram to show the node name con-
vention of a 3-D finite element used in this study.
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in those cells occurs because particles in the upper part of the cell move with a much faster velocity than
they should, due to the bilinear interpolation from the high velocity of the lower right node, while they will
stay almost stagnant once they move to the next cell that does not contain any high-velocity node. Figure
2b illustrates that these spurious particle distribution patterns disappear when the CVI scheme is applied.

3.2. solCx With Viscosity Jump of 104

The second test is the analytical solution for 2-D incompressible Stokes flow with a sharp lateral viscosity
jump, developed by Zhong [1996], which was later termed ‘‘solCx’’ [Duretz et al., 2011]. Here we use a viscos-
ity jump of 104 in the middle of the box. The computational domain has a unit aspect ratio, and it is discre-
tized by 32 3 32 cells. The flow is driven by an internal sinusoidal force [Duretz et al., 2011], with free-slip
mechanical boundary conditions. The analytical solution has been used as benchmark for high viscosity
contrast experiments [Moresi et al., 1996; Duretz et al., 2011; Thielmann et al., 2014]. The source code to

Figure 2. Particle distribution for the two steady state cases after 5000 time steps, with black arrows showing the velocity field at the
nodes. Particle distributions obtained by a diagonal Couette flow, with red and blue areas indicating low and high viscosity, respectively.
(a) The velocity is interpolated with the n-CVI scheme. The dispersion (white areas) and clustering (highlight by pink arrows) of particles at
the boundary between the two rheological layers is clearly visible. (b) The interpolation is carried out with the CVI, in which case the parti-
cle clustering is absent. SolCx test (c) with the n-CVI scheme and (d) with the CVI scheme. The color scale indicates the number of particles
per cell. Using the n-CVI produces almost empty cells and clustering of particles at the edge of the viscosity interface, while with the CVI
any clustering is virtually absent.
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calculate the analytical solution is provided as part of the open source software Underworld [Moresi et al.,
2007].

A set of 25,600 initially randomly distributed particles (�25 per cell) is advected using the analytical velocity
solution at the nodes and interpolated from the nodes to the particles for every time step. As shown in
Figure 2c, particle clustering forms with the n-CVI within 5000 time steps advection. Particle clustering
develops near the viscosity jump where the strong velocity gradient is located. Strong gradients in the
velocity field (which is originally divergence free at the cell nodes) for cells that cross the viscosity interface
result in an interpolated velocity that is not divergence free anymore, because the interpolation scheme
does not explicit conserve the divergence (Figure 2c). For the CVI scheme, the interpolation is explicitly
divergence free, and therefore particles do not cluster (Figure 2d).

4. Time-Dependent Flow in Geodynamical Applications

To illustrate the advantage of the CVI scheme for more geodynamically interesting problems, three time-
dependent flow problems in which particles affect the flow field are modeled with different particle velocity
interpolations in this section. We first compare our results with the standard benchmark problem from van
Keken et al. [1997], and then we test two types of specific geodynamic problems.

4.1. Rayleigh-Taylor Instability With a Viscosity Contrast
We use a Rayleigh-Taylor instability [van Keken et al., 1997] to test the bilinear interpolation for a thermo-
chemical convection problem. This benchmark case has become a rather standard test in the geodynamical
community for particle-based methods. The convection is driven by compositional density differences. The
composition is advected with particles, and for the cases with viscosity contrast between the layers, the vis-
cosity is also carried by the particles. So an important difference with the previous, analytical test cases is

