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Virtually all decision making occurs in the context of information that acts as the basis for 

action.  A pedestrian standing at the sidewalk looks both ways and then crosses. The decision to cross 

or not will be a function of (at least) how urgently the pedestrian wants to cross, how averse he is to 

being struck by a car, and his assessments of the probability that this will happen. Similarly, a bettor at 

the racetrack bets on a particular horse for specific odds. This decision will again be a function of the 

bettor’s inferred probabilities and her utility function. If we observe many such decisions by the same 

person, and if we make some “structural assumptions,” such as the functional form of the pedestrian’s 

or bettor’s utility function, and/or their probability weighting function, we can in principle infer their 

beliefs about the likelihood of the event of interest. We can also ask how these choice probabilities are 

related to the objective probabilities that “should” be inferred from the information they have. We 

investigate how individuals infer the probability of an uncertain event from information sufficient to 

generate a unique posterior probability using Bayes Rule.  We apply theory, experiments, and 

econometric methods to evaluate how subjective beliefs are formed. 

 Bayes Rule provides us with a method for determining the objective relationship between 

information (e.g., “how fast was the horse in the last race?”) with probabilities (“how likely is the horse 

to win this race?”).  A large literature in experimental economics and psychology suggests that many 

individuals fail to apply Bayes Rule correctly. This literature typically assumes, explicitly or implicitly, 

that respondents are risk neutral. But in reality respondents exhibit preferences consistent with 

non-linear utility and/or probability weighting functions, so it remains unclear from these experiments 

whether these violations of Bayes Rule are genuine or somehow relate to non-risk neutral preferences.  

We address this issue by modeling information use structurally, to establish whether apparent 

deviations from Bayes Rule are eliminated, diminished, or possibly even increased when we account 

for subjects’ actual, revealed preferences toward risk. 

We obtained the data on which we conducted our analysis by replicating and extending a 
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classic experiment from psychology (Griffin and Tversky, 1992), but now using the methods of 

experimental economics. We employed real monetary consequences for decisions, and used a 

transparent and physical mechanism to generate the uncertain outcomes. We directly elicited bets 

about outcomes that we could use to infer the respondent’s beliefs, and directly estimated their risk 

attitudes using data from a separate task. 

 In our analysis we start by making the conventional structural assumption of subjective 

expected utility (SEU).  With this specification, average behavior strongly violates Bayes Rule.  

Interestingly, this model shows respondents in a better light, in the sense that their inferred 

probabilities are closer to the correct one, if we impose a linear utility function on the model. However, 

the data reject the assumption of risk neutrality. We then allow for violations of the independence 

axiom by means of probability weighting, in a rank dependent utility (RDU) framework, but find that 

probability weighting cannot explain the observed deviations from Bayes Rule. In summary, our 

evidence suggests that SEU or RDU preferences influence but do not eliminate violations from Bayes 

Rule. 

1. Experimental Design 

 We employed two choice tasks. The first was aimed at identifying risk attitudes in settings with 

known probabilities, and the second at eliciting subjective beliefs for events that differed in terms of 

the priors and sample stimuli presented to subjects. Both tasks are needed to fully evaluate the extent 

to which individuals correctly apply Bayes Rule. 

 

 A. Characterizing Attitudes Towards Risk  

 We presented subjects with 20 binary choices between lotteries, patterned on those used by 

Hey and Orme (1994).  Each lottery consisted of 1, 2 or 3 monetary prizes, with four possible 

monetary values of £0, £5, £10 or £15.  Figure 1 displays a typical lottery pair.  We created 60 
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distinct lottery pairs, and then divided them into 3 groups of 20. Each subject made choices for one of 

these groups. At the end of the task one of the 20 choices of each subject was selected at random and 

played out for money. Appendix 1 provides the complete instructions. 

 These data allow us to identify the risk attitudes of subjects, using the econometric methods 

described in Harrison and Rutström (2008). The estimation approach can include RDU specifications 

as well as traditional SEU. 

 

 B. Eliciting Subjective Beliefs  

 In the second task subjects chose between bets concerning events with unknown probabilities.   

They were provided with enough information to infer these probabilities using Bayes Rule.  From the 

choices made, in combination with some assumptions about risk attitudes, we could estimate the 

subjective probabilities that best described their choices.  Table 1 shows the “betting sheet” with 

which respondents made their choices.    

 The task involved a white box and a blue box, each containing ten-sided dice.  The white box 

contained N 10-sided dice that each had 6 white and 4 blue sides, and the blue box contained similar 

dice that each had 6 blue and 4 white sides.  The number of dice in each box varied across choice tasks 

(N=3, 5, 9 or 17), but the two boxes always contained the same number of dice.  

 At the beginning of each round we rolled a 6-sided die, with 3 blue and 3 white sides, and then 

selected either the white or blue box depending on the outcome of this roll.  We then rolled the N 

dice in the selected box and announced the outcome.  Hence the prior probability of the box being 

white or blue was 0.5, and the subject was given some sample information from the selected box with 

which to make more informed inferences about the color of the selected box.  For example, suppose 

the two boxes each contained N=3 dice, and the six-sided die showed a white face.  We would then 

roll the 3 dice in the white box and announce the number of white and blue sides that came up.  The 
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color of the selected box was not announced.    

 After announcing the outcome from rolling the dice, subjects were asked to place their bets. 

This was framed as placing a £3 bet in each of 19 different betting houses that offer different odds on 

which box was selected.  The £3 stake from one bookie was not transferable to another.  The general 

form of this betting procedure for eliciting choices that depend on subjective probabilities is well 

known (e.g., Savage, 1971). 

 For each bookie, subjects placed their £3 stake on either the blue or the white box for that 

bookie. One would expect that subjects would be inclined to bet on the white box when the odds were 

generous enough for that box, and to switch to betting on the blue box for less generous odds, where 

what is “generous” depends on the subjects’ beliefs.  For example, the odds offered by Bookie 4 

imply a probability of 1/5 for the white box, and a probability of 4/5 for the blue.  A risk-neutral 

subject would then bet on White if and only if they believed the probability the selected box was white 

was 1/5 or greater.  The switch point therefore corresponds to an interval of betting house 

probabilities that the white box was chosen.  Again, if the same risk-neutral subject chose White for 

Bookie 4 and Blue for Bookie 5, this means his subjective probability for the White box would lie in 

the interval [1/5, 1/4].  In this way that subjective probability is “trapped” in the classic revealed 

preference manner.   

 The recovery of subjective probabilities and beliefs requires formal theoretical and parametric 

assumptions, which we detail below. The essential logic is that this decision sheet is a “multiple price 

list,” just like the decision sheet used to infer discount rates by Harrison, Lau and Williams (2002), the 

decision sheet used to infer risk attitudes by Holt and Laury (2002), and the decision sheet used to infer 

valuations for goods by Andersen, Harrison, Lau and Rutström (2007). The general “multiple price 

list” betting interface employed here was first used by Fiore, Harrison, Hughes and Rutström (2009). 

 Each subject participated for 30 rounds of this betting task, 4 rounds with N=3 dice, 14 
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rounds with N=5 dice, 6 rounds with N=9 dice, and 6 rounds with N=17 dice.  This distribution of 

sample sizes was chosen to ensure that we observe roughly the same number of “extreme” samples.1  

 To control for possible order effects, in half of the 12 sessions we counterbalanced the order 

of the risk and betting tasks. In the betting task we varied the presentation of sample sizes in ascending 

order (i.e., first 4 rounds of 3, then 14 rounds of 5, etc.) and in descending order (6 rounds of 17, 6 

rounds of 9, etc). Therefore we have an overall 2×2 design, with 4 treatments in total. 

 Our instructions illustrated the factors that affect betting in field betting markets, such as 

betting on a horse race with different bookies, and drew parallels between such naturally occurring 

events and our task. Subjects first read these instructions quietly; we then read them aloud and allowed 

time for questions. The instructions are reproduced in Appendix 1.  We had 3 practice rounds with 

boxes containing 4 dice and hypothetical bets, so that subjects could become accustomed to the 

process. At the end of the 30 rounds we randomly choose one bet for each subject, and played that bet 

out for real consequences.2 

 

 C. General Procedures  

 We recruited 111 subjects from the University of Durham.  Subjects were recruited using a 

computerized interface, after being solicited in general terms to register for paid experiments. All 

subjects received a £5 show up fee. Apart from the tasks described above, each subject completed a 

survey of demographic characteristics shown in Appendix 1. Payments for the experiment totaled 

£2,692, for an average payment of £24.26 per subject. 

There were 12 experimental sessions, each having approximately 10 subjects.  To ensure 

                                                 
1 The most unlikely pattern is (5,0) with probability of occurring equal to 0.044, followed by the pattern (7,2) with 
probability 0.091, and the pattern (11,6) with probability 0.104. Based on these probabilities we chose the frequency of each 
sample size to roughly equalize the expected frequency of the most unlikely patterns in each session. 
2 For example, each subject filled out 30 betting sheets, such as the one shown by Table 1. At the end of the experiment we 
first randomly chose, for each subject, one of these betting sheets, and then we chose 1 of the 19 bookies within that 
selected sheet. If the subject placed the allocated £3 on the box that was actually chosen, he was paid the amount that 
corresponds to the odds offered by that bookie. 
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credibility, in each session a randomly selected subject acted as a monitor for the belief task, rolling the 

dice, counting the number of blue and white sides, and announcing the outcome.  The monitor was 

paid a flat fee of £10 for the belief task, and participated with everyone else in the risk task. 

 

2. A Subjective Expected Utility Representation 

 A. Bayes Rule  

 With no additional information from the rolling of dice from the chosen box, the probability 

of either box being selected is 0.5. By announcing the outcome from rolling the N dice, this prior can 

be updated in accordance with Bayes Rule.3 For example, if we roll N=5 dice and get 4 dice with a 

white face and 1 die with a blue face, the posterior probability of the white box is 0.77.  

  

 B. A Structural Model for Risk Aversion  

 We assume a Constant Relative Risk Aversion (CRRA) utility function, defined as 

                                     U(y) = y(1-r)/(1-r), (1) 

where r is a parameter to be estimated, and y is income from the experimental choice. The utility 

function (1) can be estimated using maximum likelihood and a latent expected utility theory (EUT) 

structural model of choice. Let there be K possible outcomes in a lottery; in our lottery choice task 

K≤4. Under EUT the probabilities for each outcome k in the lottery choice task, pk, are the objective 

probabilities induced by the experimenter, so expected utility is simply the probability weighted utility 

of each outcome in each lottery i: 

                                  EUi = ∑k=1,K [ pk × uk ]. (2) 

The EU for each lottery pair is calculated for a candidate estimate of r, and the index 

                      ∇EU = EUR - EUL (3) 

                                                 
3 We provide a complete derivation of the application of Bayes Rule for this process in Appendix 2. 
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calculated, and where EUL is the “left” lottery and EUR is the “right” lottery, as displayed to the subject 

and illustrated in Figure 1. This latent index, based on latent preferences, is then linked to the observed 

choices using a standard cumulative normal distribution function Φ(∇EU). This “probit” function 

takes any argument between ±∞ and transforms it into a number between 0 and 1. Thus we have the 

probit link function, 

                               prob(choose lottery R) = Φ(∇EU) (4) 

Thus the likelihood of the observed responses, conditional on the EUT and CRRA specifications 

being true, depends on the estimates of r given the above statistical specification and the observed 

choices. If we ignore responses that reflect indifference4 the log-likelihood is then 

                ln L(r; y, X) = ∑i [ (ln Φ(∇EU)×I(yi = 1)) + (ln (1-Φ(∇EU))×I(yi = −1)) ] (5) 

where I(⋅) is the indicator function, yi =1(−1) denoting the choice of the Option R (L) lottery in risk 

aversion task i, and X is a vector of covariates (e.g., individual characteristics reflecting age, sex, race, 

and so on, or treatment dummies). The structural parameter r is modeled as a linear function of the 

covariates in X. 

 An important extension of the core model is to allow for subjects to make some errors. The 

notion of error is one that has already been encountered in the form of the statistical assumption (4) 

that the probability of choosing a lottery is not 1 when the EU of that lottery exceeds the EU of the 

other lottery. By varying the shape of the link function implicit in (4), one can informally imagine 

subjects that are more sensitive to a given difference in the index ∇EU and subjects that are not so 

sensitive. We use the contextual error specification proposed by Wilcox (2011). It posits the latent 

index: 

                                                 
4 In our lottery experiments the subjects are told at the outset that any expression of indifference would mean that the 
experimenter would toss a fair coin to make the decision for them if that choice was selected to be played out. Hence one 
can modify the likelihood to take these responses into account either by recognizing this is a third option, the compound 
lottery of the two lotteries, or alternatively that such choices imply a 50:50 mixture of the likelihood of choosing either 
lottery, as illustrated by Harrison and Rutström (2008; p.71). We do not consider indifference here because it was an 
extremely rare event. 
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                         prob(choose lottery R) = Φ [ (∇EU)/ν)/μ ]  (4′) 

instead of (4), where ν is a normalizing term for each lottery pair L and R, and μ>0 is a structural “noise 

parameter” used to allow some errors from the perspective of the deterministic EUT model.5

 Thus we extend the likelihood specification to include the noise parameter μ and maximize   

ln L(r, μ; y, X) by estimating r and μ, given observations on y and X.6  Additional details of the 

estimation methods used, including corrections for “clustered” errors when we pool choices over 

subjects and tasks, are provided by Harrison and Rutström (2008; p.69ff). 

 

 C. A Structural Model for Beliefs  

 The responses to the belief elicitation task can be used to draw estimates about the belief that 

each subject holds if we are willing to assume something about how they make decisions under risk. To 

allow for the general case in which we have risk aversion, we jointly estimate the subjective probability 

and the parameters of the utility function, following Andersen, Fountain , Harrison and Rutström 

(2013). Using the schema in Table 1, the subject that selects event W from a given bookie b receives 

EU 

EUW = πW × U(payout if W occurs | bet on W) + 
       (1-πW) × U(payout if B occurs | bet on W) (6) 
 
where πW is the subjective probability that W will occur. The payouts that enter the utility function are 

defined by the odds that each bookie offers, and are shown in Table 1. For the bet offered by the first 

bookie, for example, these payouts are £60 and £0, so we have 

                            EUW = πW × U(£60) + (1-πW) × U(£0) (6′) 

                                                 
5
 The normalizing term ν is defined as the maximum utility over all prizes in this lottery pair minus the minimum utility 

over all prizes in this lottery pair, and ensures that the normalized EU difference [(EUR - EUL)/ν] remains in the unit 

interval. As μ → ∞ this specification collapses ∇EU to 0 for any values of EUR and EUL, so the probability of either choice 
converges to ½. So a larger μ means that the difference in the EU of the two lotteries, conditional on the estimate of r, has 
less predictive effect on choices. Thus μ can be viewed as a parameter that flattens out, or “sharpens,” the link functions 
implicit in (4). This is just one of several different types of error story that could be used, and Wilcox (2008) provides a 
masterful review of the implications of the strengths and weaknesses of the major alternatives.  
6 The normalizing term ν is given by the value of r and the lottery parameters, which are part of X. 
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 We similarly define the EU received from a bet on event B as the complement of event A: 

EUB = πW × U(payout if W occurs | bet on B) + 
                                (1-πW) × U(payout if B occurs | bet on B). (7) 
 
and this translates for the first bookie in Table 1 into payouts of £0 and £3.15, so we have 

                            EUB = πW × U(£0) + (1-πW) × U(£3.15) (7′) 

for this particular bookie and bet. We observe the bet made by the subject for a range of odds, so we 

can calculate the likelihood of that choice given values of r, πW and μ. 

 The rest of the structural specification is exactly the same as for the choices over lotteries with 

objective probabilities. Given (6) and (7), we can define the latent index that is the counterpart to (3) as 

                         ∇EU = EUW - EUB (3′) 

for each of the W and B bets from Table 1. The counterpart to (4′) is then 

                               prob(choose lottery R) = Φ [ (∇EU)/ν)/ω ]  (4′′) 

where ν is a normalizing term for each lottery pair W and B, and calculated with the same logic as 

before, and ω>0 is a structural “noise parameter” for the belief choices that is used to allow some 

errors from the perspective of the deterministic SEU model. 

 Writing out the complete likelihood function, we have 

             ln L(r, μ; y, X)  = ∑i [ (ln Φ(∇EU)×I(yi = 1)) + (ln (1-Φ(∇EU))×I(yi = −1)) ] (5′) 

for the observed choices in the task defined over objective probabilities, and 

         ln L(r, πW, μ, ω; y, X)  = ∑i [ (ln Φ(∇EU)×I(yi = 1)) + (ln (1-Φ(∇EU))×I(yi = −1)) ] (5′′) 

for the observed choices in the task defined over subjective probabilities. The joint estimation problem is 

to find values for r, πW, μ and ω that maximize the sum of (5′) and (5′′). One can think of each binary 

choice in the two tasks as rows in a matrix, and then (5′) as being the likelihood of the choices in the 

top part of the matrix and (5′′) as being the likelihood of the choices in the bottom part of the matrix. 

The overall likelihood is then just the sum of the likelihoods for all choices made, whether the 
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probabilities are objective or subjective. 

 It is useful to see how the estimation procedure maps back to the economics of the SEU 

model. Ignoring the behavioral error terms μ and ω, we need r to evaluate the utility function in (6) and 

(7), we need πW to calculate the EU in (6) and (7) once we know the utility values, and we need both of 

them to calculate the latent index in (4′′) that generate the probability of observing the choice of bet W 

or bet B. The joint maximum likelihood problem, again, is to find the values of these parameters that 

best explain observed choices in the belief elicitation tasks as well as observed choices in the lottery 

tasks. In effect, the lottery task allows us to identify r under EUT, since πW plays no direct role in 

explaining the choices in that task. 

 This formal analysis assumes that we are estimating one subjective probability πW. There are 

two simple extensions that allow us to consider our complete design, which involves the 6 posterior 

probabilities shown in Table 2. The first is to assume symmetry, in the sense that the estimate of πW is 

treated as (1-πW) when evaluating the choices made for the corresponding task. In other words, if we 

only use the choices for the betting task that has posterior probability 0.60, we could directly apply the 

existing formal analysis. But we can also include the choices for the betting task that has posterior 

probability 0.40, and assume that the subjective probability for those choices is one minus the subjective 

probability for the choices with posterior probability 0.60. Therefore we only need to estimate one 

subjective probability. This seems to be an innocuous assumption, and is directly testable. The second 

extension is then to introduce two extra subjective probability parameters, so we have one for the 

betting task with posterior probability 0.6 (and 0.4 by symmetry), one for the betting task with 

posterior probability 0.77 (and 0.23), and one for the betting task with posterior probability 0.88 (and 

0.12). Hence we have to estimate one risk attitude parameter and three subjective probabilities, along 

with the two behavioral error terms. 

 We include binary dummies in the vector X to control for procedural checks. One is whether 
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the risk aversion task came before or after the betting task, and the other is whether the number of dice 

(N) was presented to subjects in an ascending or descending order in the betting task. We also include 

a series of individual demographic characteristics defined in a binary fashion:  female (1 if the subject 

is female), teenager (1 if subject is less than 20 years old), white (1 if the subject described himself as 

white), British (1 if the subject is a British citizen), high income (1 if the subjects earn more than 

£10,000 per year), graduate (1 if the subject is a graduate student) and math (1 if the subject studies 

Economics, Finance, Engineering, Mathematics, Computer or Physical Sciences).  

 

 D. Results  

 Detailed estimates of all models are given in Appendix 3.  We found evidence for modest risk 

aversion on average, consistent with the general finding for populations of this kind.  The estimate for 

r was around 0.5, and highly significant (p<.001), but there were also significant order effects.  

Subjects were more risk averse when the risk aversion came first than when it came second (see Table 

A1).  Such order effects are common in the literature (e.g., Harrison, Johnson, McInnes and Rutström 

, 2005).  With respect to demographic characteristics, women were significantly more risk averse than 

men, as were high income subjects.  

Figure 2 displays the estimated subjective probabilities, pooling the symmetric cases, with 

reference lines showing the corresponding posterior probability using Bayes Rule.  The dispersion in 

these distributions reflects the standard errors in the parameter estimates of the subjective 

probabilities, as well as variations across subjects due to differences in demographic characteristics. 

There is a marked underestimation of the true Bayesian posterior probability, which becomes larger as 

the posterior increases from 0.6 to 0.77 and 0.88. In addition, the precision of the subjective 

probability estimate also declines as the posterior gets larger. Given that we pooled the symmetric 

cases, Figure 2 also implies a systematic overestimation of the true Bayesian posterior probability when 
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the posterior is less than ½, becoming larger as the posterior decreases from 0.4 to 0.23 and 0.12. We 

return to this pattern in the next section. 

 Figure 3 shows the corresponding estimates of subjective probability when we impose risk 

neutrality. The striking result is that Bayes Rule does much better than when we allow the data to 

determine the risk attitudes of subjects.  In the risk neutral case the subjective estimate of the 0.6 

posterior probability is exactly correct, and the estimates for the 0.77 and 0.88 posterior probabilities 

are much closer to the Bayesian posterior.  Figure 4 superimposes the results from Figures 2 and 3.  

The qualitative effect of risk aversion follows immediately from theory: the more risk averse the 

subject, the more likely she is to bet as if her subjective probability is 0.5, since this reduces the 

dispersion in final outcomes from all bets.7 The log-likelihood of the risk neutral model (-92280.4) is 

significantly worse than the log-likelihood for the general model (-83967.5), as one would expect from 

the rejection of risk neutrality when just looking at the risk choices. 

 These are striking results. If one fails to correct for the non-linearity of the utility function 

evident in the data, as analyzed here, then one finds stronger behavioral support for the use of Bayes 

Rule. But if one makes these corrections, this support melts away.   

 

3. Probability Weighting with Subjective Probabilities 

 The stylized finding from our estimates is that subjective beliefs underestimate the true 

Bayesian posterior probability when the posterior is greater than 0.5, and overestimate it when the 

posterior is less than 0.5. Of course, that sounds a lot like the standard type of probability weighting 

that plays a role in RDU and Prospect Theory models of decision-making under risk.8 Since our 

choices involve prizes framed entirely as gains, we examined a conventional RDU model to assess if 

probability weighting accounts for our results on subjective beliefs. The RDU model relaxes the 

                                                 
7 This qualitative result is exactly the same as one finds using a Quadratic or Linear scoring rule (providing, in the latter 

case, that one does not go to the extreme of exact risk neutrality): see Andersen, Fountain, Harrison and Rutström (2013). 
8 Holt and Smith (2009; §5) make exactly the same observation in a comparable study that we discuss further in section 5. 
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Independence axiom of and extends the SEU model by allowing for non-additive decision weights on 

lottery outcomes.9 

To calculate decision weights under RDU one first rank-orders outcomes from worst to best, 

and then replaces the expected utility defined by (2), 

                                     EUi = ∑k=1,K [ pk × uk ], (2) 

with the RDU 

                                     RDUi = ∑k=1, K [ wk × uk ] (12) 

where 

                               wi = ω(pi + ... + pn) - ω(pi+1 + ... + pn) (13a) 

for i=1,... , n-1, and 

                                           wi = ω(pi) (13b) 

for i=n, the subscript indicating outcomes ranked from worst to best, and where ω(p) is some 

probability weighting function. 

 The following probability weighting function popularized by Tversky and Kahneman (1992) 

has been widely used:  

ω(p) = pγ/[ pγ + (1-p)γ ]1/γ                                  (14)                     

for 0<p<1.  The normal assumption, backed by some evidence reviewed by Gonzalez and Wu 

(1999), is that 0<<1. This gives the weighting function an “inverse S-shape,” characterized by a 

concave section signifying the overweighting of small probabilities up to a crossover-point where 

ω(p)=p, beyond which there is then a convex section signifying underweighting.  If >1 the function 

takes the less conventional “S-shape,” with convexity for smaller probabilities and concavity for larger 

probabilities. 
                                                 
9 In its traditional form the RDU model assumes reduction of compound lotteries, a point we return to below. Our 

application here is unconventional in the application of concepts of “probabilistic sophistication” to a particular non-EUT 
model, in the spirit of Machina and Schmeidler (1992, 1995) and Grant (1995). It is unconventional in the sense of 
assuming that individuals behave as if they distort (weight) objective probabilities, but they are otherwise probabilistically 
sophisticated.  



 -14- 

 There are some limitations of this probability weighting function. It does not allow 

independent specification of location and curvature, and is not even increasing in p for small values of 

. The first of these restrictions is particularly problematic in the present case, since ½ is a natural fixed 

point for the belief task. 

 Prelec (1998) offers a two-parameter probability weighting function that exhibits more 

flexibility than (14): 

                                    ω(p) = exp{-η(-ln pφ}, (15) 

which is defined for 0<p<1, η>0 and 0<φ<1. Rieger and Wang (2006; Proposition 2) offer a 

two-parameter polynomial of 3rd degree which is defined for 0≤p≤1, unlike (15): 

                             ω(p) = p + [(3-3b)/(a2-a+1)] [p3-(a+1)p2+ap], (16) 

where 0<a<1 and 0<b<1. The parameter restrictions on a and b ensure that the function is concave 

for lower values of p and then convex for larger values of p. Values of b larger than 1 would allow 

convex and then concave shapes, which we want to allow a priori. 

 To illustrate the basic logic of accounting for probability weighting, Figure 5 shows how the 

parameter  in (14) characterizes the probability weighting function and the decisions weights used to 

evaluate lottery choices. We employ the value =0.7, to illustrate how this function might account for 

the subjective probabilities we infer; in fact, the estimated value using this function and our data is 

0.88, which is much closer to the 45   line. For simplicity here we assume lotteries with 2, 3 or 4 prizes 

that are equally likely when we generate the decision weights. So for the case of 2 prizes, each prize has 

p=½; with 3 prizes, each prize has p=⅓; and with 4 prizes, each prize has p=¼. For the 3-prize and 

4-prize lottery we see the standard result: the decision weights on the largest and smallest prizes are 

relatively greater than the true probability, and the decision weights on the intermediate prizes are 

relatively smaller than the true probability. In the belief elicitation task there were only 2 prizes per 
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lottery, so this value of the parameter a puts greater decision weight on the smaller prize. 

 Each panel in Figure 5 is important for our analysis. To estimate  from the observed lottery 

choices with known probabilities we only need the decision weights in the right panel of Figure 5. But 

to recover a subjective probability π subject to probability weighting, we only need the probability 

weighting function. Or rather, we need its inverse function, since it is the π in the ω(π) function that we 

are seeking to recover. We do not directly observe ω(p) or ω(π), but we can estimate ω(⋅) as part of the 

latent structure generating the observed choices in the two types of tasks, implicitly assuming that  

ω(p) = ω(π). Once we have ω(⋅) we can then recover π by directly applying the estimated probability 

weighting function, such as the one shown, for a typical , in the left panel of Figure 5. 

 As noted, and shown in Figure 5, there is one problem with this function: it imposes a fixed 

point at p=⅓ or p=⅔, depending on the value of a. So if it explains the underweighting of posterior 

probabilities greater than ½, since ω(p)<p for p>½, it fails to account for the consistent overweighting 

of smaller posterior probabilities ⅓≤p<½.  It might be argued that, from a practical perspective, this 

does not matter.  As can be seen in Figure 5 the estimated subjective probability for the posterior of 

0.6 is only slightly less than the true Bayesian posterior, implying by symmetry that the estimated 

subjective probability for the posterior of 0.4 is only slightly greater than the true Bayesian posterior. 

So probability weighting can account for the overweighting of the smaller Bayesian posterior 

probabilities, of 0.23 and 0.12, even if it does not account for the overweighing of 0.4. 

 Unfortunately this explanation fails. The value of  estimated from the data is much larger than 

the one depicted in Figure 5. Moreover, the qualitative pattern in Figure 5 is effectively rejected by the 

more flexible Rieger and Wang (2006) form, which generates the estimated probability weighting 

function in Figure 6 for our data. As can be seen, this estimate shows overweighting of probabilities 

over almost the entire range. This is the exact reverse of the pattern of probability weighting than would 
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be needed to reconcile our estimates with the Bayesian posterior probability. 

 

4. Alternative Hypotheses 

 We have just shown that relaxing the Independence Axiom in SEU does not allow us to 

explain observed behavior.  In this section we consider alternative approaches. 

 Both SEU and conventional RDU assume the reduction of compound lotteries (ROCL) 

axiom. In SEU it is front and center, and explicit. In RDU it is commonly implied: for example, 

Quiggin (1982; p.331) writes that “...acceptance of the NM complexity axiom (that the value of a 

compound lottery depends only on the probability of each outcome) is implicit” in the notation he 

uses. However, Segal (1987, 1988, 1990, 1992) proposes an alternative version of RDU that does not 

assume ROCL. Precisely how one relaxes ROCL is a matter for important, foundational research. 

Although it has taken half a century for the implications of Ellsberg (1961) to be formalized in 

tractable ways, we are much closer to doing so, and virtually all point to the role of ROCL in 

understanding uncertainty and ambiguity. One popular approach is the “smooth ambiguity model” of 

Klibanoff, Marinacci and Mukerji (2005), with important parallels in Davis and Paté-Cornell (1994), 

Ergin and Gul (2009), Nau (2006) and Neilson (2010). Another popular approach is due to 

Ghirardoto, Maccheroni and Marinacci (2004), generalizing Gilboa and Schmeidler (1989). These 

models could be used to formally explain how the decision-maker reacts to a non-degenerate 

subjective posterior distribution if that distribution is not collapsed down to its mean by applying 

ROCL. In effect, the suggestion is that decision makers have some belief that the posterior is “more or 

less” equal to some value, which may or may not be centered on the true posterior probability. Even if 

it is centered on the true posterior probability, they will exhibit uncertainty aversion or ambiguity 

aversion towards it when placing bets that depend on it. 

 Another source of hypotheses about the behavior we document and characterize is the vast 
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literature on “background risk.” The idea is to consider the effect on foreground risk taking of the 

existence of some zero-mean background risk that is uncorrelated with the foreground risk. When 

posterior probabilities arise from an updating process of the kind considered here, we might 

reasonably hypothesize that there could be some background risk that the probability is calculated 

correctly. Even in the case of zero-mean background risks, positive and negative effects on foreground 

risk aversion can be predicted depending on the use of EUT or RDU models, as illustrated by 

Eeckhoudt, Gollier and Schlesinger (1996), Gollier and Pratt (1996) and Quiggin (2003). Things 

become more complicated, and interesting, if this cognitive-load background risk has non-zero mean 

and is asymmetric around the true posterior probability, as suggested by Figures 2, 3 and 4. 

 Yet another source of alternative hypotheses comes from other specifications of 

decision-making under risk that relax SEU. For instance, a simple reference-dependent model of 

“disappointment aversion,” in the spirit of Gul (1991), might generate different utility specifications 

that can be used to infer latent subjective probabilities. In effect, this is a behavioral, non-SEU version 

of the basic methodological point of Savage (1972), about the theoretical need to identify the model of 

decision making under risk at the same time as one identifies subjective probabilities. For Savage 

(1972), of course, the model was SEU, but one expects that if the evidence demanded that EUT be 

revised, he would still insist on the need for joint identification. 

 

5. Previous Literature 

 The closest studies to ours that also use real rewards and incentive-compatible designs are 

those of Grether (1992) and Holt and Smith (2009), both of whom used a procedure to elicit or infer 

subjective probabilities in a Bayesian environment of priors and sample realizations. 

 Grether (1992) employed a variant of the Becker, DeGroot and Marshack (1964) procedure to 

elicit subjective probabilities. It is a variant because the usual application of that procedure involves 
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prices rather than probabilities, but the theoretical incentive compatibility of the procedure remains. 

Unfortunately, so do the problematic behavioral features of the procedure: the incentives for 

truth-telling are weak (Harrison, 1992), and there is a risk of subject confusion (Rutström, 1998; Plott 

and Zeiler, 2005). His statistical analysis is essentially descriptive, and there is no structural model. 

 Holt and Smith (2009) use the same procedures as Grether (1992), and found evidence for the 

use of Bayes Rule when priors were close to 0.5. However, as priors deviated from 0.5, they observed 

a tendency to overweight low posterior probabilities and overweight high posterior probabilities. They 

argued that probability weighting of the posterior cannot account for their findings, since the 

proportional overweighting (of the same posteriors) is much greater for low priors than for priors 

closer to 0.5. Their structural estimation is focused on the extent to which probability weighting can 

account for the observed data. In part this is because they do not need to correct the elicited subjective 

probability reports for the non-linearity of utility. 

 

6. Conclusions 

 Our objective has been to establish a “base camp” for attacking what we believe to be the 

fundamental characteristic of subjective Bayesian beliefs. This is a recognition that the stochastic 

process that generates posterior probabilities should be viewed as more uncertain than the stochastic 

process that generates risk when the probability of final outcomes is directly given.  In other words, 

the posterior probability should be viewed as a subjective probability which may be seen by the 

decision-maker as subject to “uncertainty aversion” that exacerbates the effect of traditional “risk 

aversion.” If this hypothesis is correct then the decision-maker will make choices that differ from 

those that would be made if she was neutral towards uncertainty.  Consequently, the subjective 

posterior probability inferred from observed choices will differ depending on whether one allows for 

the possibility of uncertainty aversion. Previous analyses of subjective Bayesian decision-making, 
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including our own here, have assumed that the subject is neutral towards the uncertainty that is 

involved in the use of an inferred posterior probability. 

 To address this hypothesis one would need theoretical, experimental and econometric 

extensions of our approach. The theoretical extensions are to state structures in which uncertainty (or 

ambiguity, as it is often called) plays a non-degenerate role: for example, Gilboa and Schmeidler 

(1989), Ghirardoto, Maccheroni and Marinacci (2004), Klibanoff, Marinacci and Mukerji (2005) and 

Gilboa, Postlewaite and Schmeidler (2008). The extensions of experimental and econometric design 

require that one construct tasks that allow those structures to be identified. 

 Our approach is motivated by the same puzzle that has spurred the development of models 

towards uncertainty. Something tells us that behavior towards an event that has a 50% chance of 

occurring with probability 0 and a 50% probability of occurring with probability 1 could reasonably 

differ from behavior towards an event that has a 100% chance of occurring with probability 0.5. Yet, 

by some readings and axioms, these are not even two different states of the world, even though one 

can easily envisage distinct physical processes for each.10 Our version of this puzzle is that one could 

reasonably expect behavior to differ when a decision-maker is credibly told that the probability of 

some event is 0.87 compared to when he is credibly given priors and sample realizations that imply, 

under Bayes Rule, a posterior probability of 0.87. We hypothesize that the reasons for differences in 

behavior in these two puzzles are fundamentally the same. 

                                                 
10 In many physical processes, for example, threshold effects can lead to extreme outcomes rather than intermediate ones. 
So one person might believe the threshold has been exceeded, and another person might believe it has not. 
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Figure 1: Typical Lottery Choice Task 

 

 

 

 

 

 

 

 

 

 

 



 -24- 

Table 1: Decision Sheet in Betting Task 
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Table 2: Experimental Design Parameters 

Posterior 
Probability 
of White 

 
Total 

Dice (N) 

Actual 
White 

Faces (w) 

Actual 
Blue 

Faces (b) 

Number 
of 

Observations 

0.12 5 0 5 72 

 9 2 7 110 

 17 6 11 47 

0.23 3 0 3 77 

 5 1 4 218 

 9 3 6 112 

 17 7 10 106 

0.4 3 1 2 110 

 5 2 3 412 

 9 4 5 117 

 17 8 9 82 

0.6 3 2 1 154 

 5 3 2 394 

 9 5 4 87 

 17 9 8 44 

0.77 3 3 0 55 

 5 4 1 227 

 9 6 3 95 

 17 10 7 73 

0.88 5 5 0 45 

 7 7 2 53 

 17 11 6 81 

 

  



 -26- 

Figure 2: Estimates of Subjective Probability under SEU 

Black is 0.60 posterior, Blue is 0.77 posterior and Red is 0.88 posterior 
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Figure 3: Estimates of Subjective Probability under SEU Assuming Risk Neutrality 

Black is 0.60 posterior, Blue is 0.77 posterior and Red is 0.88 posterior 
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Figure 4: Estimates of Subjective Probability Under SEU: The Effect of Risk Aversion 
Solid line is general SEU model, and dashed line is SEU assuming risk neutrality 

Black is 0.60 posterior, blue is 0.77 posterior and red is 0.88 posterior 
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Figure 5: Possible Probability Weighting and Decision Weights 
Tversky & Kahneman (1992) probability weighting function 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

.25

.5

.75

1

(p)

0 .25 .5 .75 1

p

RDU =.7

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

Decision
Weight

1 2 3 4

Prize (Worst to Best)



 -30- 

Figure 6: Actual Probability Weighting and Decision Weights 
Reiger & Wang (2006) probability weighting function 
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Appendix 1: Experimental Instructions (NOT FOR PUBLICATION) 
 
 The exact layout of the instructions can be viewed by accessing machine-readable versions 
available from the authors. A horizontal line indicates a page break in the original instructions. 
 
 A. Risk Attitudes Task  
 

Stage 2: INSTRUCTIONS 
 
 We will now continue with Stage 2 of the experiment. 
 
 This stage is about choosing between lotteries with varying prizes and chances of winning. 
You will be shown 20 lottery pairs, and from each pair you will choose the lottery you prefer. You will 
actually get the chance to play one of the lotteries you choose, and will be paid according to the 
outcome of that lottery, so you should think carefully about your preferences. 
 
 On the accompanying sheet there is an example lottery pair.   
       
 The outcome of the lotteries will be determined by the roll of a 100-sided die that is numbered 
from 1 to 100.   The numbers that will determine each outcome are shown below each lottery.  
 
 In the example the left lottery pays five pounds (£5) if the number is between 1 and 40 (a 40% 
chance), and it pays fifteen pounds (£15) if it is between 41 and 100 (a 60% chance).  
 
 The lottery on the right pays five pounds (£5) if the number drawn is between 1 and 50 (a 50% 
chance), ten pounds (£10) if the number is between 51 and 90 (a 40% chance), and fifteen pounds 
(£15) if the number is between 91 and 100 (a 10% chance).  
 
 The size of the pie slices represent the chances of earning each payoff.   
 
 Each lottery pair will be shown on a separate sheet of paper. On each sheet you should indicate 
your preferred lottery by ticking the appropriate box. After you have worked through all the lottery 
pairs, please raise your hand.  
 
      You will then roll a 20-sided die to determine which pair of lotteries will be played out, and the 
100-sided die to determine the outcome of the chosen lottery.  
 
 For instance, suppose the lottery on the accompanying page was chosen to pay off and you 
rolled a 42 on the 100-sided die.  If you had picked the lottery on the left you would win £15, while if 
you had picked the lottery on the right you would have won £5.   
 
 Therefore, your payoff is determined by three things: 
 
• which lottery pair is chosen to be played out using the 20-sided die; 
• which lottery you selected, the left or the right, for the chosen lottery pair;  
• the outcome of that lottery when you roll the 100-sided die. 
 
 This is not a test of whether you can pick the best lottery in each pair, because none of the 
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lotteries are necessarily better than the others. Which lotteries you prefer is a matter of personal taste.  
 
      Please work silently, and think carefully about each choice.  
 
      All payoffs are in cash, and are in addition to the £5 show-up fee that you receive just for being 
here.  
  
 
 B. Betting Task        
       

Stage 3: INSTRUCTIONS 
 
 What you will do 
 
 In this stage of the experiment you will be betting on the outcomes of uncertain events.  
Usually we bet on events like football matches or elections, but in this task the events will be random 
choices made by the experimenter between two boxes, one blue and the other white.  The 
experimenter will not tell you which box was chosen.  At the start each box will have the same chance 
of being chosen, but once it has been chosen the experimenter will give you some information to help 
you work out the chances that it was blue or white.  Armed with this information, you will make bets 
on which box was chosen. 
 
 The procedure, which is summarized on the accompanying picture, is as follows.  The 
experimenter will first choose the box by rolling a 6-sided die with three blue and three white sides.  If 
blue comes up he will choose the blue box, if white comes up he will choose the white one.  
 
 Both the white and blue boxes contain several dice, each having 10 sides.  Both boxes have 
the same number of dice, which will vary over the course of the experiment.  The dice in the blue box 
always have 6 blue sides and 4 white ones, while those in the white box have 4 blue sides and 6 white 
ones.   
 
 The experimenter will roll all the dice in the chosen box and tell you how many blue and white 
sides came up.  He will not tell you which box was chosen. 
 
 Because the dice in the blue box have more blue sides than those in the white box, knowing the 
number of blue and white sides that come up can help you work out the chances that each box was 
chosen.  For example, if more blue sides come up this means it is more likely to be the blue box, and 
if more white sides come up it is more likely to be the white box.   
       
 Once you have the information about the dice rolls, you will then make bets on which box was 
chosen.  
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 About betting 

 You will be making bets with several betting houses or “bookies,” just as you might bet on a 
football game or a horse race.    
       
 To familiarize you with betting, we will illustrate how it works with the example of a horse 
race.    
       
 Imagine a two horse race between Blue Bird and White Heat.   Several bookies offer different 
odds for both horses. The table below shows the odds offered by three bookies along with the 
amounts they would pay if you staked £10 on the winning horse.  The earnings are calculated by 
multiplying the odds by the stake.  In this experiment you will be making bets on which box was  
chosen using a table like this.  At this point you should take some time to study the table.   
 
 

 
Bookie 

 
Stake 

Odds offered Earnings including the stake of £10 

Blue Bird White Heat Blue Bird White Heat 

A £10 5.00 1.25 £50.00 £12.50 

B £10 3.33 1.43 £33.33 £14.30 

C £10 2.00 2.00 £20.00 £20.00 

 
     
 Below are three important points about betting. 
       
1. Your belief about the chances of each outcome is a personal judgment that depends on 

information you have about the different events.  For the horse race, you may have seen 
previous races or read articles about them.  In the experiment the information you have about 
whether the blue or white box was chosen will be how many blue and white faces came up.   

 
2. Even if you believe Event X is more likely to occur than Event Y, you may want to bet on Y 

because you find the odds attractive. For example, even if you believe White Heat is most 
likely to win you may want to bet on Blue Bird because you find the odds attractive.  To 
illustrate, suppose you personally believe that Blue Bird has a 40% chance of winning and 
White Heat has a 60% chance of winning. This means that if you bet £10 on Blue Bird with 
Bookie A you believe there is a 40% chance of receiving £50.00 and a 60% chance of receiving 
nothing.  You may find this more attractive than betting on White Heat, which you believe 
offers a 60% chance of 12.50 and a 40% chance of nothing. 

 
3. Your choices might also depend on your willingness to take risks or to gamble.  There is no 

right choice for everyone.  In a horse race you might want to bet on the longshot since it will 
bring you more money if it wins, but you also might want to bet on the favorite since it is more 
likely to win something.   

       
 For each bookie, whether you would choose to bet on Blue Bird or White Heat will 
depend on three things: your judgment about how likely it is each horse will win, the odds 
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offered by the bookie, and how much you like to gamble or take risks.    
        
 
 
 Your choices 
 
 Now you are familiarized with odds, we can go back to the experimental betting task.  Recall 
that the experimenter will first make a random choice of a blue or white box.  Then he will roll the 
dice in the chosen box and tell you how many white and blue sides came up.  Then you will consider 
the chances that the box chosen was blue or white, and make a series of bets.   
 
 You have a booklet of record sheets.  Each record sheet shows the bookies you will be dealing 
with, and the odds they offer.  There are 19 bookies on each sheet, and each offer different odds for 
the two outcomes.   Take a minute to look at one such record sheet, shown on the next page.  
 
 There will be 30 separate events, and 19 bookies offer odds for each event.  You will make 
bets at all 19 bookies for all 30 events.   
 
 For each bet, you have a £3 stake, and the record sheet shows the payoffs you will receive if 
you bet on the box that was actually chosen.    
 
 There is a separate record sheet for each of the 30 events.  On each sheet you should circle W 
or B to indicate the bet you want to make with all 19 bookies.   
       
 One and only one of the bets in the entire experiment will pay off for real.  Therefore, 
please consider each bet as if it is the only one that will be paid out.  After you have placed all your 
bets, you will roll a 30-sided die to determine which event will be played out, and a 20-sided die to 
determine which bookie will determine your earnings.  
 
 All payoffs are in cash, and are in addition to the £5 show-up fee that you receive just for being 
here. 
 
  
 
 
 C. Demographic Questionnaire  
 
      In this survey most of the questions asked are descriptive. We will not be grading your answers 
and your responses are completely confidential. Please think carefully about each question and give 
your best answers.  
 
 
1. What is your age? ____________ years 
 
2. What is your sex? (Circle one number.) 
 
01     Male  02 Female 
 



 -36- 

3. Which of the following categories best describes you?  (Circle one number.) 
 
01     British 
02     Irish   
03     Any other white background      
04     White and Black Caribbean 
05     White and Black African 
06      White and Asian    
07      Any other mixed background 
08      Indian 
09      Pakistani 
10      Bangladeshi 
11     Any other Asian background 
12     Caribbean 
13     African 
14     Any other Black background 
15     Chinese 
16     Any other ethnic group 
17     Not stated 
18     Prefer not to say 
 
4.  What is your main field of study? (Circle one number.) 
 
 01 Accounting 
 02 Economics 
 03 Finance 
 04 Business Administration, other than Accounting, Economics, or Finance 
 05 Education 
 06 Engineering 
 07 Health and Medicine 
 08 Biological and Biomedical Sciences 
 09 Math, Computer Sciences, or Physical Sciences 
 10 Social Sciences or History 
 11 Law 
 12 Psychology 
 13  Modern Languages and Cultures 
 14 Other Fields 
 
5.  What is your year of studies?  (Circle one number.) 
 
 01     First year   04 Masters 
 02     Second year  05 Doctoral 
 03     Third year      
 
6. What is the highest level of education you expect to complete? (Circle one number) 
  
 01 Bachelor’s degree 
 02 Master’s degree 
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 03 Doctoral degree 
 04 Professional qualification 
 
7. As a percentage, what is your current average mark if you are doing a Bachelor’s degree, or 
what was it when you did a Bachelor’s degree? This mark should refer to all your years of study for this 
degree, not just the current year. Please pick one by rounding up or down to the nearest number: 
 
 01 Above 70% 
 02 Between 60 - 69% 
 03 Between 50 - 59% 
 04 Between 40 - 49% 
 05 Less than 40% 
 06 Have not taken courses for which grades are given. 
 
8. What is your citizenship status? 
 
 01 British Citizen 
 02 EU Citizen (non-British Citizen) 
 03 Non-EU Citizen 
 
9. Are you currently: 
 
 01 Single and never married? 
 02 Married? 
 03 Separated, divorced or widowed? 
 
10. How many people live in your household? Include yourself, your spouse and any dependents. 
Do not include your parents or roommates unless you claim them as dependents. 
 
11. Please circle the category below that describes the total amount of income before tax earned in 
the calendar year 2007 by the people in your household (as “household” is defined in question 10). 
 
[Consider all forms of income, including salaries, tips, interest and dividend payments, scholarship 
support, student loans, parental support, social security, alimony, and child support, and others.] 
 
 01 Less than £10,000 
 02 £10,000 – £19,999 
 03 £20,000 – £29,999 
 04 £30,000 - £49,999 
 05  Over £50,000 
 
12. Please circle the category below that describes the total amount of income before tax earned in 
the calendar year 2007 by your parents.   
 
 [Consider all forms of income, including salaries, tips, interest and dividend payments, social 
security, alimony, and child support, and others.]  
 
 01 Less than £10,000 
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 02 £10,000 – £19,999 
 03 £20,000 – £29,999 
 04 £30,000 - £49,999 
 05 Over £50,000 
 06 Don’t Know 
 
13. Do you currently smoke cigarettes? (Circle one number.) 
 
 00 No 
 01 Yes 
 
 If yes, approximately how much do you smoke in one day? _______ cigarettes.  
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Appendix 2: Derivations (NOT FOR PUBLICATION) 
 
 The posterior probability of the W outcome given the sample information is given by 

π = p(W|sample) = p(sample|W) × p(W)/p(sample),  

and the posterior probability of the B outcome given the sample information is given by 

1−π = 1−p(W|sample) = p(B|sample) = p(sample|B)×p(B)/p(sample). 

The prior probabilities of getting the W and B outcomes are p(W)=p(B)=0.5. The conditional 

probability of getting a specific sample given the W outcome follows a binomial probability 

distribution and is 

p(sample|W) = [N!/(w! (N−w)!)] p(w)w (1−p(w))(N−w),  

where p(w) is the probability of the w outcome given the W outcome. The conditional probability of 

getting a specific sample given the B outcome is 

p(sample|B) = [N!/(b! (N−b)!)] p(b)b (1−p(b))(N−b),  

where p(b) is the probability of the b outcome given the B outcome. The probability of getting the 

sample information is: 

p(sample) = 0.5 × p(sample|W) + 0.5 × p(sample|B). 

The posterior probabilities of the W and B outcomes given the sample information are then:  

π = [N!/(w! (N−w)!)] p(w)w (1−p(w))(N−w)/ 

[(N!/(w! (N−w)!)) p(w)w (1−p(w))(N−w)+[N!/(b! (N−b)!)] p(b)b (1−p(b))(N−b)] 

and 

1−π = [N!/(b! (N−b)!)] p(b)b (1−p(b))(N−b)/ 

[(N!/(w! (N−w)!)) p(w)w (1−p(w))(N−w)+[N!/(b! (N−b)!)] p(b)b (1−p(b))(N−b)]. 
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Appendix 3: Detailed Estimation Results (NOT FOR PUBLICATION) 
 
 Apologies for these tables being “in Stata,” but the format is reasonably standard. Estimates of the behavioral 
error terms use a log-transform to ensure that the parameter is non-negative; the delta method is used under Table A1 to 
illustrate how one should infer the correct underlying parameter. Similarly, the subjective probabilities in Tables A2 and A3 
are constrained to lie in the unit interval, using the transform π = 1/(1+exp(κ)), where κ is the parameter estimated and π is 
the inferred probability. Thus the numerical algorithm finding the maximum likelihood estimates can vary κ between ±∞ to 
evaluate numerical derivatives, while π is constrained to lie in the unit interval. Again, the delta method can be used to infer 
point estimates and standard errors for π from estimates of κ. Finally, the number of observations in Tables A2, A3 and A4 
are inflated because we employ “frequency weights” of 50 for every observed choice from the risk task: there are actually 
2,220 choices, as shown in Table A1, but these appear then to be 50×2,220 = 111,000 observations. These weights ensure 
that the estimated risk parameters are based primarily on the choices from the risk tasks. The number of observations in 
Tables A2 and A3 is greater because their analysis contains the data from both the risk and the belief task. 

 
Table A1: Risk Attitudes, Estimated only on Choices from Risk Task 

 
                                                  Number of obs   =       2220 

                                                  Wald chi2(8)    =      24.10 

Log pseudolikelihood = -1335.7704                 Prob > chi2     =     0.0022 

 

                                   (Std. Err. adjusted for 111 clusters in id) 

------------------------------------------------------------------------------ 

             |               Robust 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

r            | 

   RA_then_B |  -.1825245   .0680085    -2.68   0.007    -.3158187   -.0492303 

      female |     .18269   .0745464     2.45   0.014     .0365817    .3287983 

    teenager |  -.0916832     .07621    -1.20   0.229     -.241052    .0576857 

       white |   .2132524   .1225167     1.74   0.082    -.0268759    .4533807 

        brit |  -.2231895   .1430793    -1.56   0.119    -.5036198    .0572407 

 income_high |   .1324355   .0660586     2.00   0.045     .0029631     .261908 

    graduate |  -.1003567    .097986    -1.02   0.306    -.2924058    .0916923 

        math |  -.1108413    .081391    -1.36   0.173    -.2703647    .0486821 

       _cons |   .5896646   .1104044     5.34   0.000      .373276    .8060531 

-------------+---------------------------------------------------------------- 

LNmuRA       | 

       _cons |  -2.106163   .0872657   -24.14   0.000    -2.277201   -1.935126 

------------------------------------------------------------------------------ 
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Table A2: Subjective Expected Utility Model 

 
                                                  Number of obs   =     163649 

                                                  Wald chi2(8)    =      40.75 

Log pseudolikelihood = -83967.476                 Prob > chi2     =     0.0000 

 

                                   (Std. Err. adjusted for 111 clusters in id) 

------------------------------------------------------------------------------ 

             |               Robust 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

r            | 

   RA_then_B |  -.1228562   .0562522    -2.18   0.029    -.2331085    -.012604 

      female |   .1356762   .0603764     2.25   0.025     .0173406    .2540117 

    teenager |  -.0501637   .0587284    -0.85   0.393    -.1652693     .064942 

       white |   .1370246   .0795495     1.72   0.085    -.0188895    .2929388 

        brit |  -.2015224   .1008559    -2.00   0.046    -.3991962   -.0038486 

 income_high |   .0605295   .0564305     1.07   0.283    -.0500723    .1711313 

    graduate |  -.0340874   .0781271    -0.44   0.663    -.1872136    .1190388 

        math |  -.1036242   .0602806    -1.72   0.086    -.2217719    .0145235 

       _cons |   .6124987   .0774014     7.91   0.000     .4607946    .7642027 

-------------+---------------------------------------------------------------- 

sprob1_      | 

   RA_then_B |   .0219064   .0409056     0.54   0.592    -.0582672      .10208 

 N_ascending |   .0569943    .029496     1.93   0.053    -.0008168    .1148053 

      female |    .067758   .0342876     1.98   0.048     .0005555    .1349604 

    teenager |   .0349921   .0376387     0.93   0.353    -.0387784    .1087625 

       white |   .0594294   .0469789     1.27   0.206    -.0326476    .1515063 

        brit |  -.0515731   .0592538    -0.87   0.384    -.1677085    .0645622 

 income_high |   .0274503   .0359471     0.76   0.445    -.0430046    .0979053 

    graduate |   .0621187   .0587186     1.06   0.290    -.0529677    .1772051 

        math |   .0071615   .0419263     0.17   0.864    -.0750125    .0893355 

       _cons |  -.3617571   .0665444    -5.44   0.000    -.4921816   -.2313325 

-------------+---------------------------------------------------------------- 

sprob2_      | 

   RA_then_B |   -.029905   .0790267    -0.38   0.705    -.1847945    .1249845 

 N_ascending |   .0905342   .0575997     1.57   0.116    -.0223592    .2034277 

      female |   .0608162    .070985     0.86   0.392    -.0783119    .1999442 

    teenager |  -.0127714   .0842156    -0.15   0.879     -.177831    .1522882 

       white |   .1131135   .1018507     1.11   0.267    -.0865101    .3127372 

        brit |  -.2838021    .121042    -2.34   0.019    -.5210401    -.046564 

 income_high |   .0126633   .0794306     0.16   0.873    -.1430178    .1683445 

    graduate |  -.0334664    .100381    -0.33   0.739    -.2302096    .1632767 

        math |  -.0139351     .08934    -0.16   0.876    -.1890383     .161168 

       _cons |  -.4708455   .1322005    -3.56   0.000    -.7299537   -.2117373 

-------------+---------------------------------------------------------------- 

sprob3_      | 

   RA_then_B |   .0463894   .1224547     0.38   0.705    -.1936173    .2863962 

 N_ascending |    .001102    .096178     0.01   0.991    -.1874033    .1896074 

      female |   .1389314   .1119441     1.24   0.215     -.080475    .3583377 

    teenager |  -.0332965   .1085275    -0.31   0.759    -.2460065    .1794134 

       white |   .1880194   .1815643     1.04   0.300      -.16784    .5438789 

        brit |  -.2960438   .2121002    -1.40   0.163    -.7117525    .1196649 

 income_high |  -.0157023   .1366839    -0.11   0.909    -.2835979    .2521932 

    graduate |  -.0864282   .1893455    -0.46   0.648    -.4575386    .2846822 

        math |   -.003462   .1379542    -0.03   0.980    -.2738473    .2669233 

       _cons |  -.7170649   .2266169    -3.16   0.002    -1.161226   -.2729039 

-------------+---------------------------------------------------------------- 

LNmuRA       | 

       _cons |  -2.160693   .0832332   -25.96   0.000    -2.323827   -1.997559 

-------------+---------------------------------------------------------------- 

LNmuB        | 

       _cons |   -3.38979   .1201996   -28.20   0.000    -3.625377   -3.154204 

------------------------------------------------------------------------------ 
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Table A3: Subjective Expected Utility Model Assuming Risk Neutrality 
 

                                                  Number of obs   =     163649 

                                                  Wald chi2(0)    =          . 

Log pseudolikelihood = -92280.438                 Prob > chi2     =          . 

 

 ( 1)  [r]_cons = .001 

 ( 2)  [LNmuRA]_cons = 0 

                                   (Std. Err. adjusted for 111 clusters in id) 

------------------------------------------------------------------------------ 

             |               Robust 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

r            | 

       _cons |       .001          .        .       .            .           . 

-------------+---------------------------------------------------------------- 

sprob1_      | 

   RA_then_B |   .0963775   .0424267     2.27   0.023     .0132226    .1795323 

 N_ascending |   .0873922   .0426211     2.05   0.040     .0038564     .170928 

      female |   .0288932   .0394497     0.73   0.464    -.0484268    .1062133 

    teenager |   .0890286    .044747     1.99   0.047     .0013261    .1767312 

       white |   .0087767   .0719191     0.12   0.903    -.1321822    .1497355 

        brit |   .0160792   .0828602     0.19   0.846    -.1463237    .1784821 

 income_high |  -.0149373   .0436778    -0.34   0.732    -.1005442    .0706697 

    graduate |   .1406618   .0646784     2.17   0.030     .0138944    .2674291 

        math |   .0450672    .045673     0.99   0.324    -.0444502    .1345846 

       _cons |  -.6013873    .073373    -8.20   0.000    -.7451956   -.4575789 

-------------+---------------------------------------------------------------- 

sprob2_      | 

   RA_then_B |   .1234993   .1097776     1.12   0.261     -.091661    .3386595 

 N_ascending |   .1555636    .095968     1.62   0.105    -.0325301    .3436574 

      female |  -.0807038    .119323    -0.68   0.499    -.3145726     .153165 

    teenager |   .0722725   .1196011     0.60   0.546    -.1621412    .3066863 

       white |  -.0715795   .1800304    -0.40   0.691    -.4244326    .2812735 

        brit |  -.2557715   .2171422    -1.18   0.239    -.6813624    .1698194 

 income_high |  -.1212199   .0993021    -1.22   0.222    -.3158485    .0734087 

    graduate |  -.0060656   .1683454    -0.04   0.971    -.3360166    .3238853 

        math |   .1142384   .1456307     0.78   0.433    -.1711925    .3996693 

       _cons |  -.8389937   .2400569    -3.49   0.000    -1.309497   -.3684908 

-------------+---------------------------------------------------------------- 

sprob3_      | 

   RA_then_B |    .399608   .2611878     1.53   0.126    -.1123107    .9115266 

 N_ascending |  -.0146083   .2044517    -0.07   0.943    -.4153264    .3861097 

      female |  -.0412008   .3041888    -0.14   0.892    -.6373999    .5549984 

    teenager |   .1054203   .1991565     0.53   0.597    -.2849192    .4957599 

       white |  -.0599099   .3763651    -0.16   0.874     -.797572    .6777522 

        brit |  -.2222191   .4483063    -0.50   0.620    -1.100883    .6564451 

 income_high |  -.2307703   .2397852    -0.96   0.336    -.7007408    .2392001 

    graduate |  -.0780133   .3695222    -0.21   0.833    -.8022634    .6462368 

        math |   .2055527   .2809535     0.73   0.464     -.345106    .7562114 

       _cons |  -1.335423   .4636354    -2.88   0.004    -2.244132   -.4267146 

-------------+---------------------------------------------------------------- 

LNmuB        | 

       _cons |   -1.46519   .0761123   -19.25   0.000    -1.614367   -1.316012 

---------------------------------------------------------------------------- 
 

 

 

 

 

 

 

 

 

 

 


