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Abstract

The inclusive decay rate b→ cc̄s is enhanced considerably due to perturba-
tive QCD corrections. We recalculate the dominant part of the NLO-QCD
corrections, because they cannot be reconstructed from the literature and we
give the full expressions in this paper. Further we include some previously
neglected corrections originating from penguin diagrams. Combined with
the impressive progress in the accurate determination of input parameters
like charm quark mass, bottom quark mass and CKM parameters, this en-
ables us to make a very precise prediction of the corresponding branching
ratio B(b → cc̄s) = (23 ± 2)%. This result is an essential ingredient for a
model and even decay channel independent search for new physics effects in
B decays.

Keywords: B decay, semileptonic branching ratio, charm multiplicity,
search for new physics

1. Introduction

Despite the impressive experimental achievements in flavour physics in
recent years we still do not have compelling proof for new physics effects.
Time by time interesting evidence for deviations has shown up (see e.g. the
status of new physics searches in B-mixing in 2010 [1]). Unfortunately most
of it vanished as soon as more precise data became available (see e.g. the
status of new physics searches in B-mixing in 2012 [2]). Currently the stan-
dard model [3, 4, 5] and the CKM mechanism [6, 7] seem to work at an
unexpectedly precise level, see e.g. [8, 9] for standard model fits after the
Higgs boson [10, 11, 12] discovery [13, 14] .
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Nevertheless most of the motivations for looking for an extension of the stan-
dard model still remain valid, e.g. an explanation of the baryon asymmetry
in the universe or the nature of dark matter. Flavour physics is a mandatory
ingredient in the programme of searching for and investigating extensions
of the standard model. Finding statistical significant deviations of measure-
ments from the corresponding standard model predictions might provide the
first evidence of new physics effects. But even if new physics is detected in
other fields, like a direct production of new degrees of freedom at the LHC,
then flavour physics will be very helpful in pinning down the properties of
the new particles. Finally also in the worst case of finding no direct evi-
dence of beyond standard model physics in the near future, the parameter
space of hypothetical new physics models can be shrunk considerably, some
models might even be excluded, as it recently happened for the case of a
perturbative fourth generation of chiral fermions, see e.g. [8, 15, 16, 17].
One essential prerequisite for all this tasks is clearly the theoretical control
of our standard model predictions. Besides the already mentioned fact that
there are no huge new physics effects around the corner, we learnt from the
LHC data a lot about our theoretical tools. The applicability of the Heavy-
Quark-Expansion (HQE) [18, 19, 20, 21, 22, 23, 24, 25] was questioned many
times in the literature, in particular for decays with a limited phase space
in the final states, e.g. decays like b → cc̄s. see e.g. [26, 27, 28] . Thus,
an ideal testing ground for the HQE is the decay rate difference ∆Γs of the
neutral Bs mesons. The dominant contribution to this quantity is given by
the decay channels B̄s → D

(∗)+
s D

(∗)−
s [29, 30] (triggered by the quark level

decay b → cc̄s), with an energy release of only about 1.4 GeV. If the HQE
does not converge, because of a too large expansion parameter (1/energy re-
lease) then this should clearly show up in ∆Γs. In 2012 LHCb made the first
measurement (more than five standard deviations from zero) of the decay
rate difference by investigating the decay Bs → J/ψφ [31], see [32] for the
previously published result. ∆Γs was also studied by the ATLAS Collabora-
tion [33]1, the CDF Collaboration [34] and the D0 Collaboration [35] and the
values from LHCb were recently updated at Moriond 2013 [36]. The Heavy
Flavour Averaging Group (HFAG) [37] gives as an average the value

∆ΓExp.s = +0.081± 0.011 ps−1 , (1)

1ATLAS presented a flavour tagged update of this result at BEAUTY 2013.
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which excellently agrees with the standard model prediction [38]2

∆ΓSMs = +0.087± 0.021 ps−1 . (2)

This clearly shows the validity of the HQE, in particular also for the mis-
trusted decay channel b→ cc̄s, see [44] for a more detailed discussion. There
are also some indications that the HQE might even work in the charm sector
when applied to the lifetimes of D mesons, see [45] for a very recent investi-
gation.
Another important aspect of the new experimental results is the fact, that
there is still plenty of room for NP effects. In Bs−mixing we still could have
new phases which are considerably larger than the standard model phases
[2]. Also the investigation of rare decays still leaves quite some sizable room
for beyond standard model effects, see e.g. [46, 47, 48] for some very recent
constraints.
To summarise the current situation (see also [49] for a review): the desired
huge new physics effects have not been found, but there is still room for
some sizable effects. In order to disentangle such effects higher precision is
mandatory both in experiment and theory. In that respect it is of course
very promising that our theoretical tools have passed many non-trivial tests.

In this paper we provide some theoretical prerequisites for a model in-
dependent and even decay channel independent search of new physics. We
propose a re-investigation of inclusive b-decays.
Motivated by the experimental measurement of the dimuon asymmetry Absl
from the D0 collaboration at Tevatron in 2010 [50, 51] and 2011 [52], which
differs by 3.9 standard deviations from the standard model prediction given
in [39]3 it became quite popular to investigate new physics models that en-
hance the absorptive part of the Bd and Bs mixing amplitudes. Such an
enhancement would also lead to considerable modifications of different B-
meson decay channels. One promising candidate was the decay Bs → τ+τ−,
which was investigated e.g. in [53, 54, 55, 56, 57, 58]. Having stronger exper-
imental bounds on this channel would be very helpful, even if the significance
of the deviation in the dimuon asymmetry went down recently [59].
A large branching ratio for Bs → τ+τ− would also affect several inclusive

2This prediction is based on the NLO-QCD calculations in [39, 40, 41, 42]; most of
these results were confirmed in [43].

3This prediction is based on the NLO-QCD calculations in [40, 41, 42]; these results
were confirmed in [43].
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decay rates: the total decay rate Γtot = 1/τ , the charm-less decay rate
Γ(b → no charm), the semileptonic branching ratio Bsl = Γsl/Γtot and the
average number of charm quarks per b-decay nc. Some time ago these quan-
tities received quite some attention, see e.g. [60, 61, 26, 62, 63, 64, 65, 28,
66, 67, 68, 69] because there seemed to be some discrepancies between the-
ory and experiment. For the investigation of the inclusive branching ratios
the NLO-QCD corrections turned out to be very important (see e.g. [70]),
they were determined for b → cl−ν̄ analytically in [71], for b → cūd in [72],
for b → cc̄s in [73], for b → no charm in [74] and for b → sg in [75, 76].
Since the above listed numerical analyses are at least 15 years old and there
was a lot of progress in the precise determination of the relevant standard
model parameters like CKM elements and quark masses an update of the
numerical predictions for inclusive decay rates is clearly overdue. This case
is strengthened by the experimental confirmation of the HQE. Moreover an
investigation of the inclusive branching ratios is not limited to a certain de-
cay channel like Bs → τ+τ−, but it is sensitive to all possible decay rates,
even if there would be some invisible decay channels. Finally the most re-
cent experimental number for nc stems from BaBar from 2006 using about
231 ·106 BB̄ events [77]. Here clearly an experimental update is possible and
also Belle as well as LHCb might investigate these quantities.
Preparing a theoretical update we found, however, that the formulae given
in the paper [73] for the b → cc̄s decay rate give IR divergent expressions.
Thus we recalculate these important corrections in this work and include also
previously neglected contributions. Comparing our numerical results (for the
old input parameters) with the ones given in [73] we find an exact agreement.
Hence, we conclude that there were simply several misprints in the formulae
of [73]. We give here the corrected expressions for Γ(b→ cc̄s) and finally we
also perform the numerical analysis with up-to-date input parameters.
The paper is structured as follows: In Section 2 we describe in detail the
order O (αs) calculation of the decay width of the channel b→ cc̄s. Besides
discussing the diagrams that were already done in [73], we also calculated
some previously neglected contributions in Section 2.7 and Section 2.8. Dif-
ferent quark mass schemes are investigated in Section 2.4. In Section 3 we
discuss our final result in detail. First we show explicitly the cancellation of
the renormalisation scheme dependence in Section 3.1, next we compare our
result in detail with [73] in Section 3.2 and point out the misprints in that
work. The up-to-date numerical results for the decay rate are presented and
discussed in Section 3.4. Finally we conclude in Section 4. Longer analytic
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expressions of our calculation are presented in the Appendix.

2. Calculation of the inclusive b → cc̄s decay width

In this chapter we discuss the calculation of the inclusive b → cc̄s decay
width up to order O (αs) in detail, we also include some previously neglected
contributions.

2.1. The effective Hamiltonian

The starting point of our calculation is the effective weak Hamiltonian,
which can be written as (see e.g. [78] for a review):

Heff =
GF√

2

ξc ∑
i∈{1,2}

CiQi − ξt
∑

i∈{3...6,8}

CiQi

 , (3)

where GF denotes the Fermi constant, ξq = VqbV
∗
qs represents the CKM-

elements, Ci the Wilson coefficients and Qi the appearing four quark opera-
tors. The individual operators are given by:

Q1 = c̄αΓµbβ ⊗ s̄βΓµcα,
Q2 = c̄αΓµbα ⊗ s̄βΓµcβ,
Q3 = s̄αΓµbα ⊗ c̄βΓµcβ,
Q4 = s̄αΓµbβ ⊗ c̄βΓµcα,
Q5 = s̄αΓµbα ⊗ c̄βΓµ+cβ,
Q6 = s̄αΓµbβ ⊗ c̄βΓµ+cα,

Q8 = − gs
8π2

mbs̄ασ
µν (1 + γ5)TAαβbβG

A
µν .

(4)

α and β denote SU(3) colour indices and gs is the strong coupling-constant.
The appearing Dirac-structures are given by Γµ = γµ (1− γ5), Γµ+ = γµ (1 + γ5)
and σµν = i/2[γµ, γν ].
The Wilson coefficients can be expressed as a series in powers of αs:

Ci = C
(0)
i +

αs
4π
C

(1)
i +O

(
α2
s

)
. (5)

Note, that throughout this paper it is always understood, that the Wilson-
coefficients are evaluated at the renormalisation-scale µ, i.e.: Ci = Ci (µ).
The same holds for the strong coupling constant: αs = αs (µ), if not stated
otherwise.
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2.2. The inclusive b→ cc̄s decay width

The inclusive decay width for the channel b → cc̄s is given as a phase
space integration over the squared matrix element, describing the transition
of the b-quark into the final state cc̄s via the weak Hamiltonian.

Γcc̄s =
8π4

mb

∫ 3∏
i=1

[
d3pi

(2π)32Ei

]
δ(4)

(
pB −

3∑
i=1

pi

)
|〈cc̄s|Heff |b〉|2 . (6)

The above matrix element can be expanded in powers of the strong coupling

M := 〈cc̄s|Heff |b〉

= M(0) +
αs
4π
M(1) +O

(αs
4π

)2

, (7)

thus we get for the squared matrix element

|M|2 =M(0)†M(0) +
αs
4π

(
M(0)†M(1) +M(1)†M(0)

)
+O

(αs
4π

)2

. (8)

Therefore the inclusive decay width for the channel b → cc̄s can be written
as:

Γcc̄s = Γ
(0)
cc̄s +

αs
4π

Γ
(1)
cc̄s +O

(
α2
s

)
, (9)

with the leading-order (LO) contribution Γ
(0)
cc̄s and the sizable next-to-leading-

order (NLO) correction Γ
(1)
cc̄s. The LO decay width is given as:

Γ
(0)
cc̄s = Γ0|ξc|2gNa. (10)

The factor Γ0 is the width of a decay into three mass- and colourless particles:

Γ0 =
G2
Fm

5
b

192π3
. (11)

The factor Na stems from the leading term in Eq.(8), it is a linear combina-
tion of products of LO Wilson coefficients weighted with colour factors. We
include here only the contribution of the tree level operators Q1 and Q2, the
penguin operators will be treated as a QCD correction and discussed below.
Thus our result agrees, up to the phase space function, with the result for
the decay b→ cūd, see e.g. [72]:

Na = 3C
(0)2
1 + 3C

(0)2
2 + 2C

(0)
1 C

(0)
2 . (12)
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The function g is the tree-level-phase-space-integral depending on the final-
state-masses. Neglecting the strange quark mass, g reads (see e.g. Eq.(4.2)
of [72] or [79] for an early reference):

g =
√

1− 4x2
c (1− 14x2

c − 2x4
c − 12x6

c)

+24x4
c (1− x4

c) ln

(
1 +

√
1− 4x2

c

1−
√

1− 4x2
c

)
,

(13)

where xc = mc/mb is the ratio of the charm- and the bottom-quark mass.
The NLO correction can be split up into several contributions:

Γ
(1)
cc̄s = Γαs

cc̄s + Γ
m

cc̄s + ΓPO
cc̄s + ΓCcc̄s + ΓPI

cc̄s + ΓQ8
cc̄s. (14)

The different terms of Eq.(14) are sorted according to their size. Γαs
cc̄s denotes

corrections from the one gluon exchange in the LO diagrams within the
effective theory. Γ

m

cc̄s describes corrections of order O (αs) stemming from the
translation of the b-quark mass from the pole- into the MS-scheme [80]. This
term vanishes by definition if the pole-scheme is used for the b-quark mass.
ΓPO
cc̄s contains LO contributions from the penguin operators Q3...6, which are

treated as O (αs)-effects in this paper. ΓCcc̄s describes NLO corrections to
the Wilson-coefficients C1,2. Besides these contributions, which were already
calculated in [73] we also determined two previously neglected corrections:
ΓPI
cc̄s and ΓQ8

cc̄s stem from insertions of the operators Q1,2 and the operator Q8

in penguin diagrams within the effective theory.
Below all these contributions will be discussed in detail.

2.3. Gluon-corrections to the insertion of Q1,2 into treelevel diagrams

The largest O (αs)-contribution stems directly from the next-to-leading
term in Eq.(8). It arises from one-gluon corrections to the insertion of the
operators Q1 and Q2 in tree-level diagrams of the effective theory, see Fig.(4).
Hence, this term can be written as:

Γαs
cc̄s = 8Γ0|ξc|2 ·

(
C

(0)2
2 g22 + C

(0)2
1 g11 + 2

3
C

(0)
1 C

(0)
2 g12

)
. (15)

Since we strictly expand in αs and discard terms of O(α2
s), we use in Eq.(15)

the LO expressions for the Wilson coefficients, denoted by C
(0)
1 and C

(0)
2 .

The functions g11, g12 and g22 are given by phase-space-integrals over the
corresponding diagrams, where one gluon is exchanged. For massless quarks
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Figure 1: Virtual gluon corrections to the insertion of the operators Q1 and Q2 in tree-
level diagrams of the effective theory. Only the diagrams that could not be taken from
[83] and had to be be calculated anew, are shown. The corresponding diagrams with real
gluon-emission are also not pictured.

these corrections were already calculated in 1981 by Altarelli et al. [81] and
later confirmed in [82],

g11 =
31

4
− π2 = g22 , (16)

g12 = −7

4
− π2 . (17)

For massive quarks the calculation is much more complicated and it was
performed for the first time in 1995 [73]. However, most of the required
corrections can be inferred from the work [83] by Hokim an Pham. There
the exact width for a weak decay into three particles with arbitrary masses
has been calculated up to order O (αs) in the full standard model, ignoring,
however, the momentum-square in the W±-propagator (as in the effective
theory). Thus their result corresponds to the double insertion of the operator
Q2 into the next-to-leading term in Eq.(8). Using the notation of [83] the
factor g22 can be expressed as

g22 =
4

Ω0

(Γl + Γu) . (18)

The contributions on the right hand side of Eq.(18) are given in the formulæ
(3.9), (3.36) and (4.34) of [83]. The arguments of theses functions have to be
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chosen as:

ρ1 =

(
mc

mb

)2

, ρ2 = 0, ρ3 =

(
mc

mb

)2

. (19)

Further information about using the results from [83] for the calculation of
Γcc̄s is given in Appendix A.
Also the contributions from double insertions of the operator Q1 can be
inferred from [83], if the diagrams are Fierz-transformed. To do so, it was
crucial to choose the evanescent operators in such a way that Fierz-symmetry
is maintained at the one-loop-level. Following [84] we use:

E = γµγνΓσ ⊗ γσγνΓµ − (4− 8ε) Γµ ⊗ Γµ, (20)

where ε is the usual regulator in dimensional regularisation in D = 4 − 2ε
dimensions. Then we get for g11:

g11 =
4

Ω0

(Γ′l + Γ′u) , (21)

The contributions on the right hand side of Eq.(21) are also given in the
formulæ (3.9), (3.36) and (4.34) of [83], but now the arguments differ from
(19), which is denoted by the apostrophe. They read instead:

ρ′1 = 0, ρ′2 =

(
mc

mb

)2

, ρ′3 =

(
mc

mb

)2

. (22)

Note, that in [83] diagrams containing a gluon exchange between the two
different fermion-lines (i.e. the b → c-line and the c̄ → s-line) vanished
due to the colour factor . As already mentioned, the results in [83] directly
correspond to a double insertion of the operator Q2 and they can also be
used for the double insertion of the operator Q1. However, in our calculation
also a mixed contribution, i.e. an insertion of Q1 and Q2, arises, where the
colour structure does not vanish, if a gluon is exchanged between the two
different fermion-lines. The part of the contributions to g12, where the gluon
does not connect the two fermion lines can be extracted again from [83]. Four
diagrams, where the gluon couples to both of the appearing fermion-lines,
have to be computed new. These are the diagrams pictured in Figure 4.
The four new contributions are denoted by gcc̄, gcs, gbc̄ and gbs and they are
explicitly given in the Appendix B. Hence, we get for the last contribution
in Eq.(15)

g12 = g22 + gcc̄ + gcs + gbc̄ + gbs. (23)

9



These contributions have been calculated for the decay b→ cūd in [72]. Here
one particle in the final state had to be taken massive. The decay b → cc̄s
was investigated in [73], where all particles in the final state are massive.
Unfortunately the results in [73] contain several misprints and cannot be
used for a numerical reanalysis, so they had to be calculated anew.

2.4. The b−quark mass in the MS-scheme

Since the pole mass suffers from renormalon ambiguities, as discussed e.g.
in [85, 86], it has been argued, that the pole mass scheme is not well suited for
performing precise calculations of inclusive decay rates, while short distance
masses like the MS-mass [80] are better suited for this purpose [86]. The
relation between the pole mass scheme and the MS-mass scheme is given as
a power series in the strong coupling. Up to the order O (αs) it reads

mpole
q = mq (µm)

(
1 +

αs (µm)

π
·

[
4

3
− ln

(
mq (µm)2

µ2
m

)])
. (24)

Therefore the translation between the two schemes creates additional O (αs)-
corrections in the total inclusive decay rates. These terms can be written as:

Γ
m

cc̄s = Γ
(0)
cc̄s

[80

3
− 20 ln

(
m2
b

µ2
m

)
− 8xc ln (xc)

d ln (g)

dxc

]
, (25)

where g is the phase space function from Eq.(13). In LO there is a strong
dependence on the scale µm, that appears in Eq.(24). The relation between
the two mass schemes is, however, known very precisely - corrections up to
order O (α3

s) have been calculated in [87], resulting in a small remaining scale
dependence. Hence we consider the large LO scale dependence in Eq.(24) to
be artificial and we do not vary that scale for our final numerics, but we
set µm = mb during the calculation. Thus the large logarithm in Eq. (25)
vanishes.
Besides these two mass-schemes, we have also investigated three other quark
mass schemes, the kinetic [88], the potential-subtracted (PS) [89] and the
Υ(1S)-scheme [90] for our calculation, see Section 3.4.

2.5. Contributions from the penguin-operators Q3...6

Besides the already discussed tree level diagrams, the decays b → cc̄s
can also occur via penguin diagrams. Therefore further contributions to the

10



b→ cc̄s width arise from the insertion of QCD penguin-operators Q3...6 into
tree diagrams of the effective theory. They can be written as:

ΓPO
cc̄s =

4π

αs
Γ0

[(
< (ξcξ

∗
t )Nb + |ξt|2Nc

)
g +

(
< (ξcξ

∗
t )Nd + |ξt|2Ne

)
g+

]
. (26)

Since this contribution is numerically of the order of the αs-corrections, we
decided to treat it formally as a QCD correction. But as no explicit factor
αs/4π appears in the calculation we need the factor 4π/αs in Eq.(26) to
cancel the corresponding artificial factor in Eq.(14). The terms Nb...e are
again combinations of Wilson coefficients and colour factors

Nb = −2
(

3C1C3 + C1C4 + 3C2C4 + C2C3

)
, (27)

Nc = 3C2
3 + 3C2

4 + 2C3C4 + 3C2
5 + 3C2

6 + 2C5C6, (28)

Nd = −2
(

3C1C5 + C1C6 + 3C2C6 + C2C5

)
, (29)

Ne = 2
(

3C3C5 + C3C6 + 3C4C6 + C4C5

)
. (30)

Here formally terms of order O (α2
s) appear, stemming from expressions of

the form Ci ·Cj. These higher order terms have been discarded in the calcu-
lation to ensure a strict expansion up to order O (αs). They were only kept
in Eq.(27-30) to enable a more compact notation. The appearing Wilson-

coefficients C3...6, as well as the coefficient C
(0)
8 appearing in Section 2.8, can

be taken from [78].
The function g is the usual phase space factor, appearing first in Eq.(13),
while g+ is a different phase space integral, that appears when, an odd num-
ber of the factor (1 + γ5) appears in the Dirac-structure. Its analytic expres-
sion, which was to our knowledge not shown before, reads:

g+ = 4x2
c

[√
1− 4x2

c (1 + 5x2
c − 6x4

c)

+12x2
c (1− 2x2

c + 2x4
c) ln

(
2xc

1 +
√

1− 4x2
c

)]
.

(31)

Numerically g+ agrees with Eq.(12) of [63]. Finally in Eq.(26) no approxi-
mation in the CKM-structure was used, as it is often done in the literature
to eliminate ξt:

ξt = −ξc − ξu ≈ −ξc. (32)
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Using this approximation our results in Eqs.(27-30) agree with the ones in
the erratum of [63] and Eq.(27) and Eq.(29) agree with Eq.(XVII.14) from
[78].

2.6. Order O (αs) corrections to the Wilson coefficients C1,2

Since the Wilson coefficients C1 and C2 are given as a series in the strong
coupling, see Eq.(5), they give rise to additional corrections of the order
O (αs). These corrections are given by:

ΓCcc̄s = Γ0|ξc|2g
[(αs (MW )

αs (µ)
− 1
)
·
(

4C
(0)2
+ R+ + 2C

(0)2
− R−

)
+
(

4C
(0)2
+ B+ + 2C

(0)2
− B−

)]
.

(33)

These contributions arise in all NLO QCD corrections to non-leptonic in-
clusive decays that are triggered via tree-level diagrams (with appropriate
phase space functions), e.g. b → cūd [72] and b → cc̄s [73]. To simplify the
notation we use here linear combinations of the operators Q1 and Q2, that
do not mix under renormalisation, see e.g. [84]. This leads to the coefficients
C+ and C−, which are defined as:

C± = C2 ± C1. (34)

These coefficients can be written as (see e.g. [63])

C± = C
(0)
±

(
1 +

αs (MW )− αs (µ)

4π
R± +

αs (µ)

4π
B±

)
, (35)

with the leading order Wilson coefficients C
(0)
± , given by:

C
(0)
± =

(
αs (MW )

αs (µ)

)γ(0)
± /(2β0)

. (36)

β0 is the leading coefficient of the QCD beta-function and γ
(0)
± is the lead-

ing term of the anomalous dimensions of the operators Q+ and Q−. The
coefficients read:

β0 = 11− 2

3
nf =

23

3
, (37)

γ
(0)
+ = 4, γ

(0)
− = −8, (38)
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R+ =
10863− 1278nf + 80n2

f

6(33− 2nf )2
=

6473

3174
, (39)

R− = −
15021− 1530nf + 80n2

f

3(33− 2nf )2
= −9371

1587
, (40)

B± = ±BNC ∓ 1

2NC

, (41)

where nf = 5 is the number of active quark flavours and NC = 3 is the
number of colours. The coefficient B from Eq.(41) is the only scheme depen-
dent quantity in Eq.(33). In the NDR-scheme with the choice of evanescent
operators as in Eq.(20) the scheme dependent factor B reads BNDR = 11.

2.7. Insertions of Q1,2 into penguin diagrams

Besides the corrections, in which the tree level diagrams are simply dressed
with additional gluon lines (as discussed in Section 2.3), new contributions
arise at order O (αs) due to insertions of the operators Q1,2 into penguin
diagrams, see Fig. 2. In principle both up and charm quarks could run in

Figure 2: Insertion of the operators Q1

and Q2 into a penguin diagram of the
effective theory. Compared to the pen-
guin operators Q3 - Q6 these contribu-
tions appear with the large Wilson coef-
ficient C2.

Figure 3: Insertion of the chromomag-
netic operator Q8 into a tree diagram of
the effective theory.

the penguin loop, but because of the strong CKM-suppression, only the case
with a charm quark is considered here. Insertions of this kind vanish for Q1,
since they involve a vanishing trace of a generator of the colour SU(3), so
only Q2 has to be considered.
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The total contribution due to the insertion in penguin diagrams can then be
written as:

ΓPI
cc̄s =

16

3
Γ0|ξc|2<

[
C

(0)2
2 (gPI + gPI+)

]
, (42)

where the functions gPI and gPI+ are two phase-space-functions, which were
calculated analytically for the first time. The exact expressions are given in
Appendix C.
This corrections have until now only been included in the calculation of
charm-less inclusive decay rates in [74], where they can be the dominant
effect. Since the insertions into penguin diagrams are also expected to give
sizable contributions to the b-quark decay into two charm quarks, we present
them here for the first time. In our calculation the same loop integrals arise
as in [74], but the phase space integration has to be performed for massive
final state particles, while in [74] only massless final states were investigated.
The insertion of the operator Q2 in a penguin diagram can be decomposed
in the following way:

QP =
6∑
i=3

ri (scc̄)Qi. (43)

QP denotes the operator generated by the penguin insertion and ri (scc̄) are
the appearing loop-functions which depend on the centre of mass energy scc̄
of the c-c̄-system. For the different ri the following relation holds:

r4 = r6 = −3r3 = −3r5. (44)

The function r4 was calculated in [74] as

r4 =
1

9s
3/2
cc̄

[
− 3
√
scc̄ − 4m2

c

(
2m2

c + scc̄
)

ln


√

1− 4m
2
c

scc̄
− 1√

1− 4m
2
c

scc̄
+ 1


+
√
scc̄

(
− 2 (6m2

c + scc̄) + 3scc̄ ln

(
m2
c

µ2

))]
.

(45)

As in the case of the LO contributions discussed in Section 2.5 two differ-
ent functions appear for the insertions into penguin diagrams, depending on
whether the number of vertices that involve the factor (1 + γ5) is even (gPI)
or odd (gPI+).
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2.8. Contributions from the chromomagnetic operator Q8

Additional order O (αs) contributions arise through insertions of the chro-
momagnetic operator Q8, see Figure 3. After a straight-forward calculation,
these contributions can be written as:

ΓQ8
cc̄s = 3Γ0C

(0)
8 gQ8

[
< (ξtξ

∗
c )C

(0)
2 − |ξt|2

(
C

(0)
4 + C

(0)
6

)]
. (46)

The phase space factor gQ8, which was calculated here for the first time, is
given as:

gQ8 = 32

[
1− 20x2

c + 52x4
c + 48x6

c

9
√

1− 4x2
c

+
8

3
x4
c

(
2x2

c − 3
)

ln

(
2xc

1 +
√

1− 4x2
c

)]
.

(47)

3. Investigation of the NLO-result for Γcc̄s

With all the contributions, which were calculated in Section 2, the total
decay width of the inclusive decay b→ cc̄s can be written in NLO-QCD as:

Γcc̄s = Γ
(0)
cc̄s +

αs
4π

(
Γαs
cc̄s + Γ

m

cc̄s + ΓPO
cc̄s + ΓCcc̄s + ΓPI

cc̄s + ΓQ8
cc̄s

)
. (48)

In the following chapter, the obtained results will be investigated in detail.
First we provide some consistency checks, next we perform a numerical anal-
ysis of the inclusive decay rate and we also discuss several conceptual issues,
like different definitions of quark masses.

3.1. Scheme-independence

Here we show the independence of our results on the renormalisation
scheme used for γ5. The calculation of the correction g12 in Section 2.3
involved UV-divergences and the result depends on the treatment of γ5 in
dimensional regularisation. The only source of these divergences is the loop
integral C00 in the notation of LoopTools [91]. Thus, the scheme dependence
of the overall result is completely encoded in the terms:

C00 +B1, (49)

for gcc̄ and gbs and
C00 +B2, (50)
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for gcs and gbc̄. The terms B1 and B2 contain all the scheme-dependence.
Since they are just numbers, the phase space integration can be performed
analytically, and one obtains for the total scheme dependent part:

Γαsscheme
cc̄s =

16

3
Γ0|ξc|2g (8B1 − 32B2)C

(0)
1 C

(0)
2 . (51)

This scheme dependence has to be cancelled by the scheme dependence of
the Wilson coefficients C1,2, which can be obtained from (33) to be:

ΓCscheme
cc̄s =

16

3
Γ0|ξc|2gBC(0)

1 C
(0)
2 . (52)

For the whole result to be scheme-independent, the following combination
needs to have the same value in all schemes:

B + 8B1 − 32B2. (53)

In the NDR and in the t’Hooft-Veltman-scheme one gets [84]

BNDR = 11, BNDR
1 = −1

2
, BNDR

2 = − 1
16
,

BHV = 7, BHV
1 = 0, BHV

2 = − 1
16
.

(54)

This shows the scheme independence of the final result.

3.2. Analytical comparison with the literature

Next we compare our results with the calculation of the decay rate Γcc̄s in
[73], where the contributions calculated in Section 2.3 have been determined
already in 1995. Using the formulae given in [73] we found, however, that
the final result is IR divergent. Hence, we present here a careful comparison
of the individual contributions.
We denote with Dxy the diagrams, where the gluon connects the x-quark with
the y-quark. In [72] and [73] a different notation was used, the transcription
reads:

Diagram VI ↔ Dcc̄ ,
Diagram VIII ↔ Dcs ,
Diagram X ↔ Dbc̄ ,
Diagram XI ↔ Dbs .

(55)

For the virtual corrections (i.e. the three-particle-cuts in the notation of
[73]), the coefficients in front of the loop functions could be compared and
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we found, that the virtual results for the diagram Dcc̄ coincide. For the
diagrams Dcs and Dbc̄ a factor −1 is missing in the results of [73]. In the
diagram Dbs the difference is, however, a little more subtle. Eq.(20) in [73]

Im
[
XI+XI†

](3)
=

g2

192π5b

∫ b

4c

dt

t
(b− t)2v

{
(t+2c)b

[
t(A+4B)+(t+2b)B̃ . . . ,

(56)
has to be modified to

Im
[
XI+XI†

](3)
=

g2

192π5b

∫ b

4c

dt

t
(b− t)2v

{
(t+2c)b

[
t(A−2B)+2(b− t)B̃ . . . .

(57)
These two expressions would be equal, if 2B + B̃ = 0 holds, which is clearly
not the case. For the real corrections (i.e. the four-particle-cuts in the
notation of [73]) our results coincide with the ones in [73] for the diagrams
Dcc̄ and Dcs. For the two remaining diagrams, no agreement could be found.
Since in [73] these contributions are given in terms of some phase space
functions K0...7, while the results obtained here are just single expressions,
the error could not be traced back easily.

3.3. Numerical comparison with the literature

Using the input parameters from [73] for our newly calculated expressions
for g11, g12 and g22, we could reproduce all numerical results quoted in Table
2 of [73], even though several analytic expressions in g12 differed, as discussed
in detail in Section 3.2. Hence we conclude, that the results in [73] contain
simply several misprints4.

4Since the authors of [73] are not active in HEP anymore, we could not settle this issue
without performing the calculation anew.
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3.4. Numerical results for the decay width

For our up-to-date numerical evaluation we used the following input pa-
rameters from [1, 92]:

mb (mb) = (4.25± 0.05) GeV ,
ms (mb) = (0.085) GeV ,
ΛQCD = (0.213± 0.008) GeV ,
|Vus| = 0.225± 0.001 ,
|Vub| = 0.004± 0.001 ,
|Vcb| = 0.041± 0.001 ,
δCKM = 71◦ ± 25◦ .

(58)

The remaining CKM elements were inferred from the unitarity of the CKM
matrix. The decay rate Γ(b → cc̄s) has a strong dependence on the charm
quark mass, where a lot of progress has been made in its accurate determi-
nation in recent years. We use the following three values 5 for our numerics:

a) : mc (mc) = (1.273± 0.006) GeV ,
b) : mc (mc) = (1.279± 0.013) GeV ,
c) : mc (mc) = (1.277± 0.026) GeV .

(59)

a) stems from [94], c) from [95] and c) from [96]. The central values of these
three determinations agree excellently, the error estimates range from 0.5%
[94] to 2% [96], which has a visible effect in our numerical analysis. With
these inputs, the following value for the total width is obtained:

Γ
a)
cc̄s = Γ0|Vcb|2

(
1.64± 0.15µ ± 0.04mb

± 0.02mc ± 0.03ΛQCD

)
, (60)

Γ
b)
cc̄s = Γ0|Vcb|2

(
1.62± 0.15µ ± 0.04mb

± 0.05mc ± 0.03ΛQCD

)
, (61)

Γ
c)
cc̄s = Γ0|Vcb|2

(
1.63± 0.15µ ± 0.04mb

± 0.10mc ± 0.03ΛQCD

)
. (62)

All three determinations agree perfectly, the only sizable difference is in the
theoretical error due to the charm quark mass, which ranges from 1% to
6%. Since the factor Γ0|Vcb|2 cancels in most branching ratios exactly, we
did not include this term in the error analysis. The individual contributions
to the inclusive decay width are given in Table 1, where also all parametric
uncertainties are listed. These results will be discussed below in detail.

5See also [93] for another recent determination.
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δµ δmc δmb δΛQCD

Γ
(0)
cc̄s 1.37 ±0.11 ±0.07 ±0.04 ±0.02

Γαs
cc̄s 0.34 ±0.07 ±0.01 ±0.00 ±0.01

Γ
m

cc̄s 0.12 ±0.03 ±0.03 ±0.01 ±0.01
ΓPO
cc̄s −0.09 ±0.04 ±0.00 ±0.00 ±0.00

ΓCcc̄s −0.07 ±0.04 ±0.00 ±0.00 ±0.00
ΓPI
cc̄s −0.05 ±0.01 ±0.00 ±0.00 ±0.00

ΓQ8
cc̄s 0.01 ±0.00 ±0.00 ±0.00 ±0.00

Γcc̄s 1.63 ±0.15 ±0.10 ±0.04 ±0.03

Table 1: Single contributions to the cc̄s-decay width in units of
(
Γ0|Vcb|2

)
and the corre-

sponding errors.

As the main numerical result of our paper we present new values for the
branching ratio of the inclusive b→ cc̄s transition.

Br(b→ cc̄s) =
Γcc̄s
Γtot

. (63)

For the total decay rate Γtot we took all theoretical expressions that were
available in the literature, b → cl−ν̄ from [71], b → cūd from [72], b → cc̄s
from this work, b→ no charm from [74] and b→ sg from [75, 76]. We finally
get

Br(b→ cc̄s)a) = 0.234± 0.002µ ± 0.003mb
± 0.001mc ± 0.001ΛQCD

,

(64)

Br(b→ cc̄s)b) = 0.232± 0.002µ ± 0.003mb
± 0.003mc ± 0.001ΛQCD

,

(65)

Br(b→ cc̄s)c) = 0.232± 0.002µ ± 0.003mb
± 0.006mc ± 0.001ΛQCD

.

(66)

The errors in the branching ratios are considerably smaller than in the decay
rate, obviously several uncertainties cancel to some extend in the branching
ratios. Our final results show several interesting features (to be conservative
we will use in the following the value of [96] for the charm quark mass):

• All NLO-QCD corrections enhance the LO-QCD result for the decay
rate by +19%. The contribution of the 1-loop gluon correction to the
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insertion of the operators Q1 and Q2 is even +25% of the LO-QCD
result. As already pointed out in [70, 73], effects of a finite charm
quark mass were crucial. This can be seen if one compares our results
with the one for a vanishing charm quark mass:

Γ
(mc=0)
cc̄s = Γ0|Vcb|2

(
3.17(0)− 0.07αs + 0.37

m− 0.14PO− 0.16C− 0.08PI+ 0.03Q8
)
.

(67)
Because of the missing phase space suppression the LO contribution is
now more than a factor 2 larger than in Table 1. The biggest depen-
dence is found, however, in Γαs

cc̄s, which changes from −0.07 Γ0|Vcb|2 in
the massless case to +0.34 Γ0|Vcb|2 in the massive case.

• All penguin effects give a contribution of about −9% of the LO-QCD
decay rate. The newly calculated penguin insertions are of a similar size
as some of the theoretical uncertainties, so their inclusion is reasonable.
Gluon corrections to the insertion of the penguin operators Q3, ..., Q6

in tree level diagrams of the effective theory are still missing. Naively
one expects these corrections to be of the order of

Γαs
cc̄s

Γ
(0)
cc̄s

ΓPOcc̄s ≈
0.34

1.37
0.09 ≈ 0.02 .

This is much smaller than the parametric uncertainties of our results.
Hence, we consider the effort of the corresponding NLO-QCD calcula-
tion not to be justified.

• The dominant theoretical uncertainty in our above analysis stems from
the renormalisation scale dependence. It is of the order of ±9% of the
decay rate and cancels in the branching ratio to a remaining uncertainty
of the order of ±1%. To reduce this uncertainty further a NNLO-QCD
calculation would be mandatory. The dependence on the values of the
charm quark mass and the bottom quark mass is already subleading,
as well as the dependence on the strong coupling.
The dominant dependence of the decay rate on the CKM elements
is given by the overall factor |Vcb|2, which results in an uncertainty
of about 5%. Since we are interested in the end in experimentally
measurable branching ratios we did not include the prefactor Γ0|Vcb|2,
which cancels exactly in the ratios, in the error analysis of the decay
rate. The remaining CKM dependence is negligible.
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We also investigated the effect of a non-vanishing strange quark mass
and got for ms (mb) = 0.085 GeV

Γcc̄s = Γ0|Vcb|2
(
1.62± 0.15µ ± 0.04mb

± 0.10mc ± 0.03ΛQCD

)
, (68)

which is almost equivalent to Eq.(62). So this effect can be safely
neglected.

• In [41] it was shown that using mc(mb) instead of mc(mc) sums up
large logarithms of the form x2

c lnx2
c to all orders. We use this pre-

scription also in this work, which also solves a second issue: one might
consider the natural scale of the decay b → cc̄s to be

√
m2
b − 4m2

c .
Using our numerical input we get for the renormalisation scale µ =√

1− 4(mc(mb)mc/mb(mb))2 mb ≈ 0.9 mb, which is very close to our
choice µ = mb. Thus we see no reason for choosing different renormal-
isation scales in different b-decay channels. Choosing different scales
would enhance the theoretical uncertainties in the branching ratios siz-
able.

• Since we are claiming a high precision of our final result, hypothetical
drawbacks of our theoretical tools have to be investigated in detail.
For the calculation of inclusive decay rates within the HQE, one has to
take in to account all possible cuts through the corresponding forward-
scattering diagrams. In the case of penguin insertions and contributions
from Q8, some cuts, however, do not belong to b → cc̄s, but to the
decay b → sg, see Fig.(4). Such a feature could in principle spoil

Figure 4: Cuts through forward scattering diagrams related to penguin insertions and
Q8-contributions, which belong not to b→ cc̄s but to the b→ sg decay.

the application of the HQE to the decay b → cc̄s. All these cuts
however involve a quark-loop from which a real gluon is emitted. The
corresponding matrix element can be expressed as:

M∝
(
m2
lB0 + (2−D)B00

)
s̄/ε∗ (1− γ5) b

+ (B1 +B11) (2−D) s̄/pg/ε
∗
/pg (1− γ5) b,

(69)
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where the Bij are the two-point loop-integrals and pµg and εµ are the
gluon’s momentum- and polarisation vector. ml is the mass of the
particle running in the loop. The second line of (69) vanishes due to
the on-shell condition of the gluon: pµgpgµ = pµg ε

∗
µ = 0.

For a vanishing momentum-square of the gluon, the remaining loop-
functions, B0 and B00, are related by:

B00 =
m2
l

2

1

1− ε
B0, (70)

in D = 4− 2ε dimensions. With this relation, also the first line of (69)
vanishes and these dangerous cuts do not contribute.

• Finally we compare the numerical values for the branching ratio of
b → cc̄s for different schemes of the b-quark mass. We use the pole
scheme, the MS-scheme [80], the kinetic [88], the potential-subtracted
(PS) [89] and the Υ(1s)-scheme [90]. Our final results in these schemes
reads:

BPole
cc̄s = 0.166± 0.011 , (71)

BMS
cc̄s = 0.232± 0.007 , (72)

BΥ
cc̄s = 0.243± 0.013 , (73)

BPS
cc̄s = 0.241± 0.013 , (74)

BKIN
cc̄s = 0.245± 0.013 . (75)

Except for the pole mass scheme all other quark mass schemes agree
very nicely, the largest shift is found in the kinetic scheme, which is
about 0.013, i.e. 6% larger than the result in the MS scheme. Since the
pole scheme has theoretical disadvantages, as discussed in Section 2.4,
we will not use the result in this scheme. The numerical difference in
the remaining four schemes will be used as an estimate for an additional
systematic uncertainty, which we estimate to be ±0.013.

Thus we get as our final result for the branching ratio

Bcc̄s = 0.232± 0.007± 0.013 ≈ (23± 2)% . (76)
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4. Conclusion

In this work, the width for the inclusive decay channel b→ cc̄s was com-
puted up to the order O (αs) within the framework of the HQE. This theoret-
ical framework passed recently a non-trivial experimental test: the measured
value of the decay rate difference ∆Γs in the neutral Bs meson system agrees
nicely with the corresponding standard model prediction [44]. Another very
non-trivial test is related to the huge lifetime difference in the D-meson sys-
tems. Here first results, although suffering from huge hadronic uncertainties,
look very promising [45]. Thus an updated prediction of Γ(b → cc̄s) within
the framework of the HQE is clearly overdue.
For that purpose we had to recalculate radiative corrections to insertions of
the dominant operators Q1 and Q2 in tree level diagrams of the effective the-
ory. This task was already performed in [73], but the formulæ in [73] contain
several misprints. We give the corrected expressions in the appendix of this
paper. However, numerical results of [73] could be exactly reproduced. In
addition to that we also determined for the first time NLO-QCD contribu-
tions from insertions of the operators Q1 and Q2 in penguin diagrams of the
effective theory, as well as contributions from the chromomagnetic operator
Q8.
Combining our new calculation with the impressive improvements in the ac-
curate determination of standard model parameters like quark masses and
CKM parameters we obtain as the main numerical result a very precise value
of the branching ratio of the decay b→ cc̄s

Br(b→ cc̄s) = (23± 2)% . (77)

Further support for this small error is given by new insights in different quark
mass schemes.
With this new result a re-analysis of the semileptonic branching-ratio BSl
and the charm-multiplicity nc can be performed, see [97]. Such an analysis
will lead to important and complementary insights on the possible size of
new physics effects in B decays.
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Appendix A. An introduction to [83]

The corrections to the tree level-diagrams, that involve gluons coupling
to only one fermion-line were given in the paper [83] in terms of a one di-
mensional integral. For example the term g22 can be expressed as:

g22 =
4

Ω0

(Γl + Γu) . (A.1)

Here, as in this whole section, the notation of [83] is used. The two contribu-
tions Γl and Γu depend on the mass ratios ρi = (mi/M)2. Γu hereby contains
all effects due to gluon-exchanges on the upper vertex, the vertex with the
decaying particle incoming and one particle outgoing. In the b → cc̄s-case,
the upper vertex is the b-c-W−-vertex. Γl contains the corrections from gluon
exchanges on the lower vertex, which in this case is the c̄-s-W−-vertex. As
already mentioned, diagrams that contain gluon-exchanges between upper
and lower vertex vanish due to the colour-structure. The factor Ω0 is given
by equation (3.9) in [83].
As usual for such radiative corrections, the Γu,l each consist of a part de-
scribing virtual- and real-gluon-effects respectively:

Γu = Γvl + Γbl , (A.2)

Γl = Γvu + Γbu, (A.3)

which are defined in equations (3.36) and (4.34) as one dimensional integrals
over the functions Rb,v

l,u (ξ) respectively. These are given in equations (3.11),
(3.35), (4.7) and (4.33).

Appendix B. Expressions for the radiative corrections

The expressions for the O (αs) corrections to b→ cc̄s are split in a virtual
part, e.g. gv

cc̄, stemming from loop-corrections, and a real part gr
cc̄ from gluon

radiation. The sums of both contributions, gx = gv
x + gr

x, are infrared-finite
for every diagram, as expected.
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Appendix B.1. Expressions for the virtual contributions

The virtual correction gv
cc̄ reads with the infrared-regulator ξ = mg/mb:

gv
cc̄ =

∫ 1

4x2
c
dz12

−4

z
3/2
12

(1− z12)2
√
z12 − 4x2

c

[
z12 (1 + 2z12)

[
− 2 (C00 +B1)

+C0z12 + C1z12 + C12z12 + C2z12

]
+ 2x4

c

[
− 2C2 + 2C0 (z12 − 1)

+2C1 (z12 − 1) + 3C11z12 + 9C12z12 + 2C2z12

]
+x2

c

[
4 (C00 +B1) (z12 − 1)−

[
3C1 + 4C12 + 3C2

]
z12

−
[
6C0 + 9C1 + 3C11 + 11C12 + 9C2

]
z2

12

]]
.

(B.1)
The functions Cij are the three-point-functions as used in the LoopTools-
package [91], their arguments read in the notation adapted in the LoopTools-
manual: p2

1 = (p1 + p2)2 = m2
2 = m2

3 = x2
c , p

2
2 = z12 and m2

1 = ξ2. The
arguments are chosen in a way that renders the loop-functions dimensionless.
Therefore, also the renomalization-point is set to µ2/m2

b .
The function gv

cs is given by:

gv
cs =

∫ (1−xc)2

x2
c

dz12
−12
z12

(z12 − x2
c)

2
(1 + x2

c − z12)√
x4
c + (1− z12)2 − 2x2

c (1 + z12)
[
16 (C00 +B2) + 4C1x

2
c + 4C11x

2
c

+4C12x
2
c + 2C2x

2
c + 2C0 (x2

c − z12)− 2C1z12 − 4C12z12 − 2C2z12

]
.

(B.2)

Here the arguments of the LoopTools-functions are given by: p2
1 = m2

2 = x2
c ,

(p1 + p2)2 = m2
3 = 0, p2

2 = z12 and m2
1 = ξ2.

The third virtual correction is given by:

gv
bc̄ =

∫ (1−xc)2

x2
c

−12
z12

(z12 − x2
c)

2
√
x4
c + (1− z12)2 − 2x2

c (1 + z12)[
4C1 + 4C11 + 4C12 + 2C2 + 2C1x

2
c + 4C11x

2
c + 12C12x

2
c + 2C2x

2
c + 2C1x

4
c

+8C12x
4
c + 4C2x

4
c + 16 (C00 +B2) (1 + x2

c − z12) + 2C0 (1 + x2
c − z12)

2

−6C1z12 − 4C11z12 − 8C12z12 − 4C2z12 − 4C1x
2
cz12 − 12C12x

2
cz12

−6C2x
2
cz12 + 2C1z

2
12 + 4C12z

2
12 + 2C2z

2
12

]
.

(B.3)
The three-point-functions’ arguments are: p2

1 = m2
2 = 1, (p1 + p2)2 = m2

3 =
x2
c , p

2
2 = z12 and m2

1 = ξ2.
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The last virtual correction reads:

gv
bs =

∫ 1

4x2
c
dz12

−4

z
3/2
12

(1− z12)2
√
z12 − 4x2

c

[
− 2x2

c

[
2 (C00 +B1) + C1 + C2

+C0 (1− z12)2 − 2 (C00 +B1) z12 − 2C1z12 − 3C11z12 − C12z12 − 2C2z12

+C1z
2
12 + C12z

2
12 + C2z

2
12

]
+ z12

[
− 2 (C00 +B1)− C1 − C2 − 4 (C00 +B1) z12

−4C1z12 − 3C11z12 − 2C12z12 − C2z12 + 2C1z
2
12 + 2C12z

2
12 + 2C2z

2
12

+C0 (2z2
12 − z12 − 1)

]]
.

(B.4)
The arguments of the loop-functions are: p2

1 = m2
2 = 1, (p1 + p2)2 = m2

3 = 0,
p2

2 = z12 and m2
1 = ξ2.

Like in section 3.1, the two coefficients B1,2 encode the scheme-dependence of
the results. They always appear in the combination C00+B1,2, since C00 is the
only UV-divergent integral. In the NDR- and HV-scheme, these coefficients
are given by:

BNDR
1 = −1

2
, BNDR

2 = − 1

16
, BHV

1 = 0, BHV
2 = − 1

16
. (B.5)
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Appendix B.2. Expressions for the real parts

The corresponding real corrections read, again with ξ = mg/mb as an
infrared regulator:

gr
cc̄ =

∫ 1

(2xc+ξ)2 dz123

∫ (
√
z123−xc)2

(xc+ξ)2 dz12(−6) (z123 − 1)2

[
− (z12 − x2

c)[
x4
c + (z12 − z123)2 − 2x2

c (z12 + z123)
]5/2[

− 3x4
c (2 + z123)− z2

12 (2 + z123)

+z12z123 (2 + z123) + 2z2
123 (1 + 2z123) + x2

c

(
− 3z2

123 + 4z12 (2 + z123)
)]

+2z12

(
x4
c + (z12 − z123)2 − 2x2

c (z12 + z123)
)2
[
x6
c (2 + z123)

− (z12 − z123) z2
123 (1 + 2z123)− x4

c

[
− 3 (z123 − 1) z123 + 2z12 (2 + z123)

]
+x2

c

(
z12 (z123 − 1) z123 + z2

123 − 4z3
123 + z2

12 (2 + z123)
)][

ln

(
− x4

c + z12 (z12 − z123)− (z12 + z123) ξ2 + x2
c (z123 + ξ2)−√

x4
c + (z12 − z123)2 − 2x2

c (z12 + z123)
√
x4
c + (z12 − ξ2)2 − 2x2

c (z12 + ξ2)

)
− ln

(
− x4

c + z12 (z12 − z123)− (z12 + z123) ξ2 + x2
c (z123 + ξ2) +√

x4
c + (z12 − z123)2 − 2x2

c (z12 + z123)
√
x4
c + (z12 − ξ2)2 − 2x2

c (z12 + ξ2)

)]]
/[

3 (x2
c − z12) z12z

3
123

(
x4
c + (z12 − z123)2 − 2x2

c (z12 + z123)
)2
]
,

(B.6)

gr
cs =

∫ (1−xc)2

(xc+ξ)2 dz123

∫ z123

(xc+ξ)2 dz1224 (1 + x2
c − z123) (z123 − z12)√

x4
c + (z123 − 1)2 − 2x2

c (1 + z123)

[
(x2

c − z12) (x2
c − z12 + z123)

+z12 (z123 − x2
c)

[
ln

(
1 +

(z123−z12)
√
x4
c+(z12−ξ2)2−2x2

c(z12+ξ2)

(x2
c−z12)(z12−z123)+(z12+z123)ξ2

)
− ln

(
1− (z123−z12)

√
x4
c+(z12−ξ2)2−2x2

c(z12+ξ2)

(x2
c−z12)(z12−z123)+(z12+z123)ξ2

)]]
/[

(x2
c − z12) z12z123

]
,

(B.7)
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gr
bc̄ =

∫ (1−xc)2

(xc+ξ)2 dz123

∫ (
√
z123−ξ)2

x2
c

dz1224 (x2
c − z12)

2[(
1 + x4

c + z12 (z123 − 2)− x2
c (z12 + z123 − 2)

)
ln

(
z2

123 + (x2
c − 1)

(z12 − ξ2)− z123 (x2
c + z12 + ξ2 − 1)−

√
x4
c + (z123 − 1)2 − 2x2

c (1 + z123)√
(z12 − z123)2 − 2 (z12 + z123) ξ2 + ξ4

)
+ 1

z123

[
− (z12 − z123)2√

x4
c + (z123 − 1)2 − 2x2

c (1 + z123) + z123

[(
− 1− x4

c + 2x2
c (z12 − 1) + z12

+z123 − z12z123

)
ln

(
z123 + z12 (z123 + x2

c − 1) + ξ2 + z123 (ξ2 − z123)

−x2
c (z123 + ξ2)−

√
x4
c + (z123 − 1)2 − 2x2

c (1 + z123)√
(z12 − z123)2 − 2 (z12 + z123) ξ2 + ξ4

)
−
(
1 + x4

c + z12 (z123 − 2)

−x2
c (z123 + z12 − 2)

)
ln

(
z12 (x2

c − 1− z123) + z123 (1 + z123 − x2
c) + ξ2

− (x2
c + z123) ξ2 +

√
x4
c + (z123 − 1)2 − 2x2

c (1 + z123)√
(z12 − z123)2 − 2 (z12 + z123) ξ2 + ξ4

)
+
(
x4
c − 2x2

c (z12 − 1) + (z12 − 1)

(z123 − 1)
)

ln

(
z123 + z12 (x2

c + z123 − 1) + ξ2 + z123 (ξ2 − z123)

−x2
c (z123 + ξ2) +

√
x4
c + (z123 − 1)2 − 2x2

c (1 + z123)

·
√

(z12 − z123)2 − 2 (z12 + z123) ξ2 + ξ4

)]]]/[
z12 (z12 − z123)

]
,

(B.8)
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gr
bs =

∫ (1−ξ)2

4x2
c

dz123

∫ z123

4x2
c
dz126

√
z12 − 4x2

c (z12 − z123)[[
z12

(
z12 − 4z2

12 − z12z123 + (z123 − 3) z123

)
+ 2x2

c

(
z12 + 2z2

12 − z12z123

+ (z123 − 3) z123

)]
(1− z123)− 2 (z12 − 1)

(
− 2x2

c (z12 − 1) + z12 (1 + 2z12)
)

z123

[
ln

(
z12

(
− 1 + z123 + ξ2 −

√
(z123 − 1)2 − 2 (1 + z123) ξ2 + ξ4

)
+z123

(
1− z123 + ξ2 +

√
(z123 − 1)2 − 2 (1 + z123) ξ2 + ξ4

))
− ln

(
z123 − z123

(
z123 − ξ2 +

√
(z123 − 1)2 − 2 (1 + z123) ξ2 + ξ4

)
+z12

(
z123 − 1 + ξ2 +

√
(z123 − 1)2 − 2 (1 + z123) ξ2 + ξ4

))]]
/[

3z
3/2
12 (z123 − 1) z123

]
.

(B.9)
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Appendix C. Phase space factors for the penguin-insertion

The phase-space-integrals from the penguin insertion of Q2 are, with yc =√
1− 4x2

c , given by:

gPI = −1
9

{
3iπx2

c

[
− 15 + 8x2

c (9− 20x2
c + 8x4

c) + 24x2
c (4x2

c − 1) ln (4x2
c)
]

+ 1
4yc

[
19− 30x2

c − 330x4
c + 476x6

c + 432x8
c + 144x4

cyc (4 + 3x4
c)

ln
(

2xc
1+yc

)
+ 96x2

cyc (1 + 20x4
c) ln

(
1+yc
2xc

)]
+3 (1− 4x2

c + 36x4
c − 48x6

c) ln
(
−1+2x2

c+yc
2x2

c

)
−4

[
12x2

c ln
(

2xc
1+yc

) [
1− 2x2

c (2 + 3 (x2
c + x4

c)) + 6x2
c (x4

c − 1) ln
(
xcmb

µ

) ]
−1

2
yc

[
1− 44x2

c + 214x4
c − 36x6

c + (−3 + 6x2
c (7 + x2

c + 6x4
c)) ln

(
xcmb

µ

) ]]
+24x4

c (4x2
c − 1)

[
π (π + 6i ln (xc)) + 6i ln

(
i(1+yc)

2xc

)
[
− i ln

(
i(1+yc)

2xc

)
− 2i ln

(
1−yc
2x2

c

) ]
− 6Li2

(
−1−2x2

c−yc
2x2

c

)]}
,

(C.1)

gPI+ = −2x2
c

3

{
5yc + x2

c

[
− 47yc + 2π2 (8x2

c − 1) + 4iπ (40x4
c − 9) +

x2
c

[
− 78yc + 480 ln (2)2 ]− 6 ln (2) (3 + 10 ln (2))

]
+ 24x2

c (−1 + 8x2
c) ·

ln (xc) ln (16xc) + 24x2
c (8x2

c − 1) ln (2xc)
[
− ln (1− yc) + ln (1 + yc)

]
+2 ln

(
−1+2x2

c+yc
2x2

c

)
− 4yc ln

(
xcmb

µ

)
+ 2x2

c

[
− 12iπ (8x2

c − 1) ln (2xc)

+6 ln (1 + yc)
[

ln
(

64x4
c

1+yc

)
+ 8x2

c ln
(

1+yc
64x4

c

) ]
+ 9 ln

(
−1+2x2

c+yc
x2
c

)
−10yc ln

(
xcmb

µ

)
+ 12x2

cyc ln
(
xcmb

µ

)
+ 4x2

c ln
(

1+yc
2xc

)
(

31 + 12x2
c ln
(
xcmb

µ

))
+ 4 ln

(
2xc

1+yc

) [
− 7 + 39x4

c + 6 (2x2
c − 1) ln

(
xcmb

µ

) ]]
+24x2

c (1− 8x2
c) Li2

(
1
2

(1− yc)
)}

.
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