
Randomized Diffusion for Indivisible Loads

Petra Berenbrinka, Colin Cooperb, Tom Friedetzkyc,
Tobias Friedrichd, Thomas Sauerwalde

aSimon Fraser University, Burnaby, Canada
bKing’s College London, U.K.

cDurham University, U.K.
dFriedrich-Schiller-Universität Jena, Germany

eUniversity of Cambridge, U.K.

Abstract

We present a new randomized diffusion-based algorithm for balancing indivisible tasks (tokens)
on a network. Our aim is to minimize the discrepancy between the maximum and minimum
load. The algorithm works as follows. Every vertex distributes its tokens as evenly as possible
among its neighbors and itself. If this is not possible without splitting some tokens, the vertex
redistributes its excess tokens among all its neighbors randomly (without replacement).

In this paper we prove several upper bounds on the load discrepancy for general networks.
These bounds depend on some expansion properties of the network, that is, the second largest
eigenvalue, and a novel measure which we refer to as refined local divergence. We then apply
these general bounds to obtain results for some specific networks. For constant-degree expanders
and torus graphs, these yield exponential improvements on the discrepancy bounds compared
to Rabani et al. [23]. For hypercubes we obtain a polynomial improvement.

In contrast to previous papers, our algorithm is vertex-based and not edge-based. This
means excess tokens are assigned to vertices instead to edges, and the vertex reallocates all of
its excess tokens by itself. This approach avoids nodes having “negative loads” (like in [12, 14]),
but causes additional dependencies for the analysis.

1. Introduction

During the last years, large parallel networks became widely available for industrial and
academic users. An important prerequisite for their efficient usage is to balance their work
efficiently. Load balancing is also known to have applications to scheduling, routing, numerical
computation, and finite element computations.

In this paper we analyze a very simple neighborhood-based load balancing algorithm. We
assume that the processors are connected by an arbitrary d-regular network. In the beginning,
every vertex has a certain number of tokens (load) and the goal is to distribute the tokens as
evenly as possible. More precisely, we aim at minimizing the difference between the minimum
and maximum load, which we call discrepancy.

Neighborhood-based load balancing algorithms normally operate in parallel steps. In each
step, every processor is allowed to probe the load of all of its neighbors (diffusion load balancing),
or to probe the load of one neighbor (dimension exchange). Then each processor has to decide
how much load it will forward to the neighbors in question. Here we consider a very natural
diffusion-based approach where every processor tries to balance the load locally. This means
that along each edge, a load of load -difference/(d+ 1) is sent to the vertex with less load. This

Preprint submitted to Journal of Computer and System Sciences April 17, 2014

is exactly the approach in the continuous diffusion model where tokens can be split arbitrarily.
This method balances the load perfectly.

In contrast to continuous diffusion, we consider the (arguably more realistic [24]) case of
discrete diffusion where tokens are indivisible. Quantifying by how much the integrality as-
sumption decreases the efficiency of load balancing is an interesting question and has been
posed by many authors (e.g., [12, 15, 19, 22–24]).

In the common edge-oriented view of e.g. [13, 14, 23], for each edge one has to decide between
transferring either dload -difference/(d+ 1)e or bload -difference/(d+ 1)c tokens (referred to as
rounding up or rounding down). Rounding up results in a load balancing algorithm that
keeps sending tokens back and forth between processors with a small load difference. Another
disadvantage is that the approach can generate “negative loads” for vertices with only a few
tokens. On the other hand, always rounding down cannot balance better than d · diam(G),
where diam(G) denotes the diameter of the underlying graph G. To overcome these problems
we adopt a vertex-oriented view in this paper. We present a randomized diffusion load balancing
algorithm where the vertices (not edges) decide randomly how much they are sending.

1.1. Related Work

Due to the vast amount of literature on load balancing, we consider only previous work
dealing with diffusion load balancing, or randomized algorithms for neighborhood-based load
balancing. We do not consider the dimension exchange model in general, or token distribution
model where only one token can be sent to a neighbor per step.

Continuous Diffusion. The diffusion model was first studied by Cybenko [5] and, inde-
pendently, Boillat [3]. Cybenko [5] (see also [22, 24]) shows a tight connection between the
convergence rate of the diffusion algorithm and the absolute value of the second largest eigen-
value λmax of the diffusion matrix P with Pij = 1/(d + 1) if {i, j} ∈ E. Subramanian and
Scherson [24] observe similar relations between convergence time and certain properties of the
underlying network like electrical and fluid conductance.

Muthukrishnan et al. [22] refer to the above diffusion model as the first order scheme and
generalize it to the so called second order scheme. Here the load transferred over an edge (i, j)
in step t does not only depend on the load difference of i and j, but also on the amount of
load transferred over the edge in step t − 1. Diekmann et al. [7] extend the idea of [22] and
propose a general framework to analyze the convergence behavior of a wide range of diffusion
type methods.

Discrete Diffusion. In order to approximate the idealized process by a discrete process
with indivisible load, Rabani et al. [23] consider a diffusion algorithm (called RSW algorithm
in the following) which always rounds down the indivisible load on each edge. To quantify
the deviation of the discrete load from the idealized process, they propose a natural measure,
the local divergence Ψ1. The local divergence measures the sum of load differences across all
edges in the network, aggregated over time. They give a general bound on the divergence in
terms of λmax, which denotes the absolute value of the second largest eigenvalue of the diffusion
matrix P. By a more careful analysis, they also get an improved upper bound on Ψ1 for tori,
resulting in a tight bound on the discrepancy achieved by their algorithm.

Discrete Load Balancing via Random Walks. Elsässer et al. [10–12] proposed an
algorithm based on random walks. They show that after O (log(Kn)/(1− λmax)) steps, the
maximum load is at most the average load plus a constant [11]. In comparison to our algorithm,
their algorithm is more complicated and different from the usual diffusion framework. For
example, vertices require an estimate of n and have to compute the average load during the
balancing procedure. Moreover, the final stage uses concurrent random walks (representing

2

tokens) to reduce the maximum load. In this stage, the load transfer along an edge may be
much smaller (or higher) than load -difference/(d+ 1).

Discrete Neighborhood Load Balancing with Randomization. In [13] the last two
authors analyze a randomized version of the dimension-exchange algorithm using randomly
generated or deterministic matchings. In their algorithm, the decision to round up or down is
randomized. For detailed results see Table 1. Note that in their case every node exchanges load
with at most one neighbor. This is typically much easier to analyze than diffusion algorithms.

Friedrich et al. [14] analyze a deterministic modification of the standard diffusion algorithm
for hypercubes and constant-dimensional tori. The idea is that each edge keeps tracks of its own
rounding errors. In each step an edge’s decision to round up or down is done such that the sum
of its rounding errors is minimized. Again, the detailed results can be found in Table 1. [14] also
consider a randomized version of the diffusion algorithm. Their approach is edge-based. Edges
decide independently at random whether to round up or down. The probabilities are chosen
such that, in expectation, the behavior of the continuous diffusion algorithm is mimicked. They
present a general upper bound for their approach in terms of λmax. Note that both algorithms
in [14] may generate negative load due to the edge-based rounding.

Source of Inspiration. We wish to point out that our work was inspired by recent
combinatorial results regarding so-called rotor-router walks [4, 8]. Unlike in a random walk, in
a rotor-router walk each vertex serves its neighbors in a fixed order. The resulting (completely
deterministic) walk nevertheless closely resembles a random walk in several respects. Similarly,
one can say that in each round of our load-balancing algorithm a vertex chooses a random
order of its neighbors (and itself) and sends around all its tokens in this order in a round-robin
fashion.

1.2. Our Contribution

Algorithm. We consider a vertex-based randomized diffusion algorithm for the discrete
model with indivisible tokens. Let d be the degree of the (regular) network and let Xi be
the load of vertex i. Our algorithm works as follows. First, vertex i sends bXi/(d + 1)c
tokens to each neighbor and keeps the same amount of tokens for itself. Then the remaining
Xi − (d + 1) bXi/(d + 1)c tokens (called excess tokens) are randomly distributed (without
replacement) among vertex i and its d neighbors.

Results. To state our results formally, we let τ(G,K) = O(log(Kn)/(1 − λmax)) be the
number of steps after which the continuous process achieves a constant discrepancy for any ini-
tial load distribution with discrepancy K (cf. Fact 2.5, [23]). All our bounds on the discrepancy
are independent of the initial load vector, and hold with high probability (w.h.p.), i.e., with
probability at least 1− n−Ω(1).

Theorem 1.1. Let G be an arbitrary d-regular graph and let K be the initial discrepancy. Then
the discrepancy after τ(G,K) = O(log(Kn)/(1− λmax)) rounds is w.h.p. at most

1. O(Υ2(G)
√
d log n),

2. O
(
d+

√
d log(n) ((Υ2(G))2 − d)

)
,

3. O
(
d log logn

1−λmax

)
.

The role of Υ2(G) is similar to the local divergence Ψ1(G) used in [23] (cf. Definitions 2.7
and 2.8). Υ2(G) accounts for the more balanced reallocation of the excess tokens due to our
randomized approach and is much smaller than Ψ1(G), i.e., Υ2(G) ≤

√
Ψ1(G) for any graph

G.
The next theorem provides more specific bounds on the discrepancy. It is derived by first

bounding Υ2(G) and then applying Theorem 1.1.

