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ABSTRACT 16 The Loch Shin Line (LSL) is a geological-geophysical lineament associated with a 17 zone of mantle-derived appinites, granites and strike-slip faulting that runs NW-SE 18 across the Moine Nappe, N Scotland. U-Pb zircon and Re-Os molybdenite dating of 19 the Loch Shin and Grudie plutons that lie immediately southwest of the NW-SE Loch 20 Shin-Strath Fleet fault system yield ca. 427-430Ma ages that overlap within error. 21 They also coincide with previously obtained U-Pb zircon ages for the Rogart pluton 22 which lies along strike to the southeast. Field and microstructural observations 23 confirm the similarity and contemporaneous nature of the plutons and associated 24 sulphide mineralisation. Fluid inclusion analyses place further constraints on the P-25 T-X conditions during regional late Caledonian exhumation of the Moine Nappe. 26 Synchronous to slightly younger brittle dextral strike slip faulting along the WNW-27 ESE Loch Shin-Strath Fleet Fault System was likely antithetic to sinistral movements 28 along the nearby Great Glen Fault Zone. Our findings support the hypothesis that the 29 LSL acted as a deep crustal channelway controlling the ascent and emplacement of 30 Silurian magmas into the overlying Moine Nappe. We propose that this deep 31 
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structure corresponds to the southeastern continuation of the Precambrian-age 32 Laxford Front shear zone in the buried Lewisian autochthon.  33  34 Supplementary material: [Field photographs, photomicrographs and fluid inclusion 35 information] is available at www.geolsoc.org.uk/SUP0000 36 
 37 
INTRODUCTION 38 Orogenic belts worldwide are characterized by interlinked systems of thrust, strike 39 slip and extensional faults and, at deeper crustal levels, by shear zones that 40 collectively accommodate crustal deformation in broad continental deformation 41 zones during plate collision (i.e. ‘block and flake tectonics’; Dewey et al. 1986). The 42 location, geometry and persistence of faults and shear zones in such regions are 43 known to be influenced by the reactivation of crustal-scale pre-existing structures 44 (Sutton & Watson 1986; Holdsworth et al. 1997, 2001). These same structures are 45 also known to act as channelways that control the upward migration and 46 emplacement of hydrous mineralizing fluids and magmas (e.g. O’Driscoll 1986; 47 Hutton 1988a; Jacques & Reavy 1994; Richards 2013). This coincidence of 48 geological processes has greatly assisted in the analysis of orogenic deformation 49 histories worldwide since dating of igneous intrusions and/or mineralization events 50 using geochronology can also be used to constrain the absolute ages of associated 51 deformation events in the adjacent wall rocks (e.g. Paterson & Tobisch 1988; 52 Schofield & D’Lemos 1998; Rosenberg 2004). 53 
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 Integrated structural and geochronological studies of deformed igneous 54 intrusions have played a key role in constraining the timing of events within the 55 Early Palaeozoic Caledonian orogeny in Scotland (Fig. 1a). Following Ordovician arc 56 continent collision (the Grampian event), the final closure of Iapetus involved the 57 oblique collisions of three palaeo-continents: Laurentia, Baltic and Avalonia during 58 the mid- to late Silurian (e.g. Soper et al. 1992; Torsvik et al. 1996). In NW Scotland, 59 regional deformation occurred due to the sinistral oblique Scandian collision of 60 Baltica with Laurentia. Crustal thickening here was overlapped and followed by 61 major sinistral displacements along orogen-parallel strike-slip faults such as the 62 Great Glen Fault Zone (GGFZ; Fig 1a) heralding a transition from a regime of 63 sinistral transpression to transtension (Dewey & Strachan 2003 and references 64 therein). Igneous activity and associated mineralization related to slab breakoff was 65 associated with this transition so that earlier granites were syn-tectonically 66 emplaced along Scandian thrusts (e.g. Naver Thrust, see Holdsworth & Strachan 67 1988; Kinny et al 2003; Goodenough et al. 2011; Kocks et al. 2013), whilst later, 68 volumetrically larger volumes of melt were emplaced along steeply-dipping strike-69 slip or normal faults (e.g. GGFZ; Hutton 1988b; Hutton & McErlean 1991; Jacques & 70 Reavy, 1994; Stewart et al. 2001). In many cases the controlling faults or shear 71 zones are exposed at the present-day surface, but others are more enigmatic 72 features. As illustrated by Jacques & Reavy (1994) they are commonly inferred 73 ‘buried’ structures based on geological, geophysical or geochemical alignments that 74 define regional scale transverse lineaments that run generally at high angles to the 75 orogenic strike. One of these NW-SE features, the Loch Shin Line (LSL) – first 76 
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defined by Watson (1984) – is associated with an anomalous zone of mantle-derived 77 appinites, granites and brittle faulting in the Moine Nappe SE of the Moine Thrust on 78 the N side of the Assynt Culmination (Fig. 1a, b). The LSL follows a strong NW-SE 79 gravity gradient that defines the NE margin of a strong negative anomaly centred on 80 the Grudie Granite (Figs 1b, see Leslie et al. 2010 and references therein). Watson 81 (1984) suggested that the LSL corresponds to the presence of a Precambrian shear 82 zone in the Lewisian autochthon underlying the Moine Nappe and that this shear 83 zone has controlled the siting and ascent of magmas and associated mineralization 84 during the Silurian. The dextral faulting that follows the trend of the LSL defines the 85 Loch Shin, Strath Fleet and Dornoch Firth fault systems (Fig. 2a; Strachan & 86 Holdsworth 1988) which are thought to be part of a regional fault set antithetic to 87 the regional sinistral movements along the GGFZ (see Johnson & Frost 1977; Watson 88 1984).  The Rogart igneous complex (Fig. 1a; Soper 1963), a large composite 89 igneous intrusion of mantle derivation that lies on the NE margin of the LSL, is 90 bounded to the SW by the Strath Fleet Fault. Kocks et al. (2013) have shown that 91 emplacement of the central pluton – dated at 425±1.5 Ma using U-Pb (TIMS) zircon - 92 was likely controlled by dextral motions along the LSL. These authors used this 93 evidence to date the switch from sinistral transpression with thrusting to 94 transtension with regional strike slip faulting at ca. 425 Ma. 95  The present paper re-examines this hypothesis in the region of Loch Shin 96 where two plutons hosted in Moine and Lewisian country rocks are notably 97 associated with molybdenite mineralization (Gallagher & Smith 1975): the Loch 98 Shin and Grudie granites (Figs 1 & 2). Field observations and microstructural 99 
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studies are used to constrain the geometry, kinematics and relative ages of 100 deformation in the plutons and country rocks, whilst U-Pb zircon and Re-Os 101 molybdenite geochronology are used to date both pluton emplacement and the 102 spatially associated mineralization. Fluid inclusion studies are used to further 103 constrain the P-T-X conditions during deformation and igneous emplacement and 104 assess the relationships between regional structures and fluid flow. 105 
 106 
GEOLOGICAL SETTING 107 The Loch Shin area is underlain by variably deformed metsedimentary rocks of the 108 Morar Group, part of the Neoproterozoic Moine Supergroup in NW Scotland (Figs 1, 109 2; Holdsworth et al. 1994; Strachan et al. 2010). To the northwest, the Moine Nappe 110 is bounded by the underlying Moine Thrust and Moine Thrust Zone, whilst to the 111 north and east it is overlain by the Naver Thrust which carries the Loch Coire 112 Migmatite Complex (Fig. 1a; Kocks et al. 2013). Zircon U-Pb geochronology shows 113 that the migmatite complex formed during the Ordovician Grampian event ca 470-114 460Ma (Kinny et al. 1999). This was followed by generally top-to-the-NW Scandian 115 ductile thrusting with early displacement along the Naver Thrust, then later thrusts 116 propagating progressively towards the Caledonian foreland ending with the 117 development of the Moine Thrust Zone (Barr et al. 1986; Johnson & Strachan 2006; 118 Alsop et al. 2010; Leslie et al. 2010). Zircon U-Pb dating of various syn-kinematic 119 igneous intrusions constrains thrust movements to ca. 435-425Ma (Kinny et al. 120 2003; Kocks et al. 2006; Goodenough et al. 2011).  The broad arcuate swing of the 121 regional foliation and ductile thrusts within the Moine and Naver nappes (Fig. 1a, 122 
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2a) is attributed to the development of the Cassley structural culmination and 123 regional-scale flexuring in the rocks overlying the Assynt Culmination (Elliott & 124 Johnson 1980; Butler & Coward 1984; Leslie et al. 2010). 125  The Loch Shin and Grudie granites are hosted in Morar Group rocks locally 126 interleaved with antiformal isoclinal infolds of their underlying Lewisianoid 127 basement (Read et al. 1926; Gallagher & Smith 1975; Strachan & Holdsworth 1988; 128 Leslie et al. 2010). The Moine rocks are unmigmatized psammites interlayered with 129 subordinate semipelitic and pelitic horizons preserving rare sedimentary structures 130 such as cross-lamination and grading in areas of low tectonic strain. The 131 Lewisianoid rocks are lithologically diverse and include hornblendic and 132 quartzofeldspathic gneisses, amphibolites and subordinate units of ultramafic 133 hornblendite, together with thin strips of metasedimentary schist and marble (e.g.  134 Airde of Shin, Fig. 2a; see Strachan & Holdsworth 1988 and references therein). 135 Individual Moine-Lewisianoid boundaries – where exposed - are marked either by 136 the development of local basement conglomerates or by the development of mica-137 rich ‘tectonic schists’ (Peacock 1975; Strachan & Holdsworth 1988). 138  The dominant structures in the Moine and Lewisianoid rocks are tight to 139 isoclinal D2 folds that carry an axial planar S2 crenulation fabric of an earlier 140 bedding parallel schistosity (S1). The main foliation is therefore a composite 141 S0/S1/S2 fabric which carries an ESE- to SE-plunging mineral extension lineation L2 142 (Strachan & Holdsworth 1988). This lineation is interpreted to lie parallel to the 143 regional direction of top-to-the-NW tectonic transport during Scandian thrusting 144 (e.g. Barr et al. 1986; Strachan et al. 2010). Associated regional metamorphism 145 
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during D2 in the Loch Shin area was within the low to mid-amphibolite facies (Soper 146 & Brown 1971; Strachan & Holdsworth 1988).   147  The Moine and Lewisianoid rocks around Lairg and Loch Shin are cut by a 148 number of granitic bodies, which include (from largest to smallest): the Grudie, 149 Claonel and Loch Shin intrusions (Fig. 2; Gallagher & Smith 1975), together with 150 numerous small associated sheets and plugs of similar composition. These fall into 151 two distinct groups: early foliated granodiorites (e.g. Claonel), thought to be directly 152 equivalent to parts of the Rogart igneous complex, and supposedly later, generally 153 unfoliated intrusions of pink adamellite including the Grudie and Loch Shin bodies.  154 The trace of the LSL is also marked by a concentration of small plugs and pipe-like 155 bodies of intermediate to ultramafic appinites known as the Ach’uaine hybrids (Fig. 156 1b; Read et al. 1925; Watson 1984). These also occur as comagmatic enclaves within 157 the ca. 425Ma central granodiorite of the Rogart igneous complex (Fowler et al. 158 2001; Kocks et al. 2013). Appinites are widely associated with late Caledonian 159 plutons throughout the Scottish Highlands and point to a significant mantle 160 contribution to this magmatism (e.g. see Fowler & Henney 1996; Fowler et al. 2008). 161  Regional mapping, stream sediment sampling and analysis of shallow 162 borehole cores in the Loch Shin-Grudie area has shown that low grade molybdenite 163 mineralization is associated with pyrite in thin post-foliation quartz veins cutting 164 both country rock and granites; subordinate chalcopyrite, fluorite, galena, barite and 165 sphalerite also occur  (Gallagher & Smith 1975). This mineralization is spatially 166 associated with the granites, but Gallagher & Smith (op cit) suggest that it may also 167 
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have been significantly influenced by regional structures in the surrounding wall 168 rocks. 169  Between Loch Shin and the Moray Firth to the east, the Moine and Lewisian 170 rocks are cut by at least three major, sub-vertical brittle faults: the Loch Shin, Strath 171 Fleet and Dornoch Firth fault zones (Fig. 1a; Read et al. 1925, 1926; Strachan & 172 Holdsworth 1988; Kocks et al. 2013). Exposure of these fault zones is generally very 173 poor with only the Strath Fleet Fault previously studied in any detail (Soper 1963). 174 A series of NW-SE-trending steeply dipping crush zones were recognized that 175 overprint Moine country rocks, the Rogart igneous complex and unconformably 176 overlying Devonian basal conglomerates (middle Old Red Sandstone). There is 177 evidence for multiple fault movements, with cataclastic fault rocks included as clasts 178 within overlying Devonian conglomerates and minor intrusions that cut brittle fault 179 rocks whilst also being overprinted by later faulting (Soper 1963). However, there is 180 little published evidence to support the dextral shear sense inferred by many 181 authors along these NW-SE faults (e.g. Johnson & Frost 1977; Watson 1984), 182 although apparent regional offsets of regional boundaries in the Moine Nappe are 183 consistent with right-lateral movements along the Strath Fleet and Dornoch Firth 184 Faults (Fig 1a; Soper 1963; Strachan & Holdsworth 1988). A presumably late 185 (?Devonian) NE-side-down movement is also inferred for the Strath Fleet Fault 186 based on the preservation of Devonian conglomerates in an elongate NW-SE-187 trending outlier that follows the Strath Fleet Valley (e.g. see Kocks et al. 2013). 188  There are no published structural studies of any of the igneous bodies that 189 occur close to Loch Shin due to the poor levels of exposure (<1%). The Grudie 190 
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pluton is inferred to cross-cut all ductile fabrics and geological boundaries in the 191 Moine and Lewisian rocks based on the obviously discordant nature of the mapped 192 boundaries and the absence of an internal foliation (Fig. 2b; Gallagher & Smith 193 1975).  194  The present study focusses on two key areas of exposure: a ca 1 km long 195 sporadically continuous section through Moine rocks and part of the Loch Shin 196 Granite on the southwest shore of Loch Shin; and isolated exposures of Grudie 197 Granite exposed in road cuts related to the Meall a’ Gruididh wind farm 198 development (Fig. 2b). 199  200 
LOCH SHIN GRANITE 201 Good quality water-washed exposures of Moine country rocks, the Loch Shin 202 Granite and associated mineral veins occur along the SW shore of Loch Shin 203 between NC 5650 0590 and NC 5625 0668 (Fig. 2b; see also Appendix A, 204 Supplementary Material). Isolated poor quality exposures also occur in inland areas 205 and stream sections, notably along the Allt a’ Chlaonaidh (see Gallagher & Smith 206 1975, fig. 3). 207  Moine country rocks are exposed south of the Loch Shin granite between NC 208 5650 0590 and NC 0623 5638 and, north of the granite, between NC 5625 0668 and 209 NC 5587 0766. They are mostly fine to medium grained grey mica psammites with a 210 flaggy foliation and mm-scale compositional banding. Isolated layers of grey-brown 211 weathering semipelite-pelite are sparsely developed in layers up to 20 cm thick. In 212 thin section, the psammites comprise quartz, plagioclase, K feldspar, green biotite 213 
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and accessory phases (mineralization, garnet, epidote). Quartz and feldspar 214 uniformly display sub-equant polygonal to cuspate-lobate textures typical of 215 amphibolite facies conditions (e.g. see Holdsworth & Grant 1990), with the main 216 banding parallel fabric (S0/S1/S2) being defined primarily by aligned biotite grains. 217 The foliation and associated mineral lineations are locally variable in orientation – 218 possibly due to the local effects of late brittle folding and faulting (see below) - but 219 the majority strike NE-SW with moderate SE dips (Figs 2b, 3a). The associated fine 220 mineral lineations, interpreted here as L2, plunge mainly ESE (Fig. 3a) typical of this 221 part of the Moine Nappe in Sutherland (e.g. Strachan & Holdsworth 1988). 222  The ductile foliation in the Moine rocks is cross cut at low angles by generally 223 NE-SW trending, moderately SE dipping pink granite and granite pegmatite sheets 224 up to 1 m thick (e.g. Fig. 4b). These are unfoliated and are compositionally very 225 similar to the Loch Shin granite. 226  The contacts of the Loch Shin granite are not exposed but are inferred to 227 trend NE-SW and dip to the SE based on the orientation of the exposed granite-228 pegmatite veins (Figs 2b, 3b). The pink granite is typically fine to medium grained 229 and is unfoliated, lacking both magmatic and solid-state ductile fabrics. In thin 230 section it typically comprises weakly sericitised plagioclase, perthitic K-feldspar 231 (occasionally as phenocrysts), quartz, biotite (often altered to secondary chlorite) 232 and iron oxide (?magnetite).  The granite is homogneous in terms of both 233 composition and grain size and no internal contacts were seen. No magmatic-state 234 fabric is present, nor is there any evidence of crystal plasticity other than low-235 temperature features spatially associated with fractures.  236 
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 The granite is cut by irregular sets of quartz-pyrite-chalcopyrite veins with 237 rare molybdenite. These veins have no dominant orientation. However, at NC 5630 238 0660, a large sub-vertical SSE-NNW trending quartz-pyrite-sphalerite-chalcopyrite-239 galena vein up to 1 m thick can be traced for over 10 metres along strike. All veins 240 lack ductile deformation fabrics, but are cross-cut by brittle faults and low 241 temperature cataclasis (e.g. Fig. 4a). Rice & Cope (1973) and Gallagher & Smith 242 (1975) give further details of veins and mineralization found in the surrounding 243 country rocks and report the additional presence of minor covellite, barytes and 244 fluorspar. Rare, late veins of zeolite <1 mm thick were observed cross-cutting fault-245 related breccias in Moine host rocks (e.g. NC 5625 0668). 246  Widespread brittle deformation cuts Moine country rocks, the Loch Shin 247 Granite and associated granite-pegmatite veins alike (Figs 4a-f). The Loch Shin 248 Granite is cut by steeply-dipping, several metre long planar dextral faults trending 249 WNW-ESE with shallowly plunging slickenlines (Figs 3c, 4c). The total offsets are 250 unknown. Dextral faults are everywhere associated with shorter length, steeply-251 dipping N-S to NE-SW sinistral faults with cm-scale offsets (Figs 3c, 4a) that either 252 abut against, or are cross-cut by dextral faults (Fig. 4d) suggesting that they are 253 contemporaneous. Irregularly oriented, mainly shallowly-dipping reverse faults 254 with prominent NNW- to SSE-plunging grooves & slickenlines are locally present in 255 the granite (e.g. around NC 5635 0630; Figs 3d, 4e). The fault planes are curviplanar 256 & lineated, with a series of ramp-flat configurations. Offsets are mostly small (mm-257 cm scale). Once again these faults show mutually cross-cutting relationships with 258 the steeply dipping strike slip faults suggesting that they are broadly 259 
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contemporaneous.  A stress inversion analysis of all fault slickenline data suggests a 260 normal faulting to transtensional stress regime with a component of N-S shortening 261 and E-W extension, consistent with regional-scale dextral shear along the Loch Shin 262 Fault (Fig 3f).  263  In addition to brittle faults, both Moine rocks and granite are locally cut by 264 metre-scale zones of brecciation and cataclasis, some of which appear to be 265 associated with specific faults whilst others are diffuse and irregular. The banded 266 Moine rocks locally preserve brittle-ductile box folds with generally moderate to 267 steep easterly plunges (e.g. Figs 3e, 4f). These structures refold the ductile foliation 268 (S2) and lineation (L2).  The age of these folds relative to granite emplacement is 269 uncertain, but one example appears to detach along a NE-SW sinistral fault 270 suggesting that the folds are also post-granite features related to the regional brittle 271 deformation. Such folds have not been observed within the granite, but this may 272 reflect the lack of a pre-existing mechanical layering in these rocks. 273  In thin section, the effects of brittle deformation and cataclasis are 274 widespread in all samples from the Loch Shin shore section (e.g. Figs 5a-f). Irregular 275 networks of small-offset shear and hybrid fractures host variable amounts of 276 mineralization and secondary alteration features including sericite and other clay 277 minerals, quartz, chlorite, hematite, pyrite, chalcopyrite, limonite, fluorite and 278 zeolite (e.g. Figs 5c, e, f). This suggests that the fractures have hosted significant 279 volumes of fluid, an assertion supported by the widespread preservation of multiple 280 sets of healed microfractures (Tuttle lamellae) in quartz in a wide range of 281 orientations (Figs 5d, e). The presence of both pyrite and chalcopyrite in these 282 
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fracture fills suggest that at least some of the widely observed base metal 283 mineralization was synchronous with brittle deformation. In several cases, sericite-284 filled fractures cutting feldspars are seen to pass laterally into well-defined Tuttle 285 lamellae in adjacent quartz grains (Fig. 5e). Isolated veins of zeolite <1 mm thick 286 cross cut all other brittle structures (Fig. 5f) and appear to represent the final phase 287 of mineralization. 288 
 289 
GRUDIE GRANITE 290 The Grudie Granite is poorly exposed and none of its contacts have been observed. 291 In surface exposures, the granite is unfoliated, medium to fine grained, with sparse 292 large phenocrysts of perthitic K-feldspar up to 1 cm across and large rounded 293 xenocrysts of polycrystalline quartz up to 1 cm across (see Appendix B, 294 Supplementary Material). These are set in a matrix of lightly to moderately 295 sericitized plagioclase and quartz, with sparse K-feldspar, biotite and iron oxide. 296 Little internal variation in grain size or mineralogy has been observed and internal 297 contacts were not found.  298  In the field, well-developed joints carry epidote, chlorite, zeolite, iron and 299 manganese oxides with slickenlines locally developed in a variety of orientations, 300 mainly dip-slip or oblique slip. In thin section, the effects of brittle deformation are 301 limited with small fractures filled mainly with epidote, white mica, chlorite and 302 limonite. The overall level of fracturing is less intense than in the Loch Shin Granite.  303  304 
ZIRCON U-Pb ISOTOPE ANALYSIS  305 



 14

Sample, mineral separation and analytical protocols 306 A representative sample of Loch Shin granite from the SW west shore of Loch Shin 307 (DS1-11; Fig. 2b, NC 5635 0625) was selected for Zircon U-Pb LA-ICP-MS 308 geochronology. The analytical detail for the U-Pb analysis, including zircon 309 reference materials, is presented in Appendix C (see also Darling et al. 2012). In 310 brief, zircons were separated from sample DS1-11 using traditional methods and 311 mounted in epoxy resion. Prior to Laser ablation (LA)-ICP-MS U-Pb isotope analyses 312 the were imaged via cathodoluminescence. Laser ablation (LA)-ICP-MS U-Pb isotope 313 analyses were undertaken at the University of Portsmouth, using a New Wave 213 314 nm Nd:YAG laser coupled with an Agilent 7500cs quadrupole ICP-MS. 315 
 316 
Results 317 The zircons separated from sample DS1-11 are generally small (<120 µm in length). 318 The majority of the zircons possess euhedral to sub-euhedral prismatic forms, with 319 oscillatory or banded zonation textures as revealed by CL imaging (Fig. 6). 320 Approximately 15 percent of grains are significantly different, and have variable 321 habit from equant to elongate with sub-euhedral to anhedral forms. The CL textures 322 of these grains are also variable, including sector zonation, broad banding and 323 oscillatory zonation with spongy overgrowths. A total of 19 zircon grains were 324 analysed by LA-ICP-MS, including a range of textural types (Table I). Three analyses 325 were rejected due to high levels of 204Pb (common Pb), which was not corrected for 326 during data reduction.   327 
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 The majority of the analyzed grains yield Silurian ages, although there is one 328 concordant analysis with a 207Pb/206Pb age of 1284 ± 19 Ma and three slightly 329 discordant analyses with 207Pb/206Pb ages ranging from 1725 to 1771 Ma (Table I, 330 Fig 7a; all age uncertainties given to two standard deviations). These older grains 331 are of the equant, anhedral group and have Th/U ratios (0.4-0.6) that are 332 significantly lower than the Silurian grains (Th/U = 0.9 to 1.5). Ten of the prismatic, 333 more euhedral grains with oscillatory zonation textures yield 206Pb/238U ages 334 ranging from 416 to 436 Ma (Fig. 7b).  In combination, these grains yield a concordia 335 age of 427.3 ± 3.7 Ma. Two additional analyses yielded discordant U-Pb isotope data, 336 and fall on a discordia line between the younger concordant population and ca. 337 1700 Ma. These are interpreted as mixed analyses, which is supported by the 338 observation of variable isotopic ratios in the time resolved signals. The 427.3 ± 3.7 339 Ma concordia age of the younger group of prismatic zircons, with CL textures 340 (oscillatory or fine-banded) and Th/U ratios (0.9-1.5) typical of igneous zircon, is 341 taken as the best estimate of intrusion age of the Loch Shin Granite (Fig. 8).  342  343 
RHENIUM-OSMIUM MOLYBDENITE GEOCHRONOLOGY 344 
Samples 345 Four molybdenite samples were collected for rhenium-osmium (Re-Os) 346 geochronology to constrain the timing of sulphide mineralization associated with 347 the Loch Shin and Gruide granite intrusions. Although molybdenite mineralization 348 was noted in several places within the Loch Shin intrusion by Gallagher & Smith 349 (1975) only one in-situ quartz-molybdenite vein was observed in the field (AF33-10; 350 
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NC 5614 0650; Fig. 2b). The ~1 cm quartz vein hosts minor fine grained (~1 mm) 351 rosettes and disseminated molybdenite grains. No appreciable alteration selvage is 352 present, with the exception of minor silicification, and chloritization of magmatic 353 biotite.   354 Three additional samples were selected from the area around the Grudie 355 granite. Molybdenite±pyrite mineralization sufficient for geochronological analysis 356 was only observed in the neighboring Moine rocks adjacent to the intrusion (Fig. 2b). 357 The mineralization post-dates all ductile Moine fabrics. Molybdenite mineralization 358 is associated with and without quartz veins and, similar to the Loch Shin granite, 359 wallrock alteration is limited to silicification, and chloritization of biotite in the 360 Moine rocks. Molybdenite within quartz veins is fine grained (0.5 to 1mm) and 361 occurs as disseminations and parallel to the boundary between the quartz vein and 362 wallrock (AF01-11; AF02-11). Molybdenite also occurs as coatings along fractures 363 (AF36-10). 364 
 365 
Mineral separation and analytical protocols 366 Molybdenite separation and Re-Os analytical protocols follow the methodology 367 described by Selby and Creaser (2004), and Lawley and Selby (2012). These are 368 summarized in Appendix  D. 369 
 370 
Results 371 The four molybdenite samples from the Loch Shin (n = 1) and Grudie granites (n = 372 3) possess between ~1.6 and 8 ppm Re and 7.5 and 36 ppb 187Os. All four 373 
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molybdenite samples yield ages identical within uncertainty (Table II; Figure 8), 374 indicating that mineralization associated with the Loch Shin and the Grudie granite 375 intrusions occurred during the upper mid-Silurian (ca. 428 – 430Ma).   376  377 
FLUID INCLUSION ANALYSIS 378 
Analytical protocols 379 Three molybdenite-bearing quartz veins from the Loch Shin Granite and wall rocks 380 of the Grudie granite were studied in the Geofluids Research Laboratory at the 381 National University of Ireland Galway (see Appendix E for analytical details). A 382 petrographic classification scheme for the quartz-hosted fluid inclusions was 383 developed using transmitted polarised light microscopy (Table III; see also 384 Appendix F, Supplementary Material).  385 
 386 
Fluid Inclusion Petrography 387 Molybdenite-bearing quartz veins were investigated from the Loch Shin Granite 388 (one sample: AF33-10) and from the Moine wall rocks of the Grudie Granite (two 389 samples: AF35-10 and AF02-11). The fluid inclusion petrographic study adopted the 390 concept of fluid inclusion assemblages (FIA) described by Goldstein (2003), an 391 approach that places fluid inclusions into assemblages interpreted to represent 392 contemporaneous fluid trapping. Fluid inclusions (FIs) in all samples display 393 ellipsoidal to irregular morphologies. Inclusions are commonly ~10 µm in longest 394 dimension and show low degrees of fill (F=0.7-0.95). The degree of fill [F=vol. liquid 395 / (vol. liquid + vol. vapour)] was measured by estimating the proportions of liquid 396 
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and vapour at 25°C and comparing to published reference charts (Shepherd et al., 397 1985). Four inclusion types (Type 1, Type 2, Type 3 and Type 4) have been identified 398 hosted in vein quartz and their petrological characteristics are presented in Table III. 399 The classification scheme is based on phase relations in fluid inclusions at room 400 temperature.  401 
• Type 1 are two-phase liquid-rich (L>V) aqueous inclusions. They are 402 abundant in all three samples, occurring in trails and in clusters and they 403 commonly display subrounded to irregular shapes. They range from 9 μm to 404 25 μm in length and their degree of fill is ~0.70 to 0.95. 405 
• Type 2 are monophase aqueous fluid inclusions (L only), and are present in 406 all samples. They occur in trails alongside Type 1 FIs and range in longest 407 dimension from 1 μm to 5 μm in length. These are interpreted as being 408 metastable and indicate fluid trapping temperatures of < 50°C (Goldstein and 409 Reynolds, 1994). 410 
• Type 3 are three-phase (L+L+V) aqueous-carbonic fluid inclusions. They are 411 aligned within annealed fractures and occur as clusters or as isolated 412 individuals. They exhibit subrounded to subangular morphologies that range 413 between 4 and 17 μm in the longest dimension. 414 
• Type 4 are monophase (L) carbonic fluid inclusions. They are aligned within 415 annealed fractures and also occur in clusters associated with Type 3 416 aqueous-carbonic inclusions. They range between 5 and 10 μm in longest 417 dimension and possess rounded to sub-rounded morphologies. They are rare 418 
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and have been observed in samples AF33-10 (Loch Shin Granite) and AF02-419 11 (Grudie Granite). 420 
 421 
Fluid Inclusion Microthermometry 422 In sample AF33-10 from the Loch Shin Granite, TFM values for Type 1 range from -423 50.5° to -45.5°C. This temperature interval indicates the probable presence of NaCl 424 and CaCl2 (Shepherd et al., 1985). TLM values are from -13.5 to -1.1°C yielding 425 salinities ranging from ~ 1.9 to 17.3 eq. wt. % NaCl (mean 9.7 eq. wt. % NaCl). Fluid 426 inclusions homogenise to the liquid state between 119°-170°C (Table III, Fig. 9a). 427  TFM values for Type 1 in sample AF02-11 from the Grudie Granite wall rocks 428 range between -23° and -22.5°C corresponding to the eutectic point of the H2O-429 NaCl±KCl system. TLM values range from -3.60 to -0.70°C yielding salinities of ~3.7 430 to 6.9 eq. wt. % NaCl (mean 5.4 eq. wt. % NaCl). Homogenization to the liquid state 431 occurs between 214° and 279°C. In sample AF35-10 TLM values for Type 1 range 432 from -4.3° to -2.2°C yielding salinities ranging from ~1.2 to 5.9 eq. wt. % NaCl (mean 433 4.4 eq. wt. % NaCl) Type 1 FIs homogenise to the liquid state between 151° and 434 244°C (Table III, Fig. 9a). 435 
 Type 3 aqueous-carbonic inclusions have been identified in all three samples 436 but only microthermometry on Grudie Granite samples (AF02-11 and AF35-10) are 437 reported here, because of the size (<3 microns) of these inclusions in the Loch Shin 438 sample. CO2 homogenisation (to the liquid state, and by meniscus fading at 31.10°C) 439 occurs between 28° and 30.9°C yielding CO2 densities that range between 0.47 and 440 0.65 gm/cc. CO2 melting temperatures range from -56.6°C (the triple point for pure 441 
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CO2) to -57.2°C, the latter indicates the presence of additional species (e.g. H2S +H2 –442 see LRM results). Clathrate (CO2 5.75 HO2) melting takes place between +5.6° and 443 +9.9°C yielding aqueous phase salinities between ~0.2 and 8.1 eq. wt. % NaCl. Total 444 homogenization to the liquid state occurred between 214.2° and 279.5°C in sample 445 AF35-10, and between 262° and 308.2°C in sample AF02-11. Homogenization to the 446 vapour phase occurred in three inclusions in sample AF02-11 at ~332.7°C (Table III, 447 Fig. 9a). 448 
 449 
Laser Raman Microspectroscopy 450 Laser Raman Microspectroscopy (LRM) was used to identify the phases present in 451 all fluid inclusion types observed in the three samples (Appendix G, Supplementary 452 Material) and revealed the presence of CO2, N2 and H2S. LRM of Type 1 fluid 453 inclusions in all samples indicates the presence of CO2. Type 3 FIs from the Grudie 454 granite wall rock samples have in addition to CO2, trace amounts of H2S and H2. LRM 455 of Type 4 FIs from both granites indicates that they are composed of pure CO2 with 456 trace amounts of H2S. 457 
 458 
Interpretation 459 The Mo-bearing veins from each of the granites contain a similar range of fluid 460 inclusion types, i.e. Types 1-4. Type 1 in the Grudie Granite wall rock veins display 461 similar fluid salinities that range between ∼1 and 7 eq. wt. % NaCl. However, Type 1 462 from the Loch Shin Granite, display a significantly wider range of salinities i.e. ~2-18 463 eq. wt. % NaCl. This difference is coupled with TH values for the Loch Shin sample 464 



 21

that are generally <180°C which contrasts markedly with the range recorded for 465 Type 1 and 3 from the Grudie Granite wall rock veins (~180°-350°C). TH histograms 466 (Fig. 9a) for Type 1 and 3 fluid inclusions indicate a decrease in homogenization 467 temperatures from Type 3 (~340°C) through Type 1 (~260°C) in the Grudie Granite 468 wall rock veins to Type 1 (<180°C) fluid inclusions in the Loch Shin Granite vein. 469 Bivariate plots of TH and salinity show no obvious correlations, however, Type 1 470 inclusions from the Loch Shin Granite vein display an essentially isobaric variation 471 in salinity (Fig. 9b). This low T isobaric trend displayed by the Loch Shin Type 1 472 inclusions is directly comparable to that displayed by high salinity  fluids (Type 3) 473 recorded in the Galway, Donegal, Newry and Leinster Granites in Ireland. Here, they 474 are interpreted to represent basinal brines, sourced in overlying sedimentary basins, 475 which circulated through the crystalline basement during a period of post-476 Caledonian crustal extension or transtension (see Conliffe et al. 2010 and references 477 therein). It is arguable, therefore, that the Type 1 fluids recorded in the Loch Shin 478 vein may post-date and be unrelated to Mo-mineralisation. Consequently P-T 479 modelling using the fluid inclusion data is only performed for the Grudie Granite 480 veins. 481  482 
P-T Modelling 483 Grudie Granite wall rock veins: The molybdenite Re-Os chronometry shows that the 484 mineralisation in both veins is contemporaneous and occurred ca. 428Ma. 485 Accordingly, the timing of fluid trapping in AF02-11 and AF35-10 is considered to 486 be broadly contemporaneous. Bulk fluid inclusion parameters were calculated using 487 
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the LRM results in combination with the microthermometric data, using the 488 computer programs CLATHRATES (Bakker, 1997) and FLUIDS (Bakker, 2003). 489  Isochores for the high and lower temperature Type 1 aqueous fluids and for 490 the Type 3 aqueous carbonic fluids in the two vein samples are presented in the P-T 491 diagram (Fig. 10). The field for Type 3 inclusions is defined by two isochores that 492 reflect their range of  microthermometric data. Isochores for the lower and higher 493 temperature Type 1 aqueous fluids were constructed for salinities of ~4.5 and 5 494 eq.wt% NaCl matched with TH values of ~176 and ~251°C, respectively 495 corresponding to their range of salinities and TH values. The veins are spatially and 496 genetically related to the Grudie Granite which places constraints on the pressure 497 regime active during mineralisation. Ferguson and Al-Ameen (1985) calculated 498 pressures of 2.50±0.25kb for the aureole of the Omey Granite, Connemara which has 499 Mo mineralisation of a similar age and setting to the Grudie Granite (Feely et al., 500 2007). These pressure constraints are used in Figure 10 to estimate trapping 501 temperatures for Type 3 fluids of ~340 to 410°C. Furthermore, Gallagher et al., 502 (1992) used fluid inclusion microthermometry and stable isotope data to generate a 503 P-T model for Mo- mineralisation at the western end of the Galway Granite which 504 yielded pressures of 1.2 to 2.0kb and a temperature range of 360 to 450°C (see 505 Figure 10). A higher pressure and lower temperature regime prevailed during 506 Grudie Granite mineralisation indeed similar to that modelled for the Omey Granite 507 (Feely et al., 2007). No evidence for fluid immiscibility was recorded in Type 1 508 inclusions and therefore they could have been trapped anywhere along their 509 respective isochores. Type 1 fluids are considered to be meteoric and trapped after , 510 
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and at lower pressures than, the earlier magmatic aqueous carbonic Type 3 511 inclusions considered to be responsible for the Mo-mineralisation. The P-T history 512 of fluids in the Grudie Granite wall rock veins may have followed the path shown in 513 Figure 10 (black arrow). 514  515 
DISCUSSION 516 
The relative and absolute ages of plutonism, mineralisation and deformation 517 The U-Pb zircon and Re-Os molybdenite ages for the Loch Shin Granite and sulphide 518 mineralization associated with both plutons are all coincident and overlap almost 519 exactly within error (Fig. 8). These ages therefore confirm the geological 520 observations which suggest that the plutons and associated mineralisation are 521 contemporaneous and genetically related. The Loch Shin-Grudie granite ages 522 overlap within error with the U-Pb zircon (TIMS) age of 425 ± 1.5 Ma reported by 523 Kocks et al. (2013) for the central granodiorite of the Rogart pluton (Fig. 1a) which 524 was, according to these authors also emplaced contemporaneously with dextral 525 movements along the Strath Fleet Fault, the along strike southeastern continuation 526 of the Loch Shin Fault and the LSL (Fig. 1a).  527 The field and thin section observations suggest that the Loch Shin and Grudie 528 granites are petrologically similar – as suggested by previous authors (e.g. Gallagher 529 & Smith 1975). Both plutons post-date the ductile deformation fabrics in the 530 surrounding Moine and Lewisian rocks, including the main Scandian-age D2 531 structures. Both plutons are associated with a variety of ore mineralization, 532 including molybdenite and other base metal sulphides, and both are post-dated by 533 
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the effects of brittle deformation consistent with dextral transtensional movements 534 along the WNW-ESE-trending Loch Shin Fault. Unsurprisingly the intensity of this 535 brittle overprint is greater in the Loch Shin pluton, which lies closer to the main 536 fault trace.  537  The relative ages of the brittle faulting and mineralization are more complex. 538 Field and thin section observations of fracture-hosted sulphides (pyrite, 539 chalcopyrite) show that at least some of the base metal mineralization is 540 contemporaneous with the brittle deformation. The observations lend support to 541 the long-postulated proposal that the dextral movements along NW-SE faults such 542 as the Loch Shin, Strath Fleet and Dornoch Firth fault systems are contemporaneous 543 with, and antithetic to, regional sinistral movements along the GGFZ ca 425 Ma 544 (Johnson & Frost 1977; Watson 1984; Stewart et al. 2001). It also strengthens the 545 arguments of Dewey & Strachan (2003) and Kocks et al. (2013) that the switch from 546 regional sinistral transpression with thrusting to transtension with regional strike 547 slip faulting occurred at this time. 548 However, many brittle fractures also cross-cut mineral veins. Furthermore, 549 the Type 1 fluid inclusions seen as Tuttle lamellae in the Loch Shin granite are 550 clearly distinct from the fluid inclusion sets seen in the Grudie granite. Their 551 presence points to a somewhat later, near surface phase of fluid flow associated 552 with brittle dextral movements along the Loch Shin-Strath Fleet Fault system. Given 553 this specific association, it seems most likely that at least some dextral faulting and 554 fluid flow occurred over a protracted period into the Devonian (?Emsian, ca 410 Ma) 555 
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where it was associated with basin development and the very final stages of late 556 Caledonian strike-slip faulting/transtension (cf. Dewey & Strachan 2003). 557  558 
Pluton relationships at depth and the magnitude of dextral strike-slip faulting 559 The very poor levels of exposure in the Loch Shin-Lairg region make it difficult to 560 ascertain how the various plutonic bodies in this area may be related in 3 561 dimensions. Gravity modelling by Hipkin & Hussain (1983) has ruled out the 562 possibility that the large regional gravity low seemingly centred on the surface 563 outcrop of the Grudie pluton (Fig. 1b) is due to the presence of a very large pluton at 564 depth. More recent work by Leslie et al. (2010) suggests that the low occurs mainly 565 due to the presence of a thick thrust culmination of Moine rocks (the Cassley 566 Culmination, Fig. 2a) sitting structurally above and to the SE of the Assynt 567 Culmination. Nevertheless, their gravity models suggest the presence of a shallowly 568 buried pluton with horizontal dimensions of 7 x 11 km, with an average thickness of 569 up to 3 km (see Leslie et al. 2010, fig. 10). Even allowing for significant errors in the 570 calculations, these models indicate that the granites exposed in the Loch Shin-Lairg 571 region (including the Grudie, Loch Shin, Claonel bodies) are likely to be underlain by 572 a larger, possibly composite plutonic body located mainly to the SW of Loch Shin 573 (Fig. 11a). It is tempting to suggest that this buried granite and the similarly 574 composite Rogart body are part of a single pluton offset by dextral strike-slip 575 faulting. However, this would require right lateral displacement of at least 10 km 576 which seems at odds with other regional evidence. For example, the observed 577 offsets of regional markers such as the nearby Loch Shin Lewisian inlier (Fig 2a) 578 



 26

suggest displacements of no more than a few hundred metres, as does the 579 observation that the Loch Shin Fault does not appear to continue very far to the NW 580 beyond the end of Loch Shin (Leslie et al. 2010). It seems more likely therefore that 581 the two plutons are separate, composite bodies located either side of the Loch Shin-582 Strath Fleet fault system in a manner rather similar to other Caledonian plutons that 583 are associated with regional strike-slip fault zones in NW Scotland, most notably the 584 GGFZ (e.g. Hutton 1988b; Jacques & Reavy 1994; Stewart et al. 2001). 585  586 
Implications for the nature and significance of the Loch Shin Line 587 The present study lends support to the suggestion of Watson (1984) that the NW-SE 588 trending Loch Shin Line (LSL) is associated with an anomalous zone of broadly 589 contemporaneous mantle-derived appinites, granites (Rogart, Grudie, Loch Shin and 590 many smaller satellite bodies) intruded ca. 425-428 Ma. These are postdated by 591 slightly younger (perhaps as young as ca 410 Ma) brittle dextral faulting in the 592 Moine Nappe SE of the Moine Thrust (Loch Shin-Strath Fleet and Dornoch Firth 593 faults, Fig. 1b). Watson (1984) suggested that the LSL corresponds to the location of 594 a Precambrian shear zone in the Lewisian autochthon underlying the Moine Nappe 595 which acted as a deep crustal channelway controlling the ascent of magmas and 596 mineralization during the later stages of the Caledonian orogeny (see also the leaky 597 lower crustal fault block model of Jacques & Reavy 1994). The most obvious 598 candidate structure seen in the Lewisian Complex west of the Moine Thrust Zone is 599 the steeply S-dipping Laxford Front, the major shear zone that separates the 600 
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Rhiconich and Assynt terranes; this lies almost parallel to and along strike from the 601 trace of the LSL (Figs 1, 11b).   602  603 
Constraints on regional exhumation rates at the end of the Caledonian orogeny 604 The PT estimates derived from the fluid inclusion study reported here (Fig. 10) can 605 be compared with those for peak metamorphism in the central part of the foreland-606 propagating Scandian thrust wedge in Sutherland in order to provide constraints on 607 the rate of regional exhumation. Integrated metamorphic and isotopic studies and 608 thermal modelling suggest that peak metamorphic conditions in the vicinity of the 609 Naver Thrust of ca. 650°C and 5.5 kbar (Friend et al. (2000) were attained at c. 440-610 435 Ma (Johnson & Strachan 2006; Thigpen et al. 2013). In contrast, this study has 611 established temperature-pressure conditions at the time (ca. 425 Ma) of Grudie 612 Granite mineralisation of c. 375°C and 2.5 kb. The contrasting pressure estimates 613 suggest that around 10 km thickness of crust was removed in c. 10-15 myr, easily 614 achieved at an erosion rate of less than or equal to 1mm a-1. Essentially the same 615 erosion rate was derived by Johnson & Strachan (2006) from consideration of 616 isotopic data and the likely (Emsian) age of the oldest Old Red Sandstone strata to 617 rest unconformably on the Moine rocks.       618  619 
The regional significance of Caledonian molybdenite mineralization  620 Intrusion-related molydenite mineralization is documented throughout the Scottish 621 and Irish Caledonian-Appalachian Orogen (Figure 1a inset). The broad timing and 622 fluid characteristics of intrusion-related Mo-mineralisation in the Loch Shin and 623 
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Grudie Granite veins (ca. 428 Ma) is temporally similar to that of the Ballachulish 624 and Kilmelford igneous complexes, including the Lagalochan porphyry Cu-Mo 625 system (ca. 433-426 Ma; Appendix H; Conliffe et al., 2010), pre-dates that of the 626 Etive Igneous Complex (ca. 415 Ma; Porter and Selby, 2010), Shap granite (ca. 405 627 Ma; Selby et al., 2008) and the earliest granite related Mo-mineralisation in the Irish 628 sector of the Caledonian-Appalachian Orogen (ca. 423Ma, Feely et al., 2010). Fluid 629 inclusion data for these systems indicate that Mo-mineralization is ultimately 630 associated with aqueous-carbonic fluids, which has also been shown to be common 631 among Cu+Mo mineralization associated with late Caledonian magmatism (Kay 632 1985; Gallagher et al. 1992; Feely et al. 2007; Selby et al. 2008; this study; Feely & 633 Selby, unpub data; see Appendix I, Supplementary Material). 634 Gold mineralisation in Dalradian metamorphic rocks at Curraghinalt, 635 Northern Ireland (Parnell et al. 2000; Rice et al., 2012) and Tyndrum, Scotland 636 (Pattrick et al. 1988; Curtis et al. 1993) has also been linked to aqueous-carbonic 637 magmatic fluids that may have been derived from an underlying Caledonian 638 intrusive. Although CO2 has only an indirect role on gold mineralization 639 (Lowenstern 2001), it may play a significant role in magmatic fluid exsolution and 640 evolution, and may lead to concentrations of Au, Cu and Mo into the vapour phase 641 (Heinrich et al. 1999; Ulrich et al. 2001). As such, intrusion-related Mo (+Cu) 642 mineralization may warrant attention during future mineral exploration, 643 particularly for porphyry Cu–Mo-Au mineralization and additionally for 644 structurally-controlled Au-mineralisation distal from the intrusion. In this regard 645 combined fluid inclusion data, U-Pb and Re-Os geochronometry have shown that 646 
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prolonged granite-related molybdenite mineralisation in the Connemara region was 647 accompanied by aqueous-carbonic fluids in the Omey Granite at ca. 423 Ma and later 648 in the Galway Granite at ca. 410Ma (Murvey), ca. 407Ma (Mace Head) and ca. 380Ma 649 (Costelloe; Feely et al., 2007, 2010). Moreover, the earliest granite related Mo-650 mineralisation of the Omey Granite was also initiated while major orogen parallel 651 structures, e.g. Great Glen and Southern Upland Fault systems (Dewey and Strachan, 652 2003) were active. 653  654 
CONCLUSIONS 655 Using detailed field observations, microstructural studies, U-Pb zircon and Re-Os 656 molybdenite geochronology and fluid inclusion analyses, we have shown that a suite 657 of mid-Silurian (ca. 425-430 Ma) granite plutons (Grudie, Loch Shin, Rogart and 658 many smaller associated bodies) are contemporaneous with base metal sulphide 659 mineralization, including molybdenite. Synchronous to slightly younger (ca. 427-660 410Ma) brittle dextral strike slip faulting along the WNW-ESE Loch Shin-Strath 661 Fleet Fault System was antithetic to regional sinistral strike-slip movements along 662 the NE-SW trending GGFZ (Fig. 11a). More generally, the associated plutonism, 663 mineralization and strike-slip faulting confirms the transition from regional-scale 664 transpression to transtension during the mid-Silurian to early Devonian in NW 665 Scotland as postulated by Dewey & Strachan (2003).   666 Our findings also lend support to the existence of the NW-SE trending Loch 667 Shin Line and to the hypothesis of Watson (1984) that it has acted as a deep crustal 668 channelway controlling the ascent and emplacement of Silurian granitic and 669 
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appinitic magmas into the overlying Moine Nappe (Fig. 11b). It seems very likely 670 that this deep structure corresponds to the southeastern continuation of the 671 Precambrian-age Laxford Front shear zone in the buried Lewisian autochthon. This 672 further illustrates how pre-existing crustal structures can be persistently 673 reactivated even when buried beneath much younger thrust nappes and influence 674 directly the migration and emplacement of hydrous mineralizing fluids and magmas 675 (e.g. Jacques & Reavy 1994; Richards 2013).  676  677 
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 904 
Figure captions 905 
Figure 1a) Regional geology map of the northern Scottish Highlands. Inset map 906 shows the relative positions of Laurentia, Baltica, Avalonia and Gondwana following 907 the closure of the Iapetus Ocean (Caledonide-Appalachian belt in black). 908 Abbreviations as follows: AC = Assynt Culmination; DFF = Dornoch Firth Fault; GGFZ 909 = Great Glen Fault Zone; LCM = Loch Coire Migmatite complex; LSSFF = Loch Shin - 910 Strath Fleet Fault ; MF = Moray Firth; MT = Moine Thrust; NT = Naver Thrust; ORS = 911 Old Red Sandstone; R = Rogart igneous complex. 912 
 b) Gravity map of the Lairg-Loch Shin area, with locations of appinnitic intrusions 913 (Achnuie hybrids, yellow dots), Laxford front and surface trace of Loch Shin Line 914 shown (after Watson 1984 and Leslie et al. 2010). 915  916 
 Figure 2a) Overview geological map of the Loch Shin area after Strachan and 917 Holdsworth (1988) & Leslie et al. (2010). Box shows location of map shown in 918 Figure 2b. G= Grudie, C = Claonel, LS = Loch Shin granites. L = Lairg; LSF = Loch Shin 919 
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Fault; AS = Aird of Shin. b) Simplified version of geology in the Loch Shin – Grudie 920 area (after Gallagher & Smith 1975). Geochronology sample locations are shown. GB 921 = Grudie Burn; CCB = Cnoc na Cloich-bhuaile; MG = Meall a’ Ghruididh; AC = Allt a' 922 Chlaonaidh. 923  924 
 Figure 3) Equal area stereoplots of structural data collected from the Loch Shin 925 shore section. a) Ductile foliation (Sn/S2; great circles) and L2 mineral lineations 926 (dots). b) Granite veins (solid great circles) and quartz veins (dashed great circles) 927 and lineation on quartz vein (dot). c) Steep faults (great circles) and slickenlines 928 (dots). d) Shallow faults (great circles) and slickenlines (dots). e) Box fold hinges 929 (dots) and axial surfaces (great circles). f) Stress inversion analysis and Mohr plot of 930 combined fault slickenline data with weighting added to include fault sizes. LSF = 931 inferred local orientation of Loch Shin Fault. 932  933 
Figure 4) Brittle structures cutting the Loch Shin granite and its Moine country 934 rocks. a) Plan view of NE-SW sinistral fault offsetting granite and quartz vein (NC 935 5635 0631). b) Plan view of NW-SE dextral fault offsetting granite pegmatite vein in 936 Moine psammites (NC 5639 0613). c) Oblique sectional view of long NW-SE 937 trending dextral fault scarp in Loch Shin granite; inset shows sub-horizontal 938 orientation of slickenlines on fault surface consistent with strike-slip fault 939 movement (NC 5631 0650). d) NE-SW sinistral fault offsetting and being offset by 940 NNW-SSE dextral faults in Loch Shin granite (NC 5635 0631). e) Shallowly NW-941 dipping flats and shorter SE-dipping ramps (‘r’) in exposed small displacement, top-942 
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to-the-NW faults; inset shows plan view of corrugated, lineated fault surface with 943 NW-SE slickenlines (NC 5635 0632). f) Plan view of steeply plunging conjugate box 944 folds detaching along sub-vertical NE-SW sinistral fault in Moine psammites (NC 945 5638 0621). 946 
 947 
Figure 5) Thin sections of brittle structures and mineralization cutting the Loch 948 Shin granite and its country rocks. a) Small offset (<0.5mm) domino style reverse 949 (top-to-the-NW) shear fractures (arrowed) cutting Loch Shin granite viewed in ppl 950 (NC 5635 0632). b) Typical zone of cataclasis cross cutting Loch Shin Granite 951 viewed in crossed polars (NC 5635 0632). c) Irregular region of quartz iron oxide-952 ilmenite (black) -pyrite (black, Py) –fluorite (Fl) mineralization in Moine psammites 953 immediately to the northwest of the Loch Shin granite viewed in ppl (NC 5625 954 0666). d) Multiple sets of fluid inclusions following healed microcracks/Tuttle 955 lamellae in quartz from the Loch Shin granite viewed in ppl (NC 5635 0632). e) 956 Microfactures lined with sericite where they cross-cut feldspar (Fsp) passing 957 laterally into healed microcracks/Tuttle lamellae in quartz (Qtz), in granite 958 pegmatite vein, viewed in crossed polars (NC 5639 0613). f) Late zeolite vein (Z) 959 cutting brecciated Moine psammite viewed in cross-polars (NC 5625 0666). 960  961 
Figure 6) Cathodoluminescence images and SHRIMP II analysis positions for 962 representative grains from grains selected for geochronology from the Loch Shin 963 Granite sample. Also shown are the grain numbers, and 207Pb/206Pb ages for each 964 analysis pit (uncertainties are two standard deviations; percentage discordance 965 
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shown in brackets).  966  967 
Figure 7 a, b) Zircon U-Pb concordia plots from the Loch Shin granite. 968 
 969 
Figure 8) Plot of the U-Pb zircon and Re-Os molybdenite dates including 2 sigma 970 uncertainty with decay constant uncertainty for the Loch Shin and Gruide granites. 971 Also given is the weighted average for the Re-Os molybdenite dates for the Gruide 972 granite. For sample locations, see Figure 2. 973 
 974 
Figure 9) a) Histogram of TH values and b) bivariate plot of TH vs. salinity for Type 975 1 and Type 3 inclusions in samples AF02-11 and AF35-10 from the Grudie granite 976 and for Type 1 in sample AF33-10 from the Loch Shin granite. 977  978 
Figure 10) Pressure-temperature space showing isochores for Type 1 and Type 3 979 fluid inclusions. Shaded area represents the field for Type 3 fluids defined by two 980 isochores. Isochores for the lower and higher temperature Type 1 aqueous fluids 981 are also shown and the parameters used for their construction are shown on the 982 isochores. Proposed P-T path for cooling history of fluids in Grudie Granite is shown 983 by the arrow. P-T field for aqueous carbonic fluids associated with the Mo 984 mineralisation at the western end of the Galway Granite is shown for comparison 985 after Gallagher et al., (1992). 986 
 987 
Figure 11) a) 3-D summary of the spatial relationships between the Rogart, Loch 988 
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Shin, Lairg and Grudie plutons (red) and brittle strike slip faults (grey) in the Loch 989 Shin-Strath Fleet-Dornoch Firth area. b) Highly simplified conceptual model 990 showing how the buried Laxford front shear zone below the Moine nappe gives rise 991 to the Loch Shin Line of focussed Silurian magmas and overlapping Silurian-992 Devonian dextral strike-slip faults.  993  994 
Tables 995 
Table I) U-Pb data for Loch Shin granite. 996 
 997 
Table II) Re-Os data for molybdenite from the Loch Shin and Gruide granites. 998 
 999 
Table III) Classification of fluid inclusion types and fluid inclusion micro-1000 thermometric data from the Loch Shin and Gruide granites.  1001 
 1002  1003 

























School of Earth and Environmental Sciences, University of Portsmouth Data for Tera-Wasserburg plot2 Data for Wetherill plot2 Ages2

Identifier Comments Beam (μm) U (ppm)1 Th (ppm)1 Th/U 206Pb/204Pb 1s% 238U/206Pb 1s
207Pb/206Pb 1s

207Pb/235U 1s
206Pb/238U 1s Rho 207Pb/206Pb 1s

206Pb/238U 1s
207Pb/235U 1s % conc5

 abs  abs  abs

Sample DS1-11

DE10A05 25x37 254 112 0.44 3925 37 3.494 0.039 0.106 0.001 4.188 0.061 0.286 0.003 0.8 1725 16 1622 18 1672 25 94
DE10A06 25x37 208 92 0.44 2414 32 3.251 0.038 0.107 0.001 4.716 0.070 0.308 0.004 0.8 1742 16 1729 20 1770 26 99
DE10A07 25x37 241 267 1.11 971 22 14.451 0.172 0.055 0.001 0.536 0.012 0.069 0.001 0.5 431 8 431 5 436 10 100
DE10A08 25x37 335 384 1.15 1722 37 14.558 0.258 0.056 0.001 0.523 0.012 0.069 0.001 0.6 435 8 428 8 427 10 99
DE10A09 25x37 105 61 0.58 2739 37 3.222 0.041 0.108 0.001 4.775 0.093 0.310 0.004 0.9 1771 18 1743 22 1780 35 98
DE10A11 25x37 465 481 1.03 505 40 14.738 0.235 0.056 0.001 0.541 0.011 0.068 0.001 0.5 444 8 423 7 439 9 95
DE10A12 25x37 266 228 0.85 891 30 14.558 0.166 0.055 0.001 0.521 0.010 0.069 0.001 0.6 427 6 428 5 426 8 100
DE10A13 High 204Pb - rejected 25x37 105 161 1.54 316 32 14.490 0.197 0.071 0.002 0.695 0.023 0.069 0.001 0.8 945 22 430 6 536 18 46
DE10A14 25x37 51 30 0.59 790 30 4.452 0.070 0.084 0.001 2.662 0.065 0.225 0.004 0.8 1285 19 1306 21 1318 32 102
DE10A15 25x37 141 154 1.1 348 27 15.079 0.188 0.056 0.001 0.506 0.012 0.066 0.001 0.6 454 9 414 5 416 10 91
DE10A16 25x37 282 259 0.92 1135 27 14.817 0.332 0.055 0.001 0.527 0.019 0.067 0.002 0.8 432 9 421 9 430 15 97
DE10B05 15x27 220 412 1.87 1814 30 14.974 0.322 0.056 0.002 0.522 0.013 0.067 0.001 0.2 446 13 417 9 426 11 93
DE10B06 High 204Pb - rejected 15x27 538 690 1.28 566 34 14.391 0.238 0.080 0.002 0.769 0.020 0.069 0.001 0.3 1209 32 433 7 579 15 36
DE10B07 15x27 253 209 0.83 1225 28 13.377 0.211 0.059 0.001 0.634 0.012 0.075 0.001 0.6 572 9 465 7 499 10 81
DE10B08 15x27 64 77 1.19 399 30 14.353 0.260 0.055 0.002 0.518 0.022 0.070 0.001 0.5 429 16 434 8 424 18 101
DE10B09 15x27 123 187 1.52 615 49 14.502 0.214 0.055 0.001 0.521 0.015 0.069 0.001 0.6 409 10 430 6 426 13 105
DE10B10 15x27 144 191 1.33 583 33 14.305 0.193 0.056 0.001 0.539 0.012 0.070 0.001 0.5 436 9 436 6 438 10 100
DE10B11 15x27 290 403 1.39 1043 27 13.439 0.219 0.061 0.001 0.628 0.014 0.074 0.001 0.5 638 13 463 8 495 11 73
DE10B12 High 204Pb - rejected 15x27 674 1044 1.55 242 31 16.761 0.403 0.124 0.008 0.930 0.041 0.060 0.001 -0.9 2021 134 374 9 667 30 18

Standard GJ-1

DE10AA04 30x45 389 26 0.04 1301 26 10.158 0.095 0.060 0.001 0.807 0.011 0.098 0.001 0.3 594 8 605 6 601 9 102
DE10AA12 30x45 266 11 0.04 1245 28 10.125 0.091 0.060 0.001 0.821 0.014 0.099 0.001 0.4 605 9 607 5 609 11 100
DE10AA17 30x45 310 9 0 1178 28 10.127 0.143 0.060 0.001 0.818 0.012 0.099 0.001 0.7 609 7 607 9 607 9 100
DE10A04 30x45 300 13 0.04 1306 27 10.133 0.086 0.060 0.001 0.828 0.011 0.099 0.001 0.6 602 6 607 5 613 8 101
DE10A10 30x45 292 13 0.04 1205 27 10.151 0.087 0.060 0.001 0.826 0.011 0.099 0.001 0.7 613 6 606 5 611 8 99
DE10A17 30x45 289 12 0.04 1441 36 10.161 0.097 0.060 0.001 0.822 0.012 0.098 0.001 0.7 600 7 605 6 609 9 101
DE10B04 30x45 270 12 0.04 1176 42 10.155 0.118 0.060 0.001 0.831 0.013 0.098 0.001 0.7 590 7 605 7 614 10 103
DE10B13 30x45 267 11 0.04 965 34 10.179 0.120 0.059 0.001 0.814 0.013 0.098 0.001 0.7 580 7 604 7 605 10 104

Standard Temora 2
DE10AA05 30x45 141 83 0.6 1043 30 15.103 0.234 0.055 0.001 0.509 0.010 0.066 0.001 0.4 429 9 413 6 418 8 96
DE10AA06 30x45 143 85 0.6 1313 23 14.686 0.180 0.055 0.001 0.518 0.010 0.068 0.001 0.4 415 8 425 5 424 8 102
DE10AA07 30x45 145 86 0.6 1067 36 14.767 0.181 0.055 0.001 0.514 0.010 0.068 0.001 0.4 426 8 422 5 421 8 99
DE10AA08 30x45 144 100 0.7 1122 31 14.805 0.189 0.055 0.001 0.511 0.010 0.068 0.001 0.4 427 8 421 5 419 8 99
DE10C05 30x45 373 205 0.5 845 28 14.813 0.194 0.055 0.001 0.504 0.009 0.068 0.001 0.7 417 6 421 6 415 8 101
DE10C06 30x45 327 193 0.6 1187 34 14.974 0.206 0.055 0.001 0.498 0.009 0.067 0.001 0.7 411 6 417 6 410 7 101
De10C14 20x30 346 188 0.5 1042 34 15.231 0.177 0.055 0.001 0.504 0.009 0.066 0.001 0.7 416 6 410 5 414 8 98
De10C15 20x30 292 163 0.6 1063 29 15.126 0.180 0.055 0.001 0.501 0.009 0.066 0.001 0.6 414 6 413 5 413 7 100

1 concentration uncertainty c.20%

2 data not corrected for common-Pb

3 Concordance calculated as (206Pb-238U age/207Pb-206Pb age)*100

Decay constants of Jaffey et al 1971 used



Table II. 

Sample Location wt Re (ppm) ±
187

Re (ppm) ±
187

Os (ppb) ± Age (Ma) ± ± (λ
187

Re uncert)

Loch Shin

AF33-10 Loch Shin, NC 56139, 06495 0.021 1.67 0.01 1.05 0.01 7.5 0.0 427.9 2.8 3.1

Gruide Granite

AF36-10 Moly Burn (Gallagher & Smith, 1975), NC 51530, 04646 0.012 3.53 0.03 2.22 0.02 15.9 0.1 429.6 5.2 5.6
AF01-11 Edge of Grudie Granite NC 52726, 03797 0.014 3.40 0.03 2.14 0.02 15.4 0.1 429.9 5.2 5.6
AF02-11 Edge of Grudie Granite NC 52726, 03797 0.010 8.04 0.05 5.05 0.03 36.1 0.2 428.0 3.0 3.3



Loch Shin granite

sample AF33-10 sample AF35-10 sample AF02-11

Type 1 two-phase (L+V) liquid-rich aqueous inclusions F: 0.85-0.9 F: 0.8-0.95 F: 0.7-0.9
9-25 µm; sub-rounded and irregular shapes; TFM: -45.5° to -50.5° (mean: -47.9°C; N=7) TLM: -3.6° to -0.7° (mean: -2.8°C; N=20) TFM: -22.5° to -23° (mean: -22.8°C; N=2)

occur in trails aligned within annealed fractures; some clusters TLM: -13.5° to -1.1° (mean: -6.9°C; N=17) Salinity: 1.2 to 5.9 eq. wt%NaCl (mean: 4.4; N=20) TLM: -4.3° to -2.2° (mean: -3.3°C; N=20)
1fluid composition: H2O-NaCl±KCl±CO2 Salinity: 1.9 to 17.3 eq. wt%NaCl (mean: 9.7; N=17) TH→L: 151° to 244.4° (mean: 185.6°C; N=20) Salinity: 3.7 to 6.9 eq. wt%NaCl (mean: 5.4; N=20)

TH→L: 119° to 170.1° (mean: 152.9°C; N=20) TH→L: 214.2° to 279.5° (mean: 258.3°C; N=20)

Abundant Abundant Abundant

Type 2 monophase (L) liquid aqueous inclusions 2Trapping T < 50°C Trapping T < 50°C Trapping T < 50°C
1-5 µm; rounded to sub-rounded shapes; 

occur in trails within annealed fractures and randomly distributed
fluid composition: H2O-NaCl

Abundant Abundant Abundant

Type 3 three- phase (L+L+V) aqueous-carbonic inclusions F: 0.8-0.9 F: 0.8-0.9 F: 0.4-0.85
4-17 µm; elongated and irregular shapes; TMCO2: -57.1° to -56.5° (mean: -56.7°C; N=20) TMCO2: -57.2° to -56.2° (mean: -56.7°C; N=17)

occur in trails aligned within annealed fractures; isolated or in clusters TMclath: 7.2° to 8.2° (mean: 8°C; N=18) TMclath: 5.6° to 9.9° (mean: 7.2°C; N=19)
fluid composition: H2O-CO2-NaCl±H2S±H2 THCO2→fading: 30.5° to 31.1° (mean: 30.8°; N=20) THCO2→L: 28° to 30.9°; THCO2→fading 31.1°

Salinity: 3.6 to 5.4 eq. wt%NaCl (mean: 4; N=18) Salinity: 0.2 to 8.1 eq. wt%NaCl (mean: 4.4; N=19)
Density: 0.468 g/cm3 Density: 0.468 to 0.655 g/cm3

THTOT→L: 228.2° to 261° (mean: 243.5°C; N=20) THTOT→L: 262° to 312.5° (mean: 243.5°C; N=10)

THTOT→V: 305° to 348° (mean: 332.7°C; N=3)

Common Abundant Abundant

Type 4 monophase (L) carbonic inclusions
5-10 µm; rounded to sub-rounded shapes; 

occur in trails aligned within annealed fractures; some isolated
fluid composition: CO2±H2S

Rare Not Observed Rare

Fluid Inclusion Types
Gruide granite

Classification is based upon FI morphology and the volumetric proportion of phases observed at room temperature. L = liquid, V = vapour. 1Bulk composition based on combined microthermometry and Raman spectroscopy. 2The presence of
monophase aqueous liquid FIs indicate trapping temperatures of < 50°C. ± : trace or minor constituent. TFM: temperature of first ice melting; TLM: temperature of last ice melting; THTOT→L: homogenisation temperature (to L); THTOT →V: 

homogenisation temperature (to V); TMclath: temperature of clathrate melting; F: degree of fill; F=vol. liquid / (vol. liquid+vol. vapour).



Appendices for Holdsworth et al. Silurian-Devonian magmatism, 
mineralization, regional exhumation and brittle strike-slip deformation along 
the Loch Shin Line, NW Scotland 
 

Appendix A 

 

The country rocks, Loch Shin granite and associated veins viewed in the field and 

thin section. a) Oblique view looking down onto undeformed granite pegmatite vein 

(077/55 NNW) cutting ACW of compositional banding in Moine psammites (100 

metres to the SE of the Loch Shin granite (NC 5639 0613). Arrow shows inferred 

direction of vein opening based on offsets of thin semipelite layer. b) Thin section of 

undeformed granite pegmatite vein shown in (a) cross-cutting S0-S1-S2 fabric in 

Moine psammites (dashed yellow line). View in crossed polars, with igneous contact 

shown in red. c) Plan view in the field (NC 5631 0650) and d) in thin section (crossed 

polars) of typical undeformed Loch Shin granite (NC 5635 0631). e) Close-up plan 

view of irregular quartz-pyrite veins cutting Loch Shin granite (NC 5631 0650). f) 

Cross-section view of large NW-SE-trending quartz-galena veins (107/85N) cutting 

Loch Shin granite (NC 5630 0659). 

 

 



Appendix B 

 

Field and thin section views of the Grudie granite. a) Plan view of typical unfoliated 

Grudie granite with large pink K-feldspar and grey quartz phenocrysts/xenocrysts 

(NC 5268 0450). b) Oblique section view of slickenlined joints with chlorite and 

epidote mineralization (NC 5267 0444). c) Thin section of typical K-feldspar (in 

extinction) and d) polycrystalline quartz xenocryst/phenocrysts within Grudie 

granite (NC 5310 0427). 

 

 

 

 

 

 



Appendix C 

ZIRCON U-Pb ISOTOPE ANALYSIS  

Sample, mineral separation and analytical protocols 

A representative sample of Loch Shin granite from the SW west shore of Loch Shin 

(DS1-11; Fig. 2b, NC 5635 0625) was selected for Zircon U-Pb LA-ICP-MS 

geochronology. Zircons were separated from sample DS1-11 using heavy liquids and 

an isodynamic magnetic separator. The zircon fraction for analysis was handpicked 

under a binocular microscope and mounted in epoxy resin along with grains of the 

zircon reference material Temora 2 (Black et al. 2004). After polishing and carbon 

coating, cathodoluminescence (CL) images of the zircons were taken with a KeDev 

Centaurus CL detector housed on a JEOL 6060LV SEM at the University of 

Portsmouth (accelerating voltage = 15 kV). 

 Laser ablation (LA)-ICP-MS U-Pb isotope analyses were undertaken at the 

University of Portsmouth, using a New Wave 213 nm Nd:YAG laser coupled with an 

Agilent 7500cs quadrupole ICP-MS. Analytical protocols and instrument conditions 

are described in detail by Darling et al. (2012). Key points of the methodology are: 

(i) line-raster ablation (aspect ratio 1:1.5), in order to minimise time-dependent 

elemental fractionation; and (ii) external normalisation to the zircon standard 

Plesovice (Slama et al. 2008) using a 30 µm beam diameter. Laser beam diameters 

used on unknown zircons ranged from 30 to 15 µm, reflecting the scale of target 

domains within the crystals. Accuracy was monitored via analyses of the zircon 

reference materials Temora 2 and GJ-1. Eight analyses of Temora 2 (20 to 30 µm 

beam diameter) yield a U-Pb concordia age of 417.4 ± 3.5 Ma, and eight analyses of 

GJ-1 (30 µm beam diameter) yield a U-Pb concordia age of 606.6 ± 3.8 Ma: both of 

which are within uncertainty of the ID-TIMS reference ages for these materials 

(Black et al. 2004, Jackson et al. 2004).  

 

 

 

 

 



Appendix D 

RHENIUM-OSMIUM MOLYBDENITE GEOCHRONOLOGY 

Mineral separation and analytical protocols 

Molybdenite samples present in the area of the Grudie Granite were isolated using 

traditional methods of crushing, heavy liquids, and water flotation (Selby & Creaser, 

2004). In contrast, given the minor abundance of molybdenite in the Loch Shin 

Granite sample (AF33-10), and to avoid losing molybdenite during crushing, the 

mineral separate was achieved using a room temperature HF dissolution of quartz 

protocol (Lawley & Selby, 2012).  

The Re-Os analysis follows that outlined by Selby & Creaser (2004), which 

determines the Re and Os abundance of the molybdenite using isotope dilution 

negative thermal ionization mass spectrometry (ID-NTIMS). An aliquant of 

molybdenite, together with a known amount tracer solution (isotopically normal Os 

+ 185Re) are digested and equilibrated in a carius tube with 1ml 11N HCl and 3ml 

15N HNO3 for 24hrs at 220˚C. Osmium is isolated and purified from the acidic 

solution using solvent extraction (CHCl3) and micro-distillation methods. The Re is 

separated and purified using anion chromatography. The separated Re and Os were 

loaded on Ni and Pt wire filaments with BaNO3 and BaOH activators, respectively, 

and analyzed for their isotope compositions using NTIMS via static Faraday 

collection. Analytical uncertainties are propagated and incorporate uncertainties 

related to Re and Os mass spectrometer measurements, blank abundances and 

isotopic compositions, spike calibrations, and reproducibility of standard Re and Os 

isotope values. The molybdenite analyses of this study were conducted during the 

same period as those of Lawley & Selby (2012). This study reported Re and Os 

blanks of <4 and 1 pg, respectively, with the 187Os/188Os of the blank being 0.25 ± 

0.02 (n = 2). Further, Re-Os model ages determined using the 187Re decay constant 

of 1.666×10-11 a-1 (Smoliar et al., 1996) of molybdenite reference materials 

(NISTRM8599 = 27.6 ± 0.1 and 27.6 ± 0.1 Ma; HLP-5 = 220.0 ± 0.9 Ma), which are in 

good agreement with their accepted values determined at other laboratories and 

those previously reported at Durham University (Markey et al., 1998, 2007; Porter 

& Selby, 2010). 



Appendix E 

FLUID INCLUSION ANALYSIS 

Analytical protocols 

Microthermometric analysis was performed on doubly polished wafers (~100 mm 

thick) using a Linkam THMGS 600 heating freezing stage, mounted on an Olympus 

transmitted polarised light microscope. The instrument is equipped with a range of 

special long working distance objective lenses ranging up to 100x magnification. 

Calibration of the stage was performed using synthetic fluid inclusion standards 

(pure CO2 and H2O). Precision is ± 0.5°C at 300°C and ± 0.2°C at -56.6°C. Following 

procedures outlined by Shepherd et al. (1985), the temperature of first ice melting 

TFM, the temperature of last ice melting TLM and the temperature of homogenisation 

TH were measured in quartz hosted two-phase liquid+vapour inclusions in all 

wafers (Fig. 9a). Fluid salinities were calculated using TLM and the equations of 

Bodnar (1993). In addition, clathrate melting temperatures recorded in three-phase 

(LH2O+LCO2+VCO2) aqueous-carbonic inclusions were used with the equations of Duan 

et al., (1996) to calculate their fluid salinities (Fig.9b). 

 Laser Raman Microspectroscopy (LRM) of fluid inclusions was performed 

using a Horiba LabRam II laser Raman spectrometer. The instrument is equipped 

with a 600 groove mm-1 diffraction grating, a confocal and optical filter system, a 

Peltier-cooled CCD detector (255 x 1024 pixel array), and is coupled to an Olympus 

BX51 microscope. Fluid inclusion gas and liquid phases were analysed at room 

temperature using a 532 nm laser focused through either a 50x or 100x microscope 

objectives. The spatial resolution of the 532 nm laser at the sample was 

approximately 2 µm. Individual analyses were performed for between 10 to 60 

seconds over the spectral range 1100 cm-1 to 4200 cm-1. The number of spectral 

accumulations per analysis typically ranged between 2 to 5 in order to maximize the 

signal-to-noise efficiency of the spectrometer. Calibration of the instrument was 

routinely performed between analyses using the Raman peak of a pure silicon 

standard (520.7 cm-1). Spectral uncertainty associated with the generation of Raman 

peak positions is estimated to be ± 1.5 cm-1 (2σ; 0.3%) based on replicate analyses 

of the standard. 



Appendix F 

 

Photographs of fluid inclusions (FI) trails from samples AF33-10 – Loch Shin Granite 

(a,b); AF35-10 (c,d) and AF02-10 (e,f) both from Gruide Granite. Scale bar = 50 μm. 

 

 

 



Appendix G 

 

Photomicrographs of Type 1 and Type 3 inclusions within quartz grains in sample 

AF35-10 (Gruide granite) analysed under Laser Raman Spectroscopy. Type 1 two-

phase liquid-rich aqueous inclusions distributed in isolated cluster (a) and trails 

(b). Type 3 three-phase aqueous-carbonic inclusions distributed in clusters (c and 

d). 

 

 

 

 



Appendix H:  

Re-Os data for molybdenite from Lagalochan Porphyry Cu-Mo system 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix I: Coire Buidhe Fluid Inclusions  

Three types of fluid inclusion (Type 1, 2 and 3) were identified in vein quartz from 

Coire Buidhe (CB1A, B; see Porter & Selby 2010 for sample details), based on their 

morphology, composition and phase relations at room temperature. Type 1 

inclusions are three-phase (liquid H2O + liquid CO2 + CO2 vapour) at room 

temperature (~25°C). They are found as isolated inclusions, randomly distributed 

throughout the quartz, and appear to be primary or pseudosecondary in origin. On 

cooling, the carbonic phase in Type 1 inclusions freezes at ~ -120°C. Melting of the 

carbonic phase in all inclusions occurs between -57.1 and -56.5°C. Most melting 

temperatures are close to the triple point of CO2 (-56.6oC), indicating that the 

inclusions contain almost pure CO2. This is confirmed by Laser raman analysis that 

shows the volatile phase contains < 97.7% CO2, with minor CH4, N2 and H2S. 

Clathrate melting, in the presence of liquid CO2 occurred between 3.7 and 6°C and 

yields salinities between 7.1 and 11.1 eq. wt% NaCl using the equation of Duan et al. 

(1995) and the software program CLATHRATES (Bakker, 1997). Homogenisation of 

CO2 (to the liquid phase) occurs between 27 and 30.4°C, indicating a CO2 phase 

density of 0.57 to 0.68 g/cc. Total homogenization to the liquid phase occurs 

between 291 and 353°C. Type 2 aqueous inclusions are two-phase (liquid + vapour) 

inclusions and occur along healed microfractures that crosscut quartz grain 

boundaries. The temperature of first ice melting (TFM) takes place between -20.7 

and -23.8° C, close to the eutectic temperature of the H2O-NaCl-KCl system (-22.9oC). 

TLM values are between -3.1 and -5.1°C. Clathrate melting between 1.2 and 2.9°C was 

observed in some Type 2 inclusions. This indicates the presence of non-aqueous 

phases in Type 2 inclusions. Laser raman analysis of Type 2 inclusions confirmed 

that the vapour phase contains > 98% CO2 with minor amounts of CH4, N2 and H2S. 

Clathrate melting temperatures have been used to calculate salinities of 5 to 5.2 eq. 

wt% NaCl using software program CLATHRATES (Bakker, 1997). Type 2 inclusions 

homogenised to the liquid phase (L + V → L) between 261.9°C and 282.9°C. 

Type 3 inclusions are found in trails along annealed microfractures, that are 

occasionally crosscut trails of Type 2 inclusions. First ice melting temperatures were 

recorded between -21.3 and -24.6°C. TLM values lie between -2.7 and -4.9°C and 



correspond to salinities of 4.5 to 7.7 eq. wt% NaCl (Bodnar, 1993). Type 3 inclusions 

homogenized to the liquid phase (L + V → L) between 165.5 and 218°C. 
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