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Abstract

We review the status of flavour physics in spring 2014. The numerous accurate new measure-
ments of flavour experiments have enabled us to test our theoretical understanding of flavour
processes with an unprecedented precision. At first sight the dominant amount of measure-
ments seems to be standard model like. Having a closer look one finds, however, that in most
of the observables there is still some considerable space for new effects. In addition many
discrepancies are still not settled yet. For further investigations and definite conclusions an
improvement of the theoretical precision as well as the experimental one is mandatory.
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1 Introduction

The standard model of particle physics [1, 2, 3] is finally complete. The Higgs particle
that was predicted in 1964 [4, 5, 6] was found in 2012 at LHC by the ATLAS and CMS
Collaborations [7, 8]. Knowing the value of the mass of the Higgs particle, for the first time
a complete electro-weak precision fit could be performed without having any unmeasured
standard model parameters. This was done in [9] and slightly later in [10] and a very good
overall consistency has been found.
Despite these and numerous other successes, the standard model leaves many open questions.
Far reaching ones like the quest for the quantisation of gravity, or an understanding of dark
energy. We also do not know the origin of dark matter and we might want to answer simple
sounding questions, like, why are there three generations of matter in nature. Another very
profound question is, where does matter, i.e. an excess of matter over anti-matter in the
universe come from. Sakharov has shown already in 1967 [11] that a matter-anti-matter
asymmetry can be created dynamically if the fundamental laws of nature have the following
basic properties:

• Baryon number is violated.

• There was a phase out-of thermal equilibrium in the early universe.

• C and CP are violated.

Focusing on the requirement of CP-violation one finds that this effect is included in the
standard model in the quark mixing matrix1, the Cabibbo-Kobayashi-Maskawa (CKM) ma-
trix [12, 13]. The CKM matrix describes the coupling of the weak charged gauge bosons to
quarks. It allows also non-diagonal couplings of the charged currents, i.e., the u-quark does
not only couple to the d-quark via a charged W boson, but it also couples to the s-quark and
the b-quark. The entries of the CKM-matrix give the respective coupling strengths

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 . (1.1)

The couplings of, e.g. the up- and down-quark to the charged we current is given by:

Coupling ∝ g2

2
√

2
γµ(1− γ5)Vud . (1.2)

The CKM matrix is by construction unitary and it can be parameterised by four variables,
three real angles and one complex phase. The latter one describes CP-violation. The so-called
standard parameterisation reads

VCKM3 =

 c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13

 , (1.3)

with
sij := sin(θij) and cij := cos(θij) . (1.4)

1We will not discuss here the possibility of having CP violation also in lepton mixing or in the strong
sector.
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The three angles are denoted by θ12, θ23 and θ13 and the complex phase describing CP-
violation is δ13. This parameterisation is typically used for numerical calculations. There
is also a very transparent parameterisation, the so-called Wolfenstein parameterisation [14].
This parameterisation uses the experimentally found hierarchy Vud ≈ 1 ≈ Vcs and Vus ≈
0.225 ≡ λ to perform a Taylor expansion in λ. Here one also has 3 real parameters λ, A and
ρ and one complex coupling denoted by η.

VCKM =


1− λ2

2
λ Aλ3(ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 . (1.5)

In this form the hierarchies can be read of very nicely. The most recent numerical values
read (status March 2014 from the CKMfitter page [15] - similar results are obtained by UTfit
[16])

λ = 0.22457+0.00185
−0.00014 , (1.6)

A = 0.823+0.012
−0.033 , (1.7)

ρ̄ ≡
(

1− λ2

2

)
ρ = 0.1289+0.0176

−0.0094 , (1.8)

η̄ ≡
(

1− λ2

2

)
η = 0.348+0.012

−0.012 . (1.9)

The investigation of the CKM parameters goes hand in hand with the determination of the
so-called unitarity triangle. By construction we have

VCKMV
†
CKM = 1 . (1.10)

In the case of three generations this gives us nine conditions. Three combinations of CKM
elements, whose sum is equal to one and six combinations whose sum is equal to zero, in
particular

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 . (1.11)

Using the Wolfenstein parameterisation we get for this sum

Aλ3 [(ρ+ iη)− 1 + (1− (ρ+ iη))] = 0 . (1.12)

Since A and λ are already quite well known one concentrates on the determination of ρ and
η. The above sum of three complex numbers can be represented graphically as a triangle,
the so-called unitarity triangle, see Fig. 1. The determination of the unitarity triangle is in
particular interesting since a non-vanishing η describes CP-violation in the standard model.
In principle the following strategy is used (for a review see, e.g. [17]):
Compare the experimental value of some flavour observable with the corresponding theory
expression, where ρ and η (or the angles α, β and γ) are left as free parameters and plot the
constraint on these two parameters in the complex ρ− η plane. Four prominent examples of
constraints are:
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Figure 1: The unitarity triangle.

• The amplitude of a beauty-quark decaying into an up-quark is proportional to Vub.
Therefore the branching fraction of B-mesons decaying semi leptonically into mesons
that contain the up-quark from the beauty decay is proportional to |Vub|2:

B(B → Xueν) = ãtheory · |Vub|
2 = atheory ·

(
ρ2 + η2

)
,

⇒ ρ2 + η2 =
BExp.(B → Xueν)

atheory
, (1.13)

where a contains the result of the theoretical calculation. By comparing experiment
and theory for this decay and leaving ρ and η as free parameters we get a constraint

in the ρ − η-plane in the form of a circle around (0, 0) with the radius BExp.(B →
Xueν)/atheory.

• Investigating the system of neutral B-mesons one finds that the physical eigenstates
are a mixture of the flavour eigenstates. This effect is due the so-called box diagrams
shown in Fig. 2, that enable transitions between a B̄d = (bd̄)-meson and a Bd = (b̄d)-
meson. As a result of this mixing the two physical eigenstates have different masses,
the difference of the two masses is denoted by ∆MBd

. Theoretically one finds ∆MBd
∝

|Vtd|2 ∝ (ρ − 1)2 + η2. Comparing experiment and theory we obtain a circle around
(1, 0).

• Comparing theory and experiment for the CP-violation effect in the neutral K-system,
denoted by the quantity εK , we get an hyperbola in the ρ− η-plane.

• Bigi, Carter and Sanda have shown that the angle β can be extracted directly, with
almost no theoretical uncertainty from the following CP-asymmetry in exclusive B-
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Figure 2: Box diagrams contributing to the mixing of Bd-mesons. The Feynman diagram on
the left can only contribute to M q

12, because the W -bosons are always off-shell, this is also
the case for the top-quark contribution of the diagram on the right. Contributions to Γq12 can
only arise from the up- and charm-quark on the right.

decays [18, 19].

aCP :=
Γ(B → J/Ψ +KS)− Γ(B̄ → J/Ψ +KS)

Γ(B → J/Ψ +KS) + Γ(B̄ → J/Ψ +KS)
∝ sin 2β (1.14)

Because of its theoretical cleanness this decay mode is called the gold-plated mode.

The overlap of all these regions gives finally the values for ρ and η. In Fig. 3 all the above
discussed quantities are included schematically. The constraint from the semi leptonic decay
is shown in green, the constraint from B-mixing is shown in blue and the hyperbolic con-
straint from εK is displayed in pink. Later on we present a figure with the latest experimental
numbers. Experimentally CP-violation was already found in 1964 [20] as a tiny effect in the

Figure 3: Bounds on the unitarity triangle from Vub, CP-violation in the Kaon-system εK
and the mass difference of neutral B-mesons, ∆Md and ∆Ms.
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decay of Kaons, denoted above by εK . Larger effects were predicted already in 1981 [18, 19]
in the decay of B-mesons, in particular in the decay Bd → J/ψKS. Indirect CP violation
in the Bd-system, i.e., a non-vanishing value of the angle β, was then found subsequently in
2001 by BaBar [21] and Belle [22]. Besides the Bd-system, where direct CP-violation was
established in 2006 at Belle [23] in the decay Bd → π+π− and in 2007 at BaBar [24] in the
decays Bd → π+π−, K+π−, direct CP violation has also been found by the LHCb Collab-
oration in 2012 in the decay B+ → DK+[25] and in 2013 in the decay Bs → K−π+ [26].
Indirect CP violation in the Bs sector, which is predicted to be very small in the standard
model (see, e.g. the review [27]), has not yet been detected, despite intense searches, e.g.
[28, 29]. In 2011 there were also some indications at LHCb that there might be direct CP
violation in the charm sector [30], which were, however, not confirmed by more recent studies
in 2013 [31], see also the discussion in [32].
One of the reasons for the interest in flavour physics stems from the fact that meson de-
cays are currently the only processes in nature, where CP violation has been detected. By
studying these decays in detail, one hopes to deepen our understanding of the origin of CP
violation. Moreover flavour physics enables indirect searches for new physics, where very pre-
cise measurements are compared with very precise standard model calculations. Significant
deviations might then point towards beyond standard model contributions. Here processes
that are strongly suppressed in the standard model are particularly well suited. Examples
are the box-diagrams, shown in Fig. 2 and so-called penguin diagrams depicted in Fig. 4, that
enable flavour changing neutral currents (FCNC) at the loop-level. In the standard model
there is e.g., no tree-level transition of a b-quark into a s-quark. Penguin diagrams were in-
vented in 1975 by Shifman, Vainshtein and Zakharov [33] and baptised by John Ellis in 1977
[34]. Such a programme is complementary to the direct searches at, e.g. the general purpose

Figure 4: Penguin diagrams enable a transition of e.g., a b-quark into a strange-quark, which
is in the standard model forbidden at tree-level.

detectors ATLAS and CMS, where one hopes to detect decay products of directly produced
new particles. As long as no direct evidence for new physics is found, indirect searches might
provide the first hints for new effects at a higher energy scale than directly accessible and as
soon as direct evidence for new particles is found, the precision study of flavour effects will be
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helpful in determining the new flavour couplings. Indirect searches rely of course heavily on
our control of the corresponding hadronic uncertainties in flavour transitions. For the case
of b-hadrons two facts turn out to be very useful in that respect. First, the strong coupling
at the scale µ = mb is relatively small αs(mb) ≈ 0.2 and second, there exists an expansion of
decay rates in terms of the inverse heavy quark mass, the heavy quark expansion (HQE) [35],
which allows precise predictions. Several non-trivial cross-checks for these tools to handle
QCD effects will be discussed below. An interesting question is of course, to what extent the
HQE methods can be applied in the charm sector, where the expansion parameters αs(mc)
and 1/mc are considerably larger. A final motivation for flavour physics studies are precise
determinations of many standard model parameters, like the values of the CKM parameters
or also some quark masses.
After the big success of the B-factories with the detectors BaBar and Belle, see, e.g. [36]
and the results from TeVatron, see, e.g. [37], the field is currently dominated by the LHCb
experiment (see, e.g. [38] for some earlier results), but there are also some important contri-
butions from ATLAS, see, e.g. [39], and CMS, see, e.g. [40], as will be discussed below.
In Section 2 we will study inclusive quantities like lifetimes, but also the mixing system as
well as individual inclusive branching ratios. Most of the corresponding theory predictions
rely on the heavy quark expansion. In Section 3 we switch to exclusive quantities, starting
from leptonic decays, over semi-leptonic decays to non-leptonic ones. In Section 4 we discuss
some consequences for searches for new physics models and in Section 5 we conclude.

2 Inclusive decays

We start our discussion with inclusive decays. Such decays are characterised by the fact
that we do not specify the hadronic final state, simplifying thus the non-perturbative physics
considerably. The prime example of an inclusive quantity are lifetimes of b- and c-hadrons, as
well as observables related to the mixing of neutral mesons. Finally we discuss also individual
semi- and non-leptonic inclusive decay modes.

2.1 Lifetimes

Lifetimes are among the most fundamental properties of a particle. We compare here recent
measurements for the lifetime of D-mesons, B-mesons and b-baryons with the latest theory
predictions.

2.1.1 Theory

Total decay rates can be written according to the heavy quark expansion - see [35] for the
first systematic expansion and [41] for a review of the extensive literature - as

Γ = Γ0 +
Λ2

m2
q

Γ2 +
Λ3

m3
q

Γ3 +
Λ4

m4
q

Γ4 + . . . . (2.15)

If the mass mq of the decaying quark is heavy and the hadronic scale Λ is not very large,
then the expansion in Eq.(2.15) is expected to converge quickly. In particular because there
are no corrections of order Λ/mq. Each of the coefficient Γi for i ≥ 2 consists of perturba-
tively calculable Wilson-coefficients and of non-perturbative matrix-elements, that have to
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be determined, e.g. with lattice calculations or QCD sum rules. For more details we refer
the interested reader to the review [41].

2.1.2 Charmed mesons

For charmed mesons one finds experimentally a huge spread in the lifetime ratios [42]

τ(D+)

τ(D0)

Exp.

= 2.536± 0.017 ,
τ(D+

s )

τ(D0)

Exp.

= 1.219± 0.017 . (2.16)

Besides the fact that 1/mc does not look like a good expansion parameter, the values in
Eq.(2.16) indicate huge corrections in Eq.(2.15), if not a complete breakdown of the expan-
sion. Nevertheless, studies within the HQE were performed, see, e.g. [41] for the history of
these efforts. In [43] an investigation of the D-meson lifetimes including αs-corrections to Γ3

and the LO-corrections to Γ4 obtained

τ(D+)

τ(D0)

HQE

= 2.2± 0.4+0.3
−0.7 ,

τ(D+
s )

τ(D0)

HQE

= 1.19± 0.12± 0.04 . (2.17)

The first error stems from the uncertainties in the non-perturbative matrix elements of the
arising four-quark operators. For these matrix elements some assumptions had to be made in
[43], since there is no first principle calculation available. Such an endeavour would be very
desirable. The second error in Eq.(2.17) stems from the renormalisation scheme dependence,
which could be reduced by a NNLO-QCD calculation. Contrary to the naive expectation the
HQE seems to be capable of describing the huge lifetime ratios in the D-meson system, but
for more profound statements, lattice values for the arising non-perturbative matrix elements
are mandatory.

2.1.3 B-mesons

For B-mesons the measured lifetime ratios are very close to one [44]

τ(B+)

τ(Bd)

Exp.

= 1.079± 0.007 ,
τ(Bs)

τ(Bd)

Exp.

= 0.998± 0.009 . (2.18)

More recent experimental numbers, that are not yet included in the HFAG average can be
found in [45]. Because of the larger value of mb one expects now a better convergence
of Eq.(2.15). Unfortunately it turns out, see, e.g. the detailed discussion in [41], that
pronounced cancellations are occuring in the theory predictions of these ratios, that lead
to a strong sensitivity on the bag parameters and the most recent determination of these
parameters stems already from 2001 [46]. Relying on these old non-perturbative values and
including the NLO-QCD corrections from [47, 48] one gets [41]

τ(B+)

τ(Bd)

HQE

= 1.04+0.05
−0.01 ± 0.02± 0.01 ,

τ(Bs)

τ(Bd)

HQE

= 1.001± 0.002 . (2.19)

The ratio of the neutral mesons is in perfect agreement with data, while the prediction for
τ(B+)/τ(Bd) is slightly smaller than the measurement quoted in Eq.(2.18), but for more
far-reaching statements precise bag parameters are urgently needed. Since the lifetime ratio
τ(Bs)/τ(Bd) is affected by very pronounced numerical cancellations (see, e.g. [41] for a
detailed description) in the standard model, this quantity can also be used as an important
bound on hidden B-decay channels due to new physics, see, e.g. the recent investigation in
[50].
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2.1.4 b-baryons

The Λb lifetime suffered from a longstanding discrepancy between experiment and theory
that was finally settled experimentally. HFAG gave in 2003 an average of

τ(Λd)

τ(Bd)

HFAG 2003

= 0.80± 0.05 . (2.20)

Older numbers resulted in even smaller ratios. The value in Eq.(2.20) was in disagreement
with early estimates based on the HQE, see, e.g. [51] (see [41] for a more detailed history of
prediction of the Λb lifetime)

τ(Λd)

τ(Bd)

HQE 1986

≈ 0.96 . (2.21)

Again the theory prediction depends strongly on the value of the non-perturbative matrix
elements and in this case we have only an exploratory lattice study from 1999 [52], which
yielded quite large numerical values for the bag parameters, leading to a larger deviation of
the ratio from one. Taking these numbers and also looking for some additional effects that
might reduce the ratio, one could arrive at values as low as [53]

τ(Λd)

τ(Bd)

HQE 2004

= 0.86± 0.05 . (2.22)

In recent years there were a lot of new measurements from CDF [54] and D0 [55] at TeVatron
and also from CMS [56], ATLAS [57] and of course LHCb [45, 58] that found considerably
higher values for the Λb-lifetime. The current HFAG [44] average reads

τ(Λd)

τ(Bd)

HFAG 2013

= 0.941± 0.016 . (2.23)

In [41] the Λb lifetime was re-investigated, using spectroscopic information for matrix elements
(following [59]) and the NLO-QCD result from [48], as well as the 1/mb corrections from [53],
with the result

τ(Λd)

τ(Bd)

HQE 2014

= 0.935± 0.054 . (2.24)

The final number depends, however, crucially on the precise value of the bag parameter,
where we are lacking a first principle calculation, see the discussion in [41].

2.1.5 Lifetime upshot

The above comparison between experiment and theory shows that the HQE seems to work
well for lifetimes of heavy hadrons, even in the case of D-mesons. For more precise statements
new lattice investigations are urgently needed. Further examples like the Bc meson lifetime
and the Ξb lifetime are discussed in the review [41].

2.2 Mixing Quantities

The phenomenon of particle-antiparticle mixing is a macroscopic quantum effect. It arises
due to so-called box diagrams shown in Fig. 2, which enable a transition of a neutral meson
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state, defined by its quark flavour content into its anti-particle. This effect shows that the
flavour eigenstates of the neutral mesons, e.g., Bd = (b̄d) and B̄d = (bd̄), do not coincide with
the mass eigenstates, which we denote by BH and BL, where H stands for heavy and L for
light. In the Kaon system the notation KS and KL is used, where S stands for short-lived
and L for long-lived. Performing a change of basis, one finds a mass difference ∆Md and a
decay rate difference ∆Γd of the mass eigenstates.

∆Md := MH −ML , (2.25)

∆Γd := ΓL − ΓH , (2.26)

where MH denotes the mass of the heavy eigenstate et cetera.

2.2.1 A very brief history of mixing

Mixing is by now well established in several systems of neutral mesons:

1956 K0-system: Mixing in the neutral K-system was theoretically developed in 1955 by
Gell-Mann and Pais [60]. Based on that framework the quantum mechanical phe-
nomenon of regeneration was predicted in the same year by Pais and Piccioni [61].
Experimentally this phenomenon was confirmed in 1960 [62]. A huge lifetime differ-
ence between the two neutral K-mesons (KS and KL) was established already in 1956
[63].

1986 Bd-system: Mixing in the Bd-system was found in 1986 by UA1 at CERN [64] (UA1
attributed the result however to Bs mixing) and in 1987 by ARGUS at DESY [65]. The
large result for the mass difference ∆Md can be seen as the first clear hint for an (at that
time) unexpected large value of the top quark mass [66] 2. For the decay rate difference
- which is expected to have a small value in the standard model [49, 50] - currently
only upper bounds are available from BaBar [68], Belle [69], D0 [70] and LHCb [45].
Here further experimental studies are very welcome, because in this quantity there is
still room for some sizable new physics effects [50].

2006/12 Bs-system: The large mass difference in the Bs-system was established in 2006 by the
CDF Collaboration at TeVatron [71]. In 2012 the LHCb Collaboration measured for
the first time a non-vanishing value of the decay rate difference in the Bs-system [72].

2007 D0-system: Here we had several experimental evidences (BaBar, Belle, Cleo, CDF,
E791, E831 FOCUS, LHCb) for values of ∆Γ/Γ and ∆M/Γ at the per cent level, but
the first single measurement with a statistical significance of more than five standard
deviations was done only in 2012 by the LHCb collaboration [73].

2To avoid a very large value of the top quark mass, also different new physics scenarios were investigated,
in particular a scenario with a heavy fourth generation of fermions and a top quark mass of the order of 50
GeV, see, e.g. [67].
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2.2.2 Theory

Mass differences and decay rate differences of neutral B-mesons can be expressed to a very
high accuracy as (see, e.g. [27] for the explicit form of the tiny corrections)

∆Mq = 2|M q
12| , (2.27)

∆Γq = 2|Γq12| cos(φq) , (2.28)

with M q
12 being the dispersive part of the box diagrams, see Fig. 2, and Γq12 being the absorp-

tive part. The mixing phase reads φq = arg (−M q
12/Γ

q
12). The dispersive part M q

12 is sensitive
to off-shell intermediate states; in the case of the neutral B mesons, the by far largest con-
tribution stems from the virtual top quark in the loop. This part is also very sensitive to
hypothetical heavy new physics particles in the loop. For the B-meson system one gets after
integrating out the heavy W -boson and the top-quark

M q
12 =

G2
F

12π2
(V ∗tqVtb)

2M2
WS0(xt)BBqf

2
Bq
MBq η̂B . (2.29)

Let us sketch the origin of this structure. GF denotes the Fermi-constant containing the
weak coupling and the mass of the W -boson. (V ∗tqVtb)

2 is the CKM-structure arising in the
dominant contribution to the diagrams in Fig. 2. The evaluation of the 1-loop box-diagram
gives the so-called Inami-Lim function S0(xt) [74] with xt = m2

t/M
2
W , which describes the

dependence on the top-quark mass. Perturbative QCD corrections to the box-diagrams are
denoted by η̂B [75, 76], they turned out to be ample. The arising non-perturbative matrix
element of the four quark operator Q

Q = q̄αγµ(1− γ5)bα · q̄βγµ(1− γ5)bβ , (2.30)

where α and β denote colour indices, is for historical reasons parameterised in terms of a bag
parameter BBq and a decay constant fBq :

〈B̄q|Q|Bq〉 =
8

3
BBqf

2
Bq
M2

Bq
. (2.31)

The bag parameter and the decay constant have to be determined with non-perturbative
methods like lattice QCD or QCD sum rules.
Γq12 is sensitive to on-shell intermediate states; thus only the up- and charm-quark on the
r.h.s. of Fig. 2 can contribute. After integrating out the heavy W -bosons one performs a
second operator-product expansion (OPE), the HQE, yielding a similar form as in Eq.(2.15)

Γ12 =
Λ3

m3
b

(
Γ

(0)
3 +

αs(µ)

4π
Γ

(1)
3 + . . .

)
+

Λ4

m4
b

(
Γ

(0)
4 + . . .

)
+ . . . . (2.32)

Again Γi consists of perturbative Wilson coefficients and non-perturbative matrix elements.
Because of the arising CKM matrix elements both M q

12 and Γq12 can be complex.

2.2.3 Charm mixing

The mixing observables in the charm system are typically denoted as x and y

x =
∆M

Γ
, y =

∆Γ

2Γ
. (2.33)
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In contrast to B-mixing, where we have the very heavy top-quark, as well as the charm- and
the up-quark as virtual loop particles, charm mixing proceeds via internal d-,s- and b-quarks.
The lower masses of the internal and external particles lead to the fact that the methods
used for the determination of the mixing observables in the B-system are much less justified
for describing D-oscillations.
Because of the promising result of the investigations of D-meson lifetimes one might try
nevertheless to use the HQE for a determination of Γ12, as it was done in [77]. In that case,
however, a second problem arises. The leading term in the HQE, Γ3 suffers from an almost
perfect GIM [78] cancellation. Thus the idea came up quite some time ago [79, 80] that D-
mixing is described by higher orders in the HQE, i.e. Γ6 and Γ9, where the GIM cancellation
is much less pronounced, see [81]. Until now no satisfactionary calculation of these higher
order effects was performed. The conclusion of [81] was that standard contributions to x and
y of up to 1% are not excluded, while [77] concluded that they are probably smaller. It was
also shown in [77] that the enhancement effect suggested in [79, 80, 81] could also lead to
CP violating effects in mixing of the order of several per mille. But here clearly more work
has to be done. Because of these drawbacks it was also tried to use an exclusive approach in
order to describe charm mixing [82, 83], leading to a similar conclusion: x and y might have
values of about 1% in the standard model.
Experimentally D-mixing is now well settled. HFAG [44] quotes as averages

xExp. =
(
0.39+0.16

−0.17

)
% , yExp. =

(
0.67+0.07

−0.08

)
% , (2.34)

while CP violation in D-mixing is still quite weakly constrained by experiment [84], which
will, however, change in future, see, e.g. [85].
Despite the drawbacks related to our insufficient understanding of the standard model con-
tribution, the D-mixing system is, however very well suited to look for new physics effects,
because the contribution of heavy new particles, can be calculated more reliably, see, e.g.
[86, 87].

2.2.4 B-mixing

In B-mixing the theory is under much better control and we predict for the mass differences
[49]

∆MTheory
d = (0.543± 0.091) ps−1 , ∆MTheory

s = (17.3± 2.6 ) ps−1 . (2.35)

The large theory uncertainty is dominated by the values of the hadronic matrix elements. We
have used the most recent result from FLAG [88] for fBqB

2, which is simply the result from
[89]. Similar values were obtained in [90] and slightly higher ones in [91]. These predictions
can be compared with the most recent experimental averages from HFAG [44]3

∆MExp.
d = (0.510± 0.004) ps−1 , ∆MExp.

s = (17.69± 0.08) ps−1 . (2.36)

The central values agree perfectly with the standard model predictions, but due to the large
theory uncertainties there is still some room for new physics effects.
The calculation of the decay rate difference relies on the HQE, which was questioned in

3The most precise measurements for ∆Md [92] and ∆Ms [93] are currently obtained from the LHCb
collaboration.
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particular for the case of ∆Γs, which is governed by the quark level decay b → cc̄s. In that
case the energy release is substantially limited compared to a b-decay into mass-less final
states and thus the expansion parameter of the HQE naively seems to be large. An explicit
calculation including NLO-QCD corrections [94, 95, 96, 97] and subleading HQE corrections
[98, 99] gives [50, 49]

∆ΓHQE
d = (0.0029± 0.0007) ps−1 , ∆ΓHQE

s = (0.087± 0.021) ps−1 . (2.37)

∆Γs was measured for the first time in 2012 by the LHCb Collaboration [72]. The current
average from HFAG [44] reads

∆ΓExp.
s = (0.081± 0.011) ps−1 , (2.38)

it includes the measurements from LHCb [29], ATLAS [100], CDF [101] and D0 [102]. Ex-
periment and theory agree perfectly for ∆Γs, excluding thus huge violations of quark hadron
duality. The experimental uncertainty will be reduced in future, while the larger theory
uncertainty is dominated from unknown matrix elements of dimension seven operators, see
[97, 49]. Here a first lattice investigation or a continuation of the QCD sum rule study in
[103, 104] would be very welcome.
∆Γd has not been measured yet. The HFAG average [44] includes measurements from BaBar
[68] and Belle [69], but there were also two investigations from D0 [70] and LHCb [45].
LHCb compared the difference in the effective lifetimes of Bd → J/ψK∗ and Bd → J/ψKS,
while D0 found that ∆Γd can give a sizable contribution [105] to the dimuon asymmetry
[106, 107, 108, 70]. The different values read

∆Γd
Γd

HFAG

= (1.5± 1.8) % , (2.39)

∆Γd
Γd

D0

= (0.50± 1.38) % , (2.40)

∆Γd
Γd

LHCb

= (−4.4± 2.7) % . (2.41)

All these bounds are compatible with the small standard model prediction [49]

∆Γd
Γd

HQE

= (0.42± 0.08) % , (2.42)

but they also leave a lot of space for beyond standard model effects. It is interesting to note
that the long-standing problem of the dimuon asymmetry [106, 107, 108, 70] could be solved
by a large value of the ∆Γd, i.e., ∆Γd = (6.3±1.6) ·∆ΓSM

d . In a model-independent study [50]
it was shown that large enhancements of ∆Γd do not violate any other experimental bounds,
which is in contrast to the situation with ∆Γs, where no enhancement being considerably
larger than the hadronic uncertainties is possible, see, e.g. [109]. Therefore it would be very
eligible to have more precise experimental bounds on this quantity.
There is also a third class of observables in the mixing systems, related to CP violation, the
so-called flavour-specific or semi-leptonic asymmetries. They are defined as

aqsl =
Γ(B̄q(t)→ f)− Γ(Bq(t)→ f̄)

Γ(B̄q(t)→ f) + Γ(Bq(t)→ f̄)
=

∣∣∣∣ Γq12

M q
12

∣∣∣∣ sinφq , (2.43)
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where f denotes a flavour-specific final state - semi-leptonic states are a special case of flavour
specific ones. In the standard model these asymmetries are tiny [49]

ad,HQE
sl = (−4.1± 0.6) · 10−4 , as,HQE

sl = (+1.9± 0.3) · 10−5 . (2.44)

The first measurements of the dimuon asymmetry [106, 107, 108] pointed towards a large
enhancement of the semi-leptonic asymmetries. At that time the measured asymmetry ACP
was interpreted as having only contributions from CP violation in mixing:

ACP ∝ Absl = Cda
d
sl + Csa

s
sl . (2.45)

The first measurement of ACP [106, 107] was a factor of 42 larger4 than the standard model
prediction in [97]. A successive measurement [108] gave a slightly smaller value, but the
statistical significance of the deviation increased to 3.9 standard deviations. The findings
from the D0 Collaboration can be tested by individual measurements of the semi-leptonic
asymmetries, which have been performed for the Bd-system by D0 [111] and BaBar [112] and
for the Bs-system by D0 [113] and LHCb [114].

ad,D0
sl = (+0.68± 0.45± 0.14) % , as,D0

sl = (−1.12± 0.74± 0.17) % , (2.46)

ad,BaBar
sl =

(
+0.06± 0.17+0.38

−0.23

)
% , as,LHCb

sl = (−0.06± 0.50± 0.36) % . (2.47)

These numbers are consistent with the standard model predictions, but because of the still
sizable uncertainties they also do not exclude the large enhancement of the dimuon asym-
metry. Last year Borissov and Hoeneisen [105] identified a new source contributing to the
measured value of ACP , leading to

ACP ∝ Absl + CΓd

∆Γd
Γd

+ CΓs

∆Γs
Γs

. (2.48)

The contribution due to ∆Γs turns out to be negligible, but even the tiny standard model
value of ∆ΓSM

d gives a sizable share. Investigating different regions for the muon impact
parameter separately, it is possible to extract individual values for adsl, a

s
sl and ∆Γd from the

D0 measurements [70]:

ad,D0
sl = (−0.62± 0.43)% , as,D0

sl = (−0.82± 0.99)% ,
∆Γd
Γd

D0

= (0.50± 1.38)% . (2.49)

This result differs from the combined standard model expectation for the three observables
by 3.0σ. If one instead assumes that the semi-leptonic asymmetries adsl and assl are given
by their standard model values, then the decay rate difference ∆Γd measured by [70] using
(2.48) is

∆Γd
Γd

D0

= (2.63± 0.66)% , (2.50)

which differs by 3.3σ from the SM prediction.

4See e.g., [110] for the profound implications of this enhancement factor.
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2.2.5 Mixing upshot

The mixing observables ∆Md, ∆Ms and ∆Γs in the B-system agree well with the standard
model predictions. Because of some sizable hadronic uncertainties there is still plenty of room
for new physics effects. In the case of the semi-leptonic asymmetries the current experimental
values are compatible with the tiny standard model expectations, but the uncertainties of the
measurements are still one (adsl) to two orders (assl) of magnitude larger than the central values
of the standard model predictions. The longstanding discrepancy in the dimuon asymmetry
might point towards some new physics effects in adsl, a

s
sl and ∆Γd, a possibility that is currently

not excluded by any other experimental constraint.
In the charm system similar statements cannot be made because of the largely unknown size
of the standard model contribution. Here an improvement in our theoretical understanding
is very desirable. As long as this does not happen, it is not excluded that new physics was
already occuring in D-mixing and we simply could not identify it.

2.3 Inclusive decays

Inclusive quark decays rely on the same theoretical footing as the lifetimes, the HQE, which
seems to be well tested now. These decays are experimentally difficult to study, but they
might enable searches for hidden decay channels of heavy hadrons, see, e.g. [115].

2.3.1 Theory

NLO-QCD corrections turned out to be crucial for the inclusive b-quark decays, see, e.g.
[116]. They were determined for b → cl−ν̄ already in 1983 [117], for b → cūd in 1994
[118], for b → cc̄s in 1995 [119], for b → no charm in 1997 [120] and for b → sg in 2000
[121, 122]. Since there were several misprints in [119] - leading to IR divergent expressions
-, the corresponding calculation was redone in [115] and the numerical result was updated
by using modern input parameters.5 NNLO corrections for semi-leptonic decays have been
calculated in [123, 124, 125, 126, 127, 128] and some first investigations for non-leptonic
decays were done in [129]. A complete NNLO-QCD study of the non-leptonic decays seems
to be doable now, also because the ∆B = 1-Wilson coefficients are known at NNLO precision
[130].

2.3.2 Semi-leptonic and radiative decays

Inclusive semi-leptonic decays can be used for the determination of the CKM elements Vcb
and Vub, see the PDG [42] article Semi-leptonic B meson decays and the determination of Vcb
and Vub. The current values for these CKM elements read [42]

V Inclusive
cb = (42.4± 0.9) · 10−3 , V Inclusive

ub = (4.41± 0.15+0.15
−0.17) · 10−3 . (2.51)

These values are larger than the values obtained by investigating exclusive decays like B̄ →
D∗lν̄l or B̄ → πlν̄l where one gets [42]

V Exclusive
cb = (39.5± 0.8) · 10−3 , V Exclusive

ub = (3.23± 0.31) · 10−3 . (2.52)

5The authors of [119] left particle physics and it was not possible to obtain the correct analytic expressions.
The numerical results presented in [119] were, however, correct.
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Currently it is not clear what the origin of this longstanding discrepancy is, see, e.g. [42]
for the discussion of experimental issues and problems related to estimating the hadronic
uncertainties, but also for some ideas how new physics could be responsible for the shift. A
more recent experimental investigation at Belle [131] in 2013 yielded the result

V Exclusive
ub = (3.52± 0.29) · 10−3 . (2.53)

A further related observable is the semi-leptonic branching ratio. Its standard model value
reads [115]

BrHQE
sl =

Γ(b→ ce−ν̄e)
HQE

ΓHQE
tot

= (11.6± 0.8) % , (2.54)

which can be compared to the following experimental values

Brsl(Bd)
Exp. = (10.33± 0.28) % , (2.55)

Brsl(B
+)Exp. = (10.99± 0.28) % , (2.56)

Brsl(Bs)
Exp. = (10.61± 0.89) % , (2.57)

where the first two values are taken from the PDG [42] and the value for Bs is from [132].
These numbers agree well with the theory prediction, which will be probably affected notably
by the inclusion of NNLO-QCD effects.
Finally we would like to mention the penguin induced decay b→ sγ (similar to the diagram
shown in Fig. 4), that is quite well measured [44]

Br(b→ sγ)HFAG 2013 = (3.43± 0.21± 0.07) · 10−4 (2.58)

and agrees well with the standard model prediction of [133]

Br(b→ sγ)Theory = (3.15± 0.23) · 10−4 . (2.59)

This decay gives serious constraints on different extensions of the standard model, like Two-
Higgs-Doublet models or Supersymmetry.

2.3.3 Non-leptonic decays

Non-leptonic inclusive decays are not well studied experimentally, they might, however, be
interesting for searching for new effects in a model and even decay channel independent way,
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see, e.g. [115]. The updated theory predictions read for b→ c transitions

Br(b→ cūd)HQE = 0.446± 0.014 , (2.60)

Br(b→ cc̄s)HQE = 0.232± 0.007 , (2.61)

Br(b→ ceν̄e)
HQE = 0.116± 0.008 , (2.62)

Br(b→ cµν̄µ)HQE = 0.116± 0.008 , (2.63)

Br(b→ cτ ν̄τ )
HQE = 0.027± 0.001 , (2.64)

Br(b→ cūs)HQE = 0.024± 0.001 , (2.65)

Br(b→ cc̄d)HQE = 0.0126± 0.0005 , (2.66)

Br(b→ uūd)HQE = 0.0063± 0.0018 (2.67)

and for subleading b→ u-transitions or penguins (see Fig. 4)

Br(b→ sg)HQE = 0.0050± 0.0009 , (2.68)

Br(b→ uc̄s)HQE = 0.0043± 0.0012 , (2.69)

Br(b→ uūs)HQE = 0.0024± 0.0012 , (2.70)

Br(b→ dd̄s)HQE = 0.0022± 0.0011 , (2.71)

Br(b→ ss̄s)HQE = 0.0018± 0.0009 , (2.72)

Br(b→ ueν̄e)
HQE = 0.0017± 0.0005 , (2.73)

Br(b→ uµν̄µ)HQE = 0.0017± 0.0005 , (2.74)

Br(b→ uτ ν̄τ )
HQE = 0.0006± 0.0002 , (2.75)

Br(b→ dg)HQE = 0.00024± 0.00010 , (2.76)

Br(b→ uc̄d)HQE = 0.00023± 0.00007 , (2.77)

Br(b→ ss̄d)HQE = 0.00009± 0.00006 , (2.78)

Br(b→ dd̄d)HQE = 0.00008± 0.00005 . (2.79)

2.3.4 Inclusive upshot

The theory of inclusive decays is theoretically quite solid. There is, however, the longstanding
discrepancy in the extraction of the CKM elements Vub and Vcb, which has to be settled by fur-
ther experimental and theoretical investigations. Non-leptonic inclusive decays might provide
a complementary testing ground for beyond standard model effects. Here any experimental
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investigation would be very welcome. On the theory side the extension to NNLO-QCD seems
to be worthwhile and doable.

3 Exclusive Decays

We present here certain exclusive decays, that seem to be very promising in searching for new
physics effects or determining standard model parameters. We start with leptonic decays, that
have the simplest hadronic structure, because they only depend on a decay constant. Next we
discuss semi-leptonic decays that depend on form factors and finally we briefly discuss non-
leptonic decays, where some additional assumptions, like QCD factorisation [134, 135, 136],
have to be made in order to describe them theoretically.

3.1 Leptonic decays

The decay B → τν proceeds in the standard model via an annihilation into a W -boson.
If there exists, e.g. an extended Higgs sector, the W -boson could simply be replaced by
a charged Higgs-boson. For quite some time the experimental value of the corresponding
branching ratio was about three standard deviations above the theory prediction [15] (see
also [16] for similar results) of

Br(B+ → τ+ντ )
SM = (0.739+0.091

−0.071) · 10−4 . (3.80)

However, a new measurement at Belle [137] found, using a hadronic tagging method

Br(B+ → τ+ντ )
Belle = (0.72+0.29

−0.27) · 10−4 , (3.81)

which is now perfectly consistent with the standard model expectation. An independent
confirmation of this result would be very helpful. The current world average reads [44]

Br(B+ → τ+ντ )
HFAG 2013 = (1.14± 0.22) · 10−4 , (3.82)

which is still larger than the theory prediction. A detailed discussion of B-meson decays into
final states with a τ -lepton can be found in [138].
The decay Bs → µ+µ− proceeds in the standard model on the loop-level, either via penguins
or via a box diagram. It is thus also perfectly suited to search for new physics effects. Very
recently the theory prediction was updated [139] including NNLO-QCD corrections to obtain

B̄r(Bs → µ+µ−)SM = (3.65± 0.23) · 10−9 , (3.83)

B̄r(Bd → µ+µ−)SM = (1.06± 0.09) · 10−10 . (3.84)

B̄r denotes the average time-integrated branching ratio that includes effects of a finite value
of ∆Γq [140]. The current experimental numbers read [141]

B̄r(Bs → µ+µ−)Exp. = (2.9± 0.7) · 10−9 , (3.85)

B̄r(Bd → µ+µ−)Exp. =
(
3.6+1.6
−1.4

)
· 10−10 , (3.86)

which are averages from the CMS value [142] and the LHCb value [143]. Standard model and
experiment agree for the measured Bs-decay, but there is still room for substantial deviations,
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due to the large experimental uncertainties. The current bound on the Bd-decay is higher
than the standard model expectation, but here we have to wait for future more precise
measurements to see, whether there are some first hints of new physics in these decays or
not. Already the current experimental precision gives some interesting constraints on 2HDM
models or SUSY-models, in particular in the large tan β-region.
In [139] also the theory predictions of interesting and experimentally almost unexplored
decays like Bq → τ+τ− were updated.

B̄r(Bs → τ+τ−)SM = (7.73± 0.49) · 10−7 , (3.87)

B̄r(Bd → τ+τ−)SM = (2.22± 0.19) · 10−8 . (3.88)

These decays are very helpful for new physics searches, see, e.g. [50, 109] and they are
currently quite unconstrained. For Bs → τ+τ− no direct bound exists at all and for Bd →
τ+τ− there is a weak bound from BaBar [144] (at 90% C.L.)

B̄r(Bd → τ+τ−)BaBar < 4.1 · 10−3 . (3.89)

3.2 Semi-leptonic decays

Exclusive, semi-leptonic B-meson decays are crucial for the determination of Vcb and Vub,
which was already discussed in the Section 2.3.2. For this purpose one investigates decays
with electrons or muons in the final states. Having instead τ -leptons, e.g. in B → D̄(∗)τ+ντ

6,
one finds some deviations between experiment and theory. Usually the ratios

R(D(∗)) =
Γ(B → D̄(∗)τ+ντ )

Γ(B → D̄(∗)l+νl)
(3.90)

are investigated, with l denoting e or µ. The theory prediction reads [145]

R(D)SM = 0.296± 0.016 , (3.91)

R(D∗)SM = 0.252± 0.003 . (3.92)

BaBar measured in 2012 [146, 147] the following values

R(D)BaBar = 0.440± 0.058± 0.042 , (3.93)

R(D∗)BaBar = 0.332± 0.024± 0.018 , (3.94)

which differ sizably from the standard model expectation. Unfortunately there exists no
recent number from Belle. Updating the 2010 values from [148] the analysis in [147] finds

R(D)Belle = 0.34± 0.10± 0.06 , (3.95)

R(D∗)Belle = 0.43± 0.06± 0.06 , (3.96)

6Here we consider both Bd → D−(∗)τ+ντ and B+ → D̄0(∗)τ+ντ and our final results are averages of the
two possibilities. For semi-leptonic decays the B → D̄∗-transition is roughly two times as common as the
B → D̄ one.
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Here more data will be necessary to clarify this situation. A detailed discussion of the
experimental situation can be found in [138]. On the theory side, there was an ab-initio
lattice calculation in [149], which obtained

R(D)Lattice = 0.316± 0.12± 0.07 . (3.97)

A similar result R(D) = 0.31± 0.02 was obtained in [150], being still lower than the experi-
mental number.
There is a second class of semi-leptonic decays that triggered a lot of interest: B → K(∗)µ+µ−.
In contrast to B → D̄(∗)τ+ντ , which is a tree-level decay in the standard model, the de-
cay B → K(∗)µ+µ− is triggered by a b → sµ+µ−-penguin or box diagram, as the decay
Bs → µ+µ−.
Using 1fb−1 of data, LHCb measured in 2005 [151] a 4.4 σ deviation of the isospin asymmetry
AI , defined as

AI =
Br(Bd → K0µ+µ−)− τ(Bd)

τ(B+)
Br(B+ → K+µ+µ−)

Br(Bd → K0µ+µ−) + τ(Bd)
τ(B+)

Br(B+ → K+µ+µ−)
, (3.98)

from the tiny standard model prediction [152, 153, 154]. In 2014 this measurement was
updated [155] with the full data set of 3fb−1 and the deviation disappeared (it was reduced
to 1.5 standard deviations). On the other hand, the measured branching fractions of the four
B → K(∗)µ+µ− decays [155, 156] and the decay Bs → φµ+µ− [157] have all lower values than
the standard model expectations [158, 159].
The same large data set was used in [160] to perform an angular analysis of charged and
neutral B → Kµ+µ− decays and no deviation from the small standard model expectations
[161, 162, 163, 164, 165] was found.
The angular analysis of the decay B → K0∗µ+µ− was published in 2013 [166] with a data set
of 1fb−1. This decay can be expressed in terms of the eight form factor like parameters FL,
S3−9 [167]. In [168] it was suggested to use instead the parameters P ′j = Sj/

√
FL(1− FL)

for j = 4, 5, 6, 8, because some hadronic contributions cancel. LHCb measured [166] the
four parameters P ′j in six different q2-bins and from the 24 measurements 23 agreed with
the standard model, while the 24th one, related to P ′5, deviated by 3.7 σ. This discrepancy
triggered a lot of theoretical interest, see, e.g. [169, 170, 171, 172, 173, 174, 175, 176, 177].
Future investigations of the hadronic uncertainties as well as the results of the 3fb−1 data
set will give further clues.

3.3 Non-leptonic decays

Hadronic B → DK-decays can be used to extract the CKM angle γ directly, see, e.g., the
GLW-method [178, 179], the ADS-method [180, 182] or the GGSZ-method [181] . These
methods provide a clean consistency check of the CKM picture with decays that proceed
only via tree-level and are thus expected to be less sensitive to new physics effects. Currently
values from LHCb [183], BaBar[184] and Belle [185] are available

γLHCb =
(
72.0+14.7

−15.6

)◦
, (3.99)

γBaBar =
(
69+17
−16

)◦
, (3.100)

γBelle =
(
68+15
−14

)◦
, (3.101)
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which can be compared with the CKM-fit result [15, 16]

γCKMfitter =
(
69.7+1.3

−2.8

)◦
. (3.102)

These numbers agree, but the precision of the direct determination is not yet comparable to
the indirect one. Here it will be very interesting to see what happens, when the experimental
precision is improving.
The angle β can be obtained by studying the decay Bd → J/ψKS. In contrast to the previous
case, which was dominated by tree-level contributions, the dependence on the CKM-angle β
arises from the interference between mixing and decay and is thus related to a loop process.
The values for β from LHCb [186], BaBar [187] and Belle [188] read

sin 2βLHCb = 0.73± 0.07± 0.04 , (3.103)

sin 2βBaBar = 0.687± 0.028± 0.012 , (3.104)

sin 2βBelle = 0.667± 0.023± 0.012 , (3.105)

which can again be compared with the CKM-fit result [15, 16]

sin 2βCKMfitter = 0.775+0.020
−0.049 . (3.106)

This deviation caused some discussion in the literature, see, e.g., [189] and references therein.
It might be related to new physics in Bd-mixing and/or to the extraction of Vub.
The related decays Bs → J/ψK+K−, J/ψπ+π−, ... can be used to extract the mixing phase
βs in the Bs-system, which is predicted to be very small in the standard model [15, 16].

βCKMfitter
s = 0.01821+0.00081

−0.00079 . (3.107)

Using 1fb−1 of data LHCb found [29]

βLHCb
s = 0.01± 0.07± 0.01 . (3.108)

Both numbers are consistent, but the experimental uncertainty is still considerably larger
than the theoretical one. The phase βs should not be mixed up, with the mixing phase φs
defined below Eq.(2.28), see, e.g. the “note added” in [190, 191].
Finally we would like to briefly discuss direct CP violation in hadronic D-meson decays - see
[32] and references therein for a more detailed discussion. ∆ACP is defined as the difference
of the CP asymmetries of a neutral D-meson decaying into KK and ππ final states.

∆ACP := ACP (D0 → K+K−)− ACP (D0 → π+π−) . (3.109)

The first measurements in 2011 [30, 192, 193] gave a combined value of

∆ACP = −0.678± 0.147% . (3.110)

Such a large value was quite unexpected in the standard model. LHCb performed, however,
subsequent measurements where the significance went down [194] and also some which re-
sulted in a different sign [31]. Taking these new numbers into account the new combination
turns out to be [44]

∆ACP = −0.329± 0.121% . (3.111)

The statistical significance for CP violation in hadronic D decays went now down consider-
ably, but the central value is still larger than to be expected naively in the standard model.
Here clearly further experimental input is needed to settle this issue.
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Figure 5: The current status of the CKM fit taken from [15], similar results can be obtained
from [16].

4 Consequences for new physics models

A general test of the consistency of the CKM picture is provided by the usual fit of the
unitarity triangle, see, e.g., [15] and [16]. Here observables like Vub, ∆Md, ∆Ms, sin 2β
and CP-violation in the Kaon system, εK , are included. As can be seen from Fig. 5 the
currently available amount of flavour data is very well compatible with the CKM paradigm.
Nevertheless, this does not exclude the possibility of having sizable new physics contributions
in the flavour sector, which will be investigated below.

4.1 Model independent search for new physics

There are different ways of performing model independent searches for new physics effects.
Mixing seems to be a promising place to search for beyond standard model effects, because
it is a loop effect. In [189] and [195] new physics effects in mixing were estimated under the
assumption of having only considerable effects in mixing, in M12, while the tree-level decay
amplitudes are dominated by standard model contributions, i.e. the relation between the
true values of M12 and Γ12 and their standard model counterparts MSM

12 and ΓSM
12 reads

M q
12 = M q,SM

12 ∆q , (4.112)

Γq12 = ΓqSM
12 , (4.113)

where ∆ is an arbitrary complex number, encoding the new physics contribution. This
assumption corresponds also to neglecting new penguin contribution in the decays Bd →
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Figure 6: Allowed space for new physics effects in Bd- and Bs-mixing. The figures are taken
from [15], they are an update of [195].

J/ψKS and Bs → J/ψφ and thus the values for β and βs give information on the mixing
phase φq = arg(−M q

12/Γ
q
12) = φSM

q + φ∆
q . Combing all available data till 2013 for the Bd-

system one gets the bounds shown on the left hand side of Fig. 6, while the bounds on the
Bs-system are displayed on the right hand side of Fig. 6. In the Bd-system the fit prefers a
negative value of the phase of ∆d, but the deviation from the standard model is less than 2
σ. On the other hand values of φ∆

d of about −10◦, which would be a quite large new physics
contributions, are clearly not ruled out. In the Bs-system the fit prefers the standard model
value, but it leaves also space for considerable deviations. In that case up to ±20◦ are not
ruled out yet.
Similar studies were performed for the Wilson coefficients C7, C9 and C10 of b→ s-penguins
transitions. In [169] P ′5 could be explained by a negative shift in C9, while C7 stays standard
model like, see e.g., Fig. 7. Similar, but sometimes less pronounced results, i.e., better
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Figure 7: Constraints on the new physics contributions to the Wilson coefficients C7 and C9

from penguin induced b→ s transitions. The figure is taken from [169].
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consistent with the standard model, were found, e.g. in [170, 172, 175, 176].
A complementary study was performed in [50]. Here the space of new physics effects in
the Wilson coefficients C1 and C2 of tree-level decays like b → cūd, b → cc̄d, b → uc̄d
and b → uūd was investigated and it was found that notable deviations from the standard
model expectations are still possible, see Fig. 8 for the bounds on C1 and C2 for the case of
b→ uūd-transitions.
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Figure 8: Allowed space for new physics effects in the Wilson coefficients C1 and C2 of the
current-current operators for the case of b → uūd-transitions. The figures are taken from
[50].

4.2 Decay channel independent search for new physics

An even more general BSM search strategy might be provided by the study of inclusive
non-leptonic decays in the spirit of the missing charm puzzle [202]. This was advocated
again in [115]. Comparing experiment and theory for partially summed branching ratios,
like Br(b→ no charm) one could get information on all invisible decay modes, e.g., B → ττ
or even more fancy possibilities like an invisible decay into light dark matter particles. The
latest experimental studies in that direction, a determination of nc - the average number of
charm quarks per b-decay - date back to 2006 [203]. Non-leptonic inclusive decays might also
gain some insight into CP violation, see, e.g. [204].

4.3 Model dependent search for new physics

There exists an enormous amount of literature about model dependent searches for new
physics effects in flavour observables. A corresponding discussion is beyond the scope of this
review.
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5 Conclusion

We have discussed a selected choice of topics in flavour physics in order to give an idea of the
current status of the field. For different choices of topics see, e.g. the reviews [196, 197, 198,
199, 200, 201]. Splitting up the current investigations in three areas: testing the theoretical
tools, determining standard model parameters and search for new physics we come to the
following conclusions:

1. Testing of our theoretical tools: Applying the HQE for lifetimes of b- and c-hadrons as
well as for ∆Γs gives very promising results and there is no huge space for violations
of duality anymore. Old discrepancies like the Λb-lifetime have finally been settled
experimentally, unknown quantities like ∆Γs have been measured for the first time
in perfect agreement with theory and it looks like even D-meson lifetimes might be
described by the HQE. Since it is clear now that the HQE works, the new question
is, how precise is the HQE. To answer that, lattice results for many of the arising
observables are urgently needed.
There are, however, also some areas where it is not clear yet, how to describe them
in theory. For D-mixing it might be worthwhile to push the HQE to its limits and
determine dimension-nine and dimension-twelve contributions. For more complicated
problem like ∆ACP it is almost unclear, how to proceed, although there are some
interesting ideas related to the lattice, see e.g. [205]

2. Determining standard model parameters: in this field a huge progress has been made,
as can be seen, e.g. in Fig. 5 or in the current precision of the CKM-element Vcb. Among
many other observables, future measurements of γ will provide a clean cross-check of
the CKM-picture.

3. Search for new physics: here we have three results: a) most observables are standard
model like, b) there is nevertheless still a lot of space for effects beyond the standard
model and c) there is still a notable number of remaining discrepancies.

(a) Most observables are standard model like:
This should actually not be a source of disappointment, since it is an amazing
success of our theory. Complicated loop observables like ∆Mq, ∆Γs or b→ sγ are
described very well by the standard model. Even very rare decays like Bs → µ+µ−

have been predicted many years before their discovery (e.g., Buras quoted 1998
[206] in his Les Houches Lectures a value of (3.4 ± 1.2) · 10−9). This is a real
impressive success of the standard model.

(b) Despite being standard model-like, there is still a lot of room for new physics in
observables like Bs → µ+µ−, Brsl, ∆Mq, ∆Γd , aqsl, βs and β. Here more precise
measurements as well as more precise theoretical studies will either shrink further
the space for new physics effects or find the first convincing hints.

(c) There are still remaining discrepancies at the 3 σ-level, e.g., Vub, the dimuon
asymmetry, Br(B+ → τ+ντ ), R(D(∗)), Br(Bd → µ+µ−), Br(B → K(∗)µ+µ−),
Br(Bs → φµ+µ−), P ′5, ∆ACP , β,... Here again more precise measurements as well
as more precise theoretical studies will shed light on the origin of these discrepan-
cies.
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For future searches we also would like to stress some lesser known, but nevertheless
promising observables like B → τ+τ−, ∆Γd and inclusive non-leptonic decays.

So we are heading towards exciting, but strenuous times in flavour physics.
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