Figure 3. Rayleigh-Taylor instability benchmark test after Van Keken et al. [1997]. Particle distribution for the case with a viscosity contrast of 100 (red and blue are high and low viscosity,
respectively) obtained using the (a) n-CVI and (b) CVI scheme, respectively. The black arrows in Figure 3a indicate gaps in the particle distribution. Time series of the velocity rms for three
viscosity contrasts (Dg 5 1, 10, 100) for the (c) n-CVI and (d) CVI scheme, respectively. The maximum and minimum number of particles per cell across all cells for Dg 5 100 calculations
for an initial particle density of (e) �25 particle per cell and (f) �100 particles per cell.
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that particles actively affect the flow field. Figures 3a and 3b show flow results obtained for the case with
viscosity contrast of 100 performed in a model domain discretized by 64 3 64 cells and filled with �25 par-
ticles per cell. Figure 3a illustrates the gaps in the particle distribution using the n-CVI, whereas with the CVI
scheme, the particles remain proportionally distributed throughout the domain (Figure 3b). The interpola-
tion method does not significantly affect the flow pattern, as shown by the time series for the root-mean-
square velocity of the three cases demonstrated (Figures 3c and 3d). The advantage of using the CVI
scheme is more clearly illustrated in Figures 3e and 3f, where the maximum and the minimum number of
particles per cell throughout the simulation are plotted. This shows how, in the n-CVI scheme, the number
of particles per cell is strongly time dependent, with some elements eventually being completely void of
particles, whereas the CVI scheme maintains a statistically constant particle density everywhere.

4.2. 2-D Subduction Dynamics
Converging plates in subduction zones are decoupled by a thin weak layer [e.g., Agrusta et al., 2014] (Figure
4a), and here we explore how intense shearing and local large viscosity contrasts affect the velocity interpo-
lation for each of the interpolation schemes. The dynamics are calculated using a finite element method, in
which a �15 km thick, weak (1020 Pa s) decoupling layer (down to 200 km depth) between the converging
plates is modeled using active particles. The model domain represents the upper mantle, with a box height
of 660 km and an aspect ratio of 3, discretized into 520 3 127 elements. The �3 3 106 particles are distrib-
uted initially randomly across the domain. The box resolution is refined vertically and horizontally to better
resolve the weak layer and area at subduction trench. For a detailed description of the numerical setup and
rheological model, see Agrusta et al. [2014].

A model snapshot at 2.3 Myr (Figure 4a) illustrates how the sharp viscosity contrast between the rigid plate
and the weak layer generates a high velocity gradient that induces the particles to accumulate in the weak
layer and leaves voids above it with the n-CVI scheme (Figure 4a, left), whereas the CVI scheme prevents
this behavior (Figure 4a, right). This particle behavior is very similar to the Couette flow illustrated above.

4.3. 3-D Lithosphere Dynamics
Another example of a geodynamical scenario in which particle distribution can be significantly affected is
the long-term interaction between the base of the lithosphere and the convecting mantle. Here we test the
CVI scheme on a 3-D model of a very viscous cratonic root in a much weaker thermochemically convecting
mantle that has often been studied in 2-D situations [Lenardic et al., 2003; O’Neill et al., 2008; Wang et al.,
2014, 2015]. The computational domain is 660 km deep with a unit aspect ratio. To represent a buoyant cra-
ton, a half-sphere, compositionally different from the surrounding mantle is situated at the top of the cube
(Figures 4b–4e). The viscosity contrast between the half-sphere cratonic root and the mantle is 103. The ini-
tial internal temperature field is 13508C everywhere. T 5 0 and T 5 13508C are imposed on the surface and
bottom, respectively, with zero heat flux on the sides and with free-slip mechanical boundary conditions
everywhere. We use a coarse mesh resolution of 33 3 33 3 33 cells with 106 particles. Figure 4b shows the
temperature field after a dimensionless time of 1200. The particle distribution in cross-section slices of one
cell width, projected in a cross section, shows the particle distribution with the n-CVI and CVI schemes in
Figures 4c and 4d, respectively. Similar to the 2-D calculations, the trilinear n-CVI induces particle clustering
near the compositional boundary (Figure 4c), whereas the 3-D CVI scheme maintains a homogenous parti-
cle distribution (Figure 4d). With the n-CVI, the minimum particle number reaches zero quickly and remains
small afterward; the maximum particle number keeps increasing steadily, which illustrates the ongoing clus-
tering of particles. In contrast, the minimum and maximum particle count per cell stays between 10 and 55
with the CVI scheme, which illustrates again a persistently homogenous particle distribution through time
(Figure 4e).

5. Discussion and Conclusion

In this study, we reported a solution for a commonly observed problem in geodynamic modeling related to
the PIC method. Using the analytical solution of two steady state flow problems, we demonstrate that the
commonly observed clustering and dispersion of particles in a PIC method is insensitive to numerical discre-
tization techniques or particle advection methods, but instead is caused by the nonconservative interpola-
tion method of the velocity field from the cell nodes to the particles. The conservative velocity interpolation

Geochemistry, Geophysics, Geosystems 10.1002/2015GC005824

WANG ET AL. CONSERVATIVE VELOCITY INTERPOLATION 2020



(CVI) proposed in this study solves this problem for incompressible flow by ensuring a divergence-free
velocity field for the particles. We illustrate that this method works very well for both steady state flow prob-
lems and geodynamically more complex and relevant time-dependent flow problems.

5.1. Numerical Advantages and Wider Applicability
Maintaining a certain minimum particle density in every computation cell is important for the success of PIC
methods [van Keken et al., 1997; Tackley and King, 2003]. However, significant clustering and dispersion of
particles commonly occurs in the presence of strong velocity gradients, e.g., due to locally high viscosity
contrasts. Using a very high particle density might help to avoid significant gaps in the particle distribution

Figure 4. Two examples on the effect of the different velocity interpolation schemes for geodynamically relevant scenarios in 2-D and 3-D.
(a) Particle distribution around a weak layer that decouples converging plates in a subduction zone. (bottom left inset) Particle clustering
develops at the interface between the weak layer and the overriding plate by using the n-CVI scheme, whereas (bottom right inset) par-
ticles remain evenly distributed by using the CVI scheme. (b) Temperature field near an idealized buoyant craton in a 3-D scenario, with
particle distributions obtained with the (c) n-CVI and (d) CVI scheme. The arrows point toward occurrences of particle clustering. (e) Time
series of the maximum and minimum number of particles per element for each of the two interpolation schemes in the 3-D craton model.
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but not always, and such remedy quickly becomes computationally expensive, especially in 3-D models.
Reseeding particles to the areas approaching low particle density may appear to solve the problem but
does not have solid physical base. Our results show that how the particle distribution problem can easily be
solved by using a conservative velocity interpolation (i.e., divergence-free interpolation for incompressible
flow) from cell nodes to particles. This method has the advantage that the divergence property of the veloc-
ity field is maintained [Jenny et al., 2001; Meyer and Jenny, 2004], which is physically reasonable and requires
negligibly higher computational costs.

The presented new interpolation scheme has been applied to four-node quadrilateral cells in a divergence-
free flow field (i.e., incompressible flow), for which the proposed solution is very easily implemented. But
the advantages of a conservative interpolation could apply more generally to compressible flow problems
[Jenny et al., 2001] and more complex meshing techniques. However, some modifications are required to
apply this scheme to more complex meshing techniques. For example, staggered grids are commonly used
in finite difference and finite volume methods [e.g., Gerya and Yuen, 2003b] and have different node loca-
tions for the different velocity components. Therefore, an adapted implementation of the CVI scheme is
required for more complex grid configurations, which will be the topic of future investigation.

5.2. Geodynamic Applications
With the arrival of new numerical techniques and increased computational capacity, the geodynamical
modeling of chemical heterogeneity has become more and more prominent [e.g., Gerya and Yuen, 2003a;
McNamara and Zhong, 2004; Tackley, 2008]. Examples include varying mineral compositions, or volatile con-
tent, which can have a substantial effect on the rheology of the crust and mantle [Hirth and Kohlstedt, 1996;
Karato, 2006; Keefner et al., 2011]. These slow or nondiffusive properties can create and maintain sharp local
viscosity contrasts and strong velocity gradients. Here we show how, in such scenarios, nonconservative
velocity interpolation such as the bilinear/trilinear scheme could lead to significant clustering and disper-
sion of particles. The 2-D and 3-D conservative velocity interpolation (CVI) schemes presented in this study
provide a simple, effective way to improve the PIC method for the incompressible flow problems under this
situation. CVI is a physically correct interpolation scheme that is easily implemented and maintains statisti-
cally constant particle densities, thereby avoiding particle dispersion and locally decreasing particle den-
sities over time. Initial particle densities can therefore be relatively low, which improves the computation
efficiency, especially for 3-D calculations.
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