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Abstract

This paper presents a review of tactile technologies for human-computer inter-
activity via touch interfaces, where touch force is measured as a third dimension of
user input along with touch location. Until recently, tactile technologies for com-
puting applications have detected only the location of a touch (or several touches
simultaneously) with no additional information about the force or pressure the user
imparts to the interface. Such additional input may open up new applications in
force-enhanced gestures, for example the touch force may dictate the linewidth used
in drawing software, or the speed of a scroll gesture may be increased with increasing
applied force. Here we review the underlying physical principles behind several force
sensitive touch technologies. The latest innovations by leading technology developers,
only available in the patent literature, are also described and where public data exists
the force-resistance behaviours of several key technologies are compared in terms of
their sensitivity and range of response. The advantages and disadvantages of each
technology are discussed, along with the current and possible future applications in
consumer electronics. It is shown that the concept of pressure–sensitivity as an ad-
ditional user input mechanism is fast gaining traction, with many implementations
already found in commercial products. Furthermore, a study of the patent trends
shows that this functionality may soon become commonplace in the new generation
of consumer electronic devices.

Keywords: Tactile sensing, Human-computer interactions, Touchscreen technology

∗Corresponding author
Email addresses: sarah.dempsey@durham.ac.uk (S.J.Dempsey),

marek.szablewski@durham.ac.uk (M.Szablewski), del.atkinson@durham.ac.uk (D.Atkinson)



2

1. Introduction1

Tactile sensing has become increasingly important in human-computer interac-3

tions (HCI), introducing novel and intuitive ways for the user to interact with a4

computer interface, such as in machinery control panels, point-of-information (POI)5

and point-of-sales (POS) kiosks, and device interfaces in consumer electronics. Touch6

may be detected on an integrated trackpad (such as in a laptop) or on a transparent7

touchscreen overlaid onto the display (for example in smartphones and tablets), thus8

eliminating the need for a separate touch interface as the user can directly interact9

with the icons shown on the underlying display.10

Currently most touch interfaces can detect only the location of the touch, i.e.11

the device knows if and where it is being touched, but with no information about12

the force of the touch. However recent advances have begun to incorporate force or13

pressure sensitivity as a third dimension of user control. The pressure sensitive com-14

ponent may be incorporated directly into the touch location sensor. Alternatively,15

the pressure sensing component may take the form of force sensors external to the16

location sensing interface. This includes force sensors which are placed underneath17

the corners of the interface or force sensors found in an external device such as a18

pressure-sensitive stylus. The addition of pressure-sensitivity opens up new methods19

of interactivity, including pressure based text entry, menu selection and handwrit-20

ing/signature recognition [1, 2, 3], and force enhanced gestures for scrolling, zooming21

and image manipulation [4, 5].22

Force or pressure–sensitive tactile sensors can already be found in applications23

such as robotics and electronic skin [6, 7], and in biomedical applications such as bite24

force measurement in dentistry and human gait analysis [8, 9]. Here, tactile sensing25

may be defined as the “detection and measurement of contact parameters in a prede-26

termined contact area and subsequent pre-processing of the signals at the taxel level,27

i.e., before sending tactile data to higher levels for perceptual interpretation” [10].28

These applications have been the topic of many review articles which describe the29

latest research and innovation [11, 12, 13, 14].30

Whilst there exist several reviews on the underlying technologies for location31

sensing in touch interfaces [15, 16, 17, 18, 19, 20] and advances in multi-touch and32

3D gesturing [21, 22], to date there is no review in the literature which discusses33

the inclusion of pressure sensitivity into touch interfaces. The aim of this review34

paper is to draw together the various methods of adding pressure sensitivity to touch35

interfaces in HCI applications via specialised tactile sensors. First, we present a short36

introduction to the various methods of pressure sensing used for tactile applications,37
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along with the advantages and disadvantages of each. Then the applications of these38

sensors in HCI touch interfaces are discussed in detail. The technologies have been39

broadly split according to application, including keyboards, laptop trackpads, and40

transparent touchscreens. For the latter, a distinction is made between resistive and41

capacitive technologies. Together, these account for 80% of the total revenue and42

95% of all touchscreen units shipped in 2011 [15] and most pressure–sensing solutions43

are focussed here. However, the inclusion of pressure–sensing in other touchscreen44

technologies is also briefly discussed. A distinction is also made between pressure-45

sensing solutions which are incorporated directly into the touch module of the device46

(e.g. continuous thin films or 2D matrix arrays of sensors incorporated into the47

touchscreen structure) and a small number of discrete sensors placed outside of the48

touch module (e.g. four force sensors placed underneath the display).49

2. Pressure Sensing Mechanisms50
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Sensor Modulated Physical Pa-
rameter

Operating Principle Manufacture Details Advantages Disadvantages

Strain
Gauge

Resistance Applied pressure causes change
in length and cross–sectional
area of conductive coil

Can be micro–machined and
embedded into a polymer to
create a thick film sensor array
with mechanical flexibility

Well established design and manufacture processes
Easily integrated into existing circuitry
High spatial resolution achievable for micro–machined
strain gauges

Response scales with surface area – can be large in
the lateral dimension
Insensitive to lateral force
Sensitive to temperature fluctuation and humidity
Less sensitive than piezoresistive sensors
Non-linearity and hysteresis of response

Piezoresistive Resistance Applied pressure changes
inter–atomic spacing such that
electrons are promoted or
demoted from conduction band

Can be micro–machined and
embedded into polymer to cre-
ate a sensor with mechanical
flexibility

Well established design and manufacture processes
High sensitivity, especially to low applied pressure
Smaller lateral dimension than strain gauge
High spatial resolution achievable for micro–machined
piezoresistors

Piezoresistive material can be brittle and fragile
Relatively costly materials
When embedded into polymer there can be a loss in
sensitivity

Conducting
Polymer
Composite

Resistance Applied pressure deforms the
composite resulting in more
conduction pathways between
filler particles

Can be printed by screen–
printing or similar

Simple fabrication techniques mean low cost for large
area fabrication
Mechanically flexible and robust structure
Low power consumption due to high resistance of off–
state

Conduction is isotropic – can lead to low spatial res-
olution
Hysteresis effects due to mechanical properties of
polymer causes poor repeatability of response
Typically have a low dynamic range

Intrinsically
Conductive
Polymer

Resistance Applied pressure deforms the
polymer causing current flow
between adjacent polymer
chains

Can be printed by screen–
printing or roll–to–roll

Mechanically flexible and robust structure
Low-cost large-area fabrication

Typically low sensitivity
Conduction is isotropic - can lead to low spatial res-
olution

Piezoelectric Voltage Applied pressure causes redis-
tribution of internal charge and
produces a voltage

Can be printed by screen–
printing or roll–to–roll

High sensitivity
Mechanically flexible and robust structure

Cannot detect a dynamic force
Requires amplifier to boost output signal
Cross–talk between piezo– and pyroelectric effects
Cross–talk between sensor elements in array

Capacitive Capacitance Applied pressure decreases the
electrode separation and in-
creases the mutual capacitance
between the electrodes

Complex fabrication tech-
niques, e.g. photolithography
and thin–film deposition to
produce complex 3D structure

High sensitivity
Not affected by temperature variations
Small sensor size leads to high spatial resolution

Sensitive to electromagnetic interference leading to
poor signal to noise ratio
Requires relatively complex circuitry with high power
consumption
Cross-talk between sensor elements in an array

Inductive Magnetic inductance lead-
ing to a change in voltage

Applied pressure causes dis-
placement of a magnetic core
through a primary coil, induc-
ing a voltage which is measured
by secondary coil

Typically bulky, mechanical
structure not suited for thick or
thin film deposition techniques

High sensitivity and dynamic range
High repeatability of response with little or no hys-
teresis

Bulky structure such that arrayed sensors would pro-
vide low spatial resolution
Possible frictional losses between magnetic core and
coil

Optical Light intensity Applied pressure deforms opti-
cal fibre and decreases the light
intensity measured at CCD de-
tector

Sensors may be produced by
embedding optical fibres in a
polymer

No cross-talk between sensors
Insensitive to external electromagnetic noise
Can be flexible and durable when embedded into poly-
mer

Hysteresis effects due to mechanical properties of
polymer leading to poor repeatability of response
Signal can be attenuated by initial misalignment of
the sensor leading to false–touch effects.

Table 1:
Comparison of pressure–sensitive tactile technologies



The most commonly used tactile or touch pressure sensors are based on resistive,51

capacitive, piezoelectric, inductive and optical sensing. Each of these techniques has52

advantages and disadvantages which are summarised in Table 1. Further information53

on tactile sensors can be found elsewhere in the literature, for example Yousef et al54

give an excellent review of tactile sensor arrays for robotics applications, detailing55

the spatial resolutions of each sensor array discussed [13].56

2.1. Resistive Pressure Sensors57

2.1.1. Strain Gauges and Piezoresistors58

59

A piezoresistor exhibits a change in electrical resistance with applied stress. This60

type of response is seen in semiconducting materials including germanium and silicon61

(polycrystalline or amorphous). When a stress is applied to a semiconductor resistor62

with initial resistance R, the change in resistance ∆R is given by63

∆R = R(πlρl + πtρt) (1)

where π is the piezoresistive coefficient and ρ is the applied stress along the64

longitudinal and transverse directions, denoted by the subscripts l and t respectively.65

The piezoresistive coefficient is related to the change in the inter-atomic spacing66

when a stress is applied to the material, making it easier or harder for electrons to67

be promoted into the conduction band.68

Piezoresistivity may also be observed in metals, although the piezoresistive coef-69

ficient is often much smaller than that of semiconductor materials. Here, the effect70

is mostly due to the change in geometry of a conductor under applied stress which71

affects the current flow through the material. Strain gauges use this effect to detect72

applied pressure. They have long winding conductive coils so that when the sensor is73

deformed through an applied pressure the cross section of the coil decreases and the74

conduction length increases, thus decreasing the resistance through the coil. Strain75

gauges typically have a higher sensitivity than piezoresistors. However piezoresistors76

are capable of giving a higher output per unit area and are typically smaller in the77

lateral dimension.78

Both piezoresistors and strain gauges can be embedded into an elastomeric poly-79

mer which provides mechanical flexibility. However the response of the sensor can80

then become prone to creep and hysteresis effects, especially for piezoresistive sensors.81

2.1.2. Conducting Polymer Composites82

Conductive polymer composites comprise electrically conductive filler particles83

dispersed into an insulating polymer matrix. The conductivity of the composite is84

5



Some conduction Increasing conduction

Electrodes
Conductive
particles Insulating

polymer

Applied Force

Figure 1: A network of conducting filler particles is dispersed in an insulating polymer matrix at
a loading close to the percolation threshold and deposited between two electrodes. Compression of
the composite increases the number of conductive pathways throughout the composite.

strongly dependent on the filler volume fraction and the nature of conduction be-85

tween individual particles. At a low loading the particles are well dispersed and86

there are very few conductive pathways through the composite, leading to high re-87

sistance. At the critical particle loading (the percolation threshold) the conductivity88

increases as a greater number of conductive pathways are formed. This is described89

by percolation theory or effective medium models. At loadings close to the perco-90

lation threshold the resistance becomes very sensitive to deformation. A pressure91

sensor may be realised by fabricating a conducting polymer composite such that in92

its natural undeformed state the filler content is close to the percolation threshold.93

Then when the composite is deformed the spacing between filler particles decreases94

producing a large increase in the conductivity of the composite. This mechanism is95

represented in Fig.1. The sensors are naturally flexible and are usually robust with96

a simple and well-established manufacture process. However, the response may be97

prone to hysteresis effects and typically has a low sensing range. Some conductive98

polymer composites have been fabricated to exhibit a large dynamic range in re-99

sponse to pressure. In this case there is a high loading of conductive particles which100

have a rough surface texture which is completely wetted by the polymer. Conduction101

is via a pressure-induced quantum tunnelling conduction mechanism [23, 24, 25].102
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2.1.3. Conductive Polymers103

For intrinsically conductive polymers, the flow of electrons is through the con-104

jugated backbone of the polymer which has either p-type or n-type doping. Com-105

pression of the polymer allows charge to transfer between adjacent polymer chains.106

Examples of intrinsically conductive polymers include polyaniline, polypyrrole and107

polyacetylene. Their use as a flexible pressure sensor has been well researched, for108

example see [26, 27] and in many cases they can be deposited using a screen-printing109

or roll-to-roll printing process [28]. Whilst their mechanical flexibility makes them110

robust sensors, in their basic form they are inelastic and typically exhibit a low111

sensitivity to applied pressure.112

2.2. Capacitive Pressure Sensors113

The capacitance change between a fixed electrode and a deformable electrode,114

separated by an air gap or other dielectric medium, may be used to detect an applied115

force. The capacitance between two plates of area A separated by distance d by a116

medium with permittivity εr is given by117

C = ε0εr
A

d
. (2)

Hence, a change in the spacing between electrodes, for example caused by a force118

applied to the upper electrode, can result in a measurable change in capacitance. It119

is also possible to use a spacer layer whose dielectric properties change with applied120

force. Capacitive sensors show high sensitivity even at low applied forces and they121

are insensitive to temperature variations. Sensor arrays can be printed onto flexible122

thin films, for example, Pritchard et al demonstrate an array of capacitive sensors123

with 150 nm thick gold electrodes and a 1.5 µm thick Parylene C dielectric layer [29].124

Substrate dependent, the sensors can be very thin and the sensor arrays are capable125

of giving a high spatial resolution. However complex circuits are often required to126

address and read-out from each capacitive sensor in the array and there is a problem127

of cross-talk between nearby sensors. The sensors also have a high sensitivity to128

external electromagnetic interference.129

2.3. Piezoelectric Pressure Sensors130

Piezoelectric materials undergo a change in the surface charge density with the131

application of stress, due to either the formation or realignment of induced dipoles132

within the material. When the piezoelectric material is placed between two elec-133

trodes, a voltage can be measured where the amplitude is directly proportional to134

the stress applied and to the piezoelectric coefficient. Pyroelectric materials gen-135

erate a voltage due to changing temperature. When thermal energy is absorbed136
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Figure 2: (a) Molecular arrangement inside a P(VDF-TrFE) nanocrystal, where black circles rep-
resent carbon atoms, grey circles represent fluorine atoms and white circles represent hydrogen
atoms. The distribution of electrical charge produces a permanent dipole moment. (b) Thin poly-
mer film containing nanocrystals of P(VDF-TrFE). Electrical poling results in the alignment of the
nanocrystal dipoles along the direction of the applied electric field. Compression of the film will
cause a change in dipole orientation, inducing an electrical signal.

the material expands or contracts, again changing the surface charge density. The137

ferroelectric polymer polyvinylidene fluoride (PVDF) exhibits both a large piezoelec-138

tric and pyroelectric responses and can be printed to form a transducer or pressure139

sensor device [30, 31, 32].The copolymer P(VDF-TrFE) (polyvinylidene fluoride–tri–140

fluoroethylene) is often used as it has a greater crystallinity after annealing. The141

structure of P(VDF-TrFE) is shown in Fig.2(a). The alignment of hydrogen and flu-142

orine atoms give the structure a permanent electric dipole moment. Fig.2(b) shows143

a thin film composed of P(VDF-TrFE) nanocrystals, where the dipoles have been144

aligned through the application of an electric field double that of the coercive field145

strength (a process called poling). Upon compression of the film by an applied force,146

the orientation of the dipoles is altered and an electrical signal is induced.147

Once touched, the induced voltage discharges over a short time-scale through the148

internal resistance of the PVDF layer, and this is a large problem for the detection of149

static forces. This technology is therefore unsuitable for the detection of a constant150

force. There can also be a problem of cross-talk between adjacent sensors in an array.151

However the voltage output can be large even for small deformations due to the high152

sensitivity of the piezoelectric material, and the sensor elements do not require a153

power supply. They can be printed, or otherwise deposited, onto flexible substrates154

making them well suited for flexible applications.155
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2.4. Inductance Pressure Sensors156

A primary conductive coil induces a magnetic field which is then sensed in a157

secondary sensing coil. This principle is used in the linear variable differential trans-158

former (LVDT), where displacement of a magnetic core through the primary coil159

changes the induced voltage measured in the sensing coil. This voltage is directly160

proportional to the length of core magnetically coupled to the sensing coil. The LVDT161

is primarily used as a displacement sensor. Displacing the magnetic core changes the162

coupling length between core and coil and produces a measurable change in the163

amplitude and phase of the voltage in the sensing coils. The displacement of the164

magnetic core can also be linked to the force applied to it so that this type of sen-165

sor is also suitable for force or pressure measurement. The sensitivity and dynamic166

range of these sensors are typically very high, however they can be quite bulky so167

that a sensor array may give a low spatial resolution. However, they show virtually168

no hysteresis effects and have a high repeatability.169

2.5. Optical Sensors170

A basic optical pressure sensor consists of an LED light source and a CCD detector171

separated by a length of optical fibre. When a force is applied to sensor, the optical172

fibres bend and the light received at the CCD is attenuated. It is possible to embed173

a mesh of optical fibres into an elastomer to produce a flexible pressure sensitive174

sensor [33]. Optical sensors are insensitive to electromagnetic noise and suffer no175

cross-talk effects between adjacent sensors. They can be robust and flexible when176

embedded into a polymer matrix. However initial bending or misalignment of the177

sensor may produce unwanted signal attenuation and false–touch effects.178

3. Sensor Requirements and Considerations for Applications in HCI Touch179

Interfaces180

A force sensor may be defined as giving a constant reading as a function of applied181

force irrespective of the contact area. A pressure sensor will give, with a constant182

applied force, a reading which is inversely proportional to the area of applied force.183

Most sensors described in this review are a combination of both, where the sensor184

output depends on both the applied force and the contact area. However, the term185

‘force sensitive’ is often used in the literature and especially in the patents when186

describing these devices. The devices are not always true force sensors and are not187

designed to measure exact levels of applied force. Rather, the device is designed188

to detect varying levels of applied force. The software can then execute a specific189

response depending on the force level detected, such as a light touch or a hard press.190
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For the purpose of HCI touch interfaces a light touch may be of the order of 0.1 N191

and a hard press up to 10 N. This force may be detected indirectly through:192

� An increase in contact area between electrodes, associated with applying a193

force to a specific area of the device (purely a surface effect)194

� Deformation of one electrode relative to the other causing either195

– Compression of a piezoresistive layer deposited between the electrodes,196

and therefore producing a change in resistance through the sensor197

– Straining of a piezoelectric layer deposited between the electrodes, and198

measuring a change in voltage across the sensor199

– A change in capacitance between the two electrodes resulting from the200

change in spacing between them201

� A combination of the above.202

Of course, in real-world applications force is applied via a human fingertip or203

a stylus over a finite area. For the former, the area over which the force applies204

depends upon the force itself – as a human fingertip is compliant by nature and the205

harder the press the larger the touch area. It is often assumed this contact area206

remains constant, and testing of the touch interfaces usually involves a probe of207

fixed dimension. The area over which the force applied is important, especially for208

touchscreens which rely on deformation of the upper electrode. For the same value209

of force, a larger area upon which the force acts will result in a smaller maximum210

deflection than if the force is applied over a smaller area. Hence only a measure of the211

pressure will allow direct comparison between technologies for which the dimensions212

of the testing probe are different. However, in many cases (especially for those in the213

patent literature) this level of detail is not provided. Often in the patents the applied214

force is quoted in units of mass. Here we have approximated 10 g as equal to 0.1215

N force for purposes of simplification. Throughout this review, the term pressure–216

sensitive is used to describe touch interfaces capable of detecting applied levels of217

force over a fixed contact area as described above. Where the dimensions of the218

test probe are identical, the response is quoted in units of force. For comparison219

of different technologies for which the available data is collected using probes of220

different dimensions, whenever possible the response is quoted in terms of pressure.221

If there is no data on contact area, the force is used instead with the caveat that222

direct comparison is difficult.223
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Figure 3: Projected mutual capacitive touchscreen. The approach of a conductive object such
as a finger detracts from the charge stored between two fixed electrodes, resulting in a change in
capacitance. For a matrix array of electrodes, each electrode intersection is capable of measuring a
change in capacitance and hence a touch event.

The specific requirements for each sensor are strongly dependant on the intended224

application and how the input pressure is intended to be used. For example, in a225

keyboard the input pressure may be measured underneath each key and may define226

whether the output is an upper or lower case letter. Here, a distinction need only be227

made between a light touch and a hard press. For touchscreens overlaid on top of a228

display (either LCD or OLED), or for a trackpad of a laptop or similar, it may be229

advantageous to differentiate many different levels of pressure. Here, such detailed230

pressure information may be beneficial, for example for controlling brush stroke size231

in drawing software.232

4. Applications of Pressure Sensors in HCI Touch Interfaces233

4.1. Capacitive Touchscreens234

4.1.1. Projected Capacitive Touchscreens235

Projected capacitive (P-Cap) touchscreens work by measuring a change in ca-236

pacitance associated with the increasing proximity of a finger to the touch interface.237

(Note that this is an entirely different principle to capacitive pressure sensors as238

described in Section 2.2 which detect pressure by the change in separation of two239

conductive electrodes). In self-capacitive systems, the capacitance of the human240

body acts to increase the self-capacitance of a single electrode. For mutual capaci-241

tive systems, the approaching finger detracts from the charge stored between a pair242

of electrodes and reduces the capacitance between the electrodes, as shown in Fig.3.243
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The transparent electrodes, usually Indium doped Tin Oxide (ITO), are printed in a244

matrix pattern such as rectilinear rows and columns or interlocking diamonds. Each245

electrode intersection is scanned individually, allowing every touch to be registered.246

Capacitive touchscreens (specifically P-Cap) are currently the market leader for247

consumer electronics applications. With the release of the Apple iPhone in 2007,248

capacitive technology became mainstream and is now the standard for touchscreens249

in consumer electronics. Surface capacitive touchscreens are also available but are less250

common. Further information on all types of capacitive touchscreens can be found in251

the literature [15, 16, 17]. P-Cap touchscreens can only detect input from a human252

finger or conductive stylus and are highly sensitive to electronic noise. Performance is253

hindered by surface moisture or other screen contaminants. Because each electrode254

intersection is scanned using a high sampling rate the power consumption is high255

compared to resistive touch screens. However, they currently have higher spatial256

resolution than resistive touchscreens, require a very low activation force and are257

more durable due to their rigid design. These benefits have led to the dominance of258

P-Cap in touch interfaces for smartphones, tablets and trackpads.259

Previous attempts to measure applied pressure in P-Cap touchscreens associated260

the size of the contact area with the force applied, as a harder press will result in a261

greater contact area between finger and screen due to the compliant nature of the262

human fingertip. A larger contact area means that more electrode intersections are263

triggered and by integration of the capacitance values recorded at each intersection264

the contact area can be calculated and the applied pressure can be estimated. This265

approach has been demonstrated in [34, 35]. A difference in contact area may266

also be used to differentiate between adult and child input and to adjust the device267

functionality accordingly [36]. However, one potential issue is that this approach268

requires additional calibration to compensate for variation in user finger sizes and269

has limited accuracy. For example, without user calibration the method cannot270

distinguish between a hard press from a small finger and a light touch from a large271

finger. It is difficult to detect anything beyond a moderately hard press, beyond272

which the touch area does not increase significantly.273

4.1.2. In-Cell ‘Pressed’ Capacitive Touchscreens274

In-cell touch refers to the internalisation of the touch sensors inside an LCD pixel275

array. As such, this technology is currently only found in the established LCD display276

industry and is not currently available for the newer OLED displays. Typically the277

sensor is integrated into the thin film transistor (TFT) array, the colour filter layer,278

or both. This should eliminate the need for further cover sheets or coatings on top279

of the LCD display. The benefit is that both the touch interface and the display are280
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Figure 4: Pressed capacitive in-cell touch interface. The touch electrodes are incorporated into the
LCD display and are deposited on the thin film transistor (TFT) substrate and the colour filter
(CF) substrate. When the top surface of the LCD is pressed the colour filter substrate deforms,
reducing the distance between the two electrodes and causing an increase in the mutual capacitance.

made as one manufacture process.281

There are three main in-cell touch technologies; capacitive, voltage and light282

sensing, full details of which can be found elsewhere [37]. To the author’s knowledge283

pressure–sensitivity has not yet been incorporated into in–cell voltage or light sensing284

technologies.285

In-cell capacitive sensing has had the most success in terms of total research and286

commercial products, and can be further categorised as pressed, self, or mutual ca-287

pacitive depending on the operating principles. The principles for the self and mutual288

capacitive are the same as for the P-Cap technology described earlier. However in289

the case of in-cell technology the touch electrodes are incorporated into the display290

module instead of being manufactured entirely separately from the display, allowing291

for thinner, lighter devices. Mutual in-cell P-Cap touchscreens, developed by LG292

Display for Apple, Inc. can be found in the iPhone 5 and iPhone 6 models. However,293

just like for P-Cap technology, internalising the detection of applied pressure is not294

currently possible.295

‘Pressed’ capacitive in-cell touch sensing elements consist of two electrodes: a296

sensor spacer is incorporated onto the colour filter glass, and a flat electrode is297

deposited onto the TFT layer, underneath the liquid crystal array of the LCD. Often298

there is a further column spacer to prevent full contact between the two electrodes,299

as demonstrated in Fig.4. This uses the sensing principle described in Section 2.2.300

When a force is applied to the upper surface of the LCD, the colour filter glass301

deforms, causing the spacing between the electrodes to decrease and/or the dielectric302

constant of the liquid crystal material to change. Then, by Equation 2, a change303

13



C
ap

ac
ita

nc
e 

(p
F

)

0 0.1 1
0

1

2

3

4

5

Pressure (N/mm2)

0.01

6

H Kim

K Kim

Figure 5: Capacitance output as a function of applied pressure, using data taken from [38, 40].

in the mutual capacitance between the two electrodes may be measured. In this304

way both touch location and touch force can be measured. Note that although the305

mutual capacitance is measured, this is very different to the mutual P-Cap technology306

described earlier. The electrode configuration is different, and in this case the mutual307

capacitance is changed by a physical force rather than the approach of a conductive308

object which ‘steals’ charge from the electrodes, as is the case for P-Cap. The touch309

resolution depends on the number of display pixels per touch sensor (and therefore310

the total number of touch sensors present in the entire display). This is typically in311

the range of 4:1 (high touch resolution) to 16:1 (lower touch resolution).312

Because of the relation between the deformation (electrode separation) and the313

capacitance, this technology seems a promising candidate for the detection of pres-314

sure. Research has been conducted which investigates the change in capacitance with315

applied force. H. Kim et al designed and fabricated a 20x20 array of pressed capaci-316

tive touch sensors [38, 39]. Indium Zinc Oxide (IZO) electrodes were deposited onto317

flexible polycarbonate films. On the lower electrode an insulating layer of the poly-318

mer SU-8 was deposited at a thickness of 5 µm. The two electrodes were separated319

using spacer columns of SU-8, creating a void space 8 µm in height between the two320

electrodes. The insulator and spacer layer was formed from the polymer SU-8. The321

total thickness of the sensor array was 253 µm and an average optical transmittance322
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of 86 % in the visible light range (380–770 nm) was measured. A force gauge with a323

contact area of 1 mm × 1 mm was used to apply force up to 0.8 N. The data, taken324

from [38], is replicated in Fig.5 which shows the measured capacitance as a function325

of the applied pressure on the touchscreen. It can be seen that the capacitance in-326

creases linearly from an initial value of 0.9 pF at zero pressure to around 4.5 pF at327

an applied pressure of 0.1 Nmm−2. After this the capacitance value saturates. Nu-328

merical simulation confirmed that a force of 70 mN applied over 1 mm2 was required329

to deflect the top electrode by 8 µm. At this maximum deflection the electrodes are330

in contact and there will be no further increase in the capacitance. Whilst this result331

demonstrates the principle of pressure sensing via pressed capacitive touch sensors,332

this particular sensor is only capable of differentiating applied force up to around333

0.1 N and cannot differentiate anything beyond a light touch (0.1 N). Therefore, the334

pressure sensing capabilities are very limited.335

K. Kim et al designed a similar sensor array using single wall carbon nanotube336

(SWCNT) electrodes separated by a compressive silicone gel [40]. The cross-array of337

electrodes were formed by scribing and patterning of SWCNT coated PET substrates.338

The electrode separation (silicone thickness) was approximately 500 µm. The optical339

transmittance was 81 % measured at a wavelength of 550 nm. The touchscreen was340

tested at forces from 0 to 5 N using a probe with diameter of 8 mm. The pressure-341

capacitance response, using data replicated from [40], is shown in Fig.5. It can be342

seen that the capacitance increases from and initial value of 1.92 pF at zero applied343

pressure to 3.42 pF at a pressure of 3.5 Nmm−2. It is clear that the magnitude of the344

electrode separation plays an important role in determining the range of forces the345

touchscreen is sensitive to. When contact area is taken into account (as the same346

force, applied over a larger area will result in a smaller vertical displacement than for347

a force applied over a smaller area) a greater saturation force may be achieved using348

a greater electrode separation. However in practice a large electrode separation is349

disadvantageous, as it adds significantly to the overall thickness of the touchscreen.350

For devices such as smartphones and tablets, slimness is often prioritised.351

One potential problem with the pressed-capacitive approach is that the electrode352

spacing, and therefore capacitance change, tends to be very small and the signal353

to noise ratio (SNR) is low. This is especially true for low applied forces. Noise is354

introduced by capacitive coupling between the force sensing and the display circuitry355

and is also inherent within the LCD. Often, more complicated circuitry is required356

to boost the signal and reduce the noise in the system. A research group affiliated357

to Sharp Laboratories have developed one method of overcoming the problem of358

poor SNR [41]. A high sensitivity active pixel sensor (APS) circuit is used along359

with in-pixel signal amplification. The circuitry of the force sensors and LCD are360
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kept separate by using a series of bumps on the upper deformable electrode. The361

conductive coating on these bumps is electrically separate from the pixel electrodes.362

On the bottom electrode, a guard ring is etched around the sensor capacitor structure363

to electrically isolate the liquid crystal material in the force sensing region from the364

display pixel region. This reduces the electrical noise and allows in-pixel amplification365

of the sensor signal. Whilst there is no information regarding the thickness of the366

sensor build, the output voltage (calculated from the change in capacitance) is found367

to increase for applied forces between 0 and 2.5 N. The sensitivity of the response368

can be further modified by variations in the APS circuitry. C. Kim et al have also369

designed a similar device using active matrix circuitry [42]. In this case, the electrode370

gap is just 0.5 µm. However, only forces up to 0.2 N have been investigated using371

a 0.8 mm test probe diameter. The complex circuitry can often lead to a high372

power demand in these devices. Huang et al have counteracted this by using an373

algorithm which rectifies the non-linear relationship between applied force and output374

capacitance [43]. The touchscreen prototype by Chen et al can measure both normal375

and shear forces using an offset electrode pattern [44].376

Despite the advances in read-out circuitry and enhanced SNR, a fundamental377

problem of pressed in-cell capacitive sensors for touchscreen technologies is the poor378

durability. Because the device is reliant on deformation of the color filter glass layer,379

there can be no protective cover glass on the top surface of the device. A cover glass380

layer is vital in high-end applications such as smartphones and tablets, to protect the381

LCD display from damage. Cover glass is just not compatible with pressed in-cell382

technology, as a greater activation force would be required to produce any response,383

making the device insensitive to light touches. Because of the greater stiffness of a384

thick cover glass layer, the area of deflection becomes larger for a given force resulting385

in greater error in the measured touch location. Furthermore, applying pressure to386

an LCD display can cause image artefacts which can last even after the finger is387

removed from the screen.388

Several key technology companies, including Synaptics and Apple Inc., have389

patent applications which describe the incorporation of a pressed capacitive layer390

into a touchscreen [45, 46, 47]. In this format there are usually three sets of elec-391

trodes, where the lower two define a p-cap location sensor and the third is printed392

onto a deformable substrate which lies at the top of the electrode stack. The capac-393

itance change between these electrodes and the uppermost in the p-cap sensor array394

can be used to quantify the applied force. However, to the author’s knowledge this395

type of touchscreen can at present only be found in the Samsung ST550 and TL220396

cameras. Here, the user is advised not to use sharp objects on the screen, and is397

further warned about the potential of discolouration of the LCD screen if the screen398
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Figure 6: Four-wire resistive touchscreen. Two transparent electrodes are separated by an array
of spacer dots. Touch by any object causes the upper electrode to deform and contact the lower
electrode. The resistance of the electrode material acts as a voltage divider, where the ratio of the
measured voltages give the location of the touch. In this format, only a single touch can be detected
at any one time.

is pressed too hard [48]. The pressure sensitivity of this kind of touchscreen is not399

utilised at all in the camera.400

4.2. Resistive Touchscreens401

Resistive touch sensing was first commercialised by Elographics, Inc. in 1971,402

with a transparent touchscreen produced in 1977. A four-wire resistive touchscreen403

is shown in Fig.6. Two substrates, one of which must be sufficiently flexible, are404

coated with a transparent conductor such as ITO to form the electrodes. These405

are separated by an air gap created by small spacer dots (for example insulating406

glass beads) which prevent initial contact. When the user presses onto the flexible407

substrate, the two electrodes make electrical contact and a voltage is measured. The408

resistance of the ITO acts as a voltage divider, so that the ratio of voltages measured409

can be used to determine the position of the touch. In the four-wire format only410

a single touch may be detected at any one time. However, in 2005 JazzMutant411

(renamed Stantum in 2007) developed multi-touch resistive touchscreens using their412

patented Interpolated Voltage Sensing Matrix (iVSM) [49]. Here, the top and bottom413

electrodes are deposited in rows and columns, with each intersection forming a square414

with sides of 1.5 mm. Each square acts as a digital switch, with a current flowing415

when top and bottom electrodes make contact.416

The input for a resistive touchscreen can be applied by a finger or any other417

(non-sharp) object, whether conductive or insulating. They have a lower power418

consumption than capacitive–style touchscreens as current only flows in the active419
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on-state, and they are also cheaper per unit area. However, the main disadvantages420

are that only a single touch can be detected (in the 4-wire configuration) and the421

durability is poor, as ITO printed onto a flexible substrate is known to crack and422

flake when flexed [50]. A high activation force is also required that depends on the423

mechanical flexibility of the upper electrode and the depth of the air gap. Current424

applications for resistive touchscreens are usually in the commercial and industrial425

markets, for example retail point-of-sales and point-of-information kiosks, automo-426

tive and industrial touch controls.427

For transparent touchscreens, it is possible to print a pressure–sensitive layer428

directly onto one of the transparent electrodes, for example using a screen-printing429

process. With a deformable upper electrode an applied pressure will act to modify430

the resistance of this layer. For a matrix array of electrodes, the resistance at each431

intersection is modified by the pressure–sensitive layer. The intersection with the432

lowest resistance corresponds to the touch location, and the resistance value indicates433

the level of applied pressure. For such a layer, several technical requirements must434

be met. For use in a touchscreen overlaying a display, there must be appropriate435

light transmission through the layer. The response must be uniform across the layer436

and be repeatable for a large number of presses. The resistance of the layer must437

show adequate variation over a range of forces from a light touch (0.1 N to a hard438

press (10 N), in order to create a number of pressure levels that can be differentiated439

by the read-out electronics. The layer should also be responsive at very light touches440

in order to minimize the activation force. Here we review several pressure sensitive441

layers that can be incorporated into a resistive touchscreen. They all comprise a442

transparent conductive polymer composite as described in section 2.1.2 deposited443

between two (transparent) electrodes, but the structure of the composite material is444

different in each case.445

Motorola Solutions, Inc. (‘Motorola’) have developed a transparent pressure sen-446

sitive conducting polymer composite for use in touchscreen applications which is447

currently patent pending [51]. Conductive nanoparticles less than 100 nm in size,448

e.g. In-doped SnO2 (ITO), SnO2 or ZnO, are dispersed in a translucent insulating449

polymer such as a phenoxy resin, polyether, acrylic or silicone. The composite can be450

deposited onto a transparent electrode by spin coating, dip coating or screen print-451

ing and is then cured to produce a layer 1-10 µm thick. A prototype multi-touch452

enabled touchscreen using this pressure sensitive layer has been demonstrated [52].453

The particle loading is 20-30 % by volume, and the layer is printed at a thickness454

of 1 µm and sandwiched between perpendicular arrays of transparent conductive455

electrodes. Optical transmission through the pressure sensing layer is at least 94456

% of transmission through glass. A contact pressure cannot be established as no457
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information is given on the area of the force-testing probe.458
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Figure 7: A comparison of the force-resistance response for various touchscreen technologies, repro-
duced from data provided by Motorola Solutions, Inc. [52], Stantum [56], 3M Innovative Property
Company [57] and Peratech Holdco Ltd [62]. The resistance through the touchscreen is measured
as a function of applied mass. Lines are drawn for each data set as a guide to the eye.

Instead, a typical force-resistance response is shown in Fig.7, reproduced from459

data provided in [52]. It can be seen that the resistance decreases exponentially with460

applied force, dropping from 20 MΩ at zero load to less than 5 kΩ for a 1 kg load.461

However, a significant activation force of 0.04 N (40 g) is required before resistance462

begins to decrease and so very light touches cannot be detected. Motorola have463

a number of other patent applications, including the incorporation of the pressure464

sensitive layer into a device and using the layer to validate touch inputs and eliminate465

false touch readings [53, 35].466

It is possible to further control the conduction pathways by the alignment of467

magnetic filler particles using an external magnetic field. This effect has been stud-468

ied previously for polymer composites containing nickel particles and carbon nan-469

otubes [54, 55]. By applying an external magnetic field, the particles are aligned470

into columns which can span one dimension of the composite. In a pressure sensi-471

tive layer, the particles may be arranged into columns spanning the top and bottom472

electrodes, as shown in Fig.8. A lower particle loading is required to produce the nec-473

essary conduction pathways between the electrodes. Stantum have developed such474
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Figure 8: Conducting magnetic particles are dispersed in an insulating polymer and aligned into
columns by applying an external magnetic field. The columns act as conductive pathways between
top and bottom electrodes. By compressing the layer, the distance between neighbouring particles
decreases, and charge transfer through direct percolation or quantum tunnelling increases, reducing
the resistance through the sensor. This principle is used in a force sensing layer developed by
Stantum [56].

a layer using this principle, which is currently patent pending [56]. Nickel particles475

are dispersed in an insulating polymer, for example silicone or polyurethane, at a476

loading of 0.3-10 % by volume. The nickel particles have a diameter of 2-5 µm and477

have a spiky surface topography, where the surface protrusions can be greater than478

1 µm in length. The composite is deposited as a film 50-100 µm thick, and an ex-479

ternal magnetic field of strength 3-10 mT is used to align the magnetic particles into480

columns spanning the thickness of the printed film. By adjusting the magnetic field481

strength the cross-sectional diameter of the columns can be altered, but is usually in482

the range of 20-25 µm. By applying a pulsed or sinusoidal magnetic field the cross483

section can be reduced to 10 µm. The strength of the magnetic field also controls484

the distribution of columns across the film.485

When the layer is deformed the separation between the particles in each col-486

umn decreases and more conduction pathways are formed, as shown in Fig.8. The487

resistance of each pathway may also decrease. It is known that a close proximity488

between nickel particles as described above can result in field-assisted quantum tun-489

nelling [23, 24]. A force-resistance response for loads up to 500 g is shown in Fig.7,490

reproduced from data given in [56]. Again, no details on the contact area of the491

probe are given so contact pressures cannot be calculated. At zero applied force, the492
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resistance is of the order 100 kΩ. A load of 100 g decreases the resistance to 10 kΩ,493

beyond which the resistance decreases marginally for loads up to 500 g. This insen-494

sitivity to larger applied forces may limit its applicability. Because fewer particles495

are required to produce the well-defined conductive pathways, greater optical clarity496

of the layer can be achieved. However, in practice the large film thickness of 50-100497

µm will have a detrimental effect on the optical transmission. Details on this have498

not yet been reported.499
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Figure 9: Conducting particles are dispersed in an insulating polymer film such that the particle
size is of a similar dimension to the thickness of the printed film. With increasing deformation
of the upper electrode an increasing number of particles are contacted. This principle is used in
transparent force sensor developed by 3M Innovative Property Company [57, 58] and Peratech
Holdco Ltd [62], although in the latter the particles themselves also show a decrease in resistance
with increasing applied pressure.

In contrast to the methods described above, it is also possible to create a pressure500

sensing layer by dispersing a very low number of particles in the insulating polymer,501

provided that the particles are of a size comparable to the thickness of the printed502

layer. Rather than the conduction occurring through a convoluted pathway of small503

particles, of which there must be a high enough concentration so as to reach the per-504

colation threshold, instead a low concentration of larger particles provides a series505

of conduction paths where the particles directly connect the top and bottom elec-506

trodes, as shown in Fig.9. This approach has been demonstrated by 3M Innovative507

Property Company (3M IPC), who have patented such a layer for use in force sensi-508
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tive membranes and touchscreens [57, 58]. The layer, which can be deposited using509

blade coating (and likely screen-printing for large scale manufacture) is typically 1-510

10 µm thick and comprises conductive particles, for example ITO or silver-coated511

glass beads, dispersed in an elastomeric polymer. The particle size is of a similar512

dimension to the printed layer, such that the top surface of the particle may protrude513

above the film surface. Spacer dots may be dispersed onto the film surface to prevent514

initial contact between the film and upper electrode. Upon application of force to the515

touchscreen, the top electrode deforms and is brought into contact with one or more516

conducting particles, allowing current to flow. With increasing deformation, the top517

electrode contacts an increasing number of particles, thus decreasing the resistance518

between the electrodes. This is purely a surface effect as the resistance depends519

on the contact area of the touch and the layer is not intrinsically piezoresistive. It520

has been reported that the resistance R decreases with increasing applied force F521

according to522

R =
A

F n
, (3)

where A and n are constants. The value of n indicates the sensitivity of the sensor523

where a larger value produces a greater decrease in resistance for a given increase in524

applied force. For a silicone rubber film of thickness 25 µm containing ITO-coated525

glass fibres the n value was reported to be 1.02 and the force-resistance response for526

this particular sensor is shown in Fig.7 which is reproduced from data provided in527

[57]. No details of the contact area of the force-testing probe are provided. It can528

be seen that the resistance decreases from 10 kΩ under a load of 40 g to around529

20 Ω at 800 g. There is no data provided for loads higher and lower than this so530

first touch sensitivity cannot be assessed. The optical transmission through a 60531

µm film containing silver coated glass beads with diameter 43 µm dispersed at a532

concentration of 140 particles per mm2 was reported to be 91 % over the visible533

wavelengths 400-700 nm.534

One potential issue in this type of pressure sensitive layer is the susceptibility of535

the upper electrode to damage from prolonged and repeated contact with protruding536

particles. Many transparent conducting electrodes suffer from poor durability under537

flexing. This is widely reported for ITO on flexible substrates and is one of the driving538

forces for developing a replacement for ITO [50]. Abrasion with hard particulates539

will further decrease the durability and lifetime of the sensor. One solution would be540

to use other transparent conducting electrodes such as graphene, metal nanowires,541

or carbon nanotube dispersions, all of which show enhanced durability over ITO [59,542

60, 61]. Alternatively, as described in the patent [57], it is possible to fill the air gap543
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between particles and top electrode with an insulating filler material which acts as544

a buffer material between electrode and particle.545

A similar pressure sensitive composite layer has been developed by Peratech Ltd,546

since renamed Peratech Holdco Ltd (‘Peratech) [62]. However in this case the par-547

ticulates are agglomerates of many smaller conductive particles, e.g. spherical or548

acicular antimony-doped tin dioxide (ATO) particles with diameter 200 nm (and a549

length of 0.2-2 µm for the acicular particles). These are dispersed in an insulating550

polymer such as acrylic and/or polyvinyl resin, at a loading of 0.1-0.5 % by mass.551

The agglomerates have typical dimensions of 5-15 µm and are either formed as the552

constituent particles are mixed into the insulating polymer, or they can be pre-formed553

before adding to the polymer. A further patent details one possible composition of554

such pre-formed granules [63].555

With increasing applied pressure, more agglomerates are brought into contact556

with the top electrode thus reducing the resistance through the layer, similar to557

the 3M IPC composite layer. However, the patent also infers that the agglomerates558

themselves are inherently pressure sensitive, such that a compressed agglomerate will559

exhibit a lower electrical resistance than when at rest. By compressing the agglom-560

erates, the inter-particle voids are reduced and more of the constituent particles are561

brought into contact. Quantum tunnelling of electrons may occur from one particle562

to the next if the potential barrier caused by the insulating polymer binder is suffi-563

ciently narrow. The sensitivity is thus governed by surface and bulk effects, due to564

an increasing number of agglomerates contacting the upper electrode with increas-565

ing applied pressure, and the resistance of individual agglomerates decreasing due to566

compression.567

The force resistance response of a layer comprising 0.2 % ATO agglomerates568

dispersed in an insulating varnish was determined using a probe tip of 8 mm diameter569

to apply a force of 0.15–5 N. The response of the touchscreen is shown in Fig.7,570

reproduced from data provided in [62]. The resistance changes from 15 kΩ to 2 kΩ571

when the load is increased up to 500 g. The optical transmission through this layer572

is 98 % when compared to transmission through the ITO/glass electrode.573

This layer, marketed as QTC� Clear, is used in FineTouch Z - a pressure sensitive574

transparent touch panel produced by a partnership between Stantum and Nissha575

Printing Co. Ltd [64]. FineTouch Z uses Stantum’s iVSM technology and is capable576

of detecting 256 levels of pressure [65], with possible applications including palm577

rejection (when operating the touchscreen with a passive stylus), dynamic capture578

of handwriting, and fine control when using the device for drawing applications.579

Fig.7 compares the variation in resistance response with applied force for each580

pressure–sensitive resistive touchscreen discussed. Direct comparison between each581
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touchscreen is difficult as exact details regarding the build, for example the depth of582

the air-gap and the mechanical flexibility of the upper substrate, are not divulged.583

Also, the contact area of the probe used for the force-resistance measurements in each584

case is not always given, so the applied pressure cannot be calculated. However,585

some conclusions may still be drawn. The greatest range in resistance is seen for586

the touchscreen developed by Motorola, where the resistance drops over four orders587

of magnitude for loads between 40 g to 1 kg. However, a minimum load of 40 g is588

required to produce an initial response. Because of the nature of the pressure sensing589

layer, a large force may initially be required to provide the necessary deformation590

to the polymer in order to increase the number of conduction pathways. For the591

Stantum touchscreen, a decrease in resistance is observed above 3 g, but above 100 g592

there is no further significant decrease in resistance. Because there is initially a close593

proximity between neighbouring nickel particles in the column, a small activation594

force may be required to create the initial contact between the upper electrode and595

nearest particle, after which current can flow down the column without requiring596

further deformation of the layer. The touchscreens demonstrated by Peratech and597

3M show a decrease in resistance over the full range of applied loads without the598

ultra-sensitive response of the Motorola touchscreen or the lack of sensitivity at599

high loads shown by Stantum. The resistance values for the 3M touchscreen are600

consistently lower than those demonstrated by Peratech, and the resistance drops601

below 100 Ω for loads greater than 200 g. High current flow leading to high power602

usage may be detrimental in some applications. In order to use the resistive layer603

as a voltage divider in a touchscreen assembly as described earlier, the resistance604

should not fall below that of the connectors and read-out circuitry. In this case, the605

Peratech pressure sensing layer is advantageous. For both the 3M IPC and Peratech606

results there is no resistance value reported for zero applied load. However, this607

can be adjusted by control over the air-gap and mechanical flexibility of the upper608

electrode.609

4.3. Other Touchscreen Technologies610

4.3.1. Surface and Bending Wave611

When an object impacts onto a rigid material, such as a finger contacting a612

touchscreen, both surface and bending waves propagate through the material. Whilst613

surface acoustic waves propagate on the substrate surface only, bending waves travel614

though the full thickness of the substrate, radiating outwards from the location of615

the touch. During a touch event, a number of surface and bending waves of different616

frequencies are produced which propagate through the touch interface at different617

speeds. Bending waves may also undergo reflections at the interface between internal618
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surfaces of the substrate. Sensors at the edge of the substrate receive this complex619

signal, which is then used to determine the location of the touch.620

Both Acoustic Pulse Recognition (APR) patented by Elo Touchsystems [66] and621

Dispersive Signal Technology patented by 3M [67] use bending waves in order to622

extract the touch signal. Both of these technologies use four piezoelectric transduc-623

ers located asymmetrically on the substrate perimeter which convert the measured624

pressure from the acoustic wave to a voltage. However, the signal processing algo-625

rithms can currently only differentiate between touch input from various points on626

the touchscreen surface and cannot differentiate between different touch forces and627

so currently this technology is not pressure–sensitive.628

Conversely, in Surface Acoustic Wave (SAW) touchscreens, the piezoelectric trans-629

ducers send bursts of ultrasonic Raleigh waves across the touch surface in response630

to a supplied voltage. Reflectors at the edges of the touchscreen reflect the acous-631

tic wave back across the screen and into the relieving piezoelectric sensors, which632

convert the pressure input back to a voltage. The transit time of the wave depends633

on its path length so that each physical location can be mapped into the time do-634

main. When a human finger, or indeed any other sound–absorbing object touches the635

screen some of the Raleigh waves are absorbed. By measuring where the reduction636

in the wave amplitude occurs the touch location can be determined. The amount of637

reduction in the signal amplitude can in principle be used to determine the touch638

pressure. The IntelliTouch touchscreen produced by Elo Touch Solutions uses this639

principle and it is stated that pressure–sensing is possible. However no information640

is given about the levels of pressure that can be detected, beyond that a minimum641

of 85 g activation force is required [68]. To the authors knowledge, there are no de-642

vices currently available on the market that utilise the pressure–sensing capabilities643

of SAW touchscreens.644

4.3.2. Optical Sensing Touchscreens645

An infrared (IR) touchscreen typically consists of two IR LEDs along two adjacent646

sides of the touch surface and two receiving IR photodetectors on the other sides647

(i.e. a transmitter and receiver for both X and Y coordinates). The transmitters are648

pulsed sequentially, so that when the surface is touched, the IR beam is broken and649

the touch location can be calculated. Pressure information cannot be calculated as650

the touch force does not impact in any way on the IR photodetector. In camera-651

based optical touchscreens, IR LEDs provide a peripheral backlight across the touch652

surface with cameras placed in two or more corners of the screen which can detect the653

presence or absence of light. When a finger touches the screen the peripheral light654

is blocked and the cameras observe a shadow. Again, pressure information cannot655
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Figure 10: (a) Four discrete force sensors placed underneath a touch interface or display may be
used to determine both the location and force of a single touch. (b) Data for the resistance response
of a touch display demonstrated by F-Origin, where resistance decreases with increasing applied
force.

be recorded by this technology. To the authors knowledge, there are no pressure–656

sensing touchscreens available which utilise the optical pressure–sensing mechanism657

described in Section 2.658

4.4. Pressure Sensors External to the Touchscreen659

The previous sections described the incorporation of pressure sensors directly660

into the touchscreen assembly where the pressure sensing components are intrinsi-661

cally part of the touchscreen assembly. There is an alternative method of adding662

pressure sensitivity, where pressure is assessed outside of the touch module. The663

pressure sensors may be found underneath the display, or even overlaid on top of664

the touchscreen in a transparent array. Pressure sensitive styli may also be used665

which send pressure information directly to the device controller or to specialised666

applications which can utilise these pressure levels.667

4.4.1. Force Sensors underneath the Touch Interface668

It is possible to incorporate discrete force or pressure sensors underneath the669

display unit. In fact, some touchscreens utilise this concept to measure both the670

location and the force of the touch, rather than detecting touch indirectly through671

a change in resistance or capacitance between two electrodes. These touchscreens672
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comprise four discrete force sensors underneath the four corners of the interface as673

shown in Fig.10(a). The sensors used may be any of those described in section 2 such674

as strain gauges, piezoelectric transducers, capacitance sensors, inductance sensors675

or even force sensitive resistors, where each has its own benefits and drawbacks [69].676

These are summarised in Table 1. In the touchscreen industry, this type of touch677

interface is usually referred to as ‘force-based’ to distinguish it from other technologies678

such as resistive or capacitive.679

Analysis of the force or pressure recorded at each corner allows determination680

of the touch location. Whilst only three forces are necessary to triangulate the681

touch location, when pressed the touch surface will always undergo a small degree682

of deflection (as no surface may be classed as truly rigid) and the addition of a683

fourth sensor allows the effect of the deflection on the sensors to be accounted for. In684

addition, four sensors can easily be integrated into the common rectangular design685

of most touch panels.686

Simplistically, the touch coordinates X and Y can be calculated by moment687

equations:688

X =
F3 + F4

F1 + F2 + F3 + F4
, Y =

F1 + F2

F1 + F2 + F3 + F4
(4)

The touch force Z is simply equal and opposite in magnitude to the sum of the689

forces measured at each sensor.690

Z = −(F1 + F2 + F3 + F4) (5)

This concept first showed commercial success in 1991 when IBM developed their691

TouchSelect overlays for CRT (cathode ray tube) monitors, where the CRT screen692

was mounted on strain gauge force sensors [70, 71]. However, the product only693

lasted 3 years on the market and overall was unsuccessful. For force to be mea-694

sured accurately, the movement of the screen or cover glass must be constrained to695

the downward (z) direction only, eliminating any lateral or off-axis forces. Because696

a touch event is not static and constant, the algorithm must account for any dy-697

namic force profile measured at the force sensors. If these effects are not taken into698

consideration, the accuracy of the device in determining touch location is severely699

limited.700

Several attempts have been made to overcome these issues. QSI Corporation701

developed their force sensing touch technology InfiniTouch� using a beam mount-702

ing method, whereby the beams absorb most of the lateral forces. An accuracy of703

1% across the X and Y dimensions is reported [72]. Furthermore, if the touch sur-704

face is constructed from a rigid material, and under normal operation is subject to705
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stresses well below the limits of the material, then the effect of pre-stressing and over-706

constraint of the beams is negligible. The company F-Origin, Inc. have patented a707

different design which removes the issue of lateral forces. Their force sensing touch708

panel zTouch� uses a suspension spring arm method, where the screen is supported709

by a looped filament or string, thus removing frictional forces [73, 74]. Furthermore,710

computing power has increased significantly since the 1990s, and digital signal pro-711

cessing integrated chips can be readily and cheaply obtained which are more than712

capable of processing the dynamic force waveforms from each of the four sensors.713

An example force–resistance response demonstrated by F-Origin zTouch� is shown714

in Fig.10(b).715

The major drawback with this technology is that usually these devices are only716

capable of detecting a single touch event. If the screen is touched in more than one717

location, the centroid of the applied forces will be calculated. In order for the device718

to become multi-touch, multiple force-sensing areas are required. For a grid of n×n719

force sensing areas, assuming there is a sensor at each corner of the discrete force720

sensing areas, a total of (n + 1)2 sensors are required. For a high resolution force721

response where a large n is required, the number of sensors necessary becomes very722

large and the complexity of the system escalates. The exception to this is Force-723

Touch� developed by NextInput, Inc. who use an array of micro-electromechanical724

(MEM) force sensors underneath the touch interface to detect touch location and725

touch force to sub-millimeter and sub-millinewton resolution [75]. Furthermore, the726

addition of force sensors may add to the overall device thickness and weight.727

The majority of applications for this technology make use of its other benefits728

rather than the addition of force sensitivity. These include the detection of touch729

from any object, conductive or insulating and the rugged and durable nature of the730

technology which is resistant to surface contamination. The touchscreen is usually731

cheap to manufacture as the cost is not dependent on the area of the touchscreen732

– large displays are feasible. Finally, the touch interface itself may be patterned,733

for example with drilled holes, textured areas or embossed Braille characters. These734

benefits make force based touchscreens ideal for outdoor applications, or other ap-735

plications that need to withstand rough handling, input from gloved hands, contam-736

inants such as dust and liquids, and extreme temperatures. Example applications737

include ATMs, information kiosks and industrial control panels. Of course, in any of738

these applications the force sensitivity may be used as an additional controllable in-739

put. However, due to the issues highlighted above, it is unlikely that this technology740

in its current state would ever replace the industry standard projected–capacitive741

touchscreens which are at present found in most smartphones and tablets.742

In order to achieve pressure sensitivity along with the multi-touch capability743
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of a capacitive touchscreen, a hybrid approach may be used. The touch location is744

calculated using a P-Cap touchscreen or similar (which has multi-touch capabilities),745

and the force of the touch is determined using the discrete force sensors. These746

so-called hybrid touchscreens provide a beneficial solution for applications such as747

smartphones and tablets where multi-touch is now a standard and necessary feature.748

The hybrid approach can already be found in projected–capacitive laptop track-749

pads, as described in Section 4.5.3. Furthermore, Apple, Inc. also hold a patent750

detailing the inclusion of force sensors into trackpads and touchscreens [76, 77]. A751

recent press release states that the newly developed Apple Watch will have a pres-752

sure sensitive transparent touch interface which is capable of differentiating between753

a light tap and a hard press, where the hard press is used to shortcut to a specific754

demand [78]. The force sensors used can be strain gauges, capacitive membranes,755

silicone diaphragm or any other suitable force sensor. In [77], the FSR is described756

as one possible force sensor.757

4.4.2. Pressure Sensitive Stylus758

A stylus may be described as passive or active. A passive stylus comprises any759

conductive object, for example a metal rod, conductive plastic or conductive rubber–760

tipped pen, which can be used to replace finger–touch on a touchscreen. Passive761

styli are low cost, easily replaced and can be made to any size required. However,762

they provide no more resolution or functionality than the human finger. Active763

styli are typically enhanced with additional functionalities such as pressure and tilt764

measurement and require a power source in order to operate, which can either be765

drawn from the device or provided by an internal battery supply.766

Electromagnetic resonance (EMR) styli draw their power from the device they767

are coupled with. The device has an additional sensing or ‘digitiser’ layer underneath768

the display in addition to the capacitive touchscreen overlaid on top of the display.769

The magnetic field generated by this layer induces a current in the stylus when it770

is within range of the device. The stylus uses this current to relay information on771

the use of the stylus (e.g. location, tilt, pressure) back to the touchscreen controller.772

An example of this type of stylus is the Samsung S-Pen (manufactured by Wacom773

Co. Ltd.) for the Galaxy Note 4 which can differentiate 2048 levels of pressure.774

The device allows for both capacitive input through finger–touch and stylus input775

through the digitiser layer. Whilst the stylus allows high–resolution pressure input,776

the addition of the digitiser layer adds to the thickness and weight of the device. An777

increased distance between the surface and the digitiser layer can lead to parallax778

issues, where the line is not drawn directly under the pen, as seen by the user.779

Without a digitiser layer, the stylus requires an internal battery. N-Trig devel-780
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oped the DuoSense active stylus, which uses the same controllers as the capacitive781

touchscreen, i.e. it does not require an additional digitiser layer and instead uses782

an internal battery. The DuoSense can detect 256 levels of pressure. The Wacom783

Bamboo fineline is advertised for use with the Apple iPad and gives 1048 pressure784

levels. However, both of these styli are only supported by specific applications.785

The pressure sensitivity is realised by the incorporation of a pressure sensor within786

the stylus, usually connected to the stylus nib such that retraction of the nib triggers787

the pressure sensor. Wacom. Co. Ltd. hold a patent detailing the use of an inductive788

style pressure sensor within a stylus, whereby the sensor is not constrained to detect789

axial forces only. This means that the stylus shows high pressure sensitivity at low790

pressures, even when the stylus is held in a non–vertical writing position. Wacom791

also hold a patent which utilises a conductive polymer composite as a pressure sensor,792

where the composite consists of spherical carbon particles of diameter 1–20 µm and793

hollow elastic microspheres of diameter 10–150 µm dispersed in an insulating silicone–794

based polymer. They state that this particular conducting polymer composite shows795

high repeatability with a low amount of hysteresis [79].796

The pressure sensor used may also be optical, whereby movement of the stylus nib797

causes partial coverage of an LED light source or similar. The attenuation of the light798

signal is picked up by a photodetector and can be measured as a function of applied799

force on the nib [80, 81]. Otherwise, the pressure sensor may be capacitance based,800

whereby depression of the stylus nib causes one conductive plate to move relative801

to another such that the areas in direct opposition to one another are altered, thus802

changing the capacitance measured between the plates [82, 83]. BlackBerry Ltd.803

describe a pressure–sensitive stylus where pressure is detected through a change in804

air pressure inside an internal cavity within the stylus, when compared to external805

air pressure [84].806

The advantage of these styli include their high pressure sensitivity, as these de-807

vices can typically differentiate between 256 and 2048 levels of pressure. Because808

only a single sensor is required, and the housing is large (the size of a typical pen)809

there is less constraint on the physical dimensions of the sensor.810

However, the major disadvantage is that the stylus use and performance depends811

not only on the pressure–sensing capabilities of the pen, but also the display, chip,812

controller and driver support. For example, currently Apple products have no in–813

built pressure sensing capabilities in the touch screen. A pressure–sensing stylus814

would only work on specifically designed applications which can utilise this pressure815

sensitivity – and they may not utilise all pressure levels inherent in the pen. New816

devices such as the Samsung Galaxy Note series have an in–built digitiser layer which817

supports stylus input, and a range of applications in which the pressure–sensing818
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Flexible substrate
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Inter-digitated
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Figure 11: Force sensitive resistor. The active layer, consisting of small particles dispersed in
a polymer binder, is screen-printed directly onto a flexible substrate and separated from inter-
digitated electrodes by a spacer. Upon application of pressure, the active layer is pushed into
contact with the electrodes.

capabilities can be utilised. However, the stylus provided will works solely for this819

device, and is expensive to replace if lost.820

4.5. Keyboards and Trackpads821

4.5.1. Force Sensitive Resistors822

The force sensitive resistor (FSR) was first patented in 1977 by Franklin Eventoff [85].823

An active resistive layer is screen printed onto a flexible substrate, and separated from824

a set of inter-digitated electrodes by a spacer layer such as a ring of insulating ma-825

terial which maintains air flow into and out of the cavity, as shown in Fig.11. In826

another format, the active layer is printed directly onto one electrode and separated827

from the second by the spacer. When the top layer is pressed the electrode(s) deforms828

into the spacer layer and comes into contact with the active layer. With increasing829

force a larger area of the active layer is in contact with the electrodes, decreasing the830

electrical resistance through the sensor.831

The active layer in its most basic form is a screen-printable conductive polymer832

composite as described in Section 2.1.2, where the conductive particles are embedded833

into a printable base polymer. When printed, the active layer has micro or nano-834

scale surface protrusions, depending upon the size of the constituent particles. The835

resistance is highly dependent on the contact area, which itself is dependent on the836
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Figure 12: Force-resistance response of FSR sensors manufactured by Interlink Electronics, Sen-
sitronics LLC and Peratech Holdco Ltd. In each case forces up to 10 N were applied using a load
cell with a rubber probe with an 8 mm diameter. For each sensor, the resistance decreases over
three orders of magnitude with increasing applied force.

force applied to the upper electrode.837

For example, Interlink Electronics have patented an ink containing SnO particles838

of size 0.5-10 µm which create micro-protrusions at the surface of the ink, thereby839

increasing the number of electrical contact points between electrode and ink with840

increasing force [86]. The sensitivity of the response can be further controlled by841

the number and spacing (pitch) of the inter-digitated fingers, where a finer pitch will842

increase the dynamic range of the FSR.843

In other commercial FSRs, the active layer itself is piezoresistive. Tekscan, Inc.844

describe an active layer which consists of a network of carbon black particles 1-1000845

nm in size, dispersed in a polymer binder [87]. As shown in Fig.1, with increasing846

force a greater number of the particles within the active layer are brought into direct847

contact or close enough for quantum tunnelling of electrons to occur, thus decreas-848

ing the electrical resistance of the layer. Similarly, Peratech Holdco Ltd license a849

quantum-tunneling ink which contains both spherical insulating particles and aci-850

cular semiconducting particles [88]. Evidence suggests that charge transfer occurs851

via direct conduction and more significantly quantum tunnelling between the acic-852

ular particles [89]. The change in resistance can be attributed to both the change853

32



in contact area and the change in conductivity of the active layer. Fig.12 com-854

pares the force-resistance responses of three commercial FSR sensors - a 0.5 inch855

FSR� 402 manufactured by Interlink Electronics (£5.42 per unit [90]), a 0.5 inch856

FSR101 ShuntMode� manufactured by Sensitronics LLC (unit price $6 USD [91])857

and a QTC� sensor manufactured by Peratech Holdco Ltd (no pricing available).858

In each case, the active layer is printed onto inter-digitated electrodes as shown in859

Fig.11 and the sensor was loaded with forces up to 10 N using a load cell with a860

rubber probe of diameter 8 mm. It can be seen that for each sensor the resistance861

varies over three orders of magnitude when forces up to 10 N are applied, where the862

resistance decrease has a power law dependence on the applied force, with the expo-863

nent varying in the range −0.6 to −0.9. For the Peratech and Sensitronics sensors864

the response shows signs of saturation at higher forces. However the Interlink sensor865

shows a decrease in resistance even up to 10 N applied force. The activation force866

(the minimum force required to produce a decrease in resistance) is of the order of867

0.15 N. This range of response makes FSR technology suitable for detecting many868

levels of applied force, from a light touch (0.1 N) to a hard press (10 N).869

A further benefit of FSR technology is that it can be manufactured using low–870

cost large–area printing methods and as a component is easy to integrate into a871

device. The sensors are lightweight and thin, typically no more than 1 mm total872

thickness [92]. The sensor performance in terms of its sensitivity, activation and873

saturation forces (the force at which the resistance has levelled to a minimum value)874

can be controlled by the mechanical design of the sensor. The saturation force is a875

function of the area of applied force and the spacing of the inter-digitated fingers.876

FSR sensors tend to be insensitive to high frequency vibrations and acoustic noise877

pick-up. This can be useful in some applications in avoiding cross-talk between sen-878

sors. However, the reproducibility of the response can often be poor. For example,879

the FSR® 400 Series manufactured by Interlink Electronics quotes a batch to batch880

variation of resistance response of 6 %. Variation across a single sensor is quoted881

as 2 %. This stems from the inherent batch to batch variations common in printed882

technologies and also hysteresis effects caused by the mechanical relaxation of the883

host polymer. Whilst this variation means that the sensor is not suited to precise884

measurement of force, it is appropriate for use in tactile sensors where only approxi-885

mate levels of applied force are required. The recovery speed of the sensor is limited886

by its mechanical rise time (i.e. the time taken for the deformed active layer to887

return to its original position) which is typically quite slow at 1–2 ms. Finally, the888

FSR can show a drift in resistance for a constant applied load. Whilst this drift is889

reversible, for applications where measurement of a static force is required, the drift890

must be taken into consideration.891

33



Figure 13: (a) Dismantled view of Microsoft Surface Touch Cover, a pressure sensitive keyboard
containing FSR sensor technology. (b) An insulating spacer ring is printed directly onto the ac-
tive layer of each FSR sensor. (c) Inter-digitated electrodes are printed directly onto the bottom
substrate.

Primary applications for FSR sensors include biomedical, e.g. pressure mapping892

whilst walking [93], robotics [94] and musical synthesizers [95]. Various articles com-893

pare FSR technologies and describe their applications in these fields [92, 96, 97, 98].894

FSRs can currently be found in some computer keyboards and laptop trackpads [?895

]. FSR sensors are used in the VersaPad® trackpad produced by Interlink Elec-896

tronics. This consists of two FSR sensors sandwiched together and separated by897

spacer dots, and is offered as a rugged alternative to traditional projected–capacitive898

trackpads that can be used in high humidity environments or with gloved hands.899

The UnMousePad is a multi-touch location and pressure sensing trackpad using900

FSR technology, developed by TouchCo, Inc. in 2009 [99]. The Microsoft Touch901

Cover is a pressure sensitive keyboard for integration with Microsoft Surface tablets.902

Underneath each letter key is an FSR sensor measuring 15 x 15 mm and a set of903

inter-digitated electrodes, as shown in Fig.13. Microsoft Corp. hold a relevant patent904

detailing this system [100]. The pressure sensitivity is used to dismiss light touches905

as accidental and for rejecting unintended touch from the palm of the hand (palm906

rejection). Other possible uses detailed in the patent include using force to change907

the size, colour or case of text input and also for gaming applications. Because908

there are no moving parts, the keyboard is thinner and lighter (2.75 mm and 185 g)909

with a greater product lifetime compared to mechanical keyboards. The ‘quantum910

tunnelling’ ink licensed by Peratech Holdco Ltd is used in the 909 TouchPro drill911

produced by GlobalPowerBrands Int. Pty Ltd. Here the pressure sensitivity is used912

to control the speed of the drill rotation.913
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Figure 14: (a) The structure of PyzoFlex® foil, consisting of the piezoresistive layer sandwiched
between two electrode arrays, either carbon-based or PEDOT. Compression of the film induces a
measurable voltage. (b) The PyzoFlex® foil produces a highly linear pressure–voltage response
(data reproduced from [101]).

4.5.2. Piezoelectric Foil914

PyzoFlex® foil, developed by Media Interaction Lab, is a pressure sensitive print-915

able film. A piezoelectric ink containing randomly orientated nano-crystals of the916

copolymer P(VDF-TrFE) is printed at a thickness of 5 µm onto an electrode, which917

can be a screen-printable carbon-based ink or a transparent conducting polymer such918

as poly(3,4-ethylenedioxythiophene) (PEDOT), as shown in Fig.14(a). After print-919

ing the dipoles are aligned by poling. The top and bottom electrodes are connected920

perpendicularly so that a voltage signal can be read out from each electrode-PVDF-921

electrode intersection. Under applied pressure, or a change in temperature caused922

by a hovering finger, a voltage change can be detected due to redistribution of the923

dipoles, as demonstrated previously in Fig.2. Prototypes of the PyzoFlex® foil have924

been demonstrated, where pressures as low as 0.12 N/mm2 produced a voltage of925

the order of 0.1 V [101, 102]. The piezoelectric coefficient is between 20–30 pC/N.926

The pressure-voltage response of the PyzoFlex® material, is shown in Fig.14(b),927

reproduced from data provided in [101], where forces were applied using a test probe928

4.5 mm in diameter. It can be seen that for applied pressures in the range 0.12–0.29929

N/mm2 (corresponding to applied forces from 1.9–4.7 N) the voltage output is highly930

linear. No data is provided for pressures above 0.29 N/mm2 so the saturation force931
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cannot be determined.932

However, there are still many issues with this sensor. Perhaps the main disad-933

vantage is that the sensor cannot detect a dynamic force unless additional complex934

signal processing algorithms are used. This is because during application of a static935

force the induced voltage discharges through the internal resistance of the PVDF936

layer. The sensor can only truly detect a dynamic applied force.937

Because the touch signal is small, both amplification of the signal and reduction of938

background noise via a noise filter is required. Signal noise is introduced from infra-939

red light found in ambient lighting, and from cross-sensitivity between the piezo-940

and pyroelectric responses. Furthermore, the detection of multiple adjacent touches941

on the PyzoFlex® foil is currently problematic due to cross-talk between adjacent942

sensors. However, this technology shows potential in that the highly linear response943

facilitates mapping of the pressure levels, and the technology is suited to flexible944

applications. It is also possible to create a transparent sensor array by replacing the945

carbon electrodes with a transparent alternative such as PEDOT or a nanoparticle-946

based ink. Media Interaction Lab state that PyzoFlex® foil has applications in947

flexible displays using OLED display technology, although in principle it may be948

used in conjunction with any touch interface.949

4.5.3. Projected–Capacitive Trackpads950

The majority of laptop computers replace the mouse with an integrated trackpad.951

The trackpad consists of a location–sensing surface and perhaps one or two discrete952

buttons which provide a click function. For some trackpads, the entire trackpad is953

hinged such that pressing down in an area opposite to the hinge location (usually954

the bottom of the trackpad) provides the click mechanism.955

The principles of projected–capacitive location sensing have previously been de-956

scribed in Section 4.1.1 where this technology is described for transparent touchscreen957

applications. The principles are essentially the same, except that of course a trackpad958

does not require a transparent touch surface, or transparent connecting electrodes.959

Pressure–sensitivity may be incorporated into these trackpads by means of placing960

discrete force sensors external to the touch surface, for example underneath the touch961

surface. Location sensing is still achieved by projected–capacitive sensors. The962

details of this method have been described fully in Section 4.4.1. This approach has963

already achieved commercial success in laptop trackpads. ForcePad� V.4 produced964

by Synaptics, Inc [103] can be used to define force–sensitive multi-touch gestures [104,965

105]. Four force sensors underneath the corners of the trackpad allow the detection966

of up to 1000 g from up to five fingers simultaneously with 15 g resolution, and967

is converted into 64 discrete force levels. The hinge mechanism of the traditional968
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trackpad (which allows for click input) is no longer required as the user can click969

anywhere on the trackpad by applying a force above a predetermined threshold. In970

this case, the lack of moving mechanical parts could enhance the product lifetime.971

At the time of writing, Apple have released another update which states that their972

newly developed force–sensing technology, called Force Touch, will be present in the973

new generation of MacBook trackpads. Here, four force sensors are incorporated974

underneath the trackpad, such that the trackpad can register many levels of pressure975

which can be used for force–enhanced gestures such as zooming or scrolling.976

Another method of including pressure–sensitivity is the inclusion of optical–based977

pressure sensors within the trackpad structure. The Synaptics ForcePad�V.3 detects978

applied pressure uses an image–sensing array in the trackpad. This relates the size979

of the contact area to the pressure–applied by the fingertip. If a hard press is de-980

tected (larger contact area between fingertip and touch interface) the click function981

is activated.982
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Application Examples Location Sensing
Mechanism

Pressure Sensing
Mechanism

Sensor Details Pressure Sensing Capabili-
ties

Advantages Disadvantages

Keyboard Microsoft Surface
Touch Cover 2

Resistive – con-
ducting polymer
composite (FSR)

Resistive – con-
ducting polymer
composite (FSR)

One sensor measuring 15
mm x 15 mm underneath
each key

Need only distinguish light
touch and hard press for
palm-rejection functional-
ity

Keyboard is thinner and lighter
than for traditional mechanical keys
(2.75 mm and 185 g)
Pressure sensitivity removes need
for mechanically moving parts

Currently there is no haptic feedback when
pressing each key

Laptop
Trackpad

Interlink VersaPad� Resistive – con-
ducting polymer
composite (FSR)

Resistive – con-
ducting polymer
composite (FSR)

One large continuous FSR
sensor 41 x 57 mm under-
neath trackpad surface

Capable of detecting 256
levels of pressure although
this feature is not utilised
in the VersaPad�

Trackpad can detect input from any
object
Thin and lightweight compared to
capacitive–style trackpads (¡15 g)
Can be used in extreme environ-
ments such as high humidity

A minimum activation force is required to
register a touch event
Multi-touch functionality is not supported

PyzoFlex® prototype
only

Piezoelectric
(PVDF-TrFE
copolymer)

Piezoelectric
(PVDF-TrFE
copolymer)

Printed array of 16 x 8
piezoelectric sensors cover-
ing an area of 210 x 130
mm2

Each sensor has 10 mm ra-
dius and thickness of 50
µm plus 175 µm substrate
thickness [101, 102]

Capable of detecting ap-
plied pressure from 0.1–0.3
N/mm2 (2–5 N)

Highly linear pressure sensing re-
sponse
May have applications for touch-
screens if transparent electrodes are
used
Sensors can be fabricated using a
low–cost print process
Suitable for flexible applications

Can only detect a dynamic force unless com-
plex signal processing algorithms are used
Sensitive to electromagnetic noise and cross–
talk between sensors
Currently only low spatial resolution but this
can be improved by increasing the spatial
density of sensors

Synaptics For-
cePad� v.3

Projected capaci-
tive

Algorithm relat-
ing contact area
with applied force

No physical sensors, algo-
rithm only

Detection of force above
pre-determined threshold
to activate click function

Pressure sensitivity removes need
for mechanically moving parts
Trackpad is thinner and lighter
than competitors (as thin as 1 mm)

Cannot distinguish multiple pressure levels
Algorithm requires calibration prior to use
Lack of haptic feedback associated with click

Synaptics For-
cePad� v.4

Projected capaci-
tive

Individual force
sensors under-
neath four cor-
ners of trackpad
surface

Sensor type is undisclosed
but is likely to be strain
gauge, piezoelectric, ca-
pacitive or similar

64 levels of pressure, up to
7 N force, from 5 fingers si-
multaneously

Pressure sensitivity removes need
for mechanically moving parts
Trackpad is thinner and lighter
than competitors (3 mm)
64 pressure levels allow pressure
sensitive gestures

Lack of haptic feedback associated with click

Force or
pressure
sensors
underneath
the touch
interface

QSI Corp. Infini-
Touch�
F–Origin Inc.
zTouch�
NextInput, Inc.
ForceTouch�

Force/pressure
sensors external
to touch interface

Force/pressure
sensors external
to touch interface

Piezo–resistive sensors un-
derneath four corners of
interface

Detection of touch from any object
Rugged and durable touch interface
is not sensitive to screen contami-
nants
Cost is independent of area of touch
interface
Touch interface can be patterned or
3D

Only a single touch can be detected
Friction or bending effects must be fully ac-
counted for in order to achieve accurate lo-
cation sensing

Array of MEM force sen-
sors underneath the dis-
play interface allows for
multi–touch location and
pressure sensing

Pressure sensing with sub–
mN resolution

Capacitive
Touch-
screen

Research only (al-
though this tech-
nology is used in
Samsung ST550 and
TL220 camera touch-
screens for location
sensing only)

In-Cell pressed
capacitive array

Capacitive pres-
sure sensor

Sensor array 5 x 5 mm unit
size at thickness 750 µm
(excluding lower ITO elec-
trodes) [40]

Detection of up to about
0.1 N applied force

Good transparency (¿ 86%)
Suitable for flexible applications

Low signal to noise ratio
Unsuitable for high–end applications such as
smartphones and tablets due to issues with
capacitive coupling with other device com-
ponents

20 x 20 sensor array with
2 x 2 mm sensor size at
thickness 253 µm [38, 39]

Detection of up to 5 N ap-
plied force

Apple Watch
Blackberry Sure-
Press�

Projected capaci-
tive

Individual force
sensors un-
derneath four
corners of touch-
screen/display
modules

Sensor type is undisclosed
but likely to be strain
gauge, piezoelectric, ca-
pacitive or similar

Apple Watch will be able
to differentiate between a
light touch and a hard
press

Easy addition of pressure sensing to
any location sensing device
Sensors are entirely separate to
touchscreen hence need not be
transparent
Multi-touch location sensing is sup-
ported

Sensors may add to overall thickness of de-
vice
Lateral forces on the sensors need to be elim-
inated to ensure accurate pressure readings
Complex algorithm may be required to ex-
tract force from dynamic force profiles mea-
sured at each sensor

Active Stylus e.g.
Samsung S–Pen for
Galaxy Note 4 (2048
pressure levels)
N-Trig Active Pen
(248 pressure levels)
Wacom Bamboo Sty-
lus fineline (1024
levels)
Wacom Intuos Cre-
ative Stylus 2 (2048
levels)

Projected capaci-
tive
OR additional
digitiser layer un-
derneath display
specifically de-
signed for stylus
input

Active stylus pen
with in–built
pressure sensor

Sensor type can be resis-
tive (conductive polymer
composite), capacitive, in-
ductive or optical

Highly sensitive with many
pressure levels, frequently
used for artistic and draw-
ing software

High pressure resolution (up to
2048 levels)
Single sensor required
Few constraints on sensor size and
weight

Pressure sensing capability also dependent
on device (controller, chip) and applications
(software and drivers)
Digitiser layer used in some devices adds to
device thickness and weight
Some styli may require charging or replace-
ment batteries
Expensive to replace if lost or broken

Resistive
Touch-
screen

Research or prototype
only

Resistive Resistive – con-
ducting polymer
composite

Percolative network of
nanoparticles spanning 1–
10 µm transparent layer.
12 x 16 sensors across 3.5
inch touchscreen [51]

Detection of 0.04 – 1 N
force is reported

Current flow only when touchscreen
is pressed – low power consumption
Supports multi-touch input and in-
put from any object
Insensitive to electromagnetic noise

Additional layer may impact on optical
transmission through touchscreen
Particles may abrade with ITO electrodes
leading to shorter product lifetime
Resistive layer is prone to hysteresis effects

Magnetically aligned par-
ticles spanning 50–100 µm
transparent layer. Cur-
rently patent only [56]

Detection of up to 0.5 N
force is reported

Single layer of particles
in 1–10 µm transparent
layer [57]

Detection of up to 0.8 N
force is reported

Table 2:
Comparison of pressure–sensitive tactile technologies for applications in human–computer interaction



5. Comparison of Pressure Sensing Touch Technologies and Future Trends983

As a summary, Table 2 compares each technological application discussed in this984

paper in terms of its sensing mechanism, how the pressure–sensitivity is utilised, and985

the advantages and disadvantages of the technology in this particular application.986

whether the technology has already achieved commercial success and the relevant987

references to the literature.988

It should be noted that a direct quantifiable comparison of these technologies989

is not possible as each is intended for a different application and as such may re-990

quire different pressure sensing capabilities, different build parameters and different991

materials characteristics. However, a broad comparison in terms of the response pa-992

rameter may prove useful in giving a general overview of the functionality that these993

technologies are capable of. We define the response parameter as994

Response =
Xi −Xmin

Xmax −Xmin

× 100%, (6)

where Xi is the ith value of a measurable quantity X, for example resistance,995

capacitance or voltage, and Xmin and Xmax are the minimum and maximum values996

of X, respectively.997

Fig.15 shows the response of the various types of pressure–sensitive touch tech-998

nologies described in this review as a function of applied pressure. Response data999

for Interlink FSR technology (FSR-Interlink), PyzoFlex® piezoelectric foil (PIEZO-1000

PyzoFlex), in-cell pressed capacitive touchscreens demonstrated by H. Kim and K.1001

Kim (ICPC-K Kim and ICPC-H Kim) and the resistive pressure–sensitive touch-1002

screen patented by Peratech Ltd (RES-Peratech) are compared. For the FSR tech-1003

nology as described in Section 4.5.1, the Interlink sensor is chosen as a representative1004

sample and for the resistive–pressure sensitive touchscreens outlined in section 4.21005

only the data for the Peratech touchscreen allows for the touch pressure to be calcu-1006

lated.1007

Interestingly, the response for both RES-Peratech and FSR-Interlink technology is1008

similar in that they operate over the same range of applied pressure. The response for1009

both ICPC-K Kim and PIEZO-PyzoFlex® is almost linear in the range of pressures1010

tested. Of course it is likely that for higher pressures the response would eventually1011

saturate. The sensitivity of a particular sensor may be defined as the change in1012

pressure (expressed as a percentage of the total pressure range of the sensor) required1013

to produce a 50 % response:1014

Sensitivity =
Pressure50% − Pressure0%
Pressure100% − Pressure0%

, (7)
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Figure 15: Comparison of sensor response to applied pressure for Interlink FSR technology (FSR-
Interlink), PyzoFlex® piezoelectric foil (PIEZO-PyzoFlex), in-cell pressed capacitive touchscreens
demonstrated by H. Kim and K. Kim (ICPC-K Kim and ICPC-H Kim) and the resistive pressure–
sensitive touchscreen patented by Peratech Ltd (RES-Peratech).

where Pressure100% − Pressure0% defines the range of response, that is the dif-1015

ference between the maximum and minimum pressure (or force) able to be detected.1016

The calculated sensitivity values are compared in Table 3. Here we can see the sen-1017

sitivity for both ICPC-K Kim and PIEZO-PyzoFlex® is around 50 %, indicating a1018

linear response - 50 % of the sensor response is achieved through 50 % application1019

of applied pressure. The other technologies have much lower sensitivity values. This1020

indicates that the sensors are highly sensitive to low values of applied pressure, as1021

only a pressure input typically less than 10 % is required to produce a 50 % response.1022

For each technology discussed in this review paper, the maximum and minimum1023

force values from the available data (i.e. the range of response) are shown in Fig.16.1024

The region corresponding to a light touch (0.1 N) and a hard press (10 N) is shaded.1025

Both the pressure–sensing resistive touchscreen patented by Peratech Ltd and the1026

FSR technology (in this case demonstrated by Interlink but in practice any of the1027

sensors shown in Fig.12) produce a response for most forces in this range. Whilst the1028

ICPC touchscreen demonstrated by K. Kim and the resistive touchscreen patented1029

by Stantum are sensitive to smaller applied forces below this limit, in practice this1030

is not particularly useful.1031
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Table 3: Sensitivity of selected pressure–sensing tactile technologies

Technology Sensitivity
FSR-Interlink 1.5
PIEZO-PyzoFlex 45
ICPC-K Kim 59
ICPC-H Kim 8.2
RES-Peratech 5.8

ICCAP-HKim

ICCAP-KKim

RES-Peratech

RES-3M IPC

RES-Stantum

RES-Motorola

PIEZO-PyzoFlex

FORCE-F-Origin

FSR-Interlink

Force (N)

0.01 1 100.1

Light touch Hard press

Figure 16: Comparison of the range of forces to which the pressure–sensitive touch technologies
described in this review exhibit a response. The force region comparable to a light touch (0.1 N)
and a hard press (10 N) is shaded.

In terms of how pressure input may be utilised in computer interfaces, a pressure1032

level may be defined as a range of pressures that will result in a certain reaction.1033

For example in drawing software each pressure level would result in brush stroke1034

of a certain diameter. The diameter would typically become larger for a higher1035

pressure level input. A large sensitivity coupled with a small responsive pressure1036

range means that the defined pressure levels must become narrow. The reaction1037

becomes almost switch-like and access to intermediate pressure levels requires a high1038

degree of user control. However for a smaller sensitivity coupled with a large range1039

of response, broad pressure levels may be defined and it becomes easier for the user1040

to manipulate between the pressure levels.1041

Another important issue to consider is the cost of implementing the pressure–1042
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Figure 17: An analysis of patent trends over time. A sample of 75 patents containing the words
“force sensitive touchscreen” or “pressure sensitive touchscreen” were analysed. It was found that
the majority of the patents described either a touchscreen which used discrete force sensors to
measure both touch location and touch force, or a hybrid touchscreen where discrete force sensors
were used alongside a location sensing technology, usually projected capacitive. Furthermore, the
percentage of hybrid technologies is found to increase over time, whereas the percentage of discrete
force-based technology patents decreases.

sensing solution. The addition of a small number of discrete pressure sensors, placed1043

outside the touch module in strategic locations (for example force sensors placed in1044

the four corners underneath the display) is likely to be a low–cost solution as the1045

price of sourcing and incorporating the sensors into the build of the device should1046

be comparatively low. Contrast this with incorporating the pressure sensor within1047

the touchscreen itself – for example the continuous resistive films described in Sec-1048

tion 4.2 or even a 2D matrix array of sensors as described in Section 4.1.2. Here, the1049

manufacture costs are likely to be high as new methods and additional steps must be1050

included in the manufacture of the touchscreen. Whilst the resistive pressure sensing1051

layers can be printed, using screen-print techniques for example, the manufacture of1052

the pressed in-cell touchscreen uses photolithographic methods with a high number1053

of manufacture steps.1054

Analysis of the patent literature can yield information regarding the possible fu-1055

ture successes for each technology. Fig.17 shows the patent trends in touch technolo-1056
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gies since 1989. A patent search engine was used to search for patents containing the1057

phrase “force sensing touchscreen” and/or “pressure sensing touchscreen”. A sample1058

size of 75 patents were analysed in the order they were listed on the search engine.1059

It can be seen that the majority of the patents describe either force-based touch-1060

screens or the hybrid touchscreens described above. Interestingly, it can be seen1061

that the percentage of purely force-based technology patents decreases over time,1062

whereas the percentage of patents detailing the hybrid technology increases. In the1063

category of ‘other’ the patents may describe resistive pressure sensing technology,1064

FSRs and pressed–capacitive technology. This is perhaps of no surprise, as the lead-1065

ing touchscreen technologies currently use P-Cap or In-Cell P-Cap technology and1066

hybridisation with discrete force sensors is perhaps the simplest compatible method1067

of incorporating pressure sensitivity in such a device.1068

6. Conclusion1069

This review describes current and emerging tactile sensing technologies for use in1070

HCI applications where touch pressure can provide a third dimension of user input.1071

Pressure–sensing may be realised by the incorporation of resistive, piezoresistive,1072

capacitive, piezoelectric or inductive pressure sensors.1073

Whilst some of the pressure–sensing technologies discussed are at present only de-1074

tailed in the patent literature, or available as prototype only, there are some products1075

available on the market which already utilise pressure–sensitivity. These include the1076

Microsoft Surface Touch Cover Keyboard and the Interlink VersaPad� laptop track-1077

pad, which contains FSR resistive pressure–sensing technology. Pressure sensitivity is1078

also being developed for transparent touchscreens, for example by the incorporation1079

of a resistive pressure–sensing layer in a resistive–type touchscreen, or by a capacitive1080

pressure sensing array in a pressed ‘in–cell’ touchscreen. However, currently these1081

technologies are in the research stage only, and whilst at least the resistive solution1082

is under development by some companies there is currently no device on the market1083

utilising this technology. The pressed in-cell approach has been studied by various1084

research groups, for its potential applicability in touchscreens. However, the inherent1085

disadvantages of this technology mean it is unlikely to be commercialised in the near1086

future.1087

Perhaps the most success (in terms of number of patents and devices which utilise1088

this principle) has been achieved by the addition of discrete pressure sensors outside1089

the touch module, where the sensors do not need to be transparent. For example,1090

the Apple Watch uses this method to distinguish between a light touch and a hard1091

press, and the ForcePad� trackpad produced by Synaptics, Inc. can detect 64 levels1092
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of applied pressure from five fingers simultaneously. Perhaps the main benefit of this1093

approach is that the specific advantages of the touchscreen can be kept, for example1094

the multi-touch functionality associated with P-Cap touchscreens, as the pressure1095

sensors can be integrated underneath any display using any location–sensing inter-1096

face. Analysis of patent trends show this approach is rapidly gaining traction. For1097

these reasons, the authors believe that this approach may show the most commercial1098

successes in the next few years.1099

In the words of Apple “[Pressure sensing] is the most significant new sensing1100

capability since Multi-Touch” [106]. Their recent focus on force–sensing in laptop1101

trackpads and wearable technology such as the Apple Watch show that it is only a1102

matter of time before pressure input becomes mainstream in the new generation of1103

human–computer interfaces.1104
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