3

Graph class FS [13] RSW [23] FGS [14] det. FGS [14] rand. our algorithm

d-reg. graph

O(Ψ2(G)
√

logn) O(Ψ1(G)) – – O
(
Υ2(G)

√
d logn

)
O
(
d log logn
1−λmax

)
– – O

(
d log logn
1−λmax

)
O
(
d log logn
1−λmax

)
O
(√

d logn
1−λmax

)
O
(
d logn
1−λmax

)
– – O

(
d
√

logn+
√

d logn log d
1−λmax

)
d-reg. expander O(d log log n) O(d logn) – O(d log log n) O(d log logn)

hypercube O(log2 n) Θ(log2 n) O(log3/2 n) O(log2 n log logn) O(logn)

r-dim. torus O(n1/(2r)√logn) Θ(n1/r) O(1) O(n1/r log log n) O(
√

logn)

Properties FS [13] RSW [23] FGS [14] det. FGS [14] rand. our algorithm

diffusion % " " " "

no neg. load " " % % "

Table 1: Discrepancy of neighborhood load balancing after τ(G,K) = Θ(log(Kn)/1− λmax) rounds.

Theorem 1.2. The following upper bounds on the discrepancy after τ(G,K) = O(log(Kn)/(1−
λmax)) rounds hold w.h.p.

1. O
(
d
√

log n+
√

d logn log d
1−λmax

)
,

2. d-regular Expander: O(d log log n),
3. r-dim. Torus, r = O(1): O(

√
log n),

4. Hypercube: O(log n).

Let us compare our results to the RSW algorithm [23] as it is also very natural, considers
diffusion and avoids negative loads. More comparisons can be found in Table 1. For d-regular
expanders, [23] proves a discrepancy bound of O(d log n) after τ(G,K) rounds. This is almost
tight, as d · diam(G) is a simple lower bound for the RSW algorithm. Hence for small d, we
obtain an exponential improvement in terms of the discrepancy.

For the r-dimensional Torus graph, [23, Theorem 8] proved a bound of O(n1/r) on the
discrepancy after τ(G,K) rounds. This is tight due to the lower bound of diam(G). Again, our
new result represents an exponential improvement.

For the hypercube with n vertices, [23, Theorem 4] implies a discrepancy bound of O(log3 n)
after τ(G,K) rounds. The techniques used to analyze our new algorithm can be also used to
prove a tight bound of Θ(log2 n) on the discrepancy for the RSW algorithm. For our new
algorithm, we obtain a smaller bound of O(log n) on the discrepancy.

Techniques. The key ingredient of the analyses in [13, 14, 23] is “an appropriate edge-
oriented view of the rounding errors in each balancing step, which allows them to be handled
independently” (as stated by Rabani et al. [23]). The problem with vertex-oriented algorithms
are the dependencies between the rounding results for edges incident to the same vertex. To deal
with these dependencies we use a different analysis compared to [13, 14], based on martingale
tail estimates. The other main technical contribution is the use of the new parameter Υ2(G)
(Definition 2.8) as opposed to the local divergence Ψ1(G) as used in [23].

2. Algorithms and Notation

We use standard graph-theoretical notation. We only consider graphs G = (V,E) that are
connected, undirected, d-regular and simple. The n vertices of G are given by [n] := {1, 2, . . . n}.
The neighborhood of a vertex i is denoted by N(i). For a pair of vertices i, j ∈ V (G), let
dist(i, j) be the length of a shortest path between i and j, and diam(G) be the diameter of G.
[i : j] refers to an edge {i, j} ∈ E with i < j. This notation will be useful to have a unique

4

representative for each edge {i, j} ∈ E. Every vertex in the graph has a certain amount of load
items (tokens). We assume that the load is indivisible and each token is of unit-size.

We denote by P the transition matrix, i.e., Pi,j = 1
d+1 if {i, j} ∈ E or i = j, and Pi,j = 0

otherwise. We will often use Pt which means that we raise the matrix P to the power of t.
Note that Pt

i,j can be also seen as the probability for a random walk being located at vertex j
at step t, when having started from vertex i.

For the estimation of the convergence of our processes, the absolute value of the second
largest eigenvalues of P plays a crucial role. Let us denote the eigenvalues of P by 1 = λ1 ≥
λ2 ≥ λ3 ≥ . . . ≥ λn > −1 and define λmax := max{λ2, |λn|}.

Lemma 2.1. For any d-regular graph G, 1/(1− λmax(G)) ≤ n3.

Proof. Let d = µ1 ≥ µ2 ≥ · · · ≥ µn be the n eigenvalues of the adjacency matrix of the d-regular
graph G. As shown in [18, Problem 11.29], d−µ2 ≥ 1

diam(G)n . Hence, λ2 = µ2/(d+ 1) ≤ d
d+1 −

1
diam(G)(d+1)n ≤ 1− 1

n3 . Moreover, it is proved in [1, Theorem 1.1] that µn ≥ −d+ 1
(diam(G)+1)n

and therefore λn ≥ − d
d+1 + 1

(diam(G)+1)(d+1)n ≥ −1 + 1
n3 .

We also need the following elementary inequalities.

Lemma 2.2. The following two inequalities hold.

1. For any integer m and any non-negative numbers x1, x2, . . . , xn ∈ R+, (x1 + x2 + . . . +
xn)m ≤ nm−1 · (xm1 + xm2 + . . .+ xmn).

2. Moreover, for any three numbers x, y, z ∈ R, (x− y)2 ≤ 2 ((x− z)2 + (y − z)2).

Proof. For the first statement, recall that x 7→ xm is a convex function for non-negative x.
Hence, (

x1 + x2 + . . .+ xn
n

)m
≤ xm1 + xm2 + . . .+ xmn

n
.

Rearranging yields the first claim. For the second statement, we apply the first statement to
obtain (x− y)2 = (x− z + z − y)2 ≤ 2

(
(x− z)2 + (y − z)2

)
.

2.1. Our Discrete Process

Our balancing procedure proceeds in rounds 1, 2, Fix a vertex i at some step and let Xi

be the current load of this vertex. Then, i sends bXi/(d + 1)c tokens to each of its neighbors
and keeps bXi/(d + 1)c tokens for itself. The remaining Xi − (d + 1)bXi/(d + 1)c ∈ [0, d]
excess-tokens are distributed randomly (without replacement) among i and its d neighbors.

To describe our processes more formally, we first present our notation that is based on [23].
For any round t, let X(t) be the n-dimensional load-vector at (the end of) step t (load vectors
are always regarded as column-vectors here). The discrepancy of the load vector X(t) at step t

is defined as maxi,j∈[n]

∣∣X(t)
i −X

(t)
j

∣∣.
For each edge {i, j} ∈ E we define a random variable Z

(t)
i,j which is one if i sends an excess

token to j at step t, and Z
(t)
i,j is zero otherwise. Similarly, let Z

(t)
i,i be one if i keeps an excess

token for itself, and zero otherwise. Note that each Z
(t)
i,j with j ∈ N(i) ∪ {i} is a Bernoulli

random variable with

Pr
[
Zti,j = 1

]
=
X

(t−1)
i

d+ 1
−
⌊
X

(t−1)
i

d+ 1

⌋
.

5

Additionally, the number of excess tokens sent out by i satisfies

Z
(t)
i,i +

∑
j : {i,j}∈E

Z
(t)
i,j = X

(t−1)
i − (d+ 1)

⌊
X

(t−1)
i

d+ 1

⌋
. (2.1)

Note that Zi,j and Zj,i are independent for i 6= j. Now we can describe the discrete process as
follows,

X
(t)
i =

⌊
X

(t−1)
i

d+ 1

⌋
+ Z

(t)
i,i +

∑
j : {i,j}∈E

(⌊
X

(t−1)
j

d+ 1

⌋
+ Z

(t)
j,i

)
. (2.2)

2.2. The Continuous Process

We also look at the corresponding continuous process, where the load is arbitrarily divisible.
The load vector of this process is denoted by ξ(t) in round t. To analyze X(t), we shall bound
its deviation from ξ(t) and use the fact that the evolution of ξ(t) in t is well-understood by
Markov chain theory. The reason is that ξ(t) is given by the recurrence ξ(t) = ξ(t−1) P, which
results in ξ(t) = ξ(0) Pt. Alternatively, we can write this as

ξ
(t)
i = ξ

(t−1)
i +

∑
j : {i,j}∈E

ξ
(t−1)
j − ξ(t−1)

i

d+ 1
. (2.3)

We define the average load as ξ :=
∑n
i=1 ξ

(0)
i /n. We will use the following result that bounds

the load difference of the vertices to the average load in step t for the continuous process.

Lemma 2.3 ([22, Lem. 1]). Let G = (V,E) be an arbitrary connected graph. Then for any

initial vector ξ(0) and time step t ≥ 0,
∑n
i=1

(
ξ

(t)
i − ξ

)2 ≤ λ2t
max

∑n
i=1

(
ξ

(0)
i − ξ

)2
.

We will use the following immediate consequence of this lemma.

Corollary 2.4. Let G = (V,E) be any graph. Then for any time step t ≥ 0 and any vertex

k ∈ V ,
∑n
i=1

(
Pt
i,k − 1

n

)2 ≤ λ2t
max.

Proof. Let ξ(0) be the unit-vector with 1 at entry k and 0 otherwise. Observe that ξ = 1/n and

ξ
(t)
i =

∑n
j=1 ξ

(0)
j Pt

j,i = Pt
k,i = Pt

i,k. Hence applying Lemma 2.3 leads to

n∑
i=1

(
Pt
i,k −

1

n

)2

≤ λ2t
max

n∑
i=1

(
ξ

(0)
i −

1

n

)2

= λ2t
max

(
1− 1

n

)
≤ λ2t

max.

The following well-known result bounds the discrepancy of ξ.

Fact 2.5 ([23, Thm. 1]). Let G be any graph with n vertices. For the continuous process, the

discrepancy is reduced to ε > 0 after 2
1−λmax

ln
(
K n2

ε

)
steps, where K is the discrepancy of the

initial load vector.

By τ(G,K) we denote the number of steps required for the continuous process to achieve a
discrepancy of 1 for any initial load vector with discrepancy K. Fact 2.5 implies that τ(G,K) =

O
(log(Kn)

1−λmax

)
.

6

2.3. Difference between Continuous Process and Discrete Process

To obtain results for the discrete process, we upper bound the deviation between the discrete
and continuous process at a step t when initialized with the same load vector. The step t is
chosen just large enough to ensure that continuous process has achieved a discrepancy of at
most 1 for every load vector with initial discrepancy K (cf. Fact 2.5). Hence, the discrepancy
of the discrete process is upper bounded by the deviation between the discrete and continuous
process (plus 1).

Similar to [13, 14, 23], we first express the difference between the discrete and idealized
process by a sum of weighted rounding errors (Equation 3.1). In this sum, the rounding errors
are weighted by powers of the transition probabilities. In contrast to [13, 14, 23], the rounding
errors (of the same time step) are not independent for all edges. This is due to our vertex-based
approach and complicates the analysis.

To find a recursion for the discrete process, similar to Equation 2.3 for the continuous
process, plug Equation 2.1 into Equation 2.2 to obtain

X
(t)
i =

⌊
X

(t−1)
i

d+ 1

⌋
−

(∑
j : {i,j}∈E

Z
(t)
i,j

)
+X

(t−1)
i

− (d+ 1)

⌊
X

(t−1)
i

d+ 1

⌋
+

∑
j : {i,j}∈E

(⌊
X

(t−1)
j

d+ 1

⌋
+ Z

(t)
j,i

)

= X
(t−1)
i +

∑
j : {i,j}∈E

(⌊
X

(t−1)
j

d+ 1

⌋
−
⌊
X

(t−1)
i

d+ 1

⌋
+ Z

(t)
j,i − Z

(t)
i,j

)
. (2.4)

Comparing Equation 2.4 to 2.3 motivates the definition of a random variable ∆
(t)
i,j for the

rounding error made by the vertex i on the edge from i to j at step t:

∆
(t)
i,j := −

X
(t−1)
j

d+ 1
+
X

(t−1)
i

d+ 1
+

⌊
X

(t−1)
j

d+ 1

⌋
−
⌊
X

(t−1)
i

d+ 1

⌋
+ Z

(t)
j,i − Z

(t)
i,j . (2.5)

This allows us to write

X
(t)
i = X

(t−1)
i +

∑
j : {i,j}∈E

X
(t−1)
j −X(t−1)

i

d+ 1
+ ∆

(t)
i,j . (2.6)

Now we state some basic properties of the rounding errors.

Lemma 2.6. Let G = (V,E) be an arbitrary connected graph.

1. For every {i, j} ∈ E and time step t, ∆
(t)
i,j = −∆

(t)
j,i , |∆

(t)
i,j | ≤ 2 and E

[
∆

(t)
i,j

]
= 0.

2. Consider two vertex-disjoint edges {i, j} ∈ E and {k, `} ∈ E and assume that X(t−1) is

fixed. Then ∆
(t)
i,j and ∆

(t)
k,` are independent.

Proof. (1): The antisymmetry of ∆ follows directly by the definition. The absolute value of ∆
can be bounded as follows:∣∣∣∆(t)

i,j

∣∣∣ ≤ ∣∣∣∣∣ X(t−1)
i

d+ 1
−
⌊
X

(t−1)
i

d+ 1

⌋
︸ ︷︷ ︸

∈[0,1)

−
(
X

(t−1)
j

d+ 1
−
⌊
X

(t−1)
j

d+ 1

⌋
︸ ︷︷ ︸

∈[0,1)

)∣∣∣∣+
∣∣∣Z(t)

j,i − Z
(t)
i,j︸ ︷︷ ︸

∈[−1,1]

∣∣∣ ≤ 1 + 1 = 2.

7

Finally, linearity of expectations and the definition of Z
(t)
i,j and Z

(t)
j,i gives

E
[
∆

(t)
i,j

]
=−

X
(t−1)
j

d+ 1
+
X

(t−1)
i

d+ 1
+

⌊
X

(t−1)
j

d+ 1

⌋
−
⌊
X

(t−1)
i

d+ 1

⌋
+
X

(t−1)
j

d+ 1
−
⌊
X

(t−1)
j

d+ 1

⌋
− X

(t−1)
i

d+ 1
+

⌊
X

(t−1)
i

d+ 1

⌋
= 0.

(2): Recall that by assumption, the load vector X(t−1) is fixed. By definition of ∆
(t)
i,j in

Equation 2.5, ∆
(t)
i,j depends only on the random variables Z

(t)
i,j and Z

(t)
j,i . In addition, Equa-

tion 2.1 describes a relation between Z
(t)
i,j and all other Z

(t)
i,` with {i, `} ∈ E (and the same holds

for Z
(t)
j,i as well). Hence ∆

(t)
i,j depends on

Z
(t)
i,j , Z

(t)
j,i , all Z

(t)
i,s with {i, s} ∈ E, and all Z

(t)
j,s with {j, s} ∈ E.

Similarly, ∆
(t)
k,` depends on

Z
(t)
k,`, Z

(t)
`,k, all Z

(t)
k,s with {k, s} ∈ E, and all Z

(t)
`,s with {`, s} ∈ E.

Hence if the edges {i, j} ∈ E and {k, `} ∈ E are vertex-disjoint, the set of random variables in

the two sets above are disjoint. Hence, ∆
(t)
i,j and ∆

(t)
k,` are independent.

We now continue by returning to Equation 2.6. For any vertex i ∈ V and step t, let

us define an error vector ∆(t) with ∆
(t)
i :=

∑
j : {i,j}∈E ∆

(t)
i,j . With this notation we have,

X(t) = X(t−1)P + ∆(t).
Solving this recursion (see [23]) and setting ξ(0) = X(0) results in

X(t) = X(0)Pt +

t−1∑
s=0

∆(t−s)Ps = ξ(t) +

t−1∑
s=0

∆(t−s)Ps,

where P0 is the n× n-identity matrix. Hence, for any vertex k ∈ V

X
(t)
k − ξ

(t)
k =

t−1∑
s=0

n∑
i=1

∆
(t−s)
i Ps

i,k =

t−1∑
s=0

n∑
i=1

∑
j : {i,j}∈E

∆
(t−s)
i,j Ps

i,k

=

t−1∑
s=0

∑
[i:j]∈E

∆
(t−s)
i,j

(
Ps
i,k −Ps

j,k

)
, (2.7)

where the last equality uses ∆
(t−s)
i,j = −∆

(t−s)
j,i shown in Lemma 2.6 (1).

2.4. Definition of Local Divergence and Refined Local Divergence

Equation 2.7 and |∆(t−s)
i,j | ≤ 2 suggests to consider

∑t−1
s=0

∑
[i:j]∈E

∣∣∣Ps
i,k −Ps

j,k

∣∣∣, which is a

parameter that only depends on the graph G, but not on the behavior of the load balancing
algorithm. We first adjust a definition from [13] that generalizes the original definition of local
divergence from [23] for p = 1.

8

Definition 2.7 ([13, 23]). For any p ∈ N>0, the local p-divergence of a graph G = (V,E) is

Ψp(G) := max
k∈V

(∞∑
t=0

∑
[i:j]∈E

∣∣Pt
i,k −Pt

j,k

∣∣p)1/p

.

Note that Ψ2(G)2 ≤ Ψ1(G), since
∣∣Pt

i,k−Pt
j,k

∣∣ ≤ 1 for all t, i, k. As pointed out in [23], “Ψ1(G)
is a natural quantity that measures the sum of load differences across all edges in the network,
aggregated over time (and suitably normalized) which may be of independent interest”. Here,
we will mainly consider a natural extension of Ψ1(G) to the `2-norm, Ψ2(G) and its sibling
Υ2(G) which is defined below.

Definition 2.8. For any p ∈ N>0, the refined local p-divergence of a graph G = (V,E) is

Υp(G) := max
k∈V

(
1

2

∞∑
t=0

n∑
i=1

max
j∈N(i)

∣∣Pt
i,k −Pt

j,k

∣∣p)1/p

.

Note that Υp(G) ≤ Ψp(G), since for each {i, j} ∈ E(G) the term
∣∣Pt

i,k − Pt
j,k

∣∣p appears once
in Ψp(G) and at most twice in Υp(G) (this also explains why we include the factor of 1/2 in
the definition of Υp(G)).

The analysis of our algorithm will be based on Υ2(G). The following lemma shows that
only early time steps can have a significant contribution to Υ2(G).

Lemma 2.9. Let G = (V,E) be any graph and define κ := (4 lnn)/(1 − λmax). Then for an
arbitrary vertex k ∈ V ,

∞∑
t=κ

∑
[i:j]∈E

(
Pt
i,k −Pt

j,k

)2
= O(1).

Proof. Using Lemma 2.2, we get

∞∑
t=κ

∑
[i:j]∈E

(
Pt
i,k −Pt

j,k

)2 ≤ 2 ·
∞∑
t=κ

∑
[i:j]∈E

(
Pt
i,k −

1

n

)2

+

(
Pt
j,k −

1

n

)2

= 2d ·
∞∑
t=κ

∑
i∈V

(
Pt
i,k −

1

n

)2

≤ 2d ·
∞∑
t=κ

λ2t
max,

where the last inequality is due to Corollary 2.4. Using the fact that x1/(1−x) ≤ 1/e for x ∈ [0, 1)
and the inequality 1− λmax ≤ n−3 (Lemma 2.1), we can bound this term as follows,

2d ·
∞∑
t=κ

λ2t
max = 2d · λ2κ

max

1− (λmax)2
≤ 2d · λ

(8 lnn)/(1−λmax)
max

1− λmax
≤ 2d · e

−8 lnn

n−3
= O(1).

3. Proof of Theorem 1.1

We now bound the discrepancy of our discrete process in terms of the local divergence Υ2(G).
We do this by upper bounding the deviation between the discrete and the continuous process. A

9

similar approach was used in Rabani et al. [23] who bounded this deviation in terms of Ψ1(G).
They showed that reducing the initial discrepancy from K to O(Ψ1(G)) can be achieved within
O(log(Kn)/(1−λmax)) steps for any initial load vector. However, it turns out that our random-
ized process can be bounded in terms of Υ2(G). Note that Υ2(G) is in general much smaller
than Υ1(G) (or Ψ1(G)) (cf. the remarks after Definition 2.7). We will use the following con-
centration inequality for martingales, which is commonly known as the “the method of average
bounded differences”.

Theorem 3.1 ([9, p. 83]). Let Y1, . . . , Yn be an arbitrary set of random variables and let f be
a function of these random variables satisfying the property that for each ` ∈ [n], there is a
non-negative c` such that∣∣E [f | Y`, Y`−1, . . . , Y1]−E [f | Y`−1, . . . , Y1]

∣∣ ≤ c`.
Then for any δ > 0,

Pr [|f −E [f] | > δ] ≤ 2 exp

(
− δ2

2c

)
,

where c :=
∑n
`=1 c

2
` .

Proof of Theorem 1.1.
Proof of the first statement. Let us now fix a vertex k ∈ V and a time step t. Recall from
Equation 2.7 that

X
(t)
k − ξ

(t)
k =

t−1∑
s=0

∑
[i:j]∈E

∆
(t−s)
i,j

(
Ps
i,k −Ps

j,k

)
=

t∑
s=1

∑
[i:j]∈E

∆
(s)
i,j

(
Pt−s
i,k −Pt−s

j,k

)
. (3.1)

Consider the random variable X
(t)
k − ξ

(t)
k . By Lemma 2.6, E

[
X

(t)
k − ξ

(t)
k

]
= 0. Our goal is to

apply the martingale tail estimate from Theorem 3.1 to fk := X
(t)
k − ξ

(t)
k . We first rewrite fk,

fk =

t∑
s=1

∑
[i:j]∈E

∆
(s)
i,j

(
Pt−s
i,k −Pt−s

j,k

)
=

t∑
s=1

∑
[i:j]∈E

(
−
X

(t−1)
j

d+ 1
+
X

(t−1)
i

d+ 1
+

⌊
X

(t−1)
j

d+ 1

⌋
−
⌊
X

(t−1)
i

d+ 1

⌋
+ Z

(t)
j,i − Z

(t)
i,j

)
·
(
Pt−s
i,k −Pt−s

j,k

)
,

where the last equality follows by the definition of ∆
(s)
i,j .

We observe that for a fixed load vector X(0) the function fk depends only on the randomly
chosen destinations of the excess tokens. There are t time steps, n nodes, and at most d excess
tokens per node per time step. We describe these random choices by a sequence of t · n · d
random variables, Y1, Y2, . . . , Ytnd. For any ` with 1 ≤ ` ≤ tnd, let (s, i, r) ∈ [t] × [n] × [d]
be such that ` = (s − 1)nd + (i − 1) d + r (note that (s, i, r) is the `-th largest element in an
increasing lexicographic ordering of [t]× [n]× [d]). Then Y` refers to the destination of the r-th
excess token of vertex i at step s (if there is one). More precisely,

Y` :=

j if r ≤ X(s−1)
i − (d+ 1)

⌊
X

(s−1)
i

d+1

⌋
and

the r-th excess token of ver-
tex i at step s is sent to j,

0 otherwise.

10

Note that Y` ∈ N(i) ∪ {i}. In order to apply Theorem 3.1, we have to upper bound∣∣E [fk | Y`, Y`−1, . . . , Y1

]
−E

[
fk | Y`−1, . . . , Y1

]∣∣. (3.2)

Consider a fixed ` that corresponds to (s1, i1, r1) in the lexicographic ordering.
To bound Equation 3.2, we use Equation 3.1 to get∣∣E [fk | Y`, Y`−1, . . . , Y1

]
−E

[
fk | Y`−1, . . . , Y1

]∣∣
≤

t∑
s=1

∑
[i:j]∈E

∣∣E [∆(s)
i,j | Y`, Y`−1, . . . , Y1

]
−E

[
∆

(s)
i,j | Y`−1, . . . , Y1

]∣∣ · ∣∣Pt−s
i,k −Pt−s

j,k

∣∣
In the remainder of the proof we now split the sum over s into the three parts 1 ≤ s < s1,
s = s1, and s1 < s ≤ t. We prove that the parts s < s1 and s > s1 both equal zero while the
part s = s1 is upper bounded by 2 ·maxj∈N(i1)

∣∣Pt−s1
i1,k
−Pt−s1

j,k

∣∣.
s < s1 :

For every {i, j} ∈ E, ∆
(s)
i,j is already determined by Y`−1, . . . , Y1. Hence,

s1−1∑
s=1

∑
[i:j]∈E

∣∣E [∆(s)
i,j | Y`, Y`−1, . . . , Y1

]
−E

[
∆

(s)
i,j | Y`−1, . . . , Y1

]∣∣ · ∣∣Pt−s
i,k −Pt−s

j,k

∣∣ = 0. (3.3)

s = s1 : This is the most involved case due to the dependencies among {∆(s)
i,j : {i, j} ∈ E}.∑

[i:j]∈E

∣∣E [∆(s)
i,j

∣∣Y`, Y`−1, . . . , Y1

]
−E

[
∆

(s)
i,j | Y`−1, . . . , Y1

]∣∣ · ∣∣Pt−s
i,k −Pt−s

j,k

∣∣
≤
∑

[i:j]∈E

∣∣∣∣E [− X
(s−1)
j

d+ 1
+
X

(s−1)
i

d+ 1
+

⌊
X

(s−1)
j

d+ 1

⌋
−
⌊
X

(s−1)
i

d+ 1

⌋
+ Z

(s)
j,i − Z

(s)
i,j

∣∣∣Y`, Y`−1, . . . , Y1

]
−

E

[
−
X

(s−1)
j

d+ 1
+
X

(t−1)
i

d+ 1
+

⌊
X

(s−1)
j

d+ 1

⌋
−
⌊
X

(s−1)
i

d+ 1

⌋
+ Z

(s)
j,i − Z

(s)
i,j

∣∣∣Y`−1, . . . , Y1

]∣∣∣∣
·
∣∣Pt−s

i,k −Pt−s
j,k

∣∣
=
∑

[i:j]∈E

∣∣∣E [Z(s)
j,i − Z

(s)
i,j | Y`, Y`−1, . . . , Y1

]
−E

[
Z

(s)
j,i − Z

(s)
i,j | Y`−1, . . . , Y1

]∣∣∣ · ∣∣Pt−s
i,k −Pt−s

j,k

∣∣
(3.4)

≤
∑

[i:j]∈E

(∣∣∣E [Z(s)
i,j | Y`, Y`−1, . . . , Y1

]
−E

[
Z

(s)
i,j | Y`−1, . . . , Y1

]∣∣∣ · ∣∣Pt−s
i,k −Pt−s

j,k

∣∣+
∣∣∣E [Z(s)

j,i | Y`, Y`−1, . . . , Y1

]
−E

[
Z

(s)
j,i | Y`−1, . . . , Y1

]∣∣∣ · ∣∣Pt−s
i,k −Pt−s

j,k

∣∣)
=
∑
i∈V

∑
j∈N(i)

∣∣Λ(s)
i,j

∣∣ · ∣∣Pt−s
i,k −Pt−s

j,k

∣∣ ≤∑
i∈V

(
max
j∈N(i)

∣∣Pt−s
i,k −Pt−s

j,k

∣∣) ∑
j∈N(i)

∣∣Λ(s)
i,j

∣∣, (3.5)

where we used Λ
(s)
i,j := E

[
Z

(s)
i,j | Y`, Y`−1, . . . , Y1

]
−E

[
Z

(s)
i,j | Y`−1, . . . , Y1

]
to simplify the nota-

tion. Eqn. 3.4 follows as Y`−1, . . . , Y1 determine the load vector X(s−1). To bound Equation 3.5

we consider
∑
j∈N(i)

∣∣Λ(s)
i,j

∣∣ for i = i1 and i 6= i1 separately.

11

Case 1: Let i = i1. Assume first Y` = 0. This means that node i1 has less than r1 extra tokens
at step t1. Hence

∣∣Λsi,j∣∣ = 0.
Now we assume that Y` 6= 0. This means that node i1 has at least r1 extra tokens at step

t1. Let b ≥ r1 be the number of extra tokens of i1 at step s1. Clearly, b and the destinations of
the extra tokens considered in the previous rounds, Y`−r1+1, . . . , Y`−1, are already determined
by Y`−1, . . . , Y1 (note that if r1 = 1 then this set is empty). The remaining Y`+1, . . . , Y`+b−r1
are chosen uniformly at random among (N(i1) ∪ {i1}) \

{
Y`−r1+1, . . . , Y`−1

}
=: Ñ(i1) without

replacement. Let w ∈ Ñ(i1) be the destination of the r1-th excess token of i1 at step s1, that is,

Y` = w and consequently, Z
(s1)
i1,w

= 1. Clearly, 0 < Λ
(s1)
i1,w
≤ 1, and for all j ∈ Ñ(i1)\{w}, Λ

(s1)
i1,j

<

0. For the vertices j ∈
{
Y`−r1+1, . . . , Y`−1

}
, Λ

(s1)
i1,j

= 0, as Y`−1, . . . , Y1 already determined that

Z
(s1)
i1,j

= 1. Linearity of expectations yields∑
j∈N(i1)∪{i1}

Λ
(s1)
i1,j

= E

[∑
j∈N(i1)∪{i1}

Z
(s1)
i1,j

∣∣∣Y`, Y`−1, . . . , Y1

]
−E

[∑
j∈N(i1)∪{i1}

Z
(s1)
i1,j

∣∣∣Y`−1, . . . , Y1

]
= 0.

The last equality holds since
∑
j∈N(i1)∪{i1} Z

(s1)
i1,j

= b and b is determined by Y`−1, . . . , Y1.
Hence, ∑

j∈N(i1)∪{i1}

∣∣Λ(s1)
i1,j

∣∣ =
∑

j∈N(i1)∪{i1} :

Λ
(s1)
i1,j

>0

Λ
(s1)
i1,j
−

∑
j∈N(i1)∪{i1} :

Λ
(s1)
i1,j
≤0

Λ
(s1)
i1,j

= 2 ·
∑

j∈N(i1)∪{i1} :

Λ
(s1)
i1,j

>0

Λ
(s1)
i1,j

= 2
∣∣Λ(s1)
i1,w

∣∣ ≤ 2. (3.6)

Case 2: i 6= i1. As ` corresponds to (s1, i1, r1), the random variable Z
(s1)
i,j is independent of

Y`, which is the choice of the r1-th excess token of vertex i1 at step s1. Hence∑
j∈N(i)

∣∣Λ(s1)
i,j

∣∣ =
∑

j∈N(i)

∣∣∣E [Z(s)
i,j | Y`, Y`−1, . . . , Y1

]
−E

[
Z

(s)
i,j | Y`−1, . . . , Y1

]∣∣∣ = 0.

Combining Case 1 and Case 2 we obtain

(3.5) =

(
max
j∈N(i1)

∣∣Pt−s
i1,k
−Pt−s

j,k

∣∣) ∑
j∈N(i1)

∣∣Λ(s)
i1,j

∣∣+
∑

i∈V,i 6=i1

(
max
j∈N(i)

∣∣Pt−s
i,k −Pt−s

j,k

∣∣) ∑
j∈N(i)

∣∣Λ(s)
i,j

∣∣
≤ max
j∈N(i1)

∣∣Pt−s
i1,k
−Pt−s

j,k

∣∣ · 2 + 0. (3.7)

s > s1 : Let ˜̀be the largest integer such that Y˜̀ corresponds to time step s− 1. Since s > s1,

we have s− 1 ≥ s1 and therefore ˜̀≥ `. By the choice of ˜̀, Y˜̀, . . . , Y1 determine the load vector

at the end of step s1, X(s1). By Lemma 2.6, we obtain E
[
∆

(s)
i,j | Y˜̀, . . . , Y1

]
= 0, and by the

chain rule of expectations,

E
[
∆

(s)
i,j | Y`, Y`−1, . . . , Y1

]
= E

[
E
[
∆

(s)
i,j | Y˜̀, . . . , Y1

]
| Y`, Y`−1, . . . , Y1

]
12

= E [0 | Y`, Y`−1, . . . , Y1] = 0.

With the same arguments, E
[
∆

(s)
i,j | Y`−1, . . . , Y1

]
= 0, and therefore

t∑
s=s1+1

∑
[i:j]∈E

∣∣E [∆(s)
i,j | Y`, Y`−1, . . . , Y1

]
−E

[
∆

(s)
i,j | Y`−1, . . . , Y1

]∣∣ · ∣∣Pt−s
i,k −Pt−s

j,k

∣∣ = 0. (3.8)

This finishes the case distinction. Combining Equations 3.3, 3.7 and 3.8 for the three cases
s < s1, s = s1, and s > s1, we obtain that for every fixed 1 ≤ ` ≤ tnd,∣∣E [fk | Y`, Y`−1, . . . , Y1

]
−E

[
fk | Y`−1, . . . , Y1

]∣∣
≤

t∑
s=1

∑
[i:j]∈E

∣∣E [∆(s)
i,j | Y`, Y`−1, . . . , Y1

]
−E

[
∆

(s)
i,j | Y`−1, . . . , Y1

]∣∣ · ∣∣Pt−s1
i,k −Pt−s1

j,k

∣∣
= 0 + max

j∈N(i1)

∣∣Pt−s1
i1,k
−Pt−s1

j,k

∣∣ · 2 + 0 = 2 · max
j∈N(i1)

∣∣Pt−s1
i1,k
−Pt−s1

j,k

∣∣ =: c`.

To apply Theorem 3.1, we consider
∑tnd
`=1(c`)

2.

tnd∑
`=1

(c`)
2 =

t∑
s=1

n∑
i=1

d∑
r=1

(
2 max
j∈N(i)

∣∣Pt−s
i,k −Pt−s

j,k

∣∣)2

= 4d

t−1∑
s=0

n∑
i=1

max
j∈N(i)

(
Ps
i,k −Ps

j,k

)2
≤ 4d max

k∈V

(∞∑
s=0

n∑
i=1

max
j∈N(i)

(
Ps
i,k −Ps

j,k

)2)
= 8d (Υ2(G))

2
. (3.9)

By Theorem 3.1, we have for any δ ≥ 0, Pr [|fk| > δ] ≤ 2 exp
(
− δ2

/(
2
∑tnd
`=1(c`)

2
))
. Hence

by choosing δ := Υ2(G)
√

32d lnn, the probability above gets smaller than 2n−2. Apply-
ing the union bound we obtain Pr [∀k ∈ V : |fk| > δ] ≤ n 2n−2 = 2n−1. By Equation 3.1,

maxk∈[n]X
(t)
k ≤ |ξ

(t)
k |+ |fk|. For t := τ(G,K), we obtain |ξ(t)

k −ξ| ≤ 1 for every vertex k. Hence

maxi,j∈[n]

∣∣X(t)
i − X

(t)
j

∣∣ ≤ 2|fk| + 2. This implies Pr
[

maxi,j∈[n]

∣∣X(t)
i − X

(t)
j

∣∣ ≤ 2δ + 2
]
≥

1− 2n−1, as needed.
Proof of the second statement. Fix a vertex k ∈ V . Recall from Equation 3.1 that

X
(t)
k − ξ

(t)
k =

t∑
s=1

∑
[i:j]∈E

∆
(s)
i,j

(
Pt−s
i,k −Pt−s

j,k

)
. (3.10)

We split the right hand side of Equation 3.10 at step t− 1 to obtain

t−1∑
s=1

∑
[i:j]∈E

∆
(s)
i,j

(
Pt−s
i,k −Pt−s

j,k

)
︸ ︷︷ ︸

=:fk

+
∑

[i:j]∈E

∆
(s)
i,j

(
P0
i,k −P0

j,k

)
︸ ︷︷ ︸

=:hk

.

We can bound hk using the triangle inequality as follows,

|hk| ≤
∑

[i:j]∈E

∣∣∣∆(t)
i,j

∣∣∣ · ∣∣P0
i,k −P0

j,k

∣∣ ≤ 2 ·
∑

[i:j]∈E

∣∣ P0
i,k −P0

j,k

∣∣ = 2d,

13

since |∆(t)
i,j | ≤ 2 and

∑n
i=1 P0

i,k = 1. To bound fk, we use the same approach as in the proof of

the first statement. Also here, we use the same definition of variables Y` with 1 ≤ ` ≤ (t−1)nd.
In order to apply Theorem 3.1, we have to estimate the differences c`, 1 ≤ ` ≤ (t− 1)nd. As in
Equation 3.9 we obtain

(t−1)nd∑
`=1

(c`)
2 ≤ 4d

t−1∑
s=1

n∑
i=1

max
j∈N(i)

(
Pt−s
i,k −Pt−s

j,k

)2
.

Since
∑n
i=1 maxj∈N(i)

(
P0
i,k −P0

j,k

)2

= 2d, we obtain that

4d

t−1∑
s=1

n∑
i=1

max
j∈N(i)

(
Pt−s
i,k −Pt−s

j,k

)2 ≤ 8d ·
(
(Υ2(G))2 − d

)
By Theorem 3.1, we obtain that

Pr [|fk| > δ] ≤ 2 exp

(
− δ2

/(
16d ·

(
(Υ2(G))2 − d

)))
.

Hence by choosing δ :=
√

32 log(n) d ((Υ2(G))2 − d) we get Pr [|fk| > δ] ≤ 2n−2. Hence,

Pr
[∣∣X(t)

k − ξ
(t)
k

∣∣ > 2d+ δ
]
≤ Pr [|hk| > 2d] + Pr

[
|fk| >

√
32 log(n) d ((Υ2(G))2 − d)

]
≤ 2n−2.

Taking the union bound over all vertices k yields,

Pr
[
∀k ∈ V :

∣∣X(t)
k − ξ

(t)
k

∣∣ ≤ 2d+
√

32 log(n) d ((Υ2(G))2 − d)
]
≤ n 2n−2 = 2n−1. (3.11)

Now choosing t := τ(G,K), we obtain the second statement by using exactly the same argu-
ments as in the proof of the first statement.
Proof of the third statement. The third statement is shown by a similar approach. Again,
fix a vertex k ∈ V and a time step t. Now we split the right hand side of Equation 3.10 at step
t− ϑ, where ϑ := (4 ln lnn)/(1− λmax).

t∑
s=1

∑
[i:j]∈E

∆
(s)
i,j

(
Pt−s
i,k −Pt−s

j,k

)

=

t−ϑ∑
s=1

∑
[i:j]∈E

∆
(s)
i,j

(
Pt−s
i,k −Pt−s

j,k

)
︸ ︷︷ ︸

=:fk

+

t∑
s=t−ϑ+1

∑
[i:j]∈E

∆
(s)
i,j

(
Pt−s
i,k −Pt−s

j,k

)
︸ ︷︷ ︸

=:hk

.

We first bound the last part directly by applying the triangle inequality as follows.

|hk| ≤
t∑

s=t−ϑ+1

∑
[i:j]∈E

∣∣∆(s)
i,j

∣∣ ∣∣Pt−s
i,k −Pt−s

j,k

∣∣
≤ 2ϑ

∑
[i:j]∈E

(
Pt−s
i,k + Pt−s

j,k

)
≤ 2ϑd,

14

where the first inequality holds since |∆(s)
i,j | ≤ 2 and where the last inequality holds since∑n

i=1 Pt−s
i,k = 1 for every k.

To bound fk, we use the same approach as in the proof of the first (and second) statement.
Also here, we use the same definition of random variables Y` with 1 ≤ ` ≤ (t − ϑ)nd. In
order to apply Theorem 3.1, we have to estimate the differences c`, 1 ≤ ` ≤ (t − ϑ)nd. As in
Equation 3.9 we obtain

(t−ϑ)nd∑
`=1

(c`)
2 ≤ 8d

t−ϑ∑
s=1

n∑
i=1

max
j∈N(i)

(
Pt−s
i,k −Pt−s

j,k

)2
.

By Theorem 3.1, we obtain that

Pr [|fk| > δ] ≤ 2 exp

(
− δ2

/(
16d

t−ϑ∑
s=1

n∑
i=1

max
j∈N(i)

(
Pt−s
i,k −Pt−s

j,k

)2))
.

Hence by choosing δ :=
√

32 log(n) d
∑t−ϑ
s=1

∑n
i=1 maxj∈N(i)

(
Pt−s
i,k −Pt−s

j,k

)2
we get

Pr [|fk| > δ] ≤ 2n−2. Hence,

Pr
[∣∣X(t)

k − ξ
(t)
k

∣∣ > 2ϑd+ δ
]
≤ Pr [|hk| > 2ϑd] + Pr [|fk| > δ] ≤ 0 + 2n−2 = 2n−2.

Taking the union bound over all vertices k yields,

Pr
[
∀k ∈ V :

∣∣X(t)
k − ξ

(t)
k

∣∣ ≤ 2ϑd+ δ
]
≤ n 2n−2 = 2n−1. (3.12)

In order to complete the proof, it remains to prove that 2ϑd+δ = O((d log log n)/(1−λmax)).
To upper bound δ, we first consider

t−ϑ∑
s=1

n∑
i=1

max
j∈N(i)

(
Pt−s
i,k −Pt−s

j,k

)2
=

t−1∑
s=ϑ

n∑
i=1

max
j∈N(i)

(
Ps
i,k −Ps

j,k

)2
≤ 2

t∑
s=ϑ

n∑
i=1

max
j∈N(i)

((
Ps
i,k −

1

n

)2

+

(
Ps
j,k −

1

n

)2
)

= 2

t−1∑
s=ϑ

n∑
i=1

(
Ps
i,k −

1

n

)2

+ 2

t−1∑
s=ϑ

n∑
i=1

max
j∈N(i)

(
Ps
j,k −

1

n

)2

≤ 2

t−1∑
s=ϑ

n∑
i=1

(
Ps
i,k −

1

n

)2

+ 2

t−1∑
s=ϑ

n∑
j=1

d

(
Ps
j,k −

1

n

)2

≤ (2d+ 2)

t−1∑
s=ϑ

λ2s
max,

where the first inequality uses Lemma 2.2 and the last inequality follows from Corollary 2.4.
The last term can be now bounded as follows,

(2d+ 2)

∞∑
s=ϑ

λ2s
max ≤ (2d+ 2)

λ
2 (4 ln lnn

1−λmax
)

max

1− (λmax)2
≤ (2d+ 2)

e−8 ln lnn

1− λmax
= (2d+ 2)

(log n)−8

1− λmax
,

15

where the second last inequality uses the fact that x1/(1−x) ≤ 1/e for x ∈ [0, 1). We can now
use this bound to get a more explicit expression for the bound in Equation 3.12,

Pr

∀k ∈ V :
∣∣X(t)

k − ξ
(t)
k

∣∣ ≤ 4d ln lnn

1− λmax
+

√
32 log(n) d · (d+ 2)

(log n)−8

1− λmax

 ≤ 2n−1.

We choose t = τ(G,K) to get |ξ(t)
k − ξ| ≤ 1 for every vertex k. As in the proof of the first

statement, this yields

Pr

[
max
i,j∈[n]

∣∣X(t)
i −X

(t)
j

∣∣ ≤ 2 (ϑd+ δ) + 2

]
≥ 1− 4n−1.

This completes the proof.

4. Proof of Theorem 1.2

This section contains 3 subsections in which we derive three upper bounds on the local
divergence. The first bound holds for general graphs, the second for tori and the third for
hypercubes. In detail, we show the following.

1. For any graph G, Υ2(G) = O
(√

d+ log d
1−λmax

)
(Theorem 4.1).

2. For the r-dimensional torus graph G with r = O(1), Υ2(G) ≤ Ψ2(G) = O(1) (Theo-
rem 4.2).

3. For the hypercube G with n vertices (Theorem 4.14)

Ψ1(G) =
log2(n) + 1

n

log2(n)−1∑
p=0

log2 n∑
`=p+1

(
log2 n

`

)
= Θ(log2 n).

Theorem 1.2 follows from these results. Theorem 1.2 (1) follows from Theorem 1.1 (1)
and Theorem 4.1. Theorem 1.2 (2) follows from Theorem 1.1 (3). Theorem 1.2 (3) follows
from Theorem 1.1 (1) and Theorem 4.2. Theorem 1.2 (4) follows from Theorem 1.1 (2) and
Theorem 4.11.

4.1. General Graphs

Theorem 4.1. For any graph G, Υ2(G) = O
(√

d+ log d
1−λmax

)
.

Proof. For simplicity, we consider (Ψ2(G))2. Let k ∈ V be an arbitrary but fixed vertex. For
some integer value τ to be specified later, we split the time into three parts, t = 0, 1 ≤ t ≤ τ−1
and t ≥ τ :

∞∑
t=0

n∑
i=1

∑
[i:j]∈E

(
Pt
i,k −Pt

j,k

)2
=

n∑
i=1

∑
[i:j]∈E

(
P0
i,k −P0

j,k

)2
+

τ−1∑
t=1

n∑
i=1

∑
[i:j]∈E

(
Pt
i,k −Pt

j,k

)2
+

∞∑
t=τ

n∑
i=1

∑
[i:j]∈E

(
Pt
i,k −Pt

j,k

)2
.

16

We start with the first term. Since
(
P0
i,k −P0

j,k

)2 ≤ 1, we conclude that

n∑
i=1

∑
[i:j]∈E

(
P0
i,k −P0

j,k

)2 ≤ n∑
i=1

∑
[i:j]∈E

∣∣P0
i,k −P0

j,k

∣∣ ≤ d,
since each row sum of P is 1. Let us now consider the second term. We observe that for any
two vertices r, s and any time step t ≥ 1, Pt

r,s ≤ 1/(d+ 1). This allows us to bound the second
term as follows,

τ−1∑
t=1

n∑
i=1

∑
[i:j]∈E

(
Pt
i,k −Pt

j,k

)2 ≤ τ−1∑
t=1

n∑
i=1

∑
[i:j]∈E

((
Pt
i,k

)2
+
(
Pt
j,k

)2)

= d

τ−1∑
t=1

n∑
i=1

(
Pt
i,k

)2
≤ d

τ−1∑
t=1

(
(d+ 1)

(
1

d+ 1

)2

+ (n− d− 1) · 0

)
≤ τ − 1.

Let us now consider the third term. Using Lemma 2.2 we obtain

∞∑
t=τ

∑
[i:j]∈E

(
Pt
i,k −Pt

j,k

)2 ≤ ∞∑
t=τ

∑
[i:j]∈E

2

((
Pt
i,k −

1

n

)2

+

(
Pt
j,k −

1

n

)2
)

= d

∞∑
t=τ

n∑
i=1

(
Pt
i,k −

1

n

)2

≤ d
∞∑
t=τ

λ2t
max ≤ d

(λmax)2τ

1− (λmax)2
≤ (λmax)τ

1− λmax
,

where we have used Corollary 2.4 in the second last inequality. Choosing τ := ln d
1−λmax

and

recalling that x1/(1−x) ≤ 1/e for any x ∈ [0, 1) yields the following bound,

(Υ2(G))
2 ≤ d+

ln d

1− λmax
+ d

(λmax)
ln d

1−λmax

1− λmax

≤ d+
ln d

1− λmax
+

1

1− λmax
= O

(
d+

log d

1− λmax

)
.

Taking the square root yields Υ2(G) = O
(√

d+ log d
1−λmax

)
.

4.2. Torus

Since for r-dimensional tori 1/(1 − λmax) = Θ(n2/r) and for hypercubes 1/(1 − λmax) =
Θ(log n), the following theorems represent improvements over the bound in Theorem 4.1 for
these specific networks.

Theorem 4.2. For the r-dimensional torus graph with r = O(1), Υ2(G) ≤ Ψ2(G) = O(1).

The proof of this result is rather long and technical. Hence, we further divide this subsection.
In Section 4.2.1 we record some elementary inequalities. In Section 4.2.2 we relate the random

17

walk on the (finite) r-dimensional Torus graph to a random walk on the set Zr. For the latter,
we can apply a local central limit theorem [17] which approximates transition probabilities by
a multivariate normal distribution. In Section 4.2.3 we present the proof of Theorem 4.2.

4.2.1. Technical Inequalities

The r-dimensional torus graph is defined as follows, where we assume for simplicity that
r
√
n− 1 is an even integer . The set of vertices is V = {−(r

√
n− 1)/2, . . . , 0, . . . , (r

√
n− 1)/2}r

and the set of edges are between vertices that differ exactly in one coordinate by one (hereby,
we identify −(r

√
n− 1)/2− 1 with (r

√
n− 1)/2 and (r

√
n− 1)/2 + 1 with −(r

√
n− 1)/2). As r is

a fixed constant, we will assume that n is large enough such that n1/r/2 ≥ 2.
Before we prove Theorem 4.2, we present some technical tools.
First we recall a higher dimensional version of the well-known bound

∑∞
k=1 k

−(1+ε) = O(1)
for ε > 0 that is also mentioned in [14].

Lemma 4.3. For any constant r ∈ N and any constant ε > 0,∑
k∈Zr6=0

‖k‖−(r+ε)
2 = O(1),

where Zr6=0 = Zr \ {0r}.

Proof. By Lemma 2.2, k2
1 + · · ·+ k2

r ≥ 1
r (|k1|+ · · ·+ |kr|)2 which implies

∑
k∈Zr6=0

‖k‖−(r+ε)
2 =

∑
k∈Zr6=0

(k2
1 + · · ·+ k2

r)−(r+ε)/2 ≤ r
∞∑
x=1

∑
k∈Zr
‖k‖1=x

x−(r+ε)

= r

∞∑
x=1

(2x+ 1)r−1 x−(r+ε) ≤ r 4r−1
∞∑
x=1

x−(1+ε) = O(1).

The following inequalities are simple consequences of the triangle inequality for norms.

Lemma 4.4. Let i ∈ Zr and v be a vector with ±1 at one position and zeros elsewhere. Then

1. ‖i‖22 − ‖i+ v‖22 ≤ 2 ‖i‖2 + 1.
2. ‖i+ v‖22 − ‖i‖22 ≤ 2 ‖i‖2 + 1.
3. For any p ∈ Zr6=0 and i ∈ Zr with ‖i‖1 ≤ r ·n1/r/2, ‖i+ p ·n1/r‖2 ≤ (r/2 + 1) · ‖p ·n1/r‖2.
4. For any p ∈ Zr6=0 and i ∈ Zr with ‖i‖∞ ≤ n1/r/2, ‖i+ p n1/r‖2 ≥ 1

2r

∥∥p n1/r
∥∥

2
.

Proof. The first statement is obvious if ‖i‖2 ≤ ‖i+ v‖2. Hence we assume that ‖i‖2 ≥ ‖i+ v‖2.
Using this and the triangle inequality of the `2-norm, we get

‖i‖22 − ‖i+ v‖22 ≤ (‖i+ v‖2 + ‖v‖2)
2 − ‖i+ v‖22 = 2 ‖i+ v‖2 + 1 ≤ 2 ‖i‖2 + 1.

The second statement can be shown similarly. Using the triangle inequality, we obtain that

‖i+ v‖22 − ‖i‖22 ≤ (‖i‖2 + ‖v‖2)
2 − ‖i‖22 = 2 ‖i‖2 + 1.

To see the third statement, note that

‖i+ p · n1/r‖2 ≤ ‖i‖2 + ‖p · n1/r‖2 ≤ ‖i‖1 + ‖p · n1/r‖2
≤ r · n1/r/2 + ‖p · n1/r‖2 ≤ r · n1/r/2 · ‖p‖2 + ‖p · n1/r‖2 = (r/2 + 1) · ‖p · n1/r‖2

18

Finally, for the fourth statement, we have

‖i+ p n1/r‖2 ≥ ‖i+ p n1/r‖∞ ≥
∥∥∥∥p n1/r

2

∥∥∥∥
∞
≥ 1

2r
‖p n1/r‖2,

where the inequality in the middle holds as all coordinates of i are bounded in absolute value
by n1/r/2, while ‖p · n1/r‖∞ ≥ n1/r, as p 6= 0.

Lemma 4.5. For any constant r ∈ N and any ` > 0,

∞∑
x=1

exp

(
−x

2

`2

)
· xr ≤ C · `r+1,

where C > 0 is a constant that can depend on r but not on `.

Proof. Consider first the case ` ≥ 1. Define α := min
{
x ∈ N0 : ∀y ≥ x : exp(−y2/2) ≤

(y + 1)−r
}

. As α is a constant only depending on r, we have

∞∑
x=1

exp

(
−x

2

`2

)
· xr =

∞∑
x=0

∑̀
p=1

exp

(
− (x `+ p)

2

`2

)
(x `+ p)

r

≤
∞∑
x=0

exp

(
− (x `)

2

`2

)∑̀
p=1

((x+ 1) `)
r

=

∞∑
x=0

exp
(
−x2

)
` (x+ 1)r `r

=

α−1∑
x=0

exp
(
−x2

)
· (x+ 1)r · `r+1 +

∞∑
x=α

exp
(
−x2

)
(x+ 1)r · `r+1

≤ α · 1 · (α)r `r+1 +

∞∑
x=α

exp
(
−x2/2

)
`r+1

= O(`r+1).

The second case is 0 < ` < 1. Here, we define β := min
{
x ∈ N : ∀y ≥ x : exp(−y2/2) ≤ y−r

}
,

which is again a constant only depending on r. Note that β ≥ 1. Then,

∞∑
x=1

exp

(
−x

2

`2

)
xr =

β−1∑
x=1

exp

(
−x

2

`2

)
· xr +

∞∑
x=β

exp

(
−x

2

`2

)
· xr

≤ (β − 1)r+1 exp

(
− 1

`2

)
+

∞∑
x=β

exp

(
− x2

2`2

)
exp

(
−x

2

2

)
xr

= O(1) exp

(
− 1

`2

)
+

∞∑
x=β

exp

(
− x2

2`2

)

≤ O(1) exp

(
− 1

`2

)
+

∞∑
x=β

exp

(
− x2

4`2

)
· exp

(
− x2

4`2

)

19

≤ O(1) exp

(
− 1

`2

)
+ exp

(
− 1

4`2

) ∞∑
x=β

exp

(
−x

2

4

)

= O(1) exp

(
− 1

4`2

)
.

It remains to upper bound exp
(
− 1/(4`2)

)
by O(`r+1). For this, let γ := max

{
0 < x <

1: ∀0 < y ≤ x : − 1/(4y2) ≤ (r + 1) · ln(y)
}

. Observe that γ is a constant only depending

on r. This implies for ` ≥ γ that exp
(
− 1/(4`2)

)
= O(1). On the other hand, for ` ≤ γ we

get exp
(
− 1/(4`2)

)
≤ exp

(
− (r + 1) ln(`)

)
= `r+1 by definition of γ, which completes the

proof.

We continue with another simple analytic lemma.

Lemma 4.6. Let k ∈ Zr and v be a a vector with ±1 at one position and zeros elsewhere.
Then if ‖k‖2 ≤ ‖k + v‖2 or ‖k‖∞ ≥ n1/r/2,∣∣∣∣exp

(
−r ‖k‖

2
2

t

)
− exp

(
−r ‖k + v‖22

t

)∣∣∣∣ ≤ exp

(
−‖k‖

2
2

4t

)
· r (2 ‖k‖2 + 1)

t
.

Proof. We first consider the case ‖k‖2 ≤ ‖k + v‖2. There,∣∣∣∣exp

(
−r ‖k‖

2
2

t

)
− exp

(
−r ‖k + v‖22

t

)∣∣∣∣
=

∣∣∣∣exp

(
−r ‖k‖

2
2

t

)
·
(

1− exp

(
−r ‖k + v‖22

t
+
r ‖k‖22
t

))∣∣∣∣ .
Let us consider the second factor (which is positive by assumption). Using the second statement
of Lemma 4.4, we obtain that

1− exp

(
−r ‖k + v‖22

t
+
r ‖k‖22
t

)
≤ 1− exp

(
−r (2 ‖k‖2 + 1)

t

)
≤ r (2 ‖k‖2 + 1)

t
,

where the last inequality follows from exp(−x) ≥ 1− x.
The second case to consider is ‖k‖2 > ‖k + v‖2 and ‖k‖∞ ≥ n1/r/2. Then∣∣∣∣exp

(
−r ‖k‖

2
2

t

)
− exp

(
−r ‖k + v‖22

t

)∣∣∣∣
=

∣∣∣∣exp

(
−r ‖k + v‖22

t

)
− exp

(
−r ‖k‖

2
2

t

)∣∣∣∣
=

∣∣∣∣exp

(
−r ‖k + v‖22

t

)
·
(

1− exp

(
−r ‖k‖

2
2

t
+
r ‖k + v‖22

t

))∣∣∣∣ .
Using the first statement of Lemma 4.4, we obtain for the second factor that

1− exp

(
−r ‖k‖

2
2

t
+
r ‖k + v‖22

t

)
≤ 1− exp

(
−r (2 ‖k‖2 + 1)

t

)
≤ r (2 ‖k‖2 + 1)

t
.

20

Moreover,

‖k + v‖22 ≥ ‖k + v‖2∞ ≥ ‖k/2‖
2
∞ ≥

1

4r
· ‖k‖22,

where the second inequality holds because of ‖k + v‖2∞ ≥ (‖k‖∞ − 1)
2 ≥ (‖k‖∞/2)

2
, since

‖k‖∞ ≥ n1/r/2 ≥ 2 (recall that we assumed that n is large enough such that n1/r/2 ≥ 2).
Hence ∣∣∣∣exp

(
−r ‖k‖

2
2

t

)
− exp

(
−r ‖k + v‖22

t

)∣∣∣∣ ≤ exp

(
−‖k‖

2
2

4t

)
· r (2 ‖k‖2 + 1)

t
.

4.2.2. From the Torus Graph to Zd
We now follow an idea from [14] that relates a random walk on the r-dimensional torus

graph G = (V,E) with n vertices to a random walk on the infinite grid Zr. The (infinite)
transition matrix of a random walk on the infinite grid Zr is given by

Pi,j :=


1

2r+1 if ‖i− j‖1 = 1
1

2r+1 if i = j

0 otherwise.

Note that there is a natural relation between a random walk on the infinite grid Zr and a
random walk on V by projecting the random walk on Zr to the finite set V . To make this more
precise, we define for any vertex (i1, i2, . . . , ir) ∈ V ,

H(i) := (i1 + Z · r
√
n, i2 + Z · r

√
n, . . . , ir + Z · r

√
n) ⊆ Zr.

With Pt
i := Pt

0,i and P
t

i := P
t

0,i, we obtain that

Pt
i =

∑
k∈H(i)

P
t

k. (4.1)

We also record a simple observation that follows from the definition and the fact that all
coordinates of vertices in V are between −(r

√
n− 1)/2 and +(r

√
n− 1)/2.

Observation 4.7. For any i ∈ V and any k ∈ H(i), ‖i‖2 ≤ ‖k‖2.

The reason why the relation given in Equation 4.1 is useful is that P
t

k can be approximated
in terms of a multivariate normal distribution by a local central limit theorem [17]. That is, we
will use an appropriate local central limit theorem to approximate the transition probabilities

P
t

k of Zr with a multivariate normal distribution. To derive the limiting distribution P̃t
k of

our random walk Pi,j , we follow Lawler and Limic [17] and let X = (X1, . . . , Xr) be a Zr-
valued random variable with Pr [X = z] = 1/(2r+ 1) for every vector z with one ±1 and zeros
elsewhere, and Pr [X = 0r] = 1/(2r+1). Observe that E [XjXk] = 0 for j 6= k since not both of
them can be non-zero simultaneously. Moreover, E [XjXj] = 1

(2r+1) (−1)2 + 1
(2r+1) (+1)2 = 2

2r+1

for all 1 ≤ j ≤ r. Hence the covariance matrix is

Γ :=
[

E [XjXk]
]

1≤j,k≤r
= (r + 1/2)−1 · I,

where I is the r × r-identity matrix.
Applying a local central limit from [17] to our setting yields the following:

21

Lemma 4.8 (cf. [17, Theorem 2.3.6] and [17, Eq. 2.2]). For all k, j ∈ Zr and all t ∈ N,∣∣∣(P
t

k+j −P
t

k

)
−
(
P̃t
k+j − P̃t

k

)∣∣∣ = O
(
‖j‖1

t(r+3)/2

)
,

where

P̃t
k :=

1

(2π)r tr/2

∫
Rr

exp

(
i
x · k√
t

)
exp

(
−x · Γx

2

)
drx, (4.2)

where i =
√
−1 denotes the imaginary unit.

The next lemma computes similarly to [14] the integral in Equation 4.2.

Lemma 4.9. With the notation of Lemma 4.8,

P̃t
k =

(
2r + 1

4πt

)r/2
exp

(
−r ‖k‖22

t

)
.

Proof. We calculate

P̃t
k =

1

(2π)r tr/2

∫
Rr

exp

(
i
x · k√
t
− x · Γx

2

)
drx

=
1

(2π)r tr/2

∫
Rr

exp

(
i
x · k√
t
− ‖x‖

2
2

2r + 1

)
drx

=
1

(2π)r tr/2

∫
Rr

exp

(
− 1

2r + 1

(
‖x‖22 − 2i

r + 1/2√
t

x · k
))

drx. (4.3)

To evaluate the integral we complete the square, which yields∫
Rr

exp

(
− 1

2r + 1

(
‖x‖22 − 2i

r + 1/2√
t

x · k
))

drx

=

∫
Rr

exp

(
− 1

2r + 1

(
‖x‖22 − 2i

r + 1/2√
t

x · k − (2r + 1)2

t
‖k‖22 +

(2r + 1)2

t
‖k‖22

))
drx

= exp
(
−r
t
‖k‖22

)∫
Rr

exp

(
− 1

2r + 1

∥∥∥∥x− i
r + 1/2√

t
k

∥∥∥∥2

2

)
drx. (4.4)

By substituting z = x− i r+1/2√
s
k we get

∫
Rr

exp

(
− 1

2r + 1

∥∥∥∥x− i
r + 1/2√

t
k

∥∥∥∥2

2

)
drx

=

∫
Rr

exp

(
− 1

2r + 1

(
‖z‖22

))
drz

=

∫
· · ·
∫
Rr

exp

(
− 1

2r + 1

(
r∑
i=1

z2
i

))
dzr . . . dz1

=

∫
· · ·
∫
Rr−1

exp

(
− 1

2r + 1

(
r−1∑
i=1

z2
i

)) (∫
R

exp

(
− 1

2r + 1
z2
r

)
dzr

)
dzr−1 . . . dz1

22

=
(√

π(2r + 1)
)
·
∫
· · ·
∫
Rr−1

exp

(
− 1

2r + 1

(
r∑
i=1

z2
i

))
dzr−1 . . . dz1

=
(√

π(2r + 1)
)r
. (4.5)

Combining Equations 4.3, 4.4 and 4.5, we get

P̃t
k =

1

(2π)r tr/2
exp

(
−r
t
‖k‖22

) (√
π(2r + 1)

)r
=

(
2r + 1

4πt

)r/2
exp

(
−r ‖k‖22

t

)
,

as stated in the lemma.

4.2.3. Proof of Theorem 4.2

We are now in a position to prove Theorem 4.2.

Proof of Theorem 4.2. Since Υ2(G) ≤ Ψ2(G) by definition, it is sufficient to prove that
(Ψ2(G))2 is upper bounded by a constant. Since the torus graph is vertex-transitive, it suffices
to consider the case k = 0. Hence it suffices to upper bound

∞∑
t=0

∑
[i:j]∈E

(
Pt
i −Pt

j

)2
.

We first split this sum into three parts.

(Ψ2(G))2 =
∑

[i:j]∈E

(
P0
i −P0

j

)2
︸ ︷︷ ︸

=:A

+

κ∑
t=1

∑
[i:j]∈E

(
Pt
i −Pt

j

)2
︸ ︷︷ ︸

=:B

+

∞∑
t=κ+1

∑
[i:j]∈E

(
Pt
i −Pt

j

)2
︸ ︷︷ ︸

=:C

,

where κ := (4 lnn)/(1− λmax) = O(n2/r log n).
Note that A = d = 2r = O(1). To bound C, we use Lemma 2.9 to get C = O(1). Hence it

only remains to consider B. We first rewrite B as follows,

B =
∑

[i:j]∈E

κ∑
t=1

(
Pt
i −Pt

j

)2
=

∑
(i,j)∈

−→
E

κ∑
t=1

(
Pt
i −Pt

j

)2
,

where
−→
E ⊆ V × V is an orientation of the edges E such that for all edges {u, v} ∈ E, either

(u, v) ∈
−→
E or (v, u) ∈

−→
E . In the following, we choose an orientation

−→
E such that for all

(u, v) ∈
−→
E , ‖u‖2 ≤ ‖v‖2. Additionally, it will also be handy to use the following notation,

−→
E 6=0 := {(i, j) ∈

−→
E : ‖i‖2 > 0},

−→
E 0 := {(i, j) ∈

−→
E : ‖i‖2 = 0}.

For each (i, j) ∈
−→
E , we split the inner sum of B at time

σ(i) :=

{
0 if i = 0,
c2·‖i‖22

log2(2‖i‖22)
otherwise,

23

where c is a sufficiently small constant that satisfies 0 < c ≤ 1/r. This gives

B =
∑

(i,j)∈
−→
E

σ(i)∑
t=1

(
Pt
i −Pt

j

)2
︸ ︷︷ ︸

=:B1

+
∑

(i,j)∈
−→
E

κ∑
t=σ(i)+1

(
Pt
i −Pt

j

)2
︸ ︷︷ ︸

=:B2

. (4.6)

Let us first consider B1. For t ≤ σ(i) we use Lawler [16, Lem. 1.5.1(a)] saying that for random
walks on infinite grids, ∑

‖k‖2≥λ
√
t

P
t

k = O(e−λ), (4.7)

for all t > 0 and λ > 0. In particular, this gives

Pt
i =

∑
k∈H(i)

P
t

k ≤
∑

k∈Zr : ‖k‖2≥‖i‖2

P
t

k = O
(
e−‖i‖2/

√
t
)
,

where we have used Observation 4.7 saying that for any k ∈ H(i), ‖i‖2 ≤ ‖k‖2. For any

(i, j) ∈
−→
E we have ