
Predicting shallow landslide size and location across
a natural landscape: Application of a spectral
clustering search algorithm
Dino Bellugi1, David G. Milledge2, William E. Dietrich3, J. Taylor Perron1, and Jim McKean4

1Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge,
Massachusetts, USA, 2Department of Geography, Durham University, Durham, UK, 3Department of Earth and Planetary
Science, University of California, Berkeley, California, USA, 4U.S. Forest Service, Rocky Mountain Research Station, U.S.
Department of Agriculture, Boise, Idaho, USA

Abstract Predicting shallow landslide size and location across landscapes is important for understanding
landscape form and evolution and for hazard identification. We test a recently developed model that couples
a search algorithm with 3-D slope stability analysis that predicts these two key attributes in an intensively
studied landscape with a 10 year landslide inventory. We use process-based submodels to estimate soil
depth, root strength, and pore pressure for a sequence of landslide-triggering rainstorms. We parameterize
submodels with field measurements independently of the slope stability model, without calibrating
predictions to observations. The model generally reproduces observed landslide size and location
distributions, overlaps 65% of observed landslides, and of these predicts size to within factors of 2 and 1.5 in
55% and 28% of cases, respectively. Five percent of the landscape is predicted unstable, compared to 2%
recorded landslide area. Missed landslides are not due to the search algorithm but to the formulation and
parameterization of the slope stability model and inaccuracy of observed landslide maps. Our model does
not improve location prediction relative to infinite-slope methods but predicts landslide size, improves
process representation, and reduces reliance on effective parameters. Increasing rainfall intensity or root
cohesion generally increases landslide size and shifts locations down hollow axes, while increasing cohesion
restricts unstable locations to areas with deepest soils. Our findings suggest that shallow landslide abundance,
location, and size are ultimately controlled by covarying topographic, material, and hydrologic properties.
Estimating the spatiotemporal patterns of root strength, pore pressure, and soil depth across a landscape may
be the greatest remaining challenge.

1. Introduction

Mechanistic models share common elements for predicting shallow landslides (involving only the colluvial soil
mantle) across a landscape. They divide the landscape into cells (of fixed or variable size); they assign or calcu-
late properties important to slope stability, such as soil depth and pore water pressure, for each cell; they then
commonly calculate the stability of each cell independently using a one-dimensional (infinite-slope) limit equi-
librium stability model [e.g.,Montgomery and Dietrich, 1994; Dietrich et al., 1995;Wu and Sidle, 1995; Pack et al.,
1998; Iverson, 2000; Dietrich et al., 2001; Dhakal and Sidle, 2003; Rosso et al., 2006; Godt et al., 2008]. These
models predict landslide location or susceptibility (i.e., the potential for landsliding at a location). They define
landslide dimensions implicitly either by the grid cell size or by the size of groups of adjacent unstable cells
(whose instability is independently calculated), which they assume fail together, rather than by any explicit
prediction. This approach is strongly dependent on the grid cell size [Dietrich et al., 2001; Claessens et al.,
2005] and cannot accurately estimate the size of individual shallow landslides [Dietrich et al., 2007;
Anagnostopoulos et al., 2015]. Because the size of a shallow landslide strongly influences both its hazard
potential and geomorphic effects, this is a major shortcoming [e.g., Benda and Cundy, 1990; Fannin and
Wise, 2001; Hungr et al., 2008]. A one-dimensional treatment of stability also affects which locations are
potentially unstable and the rainfall required to trigger failure by neglecting the stabilizing effect of lateral
resistance. The inability of such models to predict discrete individual landslides also limits our understanding
of the controls of factors such as rainfall intensity or root strength on landslide location and size.

Observations (and the existence of empirical rainfall thresholds) consistently show that landslides are more
abundant with increased rainfall amount (intensity and/or duration) (e.g., review in Sidle and Ochiai [2006]).
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Similarly, the effects of logging, fire, land use change, and their associated reduction in root cohesion have
been shown to exert a strong influence on the abundance of landslides in many locations (e.g., review in
Sidle and Ochiai [2006]). Investigations of landslide size for different vegetation types suggest that forest
and shrubland areas where plants have stronger or denser root systems often result in generally larger land-
slides [Moser, 1971; Rice and Foggin, 1971; Selby, 1976; Lehre, 1982; Reneau and Dietrich, 1987a; Moser and
Schoger, 1989; Gabet and Dunne, 2003; Rickli and Graf, 2009]. The location of landslides also changes with
vegetation type. Gabet and Dunne [2003] found low root strength failures on gentler slopes, although this
could be due to preferential conversion of gentler slopes to grassland. In areas that were not converted to
grassland they find an inverse relation between slope and landslide volume and attribute it to the effects
of lateral reinforcement; no such trend is found in grassland. Several other studies suggest that landslides
in forested areas occurred on steeper slopes than those in unforested areas [Moser and Schoger, 1989;
Rickli and Graf, 2009]. Rickli and Graf [2009] suggest that root reinforcement is the main reason for this shift.

Observations on landslide size and location for different rainfall intensities are, to our knowledge, much more
limited. Wieczorek [1987] found that long-duration, moderate-intensity storms triggered debris flows on
moderate slopes in convergent topography, while short-duration high-intensity storms can trigger landslides
on steep planar hillsides. Larsen and Simon [1993] found that short-duration, high-intensity rainfall events
generally result in shallow soil slips and debris flows, while long-duration, low-intensity rainfall generally pro-
duces larger, deeper debris avalanches and slumps. Saito et al. [2014] found that in Japan larger landslides
were more abundant at the expense of smaller ones when total, maximum, and mean rainfall intensity
exceeded specific thresholds.

In order to enable the prediction of shallow landslide size and location, Bellugi et al. [2015] developed an effi-
cient search algorithm to identify clusters of adjacent grid cells that fail as discrete landslides. This algorithm
does not impose constraints on landslide size or shape, besides those imposed by the grid discretization (e.g.,
landslides cannot be smaller than a single grid cell, and their boundaries must coincide with the grid cell
boundaries). Using this search algorithm, they were able to predict the size and location of a shallow landslide
at an instrumented field site using field-measured physical parameters.

In this paper, we apply their method to a larger natural landscape (~0.5 km2), where the physical parameters
are less well constrained. This is challenging because properties relevant to landsliding, such as soil depth
and pore water pressure, are variable in space and time and are difficult to measure across a landscape at
a suitable resolution. We therefore combine the model of Bellugi et al. [2015] with simple submodels that
exploit the topographic control on soil depth and pore water pressure to predict shallow landslide size
and location across a landscape. We test our model, in a landslide-prone study area near the Mettman
Ridge in the Oregon Coast Range (CB-MR), USA, where a decade-long inventory of rainfall-triggered shallow
landslides is available and fieldwork has constrained soil hydrological and mechanical properties [e.g., Torres
et al., 1998; Schmidt, 1999; Montgomery et al., 2000; Schmidt et al., 2001; Montgomery and Dietrich, 2004; Ebel
et al., 2007a, 2007b; Montgomery et al., 2009]. Our goal is to explore the usefulness of our approach in a
practical application to a landscape where detailed conditions are not known and to quantify the impacts
of changes in rainfall and root strength on landslide size and location.

We use process-based submodels with field-based measurements to find the best estimates of each model
parameter (the base case parameterization) to map soil depth and predict the pore pressure and root
strength fields. We then use the inventory of observed landslides as an independent test of the model rather
than calibrating any model parameters to optimize model performance. This more stringent test illustrates
the model’s applicability for forward predictions where landslide model parameters are unknown. Given
the large uncertainty about parameters, model performance under a range of parameters is also explored.
A range of performance metrics is used to assess improvement relative to the null hypothesis that landslides
are randomly placed on the landscape (referred to as the random model), and common infinite-slope
approaches (e.g., review in Sidle and Ochiai [2006]). We independently test the search algorithm and slope
stability model by (1) assessing the predicted stability of the observed landslides using the slope stability
model alone, under various parameterizations; and (2) confirming that any observed landslide that is
unstable according to the slope stability model is also found by the search algorithm. Finally, we apply the
model to the same study area with the same base case parameterization but vary rainfall intensity and root
strength to understand their impact on landslide location and size.
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2. Background
2.1. Discrete Landslide Modeling Approaches

Physically based modeling of shallow landslide size requires a multidimensional slope stability model that
can be applied efficiently across a landscape and use information at the individual grid cell level to assess
collective cell instability without constraints on size and shape. Because of the geomechanical complexity
of natural landscapes, there have been few attempts to develop such a model. Previous efforts to model
discrete landslides fall into two general categories: limit equilibrium analyses that constrain the number of
potential failures to test and models of progressive failure that constrain the number of initiation points.

Okimura [1994] identified a least stable grid cell using an infinite-slope model and assumed failure depth; then
calculated a more complete cross-slope and downslope force equilibrium to identify the least stable location in
a set of predefined rectangular shapes in its neighborhood. This model was successfully applied to small indivi-
dual failure sites but was sensitive to grid resolution and too restrictive for larger scale applications. Qiu et al.
[2007] used a model proposed by Xie et al. [2003], which combines a nondeterministic Monte Carlo approach
with a 3-D slope stabilitymethod [Hovland, 1977], to test the stability of potential ellipsoidal slip surfaces. The ran-
dom variables (the dimensions and the dip angle of the ellipsoid) are sampled from a uniform distribution within
user-specified ranges. This approach also does not consider resistance on themargins due to, for example, lateral
root reinforcement, whichwe expect to be important [Schmidt et al., 2001].Mergili et al. [2014] extended the same
method to also predict deep-seated landslides and report a modest improvement on the infinite-slope model.
Reid et al. [2000] and Brien and Reid [2008] take a similar approach to Xie et al. [2003] but use a deterministic
sampling strategy in order to predict deep-seated landslides. The candidate landslides are the result of the inter-
section of the topographic surface and a prescribed set of spheres of given radii, and their stability is assessed
using Bishop’s 3-D slope stability method [Bishop, 1955] (also ignoring lateral resistance).

Lehmann and Or [2012] described a hillslope as discretized soil columns interconnected by frictional and tensile
mechanical bonds represented as fiber bundles [e.g., Schwarz et al., 2010]. If a failure threshold is reached based
on the forces acting on the base of a column, its load is redistributed to its neighbors via the fiber bundles,
which in turn can gradually fail, allowing the failure to progress in both the upslope and downslope directions.
The model of Lehmann and Or [2012] acknowledges the progressive nature of many failures and produces
power law size frequency scaling compatible with many landslide inventories [e.g., Stark and Hovius, 2001;
Guzzetti et al., 2002; Malamud et al., 2004]. However, it is computationally intensive and as a result has only
been applied to small synthetic landscapes. To predict the size, location, and timing of landslides over larger
landscapes, Von Ruette et al. [2013] simplified the Lehmann and Or [2012] model by connecting adjacent
columns with prescribed brittle mechanical bonds rather than the fiber bundles. When applied to two
catchments (3–4 km2) in the foothills of the Swiss Alps, it generally reproduced the size of observed landslides
but predicted failures only at much steeper slopes than observed. Both models implicitly assume that
deformation is large enough to allow failure at the base of an element and subsequent tensile cracking upslope,
yet small enough to allow the transfer of the loads through columns leaning on their downslope neighbors. The
approach of Bellugi et al. [2015], whichwe describe in sections 3 and 4, uses amore conventional limit equilibrium
analysis [Milledge et al., 2014] paired with a novel search algorithm. We contrast this approach applied to our
study area with those of Qiu et al. [2007], Mergili et al. [2014], and Von Ruette et al. [2013] in section 7.2.1.

2.2. Parameterization

Slope stability models require parameterization of many attributes that can vary in space and time. All models
depend strongly on local slope and drainage area and thus on topographic resolution [Zhang and
Montgomery, 1994; Dietrich et al., 2001]. In most models, soil density, cohesion, and friction angle have been
determined by laboratory tests and kept spatially constant across the landscape [e.g., Montgomery and
Dietrich, 1994; Rosso et al., 2006; Godt et al., 2008; Simoni et al., 2008]. Soil depth is either assumed uniform
[e.g., Montgomery et al., 2000; Mergili et al., 2014], predicted empirically [e.g., Godt et al., 2008], inferred from
mapping units [e.g.,Wu and Sidle, 1995], or predicted using a mechanistic model [e.g., Dietrich et al., 1995; Von
Ruette et al., 2013]. Root strength varies spatially and temporally across a landscape due to land management
[Montgomery et al., 2000; Dhakal and Sidle, 2003; Sidle and Ochiai, 2006], as well as natural variability in
vegetation type, and the distribution and strength of its roots [Schmidt et al., 2001; Dhakal and Sidle, 2003;
Hales et al., 2009].
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Existing shallow landslide models are primarily differentiated by their method of estimating pore water pres-
sure. The two dominant mechanisms that generate high pore water pressures are topographically steered
subsurface flow, over hours to weeks, and rapid vertical infiltration, over minutes to hours [Iverson, 2000].
Models range from short-timescale vertical flux dominated [e.g., Iverson, 2000; Godt et al., 2008], to longer-
timescale lateral flux dominated [e.g.,Montgomery and Dietrich, 1994;Wu and Sidle, 1995], with some models
accounting for both but at considerable computational cost [e.g., Simoni et al., 2008]. Modeling the longer-
term lateral component by assuming steady state conditions is attractive for its simplicity but does not cap-
ture transient pore water pressure development. Other models include this transient behavior while retaining
relative simplicity by relaxing the steady state assumption [e.g., Iida, 1984; Wu and Sidle, 1995; Borga et al.,
2002; Rosso et al., 2006]. Transient, variably saturated, and fully three-dimensional models have been used
at the scale of individual landslide sites [e.g.,Wilson et al., 1989; Ebel et al., 2007a, 2007b] but are too compu-
tationally demanding to apply across larger watersheds. Furthermore, local pore pressures may be controlled
by local heterogeneities in the material properties, for example, exfiltration of water from underlying frac-
tured bedrock, such that computationally demanding pore pressure models cannot be sufficiently parame-
terized due to lack of knowledge of the subsurface [e.g., Montgomery et al., 1997; Ebel et al., 2007a, 2007b;
Sidle and Chigira, 2004]. Given these challenges, in this study we adopt a simplified process-based model
for pore pressure dynamics that balances ease of computation with the ability to include transient
hydrologic effects.

2.3. Metrics for Evaluating Landslide Model Performance

To be useful, a model must at least improve on the randommodel case but should also improve on previous
models in specific applications. Model evaluation should assess (1) the adequacy (conceptual and mathema-
tical) of themodel at describing the system, (2) the agreement between predictions and observations, and (3)
the model’s robustness to small changes in the input data [Frattini et al., 2010]. Typically, landslide model
performance assessments assume model adequacy; they generally test agreement and occasionally test
robustness. Any model test requires decisions on (1) how to compare predicted and observed landslides
and (2) the degree of model parameter calibration allowed for the model to reproduce the observations.
Calibration is necessary where model parameters represent properties that are difficult or impossible to
measure but may result in unreasonable performance estimates if the same observations are used both for
calibration and assessment.

Strictly, agreement represents the degree to which predicted and observed landslides have the same size
and shape, occur in the same location, and at the right time (e.g., CB-1 test in Bellugi et al. [2015]).
However, few models are capable of predicting discrete landslides, and incomplete knowledge of local con-
ditions makes it unlikely that the exact timing, size, and location of a specific landslide could effectively be
predicted by any model at the landscape scale. In practice, the agreement test is generally relaxed to com-
pare (1) the percentage of observed landslides that are captured (i.e., overlapped by a predicted landslide),
either by number [e.g.,Dietrich et al., 2001] or by area [e.g.,Mergili et al., 2014], and the percentage of the land-
scape predicted as unstable [e.g., Dietrich et al., 2001]; (2) the similarity in predicted and observed landslide
size distributions [e.g., Stark and Guzzetti, 2009] or in some bulk index of location in the landscape [e.g.,
Von Ruette et al., 2013].

Such tests often relate true positives (TP) or negatives (TN), where landslide presence or absence is correctly
predicted, to false positives or negatives, where a landslide is either predicted without occurring (FP) or
occurred but was not predicted (FN) [Van Rijsbergen, 1979; Frattini et al., 2010; Bellugi, 2012]. These classes
can be combined to indicate the probabilities that any given location is correctly labeled (accuracy= (TP
+ TN)/(TP+ TN+FP+ FN)), that a predicted landslide is indeed a landslide (precision= TP/(TP+ FP)), or that an
observed landslide is predicted (recall = TP/(TP+ FN), also known as the true positive rate). These metrics are
generally combined into Receiver Operating Characteristic (ROC) or success rate (SR) curves to assess the mod-
el’s ability to predict observed landslides, without misclassifying a large part of the landscape [Corominas et al.,
2014]. The ROC curve relates the true positive rate to the false positive rate (FP/(FP + TN)), while the SR curve
relates the true positive rate to the total proportion of the landscape predicted as a landslide ((TP+ FP)/(TP
+ FP+TN+FN)) [Chung and Fabbri, 2003]. These curves are not overly sensitive to the number of observed land-
slides [Fawcett, 2006] and are independent of the cutoff between precision and recall, since the area under the
curve reflects the performance of the model over the range of possible cutoffs [Hanley and McNeil, 1982].
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Both curves can be trivially compared to random predictions, which follow the 1:1 line [Beguería, 2006]. These
calculations require a complete inventory of real landslides, which is very difficult to obtain.

Incomplete knowledge of local conditions inhibits the accuracy of landslide models for a specific event [e.g.,
Montgomery and Dietrich, 1994; Dietrich et al., 2001; VanWesten et al., 2006]. These problems can be overcome
to some extent by comparing landslide predictions with observations over a much longer time period, but
this is limited by the lack of long-term observational landslide records, preventing a fair estimate of both
FNs and FPs. For example, a FP can be a genuine error, a real hazard-prone area that has not yet developed
into a landslide, or an area where the landslide already occurred (preventing one from occurring in the study
period) [Beguería, 2006]. In general, any additional landslide occurring outside the observation period would
either transform a TN into a FN or FP into a TP. Thus, we also consider the model’s ability to reproduce
landslide size and location more generally, by comparing the probability density functions (PDF) of landslide
size and of location (as represented by a topographic index). This comparison is less sensitive to the accuracy
and completeness of the observational set.

The uncalibrated performance of the model is evaluated by comparing the percentage of correctly predicted
landslides to the percentage of the landscape predicted as unstable. These values are compared to those of
an infinite-slope model using an identical parameterization and the random model null hypothesis is tested
by comparing the model’s agreement with observed landslides to that with landslides randomly placed on
the landscape. We compare PDFs of predicted and observed landslide size and location. Given the inevitable
uncertainty in model parameters, the impact of different parameterizations on performance is explored using
SR curves, which are compared to a random model and the infinite-slope model. This allows gauging the
robustness of our model to variations in some of the model parameters.

3. Slope Stability Model

Although shallow landslides commonly transform into debris flows, we propose that the initial failure may be
represented by a rigid block failure model. The multidimensional stability model MD-STAB described by
Milledge et al. [2014] is adopted in this study, as it is appropriate for shallow landslide modeling across natural
landscapes, is fully three dimensional, and incorporates the effects of root strength and soil friction on
sloping boundaries. Other models that make the block failure assumption could also be used with the search
algorithm to identify landslide location and size (section 4).

Milledge et al. [2014] discretize the landscape into columns extending from the ground surface to the bedrock
interface and compute the stability of groups of adjacent columns using a framework similar to Hovland’s
[1977] limit equilibrium method. The factor of safety (FS) is defined as the ratio of total resisting force to total
driving force along the failure surface. Resisting forces result from friction and root cohesion on the base,
cross-slope sides, upslope, and downslope margins of the group of columns, while driving forces result from
the downslope component of each column’s weight and the force exerted from the soil mass upslope.

Failure is assumed to occur by simultaneous shear on the boundaries of the landslide without internal defor-
mation, progressive failure, strain weakening, or strain-induced pore water pressure dynamics. It is assumed
that the soils are normally consolidated, cohesionless, have isotropic frictional properties, and are uniform in
density for all soil moisture conditions [Milledge et al., 2014]. Soil cohesion can also be included in the model
when appropriate. It is also assumed that slope instability occurs in drained conditions (i.e., strain rates are
slower than the rate at which water can drain from the soil, resulting in no pore pressure increase [Head
and Epps, 2014]); that the failure plane is at the soil-bedrock interface; that the water table surface in a soil
column is parallel to both the ground surface and the base of the soil; and that groundwater conditions
are the result of steady, slope-parallel subsurface flow. For simplicity, the effects of infiltration, suction, or
capillary rise in the unsaturated zone that might cause negative pore pressures are ignored, and each column
is represented with saturated and unsaturated zones. However, other groundwater assumptions could also
be used to predict a pore water pressure field for the slope stability model.

The basal shear resistance force Rb (N) is

Rb ¼ secθCb þ cosθz γs � γwmð Þtanϕð Þlw (1)

where l (m) and w (m) are the length and width of each cell, θ (deg) is the slope angle, ϕ (deg) is the soil’s
effective friction angle, m (no unit) is the soil saturation ratio (the ratio of water table height h (m) to the
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depth of the failure plane z (m)), γs is the unit weight of the soil, defined as γs= g ρs (N/m
3), γw is the unit

weight of water, defined as γw= g ρw (N/m3), g (m/s2) is acceleration due to gravity, ρs (kg/m
3) is the soil

bulk density, ρw (kg/m3) is the density of water, and Cb (Pa) is the effective basal root cohesion.

The cross-slope shear resistance forces Rl and Rr (N) are

Rl ¼ Rr ¼ 1
2
Koz

2 γs � γwm
2

� �
tanϕl þ Clzl (2)

where friction is a function of the normal stress on the margin calculated using the at-rest earth pressure
coefficient, defined as K0=1� sin ϕ [Jaky, 1944].

The forces acting on the upslope and downslope margins are the resultant of both the normal and shear
forces (due to friction) and are inclined at the soil friction angle (ϕ). Their slope-parallel component acts as
a driving or resisting force on the margin, while their slope-normal component modifies the resisting force
on the base. The active force on the upslope margin of the group of columns is calculated from vertical stress
using the Coulomb active earth pressure coefficient (Ka), which assumes a planar failure surface [Chugh and
Smart, 1981]. The passive force on the downslope margin is calculated using the Log-Spiral passive earth
pressure coefficient (Kp), which accounts for the curvature of the failure surface that develops on this margin
[Soubra and Macuh, 2002]. Both are upper bound solutions suitable for sloping soils that account for root
cohesion. The net resisting force on the passive downslope margin Rd (N) is

Rd ¼ 1
2
Kpz

2 γs � γwm
2

� �
w cos ϕ � θð Þ � sin ϕ � θð Þtanϕð Þ (3)

The net driving force on the active upslope margin Ru (N) is

Ru ¼ 1
2
Kaz

2 γs � γwm
2

� �
w cos ϕ � θð Þ � sin ϕ � θð Þtanϕð Þ (4)

Ru becomes negative when cohesion is large enough to exceed the driving force of the upslope wedge. The
downslope driving force Fd (N) is defined as

Fd ¼ sinθzγslw (5)

Milledge et al. [2014] calculate the driving force vector (equation (5)) for each column based on its aspect, then
sum these vectors over the entire landslide area to obtain the total driving force. The resisting force of each
column is the sum of its basal (equation (1)) and lateral components (equations (2)–(4)). Lateral components
are only considered for column margins at the edge of the landslide. As grids are generally not oriented
parallel to the topographic gradient, most cells will experience more than one force component (upslope,
downslope, and cross slope). The lateral resistance on each columnmargin is adjusted by assigning a fraction
of the edge length to each resistance component. The FS (no unit) for the group of columns is defined as the
ratio of its total resisting to driving forces,

FS ¼

X
all

Rb þ
X
left

Rlþ
X
right

Rr þ
X
down

Rd �
X
up

Ru

X
all

Fd
(6)

where the summation subscripts indicate which columns are included (all columns or only those on the left,
right, downslope, or upslope margins). An extensive derivation and discussion of this model is provided in
Milledge et al. [2014].

4. Search Algorithm

To identify discrete landslides in the output of the slope stability model, we use the search algorithm based
on graph-partitioning theory developed by Bellugi et al. [2015]. Here the search algorithm is summarized,
abstracted from the more extensive derivation, and discussed in Bellugi et al. [2015]. The landscape and all
its spatial attributes are discretized into a regular grid and represented as an undirected weighted
graph G= (V,E). The vertices v ∈ V represent the vertical soil columns corresponding to the discretized grid
cells in the slope stability model. An edge eij ∈ E is formed between every pair of neighboring vertices vi
and vj representing the forces wij acting between grid cells. The vertices are annotated with the gravitational
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driving forces and the frictional resistive forces acting on the base of the column, contributed by each grid
cell. The edges are annotated with the forces potentially acting between a grid cell and its neighbors. The
aim is to find unstable clusters of vertices with a ratio of resistive to driving forces (FS) less than unity. This
is achieved by expressing the FS as a cost function, minimizing it over the graph, then relaxing the least stable
criterion to include any unstable clusters [Bellugi et al., 2015].

Bellugi et al. [2015] define a force matrix F containing the driving forces associated with the vertices of G,

Fii ¼ Fdi (7)

where Fdi is the force contributed by vertex vi. For efficiency, only the magnitude of the driving force (the
arithmetic sum of the driving forces on the vertices of a cell) is encoded in F. The FS of candidate
landslides is subsequently computed using the vector sum. A resistance matrix R is defined to express the
resistive forces associated with both the vertices and the edges of G. The diagonal of R is

Rii ¼ Rbi þ
Xm*n
i≠j

wij (8)

where Rbi is the basal resistance of vertex vi, and the second term is the sum of the lateral resistance between
vi and its neighbors. The off-diagonal entries of R contain the symmetrized resistive forces along a given edge
between vi and a neighbor vj:

Rij ¼ Rji ¼ �wij þ wji

2
; i≠j (9)

A cluster of cells S ∈G is defined by a binary indicator vector x of length n*m: xk= 1 if vk ∈ S, and xk= 0 if vk ∉ S.
The index k corresponds to the position of a grid cell in a linearized representation of the grid. The cost
function C(x) of the partition S is defined as the FS of S expressed in terms of x, R, and F:

C xð Þ ¼ xTRx
xT Fx

(10)

The partition S* with the lowest FS corresponds to the indicator vector x* which minimizes C(x) (i.e., x* iden-
tifies the cluster of cells that minimize the FS). Similarly to the approach of Shi and Malik [2000], the binary
vector x is relaxed to take on real values (i.e., x ∈ℝ). Substituting y= F1/2x into equation (10) leads to

C yð Þ ¼ yTF-
1=2RF-

1=2 y
yTy

(11)

Theminimizing solution to equation (11) is the eigenvector y*, pointed to by the smallest nonzero eigenvalue
λ* of the linear system defined by

F-
1=2RF-

1=2y ¼ λy (12)

[Horn, and Johnson, 1985], where y and λ are the eigenvectors and eigenvalues of (12). The partition S* is
obtained by reversing the change of variable used above (i.e., x*= F�1/2y*). As x* is only an approximation
of the original discrete x, this process is repeated using the first k eigenvectors of equation (12).

Discrete solutions are recovered by thresholding x*, using all its distinct values. All xi for which the corre-
sponding xi

* are greater than ti are set to 1, and the rest are set to 0, producing disconnected discrete binary
regions ri. The set of these regions corresponds to a contour tree Tc, where vertices indicate a topologic
change (birth or merging of regions) and edges indicate a change in region shape [Carr et al., 2003]. Each
edge of Tc is traversed, and the FS of the region ri at each threshold ti is computed using the vector sum of
driving forces contributed by each grid cell in the region. Where multiple shapes have a FS below unity,
the search algorithm has the option of retaining that with the lowest FS or that with the FS closest to unity
[Bellugi et al., 2015]. The former method, referred to as FSmin, is most consistent with the form of the optimi-
zation (i.e., minimizing the FS), while the latter, referred to as FSmax, is more representative of the transition to
instability. The process is repeated for the complement of x* (x*’=�x*), whereby all xi for which the
corresponding xi

* are ≤ti are set to 1, and the rest are set to 0. The set of all the extracted regions represents
the predicted landslides from the eigenvector y*. This process is repeated for each of the k eigenvectors
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(k=256 in this study, a compromise between fast running times and more exhaustive search). Only one land-
slide is retained per edge of Tc. Wheremultiple landslide predictions from different eigenvectors overlap, only
one is retained using the same pruning method as above (FSmin or FSmax).

5. Study Area

The study area (CB-MR) is located about 15 km north of Coos Bay, Oregon (Figure 1a). It has an area of 0.5 km2

and consists of steep, highly dissected soil-mantled hillslopes with narrow ridges and steep channels typical of
the Oregon Coast Range [Montgomery and Dietrich, 1994; Montgomery et al., 2009]. The maritime climate deli-
vers approximately 1500mm of annual precipitation [Montgomery and Dietrich, 1994;Montgomery et al., 2009].
The CB-MR area burned in the late 19th century, was clear-cut logged in 1987, and was replanted in 1988 with
Douglas fir seedlings [Montgomery et al., 2000, 2009]. In particular, root degradation and hydrological effects
following forest clearing resulted in accelerated rates of landsliding [Montgomery et al., 2000]. CB-MR is mostly
underlain by Eocene sandstone, and the resulting colluvial soils are well mixed, gravelly sands with sandstone
clasts [Torres et al., 1998; Schmidt et al., 2001]. Soil thickness ranges from roughly 0.1m to 0.5m on topographic
noses to greater than 2m in topographic hollows, with bedrock outcrops in many areas where the slope
exceeds 45° [Montgomery and Dietrich, 1994]. The colluvium has a friction angle of 40° and is essentially cohe-
sionless [Schmidt et al., 2001]. Roots produce an apparent cohesion via root fiber reinforcement (referred to as
root cohesion), promoting slope stability in shallow soils [e.g., Wu et al., 1979, 1988; Sidle, 1992; Schmidt et al.,
2001]. Field-mapped channels [Montgomery and Dietrich, 1992, 1994] often begin at small landslide scars
[Montgomery and Dietrich, 1998], and shallow debris flows periodically deliver the colluvial soils to the down-
slope channel system and scour the bedrock, etching the channel network [Stock and Dietrich, 2003]. The aver-
age slope of the study area is 36°, with maximum slopes exceeding 60° in some locations.

This site was selected to test our model because (1) repeat field mapping provides an inventory of shallow
landslides that occurred over a 10 year period [Montgomery et al., 2000] and (2) various campaigns during this
10 year period produced fieldmeasurements of physical parameters such as hydrological conditions, soil depth,
and root strength. These measurements include an instrumental record of a rainfall-triggered shallow landslide
that occurred in a small catchment (CB-1) at the research site [Montgomery et al., 2009] as well as measure-
ments over a larger area of soil depth [Schmidt, 1999; Heimsath et al., 2001], root strength [Schmidt et al.,
2001; Montgomery et al., 2009], hydrological properties [Torres et al., 1998; Montgomery and Dietrich, 2004;

Figure 1. The Coos Bay, OR, study site. (a) Location map showing location of the Mettman Ridge study area near Coos Bay,
Oregon [Montgomery and Dietrich, 2002]. (b) LiDAR-derived shaded relief map of the Mettman Ridge study area, overlaid
with 5m contours, the channel network, and the landslides mapped by Montgomery et al. [2000]. The November 1996
landslide which occurred at the experimental CB-1 site is filled in red.

Journal of Geophysical Research: Earth Surface 10.1002/2015JF003520

BELLUGI ET AL. LANDSLIDE SEARCH ALGORITHM APPLICATION 2559



Ebel et al., 2007a, 2007b], and rainfall characteristics [Montgomery et al., 2000]. These provided a basis formodels
of soil production [Heimsath et al., 2001] and transport [Roering et al., 1999], which make it possible to predict
the spatial pattern of soil depth [Dietrich et al., 1995, 2003]. Given the volume and quality of the data from this
site, it has been a benchmark for many landslide models [e.g.,Montgomery and Dietrich, 1994; Rosso et al., 2006;
Borja and White, 2010].

The 34 shallow landslides that occurred in CB-MR during the decade of research were mapped by
Montgomery et al. [2000] (Figure 1b). In November 1996 a rainstorm delivered the largest recorded 24 h rain-
fall to the Oregon Coast Range, triggering widespread landslides [Robison et al., 1999]. Between 16 and 18
November, the rain gauges at CB-1 measured 225mm of rain [Montgomery et al., 2009]. The maximum daily
intensity was 145mm/d and the 48 h average intensity was 85mm/d [Montgomery et al., 2009]. About 1 h
after the peak rainfall, the slope failed at the CB-1. The colluvium from the CB-1 hollow mobilized as a debris
flow, destroying most of the infrastructure at the experimental site andmarking the end of the recorded rain-
fall time series.

6. Application of the Discrete Landslide Model

The model is applied to the 0.5 km2 study area (CB-MR) to assess its ability to reproduce the size and location of
observed landslides. These landslides occurred over a 10 year period and, with the exception of the 1996 storm,
the characteristics (i.e., intensity, duration, and detailed time series) of the landslide-triggering storms are poorly
known. We adopt the estimates ofMontgomery et al. [2000] for the characteristics of the storms that triggered
landslides. The topographic data consist of a 2m resolution grid containing LiDAR-derived elevations with an
original average data point spacing of 2.3m [Roering et al., 1999]. In contrast with the CB-1 monitoring study
[Bellugi et al., 2015], soil depth, water table height, and lateral and basal root cohesion at the time of failure
are unknown andmust instead be estimated fromprocess-based submodels described in the following section.

6.1. Modeling Spatially Variable Soil Properties and Hydrologic Conditions
6.1.1. Soil Properties
Based on the framework illustrated in Dietrich et al. [1995], soil depth is estimated by coupling an exponential
soil production term [Heimsath et al., 2001] with a nonlinear diffusive term [Roering et al., 1999] in a finite-
difference scheme, which is then run for 6000 years (with a 1 year time step) to match the field observations
reported byMontgomery [1991]. The rate of conversion of intact bedrock to mobile soil (typically due to biotic
disturbance) declines exponentially with soil depth and can be expressed as

�∂zb
∂t

¼ εe�α zcosθ (13)

where zb (m) is the height of the soil bedrock boundary above some datum, t (year) is time, ε (m/yr) is the
production rate at zero soil thickness, α (1/m) is the rate constant, z (m) is the soil thickness measured
vertically from the bedrock boundary, and θ (deg) is the slope angle. The annual transport across the
entire hillslope is determined by the nonlinear flux equation,

q ¼ D∇zt
1� ∇ztj j=Scð Þ2 (14)

where q (m2/yr) is the flux per unit contour width, D (m2/yr) is the diffusion coefficient, zt (m) is the
topographic elevation above a reference datum, and Sc (m/m) is the critical slope. We use locally calibrated
parameters: D is set to 0.0032 (m2/yr) and Sc to 1.25 (m/m) [Roering et al., 1999]; α is set to 0.0003 (1/m)
and ε to 0.000268 (m/yr) [Heimsath et al., 2001]. Initial soil thickness was set to a uniform low value of
10 cm, representative of the thinner soils found on the most divergent parts of the landscape. Under the
assumption that rivers remove any material that is delivered, soil was not allowed to accumulate in
channel locations. Figure 2 shows the predicted soil depth values for CB-MR, illustrating the pattern of
thicker soils in convergent topography (hollows), where most landslides are observed, and thinner soils on
divergent slopes. While the general spatial pattern of soil depth in this landscape is well reproduced, this
method does not account for local variability due to stochastic processes such as tree throw and animal
burrowing that has been observed in this area [Schmidt, 1999; Heimsath et al., 2001].

Data on root cohesion as a function of depth at this site reported byMontgomery et al. [2009, Figure 7c], who
measured the spatial distribution of root type, root diameter, root/area ratio, and root depth along the
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perimeter of the scarp of the CB-1 landslide, suggest that the relationship between root cohesion and depth
at this site is better represented as an exponential function [e.g., Dunne, 1991; Benda and Dunne, 1997;
Roering, 2008] of the form

Cb ¼ Cr0e
�zj (15)

where Cb (Pa) is the root cohesion at the base of a soil column of thickness z (m), Cr0 (Pa) is the root cohesion
value at the surface, and j (1/m) is the reciprocal of the e-folding depth of Cb (i.e., the depth at which Cb
increases by a factor of e) [Dunne, 1991; Benda and Dunne, 1997]. The average lateral root cohesion Cl (Pa)
per unit perimeter area is then the integral of Cb over the thickness of the soil z,

Cl ¼ 1
z
∫
z

0
Cr0e

�zc jdzc ¼ Cr0

jz
1� e�zj
� �

(16)

where zc (m) is the vertical coordinate.

The coefficients Cr0 and j are typically obtained either from field data or literature-based estimates of the rela-
tionship between root strength, root density, and depth. We extend the site-specific measurements reported
by Montgomery et al. [2009] for the CB-1 landslide to the CB-MR study area, and set Cr0 to 22 kPa and j to
5m�1. The entire CB-MR area was clear cut in 1987 [Torres et al., 1998], and thus spatial variation in root
strength may have been reduced. Although the model relating root cohesion and depth is spatially invariant
(equation (15)), soil depth variability leads to variability in lateral and basal root cohesion (Figure 3), with
observed landslides generally found in areas of low predicted root cohesion.
6.1.2. Hydrologic Conditions and Storm Sequence
The intensive field experiments at CB-1 demonstrated that nearly all storm runoff flows through a shallow
fractured bedrock zone before exfiltrating back into the soil and flowing to the channel [e.g., Montgomery
et al., 1997; Torres et al., 1998; Montgomery and Dietrich, 2002;Montgomery et al., 2009]. Patches of partial soil
saturation resulting from this exfiltration developed along the topographic axis of the hollow [Montgomery
et al., 2009, Figure 6]. The extensive studies performed at this site demonstrate that although highly variable,
the patterns of elevated pore pressure are roughly consistent with a subsurface flow that follows a head
gradient parallel to the topographic surface, a common assumption in shallow subsurface flow models

Figure 2. Predicted soil depth for CB-MR, resulting from the application of the coupled soil production and soil transport
submodels (see text for parameters). Soils are generally thicker in the hollows, wheremost of the observed landslides (black
outlines) are also located.
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[e.g., Beven and Kirkby, 1979]. As the
spatial pattern of the conductive
fractured bedrock zone is not known
and extremely difficult to estimate,
we make the assumption that storm
runoff is confined to the soil layer
and that the head gradient is equal
to the topographic surface gradient,
assumptions widely used by others
[e.g., Dietrich et al., 1992; Montgomery
and Dietrich, 1994; Wu and Sidle,
1995; Pack et al., 1998; Montgomery
et al., 2000; Schmidt et al., 2001;
Borga et al., 2002; Rosso et al., 2006;
Tarolli and Tarboton, 2006]. We
recognize that this is not an accurate
representation of the complex hydro-
logical processes which control storm
runoff flow, but at this site these
simplifications are useful to provide a
good approximation to soil saturation
patterns. The effect of these assump-
tions is generally to overestimate pore
pressure in the soil but eliminate the
local exfiltration-driven pore pressure
spikes, which can localize landslides.

In order to model landslide response
to specific storms, we use a form of
the transient, topographically steered
hydrologic model proposed and
applied to the CB-MR site by Rosso
et al. [2006]. While our landslidemodel
is independent of the choice of hydro-
logic model, we choose this one as it is
the simplest extension to steady state
hydrologic models [e.g., Beven and
Kirkby, 1979; O’Loughlin, 1986; Moore
et al., 1988; Dietrich et al., 1992;
Montgomery and Dietrich, 1994] and
has been shown to capture the transi-
ent response at this site, thus allowing
the application of storm time series.
Pore pressure is modeled by coupling
the conservation of mass of soil water

with Darcy’s law to describe seepage flow. This yields a simple analytical model capable of describing the com-
bined effects of duration and intensity of a precipitation episode in triggering shallow landslides [Rosso et al.,
2006]. This model assumes that precipitation and transmissivity are spatially uniform and predicts for each grid
cell the saturated height hi (m) of the soil column z (m) at a discrete time step i as

hi ¼ qi
az

Tbsinθ
1� exp � 1þ v

v � vSr
� Tbsinθ

az

� �
ti

� �
þ hi�1 exp � 1þ v

v � vSr
� Tbsinθ

az

� �
ti (17)

where qi (m/d) is the effective precipitation at time step i, hi�1 (m) is the height of the saturated fraction at time step
i� 1, ti (days) is the duration of time step i, v () and Sr () are, respectively, the void ratio (volume of voids divided by

Figure 3. Predicted (a) basal and (b) lateral root cohesion for CB-MR, resulting
from the application of equations (15) and (16) with CB-1 parameters (see text).
The observed landslides (black outline) generally occur in areas of low
predicted root cohesion.
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the volume of solids) and degree of saturation (volume of water divided by the volume of voids) of soils, T (m2/d) is
the hydraulic transmissivity and the other parameters are defined as above. Under the assumption that hydraulic
conductivity K (m/d) is uniform with depth [Montgomery and Dietrich, 1994], T=Kz, and equation (17) becomes

hi ¼ qi
a

Kbsinθ
1� exp � 1þ v

v � vSr
� Kbsinθ

a

� �
ti

� �
þ hi�1exp � 1þ v

v � vSr
� Kbsinθ

a

� �
ti (18)

We use field-measured parameters obtained at CB-1, and set v= 1 [Montgomery et al., 1997], Sr= 0.6, equiva-
lent to the 30% field capacity of soil in this location [Torres et al., 1998], and K= 67m/d [Ebel et al., 2007b]. In
this model, precipitation is instantaneously delivered to the saturated zone and head at each grid cell, hi,
instantaneously adjusts throughout the system.

The rain gauges at CB-1 provide a 10 min resolution time series of the November 1996 storm, the largest
storm on record for the study area which triggered the CB-1 landslide and four others at CB-MR
[Montgomery et al., 2009]. Montgomery et al. [2000] attributed the other (pre-1996) landslides at CB-MR to
the most intense 24 h storms in the 6 years when landslides occurred. We use the characteristics of the six
boxcar storms (storms of constant intensity for a specific duration, listed in Table 1) identified by
Montgomery et al. [2000] to generate spatial layers of pore pressure using equation (18) and apply the model
to each storm, generating independent landslide predictions. To avoid double counting, individual landslides
are attributed to individual storms. All the landslides in the 10 year record failed at or very near the soil-
bedrock interface [Montgomery et al., 2000], implying that locations where a landslide has occurred would
not have enough soil to fail during a subsequent storm. Since modeled soil depth and topography do not
vary dynamically through the storm sequence, we attribute landslides to individual storms, and in each sub-
sequent simulation we retain only the landslides that do not overlap previous landslides, resulting in a final
composite set of predicted landslides. We discuss possible impacts of the choice of this attribution method in
section 7.1. To test the performance of the landslide model with a more complex rainfall time series (as
opposed to constant-intensity boxcar storms), we also apply equation (18) to the 10 min resolution rainfall
time series of the 1996 storm (referred to as “1996 storm”, Table 1), up to the time of the CB-1 failure reported
byMontgomery et al. [2009, their Figure 3]. This storm was the last and largest storm in the study period, thus
in this test we ignore the previous storms and retain all the predicted landslides (i.e., assuming that failures
that occurred in previous, smaller storms would also have occurred under the storm of record).

Figure 4 illustrates the spatial pattern of the soil saturation ratio (m) predicted by the hydrological model for
the storms with lowest and highest 24 h intensities (2.37 and 6.87mm/h), and the 1996 storm at the time of
the CB-1 failure. Water table heights are always higher in the hollows than on divergent slopes, but areas with
deepest soils where some of the observed landslides are only moderately saturated, while moderately diver-
gent areas where soils are thin can be more saturated, suggesting that saturation alone is not the primary
control on instability. The extent of saturated areas increases significantly with increasing precipitation inten-
sity. The boxcar and the detailed representation of the 1996 storm result in similar pore water pressure fields
(Figures 5b and 5c) with average difference <15%.

6.2. Comparison of Observed and Predicted Landslides
6.2.1. General Characteristics
Landslides in both predicted and observed groups have sizes ranging from a few square meters to hundreds of
squaremeters, are generally longer than they are wide, and are principally located in topographic hollows where
soil and water tend to accumulate (Figure 5). Predicted landslides rarely extend out of the parts of the hollows
with the thickest soils, consistent with the 10 year observational record. The mean size of the predicted land-
slides is 200m2 and 197m2, with standard deviation (STD) of 193m2 and 201m2, for the composite and 1996
storm cases, respectively. This is ~0.85 times the mean observed size (234m2, 191m2 STD). The mean failure
depth for predicted landslides 1.43m and 1.33m, with STD of 0.7m and 0.6m, for the composite and 1996

Table 1. Storm Intensity/Duration Parameters Used for the Application of the Model to the CB-MR Study Site

Storm Year 1987 1990 1991 1992 1993 1996 1996 Detailed

Duration (days) 1 1 1 1 1 1 12.4 (10 min series)
Intensity (mm/h) 5.0 3.85 2.5 2.37 4.06 6.87 0.94 (peak hourly: 25.7)
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Figure 4
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storms, respectively, while the predictedmean soil depth for the observed landslides is 1.41m (0.4m STD). These
are very similar to the mean depth of 1.38m from the subset of observed landslides that were field mapped
[Montgomery, 1991; Larsen et al., 2010], suggesting that our soil depth model broadly captures the observed
spatial variations in soil thickness. The majority of the observed landslides (56% and 65% for the composite
and 1996 storm cases, respectively) overlap with predicted landslides, but there are more than twice as many
landslides predicted as observed in both the composite (89) and 1996 storm (130) cases.

Following Dietrich et al. [2001], we compute the percentage of observed landslides captured by our simulations
and the percentage of the landscape covered by predicted landslides. The model captures 56% of the observed
landslides using the FSmin pruningmethod with the composite storms and 65%with the 1996 storm and predicts
that landslides cover 3.5% and 5.5% of the landscape, respectively (Figure 6), compared to 1.8% in reality. Similar
results (not shown) are obtained using FSmax pruning, with one more landslide captured in the 1996 storm case
(68% of total, with predicted landslides covering a further 0.8% of the landscape). Despite the modest overpredic-
tion, the percentage of correctly predicted stable area is considerable (97% and 95% in the FSmin composite and
1996 storm cases, 97% and 94% in the FSmax composite and 1996 storm cases, respectively).

Landslide sediment volume for the 10 years after forest clearing is calculated by summing the predicted soil
depths for all grid cells that fall within landslides. The total landslide volume for the observed failures is
11,400m3. This volume differs from the 8700m3 reported by Montgomery et al. [2000]; this difference may
in part be due to the use of constant (rather than modeled) soil depth in Montgomery et al. [2000]. The
predicted volume from the composite application is approximately twice that observed (22,800m3); this
overprediction is expected since we neglect the legacy of landslides prior to the first storm in the series
but suggest that the predicted sediment volume is of the right order of magnitude.
6.2.2. Temporal Sequence
Approximately half of the predicted landslides occur in the first storm (the second largest in the sequence),
which is consistent with the observations of Montgomery et al. [2000] (Figure 7). However, a similar number
occurs in the last storm (the largest of record), which is inconsistent with the observations (Figure 7). The
FSmax pruning method produces similar results. Montgomery et al. [2000] attribute the limited number of

Figure 4. Predicted spatial pattern of the soil saturation ratio, m, for boxcar representations of the 24 h storms with (a)
lowest and (b) highest intensities (2.37 and 6.87mm/h, respectively); and (c) the pattern of h resulting from the 10 min time
series of the 1996 storm at the time of the CB-1 failure. h is less than or equal to the soil depth z and is higher in convergent
topography (hollows) as well as in mildly convergent, high-drainage area locations, where water table heights increase
with precipitation intensity.

Figure 5. Results of the application of the model to the CB-MR study area using the base case parameterization (ϕ = 40°,
Cr0 = 22 kPa) showing (a) the composite map of discrete landslides predicted for the storm sequence identified by
Montgomery et al. [2000] (see text for details) and (b) the map of landslides predicted using the 1996 storm time series.
Predicted landslides are shown in red, and observed landslides are shown in green. Grid cells which are in both the
predicted and observed sets are shown in yellow. Grid cells which are unstable according to the identically parameterized
infinite-slope model are shown in purple.
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landslides in the 1996 storm (<15% of
the total) to the prior failure of the
most susceptible areas and to the
regeneration of root strength 9 years
after cutting. These effects are not
captured in our simulations, which
do not consider landslides prior to
the first storm (our soil depth model
implicitly assumes that hollows were
continuously filling with soil for
6000 years, see section 6.1.1) and use
time invariant root strength para-
meters. Montgomery et al. [2000] also
report that the lower intensity storms
(storms 2–5) contributed a significant
number of landslides to the total. In
our simulations these storms individu-
ally have the potential to cause many
landslides (Figure 7), but as these
overlap with landslides from the first
storm, they are not retained. In the
field case, sites that remained stable
in the first storm then subsequently
fail in a lower intensity storm suggest
that landslide-relevant hillslope char-
acteristics (e.g., soil strength, root
cohesion, and preferential flow paths)
other than rainfall vary on annual to
decadal timescales.

6.2.3. Frequency Distributions of Size and Location
We compare the probability density functions (PDF) of planimetric area andmedian topographic index for observed
and predicted landslides (see section 2.3). The topographic index IT (m) is defined as follows [Dietrich et al., 1992]:

IT ¼ log
A

bsin θð Þ
� �

(19)

where A is the drainage area (m2), b is the grid cell size (m), and θ is the slope angle. Low index values are in
steep, nonconvergent areas, whereas high index values are farther down the valley axis where drainage area
is larger and slope is gentler.

The nonparametric two-sample Kolmogorov-Smirnov (K-S) test is used to evaluate the probability of obtaining the
predicted and observed CDFs from the same underlying distribution [Conover, 1971]. Because this test is solely
based on the maximum vertical distance between the CDFs, it is a rather strict test. Other nonparametric statistics,
such as the Cramer-VonMises and the Mann-Whitney tests, differ from the K-S test by adoptingmore specific defi-
nitions of distance but are similarly strict. Perhaps for this reason, none of the attempts to predict or characterize
landslide size distributions report the results of a nonparametric statistical similarity test of modeled and observed
distributions. The null hypothesis in the K-S test is that the CDFs originate from the same distribution. Low probabil-
ities (p values) imply that the null hypothesis can be rejected [Dallal, 2012]. In our case good model performance
would result in acceptance of the null hypothesis that modeled and observed size and location distributions origi-
nate from the same underlying distribution, with larger p values indicating better model performance.

Predicted landslide size distributions have a modes similar to the observed distribution but with heavier tails,
oversampling small and large landslides relative to the observations, and a stronger bias toward smaller
landslides (Figure 8a). Maximum, mean, median, and standard deviation of sizes of predicted landslides are
within a factor of 1.5 of the observed values (Table 2). Our model underestimates minimum size, predicting

Figure 6. Performance of the model using the base case parameterization
(ϕ = 40°, Cr0 = 22 kPa) and the FSmin pruning method for the storm para-
meters described in Table 1. The dark gray bars show the percentage of the 34
observed landslides (with the absolute number in parentheses) captured (i.e.,
overlapped by a prediction) by the composite predictions resulting (left) from
the six 24 h storms, and (right) from the application of the 10 min time series of
the 1996 storm. The light gray bars show the percentage of landslides that
would be capturedwere they be randomly distributed. The black bars show the
cumulative percentage of the landscape area classified as unstable.
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failures of a few single cells, while the minimum observed landslide is comprised of nine cells (Table 2).
Neither the storm type (composite or 1996 storms) nor the type of pruning (FSmin or FSmax) noticeably alters
the size distributions (Table 2). However, all modeled size distributions are significantly different from the
observed (i.e., null hypothesis is rejected) at the 95% confidence level according to the K-S test (Table 2).
In each case this is the result of overprediction of small landslides (Figure 8a), and by censoring landslides
smaller than the smallest observed, the null hypothesis can no longer be rejected at the 95% confidence
level, though differences remain significant at confidence levels between 67% and 84% (Table 2).

The modeled IT distribution closely matches the range and the mode of the observations (Figure 8b), reflect-
ing locations mostly predicted along the hollow axis (Figure 5). Predicted PDFs are marginally broader than
the observed PDF, with the predictions exhibiting a slight bias toward lower topographic indices. Minimum,
maximum, mean, and median of IT of predicted landslides are within factors of 3, 2, 2.5, and 1.5 of the
observed, respectively (Table 2). While modeled standard deviation differs from the observed by less than
a factor of 2 for the composite simulation, it differs up to a factor of 8 for the 1996 storm simulation.

Figure 8. Probability density functions of (a) size and (b) topographic index of landslides in the CB-MR study area.
Black lines represent the observed landslides. Colored lines represent the composite predictions using the base case parame-
terization (ϕ = 40°, Cr0=22 kPa) resulting from the chronological application of six individual 24 h duration storms with varying
intensity (cool colors) and from the application of the 1996 storm time series (warm colors). Antecedent moisture conditions
are set to 30%. Aserisks in the legend denote the distributions that are not significantly different from the observed distributions
at a 95% confidence level using a two-sample K-S test. Note different vertical scales in Figures 8a and 8b.

Figure 7. Results of the composite six-storm application of the model to the CB-MR study area showing a bar graph of the
number of landslides predicted using the base case parameterization (ϕ = 40°, Cr0 = 22 kPa) in each of the six 24 h storm
simulations, the number of new landslides added by each simulation to the composite results, and the corresponding
observations listed by Montgomery et al. [2000], using the FSmin pruning method; lines show the cumulative number of
predicted and observed landslides for the storm sequence.
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The p values in the K-S test are considerably higher for the IT distributions, suggesting that location is
captured more accurately than size. While in the case of location the null hypothesis cannot be rejected with
95% confidence, differences remain significant at confidence levels between 67% and 86% (Table 2).
Censoring small landslides only moderately increases the p values, suggesting that in this case errors are
not solely due to the overprediction of small landslides.

We test the ability of our model to capture both location and size by comparing the size of predicted and
observed landslides in cases where they overlap. For this subset of the data, there is only moderate agree-
ment: 13% of predicted landslides have size that is within a factor of 1.25 of the observed; 28% have size
within a factor of 1.5 of the observed; 45% have size within a factor of 1.75 of the observed; and 55% have
size within a factor of 2 of the observed (Figure 9). Predicted size spans almost twice the range of observed
size. In the composite case, predicted landslides range from 64 to 724m2 (mean= 282m2), while the corre-
sponding observed landslides range from 88 to 380m2 (mean= 215m2). In the 1996 storm case, predicted
landslides range from 44 to 660m2 (mean= 247m2), while the corresponding observed landslides range
from 60 to 380m2 (mean= 212m2). The average ratio of predicted to observed size for individual landslide
pairs is 1.4 and 1.6 for the composite and 1996 case, respectively, a significant increase from the general
predicted to observed size ratio of 1.0 and 1.1 for the two cases, respectively.

Table 2 suggests that the choice of pruning method used in these simulations does not significantly impact
the overall comparison of predicted and observed landslide characteristics. However, Figure 10 shows slight
differences in the size and location of predicted landslides using the two methods. In particular, two
landslides in the middle hollow predicted using FSmin pruning (labeled D and E in Figure 10a) are replaced
by a single larger landslide when FSmax pruning is applied (labeled DE in Figure 10b). This suggests that
the overall pattern of landslide occurrence may be captured using either pruning method, but the form
and location of failure at a specific site may differ. This effect is small relative to the uncertainty in spatially
varying parameters such as pore pressure and root cohesion (section 6.2.6).
6.2.4. Comparison With a Random Model
We test the null hypothesis that landslides are captured by themodel due to chance alone bymeasuring whether
the model captures more observed landslides than randomly distributed landslides. This is done by taking the
average performance for 10 sets of randomly placed elliptical landslides with the same spatial density and size
as the observed landslides but locations (x-y coordinates) and orientations (angle of major axis from north)
selected using a random number generator (with ellipses not allowed to overlap) [Spowart et al., 2001]. The results
indicate that the null hypothesis can be rejected: in every case, the model captures 6–8 times as many observed
landslides as random landslides (Figure 6), with the pruning method making little difference (not shown).
6.2.5. Comparison With Infinite-Slope Model
Our approach is compared with the commonly used infinite-slope approach (e.g., review in Sidle and Ochiai
[2006]) using exactly the sameparameters in both cases. The infinite-slope factor of safety FSinf () is calculated from

FSinf ¼ Cb þ γsz � γwhð Þcos2θ tanϕ
zγs cosθ sinθ

(20)

Table 2. P Values, and Summary Statistics for Predicted and Observed Size and Location Distributionsa

Size (Planimetric Area (m2)) Location (Median Topographic Index IT (m))

Distribution p Value Min Max Mean Median STD p Value Min Max Mean Median STD

Observed 36 1132 233 182 191 70 1554 274 213 268
Composite FSmin 0.001 4 1176 184 132 192 0.331 28 3096 326 159 491
Composite FSmax 0.014 4 1372 188 140 214 0.136 24 2677 279 137 422
1996 storm FSmin 0.01 4 1500 187 128 200 0.297 25 1598 648 192 1706
1996 storm FSmax 0.003 4 1252 207 116 234 0.165 30 1962 698 178 2211
Composite FSmin (≥36m2) 0.332 36 1176 221 166 192 0.617 28 3095 358 174 529
Composite FSmax (≥36m

2) 0.177 36 1372 213 156 218 0.319 24 2677 303 152 444
1996 storm FSmin (≥36m2) 0.167 36 1500 212 152 203 0.281 25 1598 707 195 1819
1996 storm FSmax (≥36m

2) 0.164 36 1252 248 164 241 0.225 32 1962 556 195 1590

aComposite refers to the six-storm composite simulation, and 1996 storm refers to the single application of the 10 min 1996 storm time series, both using the
base case parameterization. FSmin and FSmax indicate the pruning method used. Rows labeled with ≥36m2 refer to the same simulations but without landslides
<36m2 (the smallest observed size).
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The infinite-slope method captures
100% of the observed landslides, sug-
gesting that it may be effective at the
simpler task of delineating areas of
landslide susceptibility (Figure 5).
However, in contrast to our model, it
does not delineate individual landslides
(and thus their size) and it considerably
overpredicts the unstable area (compo-
site=28%; 1996 storm=31%) com-
pared to our approach (3.4% and
5.4%). Not surprisingly, this overpredic-
tion results in a reduction of the percent
of the stable area correctly predicted
(73% and 70%), compared to our
model (97% and 95%).

6.2.6. Success Rate and Sensitivity
to Parameter Variations
To explore our approach’s sensitivity
to parameter variation, success rate
curves (see section 2.3) are
constructed by varying parameters
one at a time from the base case
parameterization: soil friction angle
ϕ = 40°, storm intensity qi= 10 min
precipitation time series from CB-1
rain gauge (maximum intensity of
42mm/h), and surface root strength
Cr0 = 22 kPa. The parameter ranges
are based on their estimated variabil-
ity at this site: ϕ is varied from 35° to
45° [Montgomery and Dietrich, 1994],
Cr0 is rescaled from 0% to 200%
(0–43 kPa) [Schmidt et al., 2001], and
qi from 0% to 200% (maximum inten-
sity of 85mm/h) [Montgomery et al.,
2009]. This produces a set of success

rate curves expressing landslide capture rate as a function of total predicted unstable area. Best perfor-
mance is achieved when landslide capture rate is maximized and total predicted unstable area minimized;
i.e., the curve is closer to the top left corner of the plot.

Figure 11a shows that the percent of landslides captured by our model (SA curves in Figure 11a) as a func-
tion of the percent of the landscape classified as unstable is extremely sensitive to this parameter variation.
For example, rescaling the storm intensity results in 0% to 97% of landslides being captured (Figure 11a).
Varying friction angle or root cohesion parameters produces almost identical results, with the success rates
following similar curves. In contrast to the extreme variation in the percent of observed landslides
overlapped by predictions, the change in percent of landscape predicted as unstable is relatively modest,
ranging from 0% to 14% (Figure 11a). Perfect recall (100% landslides captured) within this parameter range
is achieved by our model only by varying a combination of the parameters (the four filled yellow circles in
Figure 11a), with the best case involving halving Cr0 (11 kPa), with ϕ = 35° and the base case rainfall result-
ing in less than 13% of the landscape unstable. The insets in Figure 11 show a ratio of benefit, the percent of
landslides correctly predicted (PLC), to cost percent landscape predicted as unstable (PUL), as the three
parameters are varied. Under the assumption that PUL and PLC are equally weighted, higher values of this
ratio indicate improved model performance. The PLC/PUL ratio increases with increasing friction angle

Figure 9. Comparison of predicted and of observed sizes for overlapping
landslide pairs for the application of the detailed 1996 storm time series
and the composite six-storm sequence. Solid line is the 1:1 line, while
dashed lines indicate error factors of 1.25 to 2 (e.g., for an error factor of 2
predicted size is between half the size and twice the size of that observed).
The average predicted to observed size ratio is 1.6 (1996) and 1.4 (composite)
for individual landslide pairs, compared to the overall average of 1.1 (1996)
and 1.0 (composite), with the size of predictions spanning almost twice
the range of the observations.
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(Figure 11b) and root cohesion (Figure 11c) and decreases with increasing storm intensity (Figure 11d). It is
important to note that in practice cost/benefit weights depend on the specific application. For example, in
forest management it may be more important to efficiently reduce the areas where logging may occur than
to predict all landslides (i.e., favoring reduced cost). In contrast, if human lives are at stake it may be more
important to predict all possible landslides than to minimize the percent of the landscape predicted to be
unstable (i.e., favoring increased benefit). Nevertheless, the PLC/PUL measure can be a useful tool to cali-
brate the model parameterization to the goals of a specific application.

Very different success rate curves are obtained when applying these parameterizations to the infinite-slope
model (IS curves in Figure 11a). For the base case parameters (ϕ = 40°, qi= 10 min time series, Cr0 = 22 kPa),
and for all other parameter values described above, all observed landslides are overlapped by predictions
(100% captured). Parameter variation instead greatly changes the percent of the landscape estimated to
be unstable (the set of open symbols in Figure 11a). The choice of which parameter to vary makes a bigger
difference in this case, with storm intensity resulting in 14–43% PUL and root strength in 25%–67% PUL, with
friction angle taking intermediate values (Figure 11a). Within this parameter set, the best performance was
obtained with no rainfall, with <14% unstable landscape (the top leftmost blue diamond in Figure 11a).
The lower left end of the IS curves overlaps with the upper right end of the SA curves. This overlap occurs only
when the two methods are at opposite extremes in their parameter sets (“weak”, i.e., low friction angle, low
cohesion, high storm intensity, for the SA case; “strong”, i.e., high friction angle, high cohesion, low storm
intensity for the IS case). Under these “effective” parameterizations, the performance of the two methods
is very similar. However, the PLC/PUL curves for our model are consistently higher than those for the
infinite-slope model (Figures 11b–11d), with the exception of the case of no precipitation where none of
the observed landslides are predicted to fail by our model resulting in a PLC/PUL value of zero in spite of
the minimal fraction of landscape predicted to be unstable (0.2%). In contrast, the infinite-slope model
predicts observed failures even in the absence of precipitation, resulting in a positive PLC/PUL value in spite
of 14% of the landscape predicted to be unstable (Figure 11d).
6.2.7. Independent Test of Slope Stability Model
The majority of observed landslides are overlapped by a predicted landslide using our base case parameters
(ϕ = 40°, qi= 10 min time series, Cr0= 22 kPa), but the predicted landslide scars often only partially coincide
with the observed scar outline. As a separate test, the MD-STAB slope stability model is applied to the specific
locations and observed dimensions of the 34 landslides identified byMontgomery et al. [2000] using the same
parameterization. For this site-specific application only 6% of the observed landslides are predicted to be
unstable for the composite storm case and 12% for the detailed 1996 storm case. This low frequency of

Figure 10. Detail from the northwestern section of the CB-MR study area comparing the two different methods for pruning
overlapping landslide predictions: (a) predictions resulting from retaining the unstable shapes with FSmin and (b) predic-
tions resulting from retaining the unstable shapes with FSmax, both obtained using the base case parameterization
(ϕ = 40°, Cr0 = 22 kPa). Predicted landslides are shown in red, and observed landslides are shown in green. Grid cells that
are in both the predicted and observed sets are shown in yellow. The two methods result in landslides with slightly
different locations and sizes. In particular, predictions D and E in Figure 10a are combined into a single landslide DE in
Figure 10b. The 1996 storm 10 min time series was used in both panels.
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predicted instability suggests that the factor of safety of the observed landslides is overestimated by MD-
STAB. Applying the parameter range defined in the previous section (Figure 11), we find that the number
of observed landslides classified as unstable using MD-STAB increases when the friction angle is decreased
(up to 56% predicted unstable for ϕ = 35), when the rainfall intensity time series is increased (up to 50%
for double intensity), and when themaximum surface root cohesion is decreased (up to 82% for no cohesion).
MD-STAB’s inability to capture all observed landslides could be attributed to model error, model parameter-
ization, and/or mapping errors, discussed in section 7.1.
6.2.8. Independent Test of Search Algorithm
Many factors contribute to the ultimate outcome of our model, from the correctness of the slope stability
model, its submodels and their parameterization, to the accuracy of topographic data and of the validation
data sets (see section 7.1). Nevertheless, because the search algorithm is general (i.e., it is compatible with a
vast range of submodels and parameterizations), it is useful to evaluate its effectiveness given a specific
model choice and parameterization (i.e., evaluating the error in the search algorithm, all else being equal).
A definitive evaluation method would require knowing all the possible unstable landslides for a given set
of model choices and parameterizations and checking howmany of them are found by the search algorithm.
Because the list of all possible landslides is unknowable (it would require an exhaustive exploration of all the
possible configurations of grid cells), we use a much less stringent criterion: for the wide parameter explora-
tion described in section 6.2.6 we test that any time an observed landslide shape is classified as unstable (i.e.,
FS< 1, as computed byMD-STAB), it is overlapped by an unstable prediction of the search algorithm. This test
is embedded in the search algorithm computer code and is automatically executed every time the algorithm
is presented with a set of observed landslides, logging an error message in case of no overlap with a
prediction. We find that in every case where an observed shape has a calculated FS< 1 the search algorithm
predicted at least one landslide that overlapped the observed shape. This suggests that missed landslides
(i.e., false negatives) in the CB-MR application are the result of errors in the structure of the slope stability
model or in its parameters rather than in the search algorithm.

Figure 11. (a) Comparison of success rate curves from the application of our model (SA) and of the identically parameter-
ized infinite-slope model (IS). Each curve results from individually varying friction angle, storm intensity, and root cohesion
parameters (see text). The two individual red squares show the performance of the two models with the base case
parameterization for the 1996 storm (ϕ = 40°, qi = 10min time series, Cr0 = 22 kPa). Insets show the benefit/cost ratio,
defined as the % landslides captured (PLC)/% unstable landscape (PUL), for the two models as (b) friction angle, (c) maximum
root cohesion, and (d) maximum storm intensity parameters are individually varied, with the base case scenario indicated by
red squares in the insets.
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6.3. Impacts of Rainfall Intensity and Root Cohesion on Landslide Location and Size

Our approach is applied to CB-MR under varying rainfall intensity and root cohesion over a range representa-
tive of Oregon Coast Range conditions to explore impacts on landslide abundance, location, and size. Six 24 h
boxcar rainfall intensities are chosen by linearly interpolating between the lowest and highest intensity storms
of the sequence identified byMontgomery et al. [2000] (with return periods of ~1 and ~70 years), and a higher
intensity storm is added by extrapolating the intensity-duration-frequency curve computed by Montgomery
et al. [2000] for the study area to ~100 year return level. The resulting intensities vary from 2.4 to 8 mm/h.
To vary root cohesion we linearly interpolate between the clear-cut and natural forest values reported by
Schmidt et al. [2001]. The resulting Cr0 values range from 14 to 51 kPa, which at CB-1 would correspond to aver-
age lateral root cohesion (Cl) values ranging from 3 to 11 kPa. In this application we use the highest intensity
boxcar storm (8mm/h) to ensure that landslides are predicted under very high root cohesion.

Figures 12 and 13 show landslides predicted under increasing storm intensity and decreasing root cohesion.
As intensity increases or root cohesion decreases, the number of landslides increases, progressively affecting
new areas in the landscape. Nevertheless, landslides continue to be predicted in steep, convergent areas, and
their size remains broadly consistent with observed landslides.

Figure 14 shows the size and location distributions from these simulations. With increasing rainfall intensity the
size distribution shifts to the right, reflecting an increase in the average landslide size (Figure 14a). Increasing
rainfall intensity also causes landslides to shift down the hollow axis to locations with larger topographic index
(Figure 14b). With increasing root cohesion the size distribution also shifts toward larger landslides (Figure 14c),
but the distribution of locations generally becomes narrower, with little change in its mode (Figure 14d).

Changes in locations of landslides under these simulations are also reflected in the slope-area plots shown in
Figure 15. Under low rainfall intensity, landslides only occur in areas of steep slopes and expand to areas of

Figure 12. Predicted landslides resulting from application of the model to the CB-MR study area for boxcar storms
of increasing intensity and with other values from the base case parameterization (ϕ = 40°, Cr0 = 22 kPa). Predicted
landslides are shown in red, and observed landslides are shown in green. Grid cells which are in both the predicted and
observed sets are shown in yellow. Rainfall intensities used are 2.37mm/h (not shown), 3.49mm/h (not shown),
(a) 4.62mm/h, (b) 5.74mm/h, (c) 6.87mm/h, and (d) 8.0mm/h.
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lower slope (but with higher drainage area for any given slope) with increasing rainfall intensity (Figure 15a).
Similarly, landslides extend to a wide range of slopes and locations with larger drainage area under low root
strength but become increasingly clustered toward the intermediate part of this range under increasing root
cohesion (Figure 15b).

7. Discussion
7.1. Sources of Error in Predicting Landslide Size and Location

At CB-1, where local conditions were well constrained, the model predicts a landslide overlapping the
observed landslide and within 13% of its size [Bellugi et al., 2015]. At CB-MR, where local conditions are less
well constrained, more than 35% of landslides are not predicted (Figure 5) and, of those that are, less than
55% have sizes within a factor of 2 of that observed (Figure 9).

More of the observed landslides can be captured under alternative parameter sets (Figure 11a) but with an
associated increase in the predicted unstable fraction of the landscape. Rather than tuning the model to
optimize performance at this location we aim to understand why the base case parameter set (i.e., the best
independent estimate of parameters) fails to fully capture the observed landslides.

Assuming that observed landslides are correctly mapped, this failure could result from errors in the slope
stability model, the search algorithm, or the parameters used. We have shown that the error is unlikely to
be due to the search algorithm, since whenever MD-STAB predicts that an observed landslide is unstable,
the search finds an overlapping landslide (section 6.2.8).

Parameterizing our model at the landscape scale, even for an area as small as CB-MR, is extremely difficult.
Cyclical soil infilling by biogenic transport and evacuation by landslides [Dietrich and Dunne, 1978; Lehre,
1981; Reneau and Dietrich, 1987a] leads to a strong dependence of soil depth, and thus stability, on a

Figure 13. Predicted landslides resulting from application of the model to the CB-MR study area for the high-intensity
(8 mm/h) boxcar storm under increasing root strength and with friction angle from the base case parameterization
(ϕ = 40°). Predicted landslides are shown in red, and observed landslides are shown in green. Grid cells which are in
both the predicted and observed sets are shown in yellow. Cr0 values used are 14 kPa (not shown), (a) 22 kPa, (b) 29 kPa,
(c) 37 kPa, (d) 44 kPa, and 51 kPa (not shown).
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location’s landslide history. This history is absent from our soil depth submodel, which assumes 6000 years of
uninterrupted colluvial fill, resulting in overprediction of landslide abundance. Furthermore, this submodel
does not account for other stochastic processes such as tree throw and animal burrowing that can result
in locally high soil depth variability [Schmidt, 1999; Heimsath et al., 2001], which can in turn affect slope
stability. Exfiltration from bedrock and drainage from ridge-top roads, which cannot be captured by our
hydrological model, are known to be important in triggering landslides in this area [Montgomery et al.,
2000, 2009]. Similarly, root strength is known to vary not only with soil depth but also between vegetation
types, ages (or time since death), and locations across the landscape [e.g., Wu and Sidle, 1995; Schmidt
et al., 2001; Dhakal and Sidle, 2003; Roering et al., 2003; Hales et al., 2009]. Moreover, in analyzing the cumu-
lative impact of the storm series on the landscape, we consider only new landslides caused by each storm but
we neglect to consider changes to the landscape that result from failures in previous storms, which could
include variations in soil depth, vegetation, and hydrologic properties.

Comparing modeled and field-based observations at the CB-1 site illustrates these effects (Figure 16). The CB-
MR LiDAR datawere collected after the CB-1 landslide had occurred leaving a topographic depression, as can be
noted by comparing Figures 16a and 16c (prefailure) to Figures 16b and 16d (postfailure); this causes stronger
convergence of soil flux in the soil depth submodel, and thus thicker soils downslope of the landslide scar
(Figure 16d). Themodeled pore pressure pattern is topographically driven (Figure 16b) and cannot capture pore
pressure spikes in the field-measured data due to local exfiltration (Figure 16a). These differences affect the
resulting predictions as can be observed by comparing the application of the search algorithm to the CB-1 site
using field-based observations [Bellugi et al., 2015] with those from the application of the algorithm to the larger
CB-MR area (this study). While in both applications the search algorithmpredicts landslides centered on the area
of high pore pressure and thicker soils, predicted landslides have a very different size and shape (Figure 16).

The difference in mapped landslides between the Montgomery et al. [2000] landslide inventory (Figures 16b
and 16d) and the field survey ofMontgomery et al. [2009] (Figures 16a and 16c) reflects themapping uncertainty

Figure 14. Probability density functions of (a, c) size and (b, d) topographic index of predicted landslides in the CB-MR study
area under increasing rainfall intensity and under increasing root strength. Black lines represent the observed landslides.
Colored lines represent the predictions using the different parameterizations. Figures 14a and 14b show the distributions for
the simulations with increasing rainfall intensity and other values from the base case parameterization (ϕ = 40°, Cr0= 22 kPa),
while Figures 14c and 14d show the distributions for the simulationswith increasing root strength, friction angle from the base
case parameterization (ϕ = 40°), and 8mm/h rainfall intensity. Note the different vertical scales in the four panels.
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for this inventory, reported as ~5m
[Montgomery and Dietrich, 1994]. This
uncertainty both influences landslide
location and introduces a size bias,
since scars were mapped larger than
they were observed in the field
[Montgomery and Dietrich, 1994]. This
may partly explain why predicted
landslides are on average 85% smaller
than observed. A further size bias is
introduced by the omission of some
of the smaller landslides reported in
previous work in the area
[Montgomery, 1991, 1994].

MD-STAB incorrectly predicts thatmany
of the observed landslides should be
stable, suggesting that it overestimates
their resistances (section 6.2.7). This
may be due to overestimation of the
landslides’ perimeters but not their
areas in a grid-based discretization.
Alternative meshes could reduce dis-
cretization problems, though these
would need symmetric topology since
the search algorithm requires sym-
metric matrices. The overestimate may
also be due to MD-STAB’s assumption
of hydrostatic conditions on the
upslope and downslope wedges, when
in reality slope-parallel seepage should
reduce the resistance on these bound-
aries [Milledge et al., 2014]. We are not
aware of a suitable earth pressure treat-
ment that can account for slope-
parallel seepage.

Attempts to predict landslides over
an extended period of time are
further complicated by uncertainty

in landslide-triggering storm characteristics. We tested two very different approaches: a composite series
comprising basic (boxcar) representations of all the landslide-triggering storms and a detailed (10 min) time
series for the largest storm. We expected the size and location of predicted landslides to differ between
approaches, because (1) the longer duration of the detailed time series can result in slightly different hydro-
logic conditions than its boxcar representation (Figure 4) and (2) in the composite series we attribute land-
slides to the first storm that causes that location to fail, which is dependent on both model parameters
and the storm sequence. However, the different approaches did not result in large differences in predicted
location (Figure 5) or size (Figure 8), other than a small shift down the hollow axis using the detailed time ser-
ies (Figure 8b). This shift is attributable to the larger extent of wet areas in the longer hydrological simulation.
The similarities between the two approaches suggest that a simplified representation of storm events may be
sufficient to explore the effect of changing storm intensity-duration-frequency on landslide response.

Both storm representation approaches result in a slightly broader range of landslide sizes than observed
(Figure 8a), perhaps reflecting incompleteness of the observational data set or overestimates in resistance
in MD-STAB (both discussed above). The composite simulations predict that landslides are contributed only
by storms 1 and 6 (the second largest and the largest of the series, respectively), which is inconsistent with

Figure 15. Area-slope scatterplot of predicted landslides in the CB-MR study
area (a) under increasing rainfall intensity and (b) under increasing root
strength. Black symbols represent the observed landslides. Colored symbols
represent the predictions using the different parameterizations. The other
parameters in Figure 15a are from the base case parameterization (ϕ = 40°,
Cr0 = 22 kPa), while in Figure 15b the friction angle is from the base case
parameterization (ϕ = 40°), and rainfall intensity is 8mm/h. Note that markers
are differently sized to show overlap.
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Figure 16
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observations. This is because locations that can fail in the lower intensity storms 2–5 have already failed in
storm 1, while stable locations in storm 1 will remain stable in storms 2–5 (but may fail in storm 6). A different
ordering of the boxcar storms changes the attribution of individual landslides to individual storms. For exam-
ple, with the largest storm first, subsequent storms trigger no new landslides. However, reordering the storm
sequence in ascending or descending order of rainfall intensity results in (1) the same number of landslides
and of hits (defined as predictions overlapping observations) as the historical sequence and (2) size and loca-
tion distributions that are indistinguishable at the 99.99% confidence level by a K-S test. In reality, spatiotem-
poral variations of rainfall or other catchment properties (e.g., antecedent moisture, vegetation state, and soil
depth) could cause sites that were stable in a more intense storm to fail in a less intense subsequent storm.

7.2. Comparison to Other Models

Ideally, we would compare our model with other discrete landslide models at the same study area. However,
no other discrete landslide model has been applied at this site. Instead, we discuss the differences in
approach between our model and other discrete models and then compare our predictions with the
infinite-slope models that have been applied to this landscape to predict landslide susceptibility.
7.2.1. Discrete Landslide Models
To our knowledge only three other models capable of predicting discrete shallow landslides have been
applied at the catchment scale [Qiu et al., 2007; Mergili et al., 2014; Von Ruette et al., 2013]. These models, like
ours, require spatial soil depth, root strength, and pore pressure data, though each study differs in how these
parameters are calculated and more fundamentally in their model structure.

In common with our approach, Qiu et al. [2007] and Mergili et al. [2014] both use Hovland’s [1977] three-
dimensional limit equilibrium model to test the stability of discrete shapes. However, their approach differs
in two respects: (1) rather than a repeatable deterministic search assuming failure at the soil-bedrock inter-
face, they use a Monte Carlo based search and allow failure within the soil and in some cases bedrock.
They apply Hovland’s method [Hovland, 1977] without accounting for lateral resistance on the unstable block
and thus underestimate the factor of safety [Chen and Chameau, 1983]. Testing their model at a 0.2 km2 site in
Japan, Qiu et al. [2007] found one observed landslide coincident with their predictions but did not perform a
systematic comparison with a landslide inventory.

In common with our approach, Von Ruette et al. [2013] represent lateral resistance on the margins of clusters
of unstable cells. However, they represent shallow landslide mechanics as a cascade of failures with cells
failing sequentially rather than simultaneously as in the conventional limit equilibrium framework. At present
it remains unclear whether one approach is a consistently better approximation of the true landslide
mechanics. Modeling sequential failure removes the need for a search algorithm but requires an iterative
solution; reported run times suggest a comparable computational cost to that of our search algorithm.

Our model also differs from that of Von Ruette et al. [2013] in its treatment of the forces acting on the soil
columns. In their model, root cohesion acts only on the upslope and cross-slope column boundaries, not
the base or downslope boundaries, and is depth invariant. They do not account for passive resistance on
the downslope boundary and assume that resistance on this boundary is independent of slope. Von Ruette
et al. [2013] neglect friction on the cross-slope boundaries and assume both compressive and tensile lateral
resistance to be mostly due to soil suction. This may not be appropriate for soils such as those found in our
field site, where hydraulic conductivity is an order of magnitude higher than that for soils in their study area
[Ebel et al., 2007b]. Using parameters calibrated from a nearby site, Von Ruette et al. [2013] reproduced the
general size-frequency distribution of observed landslides but overpredicted the number of landslides by
38%, on average; their volume by 85%, on average; their slope angle (50° on average compared with 29°
observed); and the percentage of landslides in forest (78% compared with 38% observed).

Figure 16. Comparison of predictions and observations at the CB-1 landslide. In Figures 16b and 16c the search algorithm
is parameterized with the field-measured data reported in Montgomery et al. [2009] and Bellugi et al. [2015], while in
Figures 16b and 16d it is parameterized usingmodeled data (this study) and the landslide data set reported byMontgomery
et al. [2000]. Topographic data in Figures 16a and 16c derive from a prefailure total station survey, while those in
Figures 16b and 16d are derived from a postfailure LiDAR survey. Shown are the (a) actual and (b) modeled water table
heights (h) at the time of failure and the (c) actual and (d) modeled prefailure soil depth.
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7.2.2. Models Applied to CB-MR
Using the same 2m topographic data used here and the coupled slope stability and steady state hydrological
model SHALSTAB [Montgomery and Dietrich, 1994], predictions overlapped all landslides with 20% of the
study area classified as unstable [Dietrich et al., 2001]. Montgomery et al. [2000] modified this model to
account for additional lateral resistance based on an assumed landslide geometry (and constant soil depth)
and outperformed the random-placement model by 3:1. Our application of the infinite-slope model with
spatially variable soil depth and a dynamic hydrological model slightly improves model performance,
overlapping all landslides with only 17% of the study area classified as unstable, compared to 2% recorded
landslide area.

In comparison, our model predictions using the search algorithm overlap 56% of the landslides with 4% of
the landscape classified as unstable using the composite storms, 65% of the landslides with 5% of the
landscape classified as unstable using the 1996 storm, and outperforms the random-placement model by
6:1 and 8:1, respectively. Relative to infinite-slope applications, our model has more false negatives and fewer
false positives.

Reduced false positives are consistent with the inclusion of lateral resistance in the method of Bellugi et al.
[2015] with our parameterization. The infinite-slope method neglects this resistance, underestimating
resistive forces and thus overpredicting unstable areas. Accounting for lateral resistance by assuming that
every cell fails as an individual landslide, as has been suggested by Anagnostopoulos et al. [2015], is equally
problematic in this study area, vastly underpredicting unstable areas (19 cells or 0.01% of the study area).

The common solution to the infinite-slope model’s underestimate of resistance is to inflate one of the
strength parameters either based on an expected landslide size, its perimeter area and thus additional lateral
resistance [e.g., Montgomery et al., 2000], or by setting a soil strength parameter to an “effective” value to
counteract a known process inadequacy [e.g., Montgomery and Dietrich, 1994]. Under such alternative para-
meter sets the infinite-slope model performs well, especially once spatial variability in soil depth is included
(Figure 11). The infinite-slope model underestimates resistive forces to such an extent that even without any
rainfall, predictions can overlap 100% of the landslides with 14% of the landscape predicted as unstable. Our
model instead correctly predicts no failure without any rainfall.

Using alternative parameterizations to the base case (Figure 11), our model captures 100% of the landslides
with 13% of the landscape predicted as unstable (when Cr0=11 kPa, and ϕ = 35°). Thus, in terms of landslide
susceptibility, our predictions do not significantly improve upon existing infinite-slope models other than to
narrow the gap between measured and effective soil strength parameters. If susceptibility alone is the goal
and there is adequate training data (a landslide inventory) to constrain effective strength parameters, then
the simple infinite-slope model may be sufficient. However, where prediction of landslide size as well as loca-
tion is necessary, increased model dimensionality is required.

7.3. Root Cohesion and Storm Intensity Controls on Landslide Abundance, Size, and Location

More intense rainstorms increase pore water pressure, reducing effective normal stress and thus soil strength,
while increased root cohesion increases soil strength. As a result, our model predicts that increased rainfall
intensity increases landslide abundance while increased root cohesion reduces landslide abundance. This
is consistent with observations in both cases (e.g., Swanston [1970], Selby [1976], Moser [1980], Cannon and
Ellen [1985], Wieczorek [1987], Ellen and Wieczorek [1988], Moser and Schoger [1989], Fazarinc and Mikos
[1992], Wilson and Wieczorek [1995], Rickli and Graf [2009], and reviews in Wieczorek and Glade [2005] and
Sidle and Ochiai [2006]).

Changes to rainfall intensity and cohesion also affect the location and size of landslides. Location changes are
fairly subtle in this landscape, with landslides remaining in the hollows in almost all cases, including in the
observations. This is because, as suggested by Dietrich and Dunne [1978], instability at a site increases as soils
thicken and root penetration into bedrock decreases, and therefore failure should be most likely at sites
where soil thickness progressively increases and where recurrent high pore pressures are produced
[Reneau and Dietrich, 1987a]. In this landscape these conditions occur almost exclusively in hollows, where
topographically induced convergence of soils and shallow groundwater flow occur. Moderately divergent
areas that can be highly saturated due to their thin soil cover (Figure 4) are predicted to be stable
(Figure 5), because the effect of root strength is also more pronounced in thin soils. This is consistent with
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the observed landslide inventory and suggests that the interplay between soil depth, soil saturation, and root
strength is a primary control on instability in these landscapes. Increasing rainfall intensity causes landslides
to shift down the hollow axis to locations with lower slope but higher upslope area. This reflects the failure of
locations where slope angles (and therefore driving forces) were previously too low to fail but, with increased
pore water pressure (and therefore reduced resisting force), become unstable. Of these lower slope locations
only those with high upslope area are susceptible to failure under increased rainfall intensity (Figure 15a)
because their pore water pressure response is strongest. With increasing root cohesion, landslide locations
become increasingly clustered in slope-area space (Figure 15b). This reflects landslide locations being con-
strained to areas of deepest soil, where the stabilizing influence of basal and lateral root cohesion is reduced.

Changes to landslide size (in terms of scar area) are more pronounced than changes to location, with mean
area increasing by a factor of 7 in response to either a factor of 3 increase in rainfall intensity or a factor of 4
increase in root cohesion. Increasing storm intensity causes a positive shift in landslide size distribution due
to an increase in medium- and larger-sized landslides. This is mainly due to larger landslides occurring in pre-
viously stable locations rather than an increase in the sizes of landslides at previously unstable locations
(Figure 17). Increased rainfall intensity can trigger failure by either increasing pore pressure over a given area
[Reneau and Dietrich, 1987a] or expanding the area of a patch of elevated pore pressure [Casadei et al., 2003;
Milledge et al., 2014]. The former mechanism should generate smaller landslides while the latter larger land-
slides. Our model predictions suggest that in sites that were unstable under lower rainfall intensity, increased
pore pressure often results in smaller landslides, while in sites that were previously stable, new failures are
generally larger (Figure 17). This is because sites that were previously stable are in relatively strong areas
of thinner soils (and thus increased root cohesion) or of lower slope (Figure 15). Because of the greater
strength, a larger area must fail collectively to overcome the increased resistance. The addition of new larger
landslides dominates the change in the distribution (Figure 14), resulting in an increased average size. To our

Figure 17. Probability density function of size of predicted landslides in the CB-MR study area for consecutive pairs of
storms from the increasing rainfall intensity simulations (and φ = 40°, Cr0 = 22 kPa). Gray lines and black lines represent
the size distributions for the lower intensity and higher-intensity storms, respectively. The dashed blue line is the size
distribution of landslides common to both storms, while the dashed red line is the size distribution of landslides only
occurring in the higher-intensity storm. Note that while common landslides can decrease or increase in size, new landslides
are consistently larger in the higher-intensity storm. Consecutive pairs of rainfall intensities are (a) 3.49–4.62mm/h, (b)
4.62–5.74mm/h, (c) 5.74–6.87mm/h, and (d) 6.87–8.0mm/h. A similar trend is observed for the pair with 2.37–3.49mm/h
intensity (not shown).
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knowledge there has not been an attempt to compare size distributions for different rainfall intensities,
though our results suggest that such data might provide insight into hydrological process and in particular
pore pressure dynamics responsible for triggering shallow landslides. Such an analysis would be complicated
in practice by the spatial variability in rainfall intensity in any given storm event.

Increasing root cohesion causes a right shift in landslide size distribution, consistent with many observations
on landslide size for different vegetation types [Moser, 1971; Selby, 1976; Lehre, 1982;Moser and Schoger, 1989;
Gabet and Dunne, 2003; Rickli and Graf, 2009]. This is expected since, as suggested by Reneau and Dietrich
[1987a], landslides need a larger volume to surface area ratio as the resistance per unit surface area increases
due to increased cohesion. Both the landslides in areas that were unstable under higher root cohesion and
those in new unstable areas tend to get smaller with decreasing root cohesion. Because of the lower root
strength, a smaller area is required to overcome the reduced resistance.

7.4. Applicability to Other Landscapes

Section 7.1 demonstrates the sensitivity of model performance to input data quality even at a well-studied
site like CB-MR. Parameters can be calibrated to observations, but this requires accurate landslide mapping,
which is difficult to obtain; and calibrating at one location does not necessarily improve the performance at
another. Instead, we have parameterized the model using observations within the study area and simplified
process-basedmodels, reserving landslide observations as a test of themodel. Where calibration is necessary,
modeling landslide size as well as location introduces a second set of predictions that can be compared to
observations for calibration.

Application to a different area would require a comparable effort to constrain relevant parameters such as soil
depth, root strength, friction angle, and hydraulic conductivity. Our results suggest that soil depth and pore
pressure are key parameters to constrain (Figure 16). Both are difficult to model: soil depth because it
depends on the history of previous landsliding; and pore water pressure because it is strongly controlled
by local nontopographic factors.

Different landscapes may also require alternative submodels for soil depth, root strength, and pore pressure.
For example, in some landscapes where topography lacks a regular division into hollows and noses,
landslides occur on more planar slopes (e.g., review in Reneau and Dietrich [1987b]). In highly dissected
landscapes such as the Oregon Coast Range, topography concentrates subsurface flow even in the presence
of fractures and other material heterogeneities [e.g., Montgomery et al., 1997]. In other less dissected
landscapes these heterogeneities more strongly affect subsurface flow pathways and thus pore pressure
patterns, in which case other hydrologic models that focus on vertical infiltration or that treat flow in three
dimensions [e.g., Simoni et al., 2008; Baum et al., 2010] would be more appropriate. Though we did not adopt
suchmodels in our study, our approach is fully compatible with them. Detailed data collection is the principal
limitation on regional-scale applications of our approach. Nevertheless, our experience suggests that the
parameterization can be considerably improved using regionally calibrated submodels and by noting soil
depth and root strength in a subsample of landslides in the landscape of interest. Otherwise, our approach
could be applied to large areas, as its scalability makes it well suited for use on high-performance computing
platforms [Bellugi et al., 2015].

8. Conclusions

We combine a model that predicts discrete shallow landslides [Milledge et al., 2014; Bellugi et al., 2015] with
process-based submodels to estimate soil depth, root strength, and pore water pressure. This approach is
tested by comparing predicted shallow landslides with mapped sites over 10 years in a 0.5 km2 study area
in the Oregon Coast Range. Metrics of performance include the following: (i) the percent of hits (defined
as predictions overlapping observations) relative to a random model, (ii) size and location distributions of
observed and predicted landslides, and (iii) the size of individual predicted and observed landslides where
they overlap. In this landscape both observed and predicted landslides predominantly occur in hollows
(where topographic convergence leads to thicker soils, reducing root cohesion); where slopes are steep,
increasing driving force and reducing basal resistance; and where drainage areas are large, increasing pore
pressures and reducing soil strength. Without calibration the model predictions overlap 65% of observed
landslides (compared to 11% with a random-placement model), more than 95% of the stable area is correctly
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predicted, and less than 5% of the landscape is predicted to be unstable (compared to 2% recorded landslide
area). Our approach broadly captures observed landslide size and location distributions but with a slightly wider
range of topographic locations, too many small landslides, and slightly smaller average landslide size. Thirteen
percent of locations where predicted and observed landslides overlap have predicted landslide size within a
factor of 1.25 of the observed, 28% have sizes within a factor of 1.5, 45% have sizes within a factor of 1.75,
and 55% have sizes within a factor of 2.

Moderate changes inmodel parameters (±5° in friction angle, ±20mm/h inmaximum storm intensity, or ±10 kPa
in maximum root strength) result in large changes in model performance (0–100% hits and 0–13% unstable
area), highlighting the importance of good field-derived parameter estimates. In all the simulations
performed, missed landslides are the result of mapping errors or of errors in parameterization of the slope
stability model of Milledge et al. [2014] rather than failures of the search algorithm of Bellugi et al. [2015].
For a well-parameterized site the model accurately predicts landslide location and size. When the parameters
are less constrained the model reproduces the general behavior but fails to reproduce specifics with the
same accuracy.

An identically parameterized infinite-slope model overlaps all observed landslides but predicts a much larger
unstable area (~30%). This overprediction can be reduced by using effective parameters, allowing the
infinite-slope model to perform as well as our more complex model at delineating areas of high landslide sus-
ceptibility. However, our model improves process representation by representing the forces acting on all the
margins of an unstable block rather than only the base, reducing the reliance on effective parameters (e.g., for
friction angle, storm intensity, or root strength). Most importantly, our model makes it possible to predict not
only the susceptibility of a given location but also landslide size (and thus initial sediment volume) by testing
the stability of discrete landslides, clarifying how heterogeneous landscape properties affect landslide size
and location.

In particular, we explore the effects of varying rainfall intensity and root cohesion. Increased storm intensity
increases the magnitude and lateral extent of elevated pore pressure and the number of landslides. This
spread of elevated pore pressure then destabilizes relatively strong areas of thinner soils or reduced slope.
Because of the greater strength, larger areas must fail collectively to overcome the marginal resistance.
Hence, landslide size increases with rainfall intensity. Under increased rainfall intensity landslides are also pre-
dicted to occur farther downslope along the axes of unchanneled valleys (hollows). This occurs because these
lower hollow areas are generally less steep and thus require more runoff to be destabilized. With increasing
root cohesion landslides decrease in number but increase in average size and volume to overcome the addi-
tional resistance. Locations are increasingly constrained to areas that have both deep soils and remain steep,
typically found in the middle of hollows, resulting in a narrower location distribution.

Our findings suggest that shallow landslide abundance, location, and size are ultimately controlled by covary-
ing landscape properties such as slope, pore pressure, root strength, and soil depth. The greatest challenge to
generating accurate predictions remains the estimation of time-and-space-varying root strength, pore pres-
sure, and, perhaps most importantly, soil depth, across a landscape.

Notation

Variable Description, Units

A drainage area, m2.
Cb root cohesion at the basal failure surface, Pa.
Cr0 root cohesion at the surface, Pa.
Cb root cohesion at the basal failure surface, Pa.
Cl depth-averaged lateral root cohesion, Pa.
D soil diffusion coefficient, m2/yr.
Fd downslope driving force, N.
FS factor of safety.
Fw central block weight force, N.
IT topographic index, m.
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K hydraulic conductivity, m/d.
K0 coefficient of at-rest earth pressure.
Ka active earth pressure coefficient.
Kp passive earth pressure coefficient.
Rb basal shear resisting force, N.
Rd net downslope resisting force (passive), N.

Rl, Rr, cross-slope shear resisting force, N.
Ru net upslope driving force (active), N.
Sc critical slope angle.
Sr soil degree of saturation.
T hydraulic transmissivity, m2/d.
b grid cell size, m.
hi height of the saturated fraction at time step i, m.
j the reciprocal of the e-folding depth of Cb, 1/m.
l length of the slide block, m.

m saturation ratio.
qi effective precipitation at time step i, m/d.
t soil production time interval, years.
ti duration of time step i, days.
v soil void ratio.
w width of the slide block, m.
z failure surface depth below the ground surface, m.
zb height of soil-bedrock boundary above reference datum, m.
zc vertical coordinate within soil column, m.
zt topographic elevation above reference datum, m.
zw water table depth below the ground surface, m.
α soil production rate constant, 1/m.
γs unit weight of the soil, Nm�3.
γw unit weight of water, Nm�3.
ε soil production rate at zero soil thickness, m/yr.
θ slope angle, degrees.
λ eigenvalue.
λ* smallest nonzero eigenvalue.
ρs bulk density of soil, kgm�3.
ρw bulk density of water, kgm�3.
ϕ soil friction angle, degrees.
F force matrix, N.
R resistance matrix, N.
q soil flux per unit contour width.
x discrete indicator vector.
y eigenvector.
y* Eigenvector corresponding to λ*.
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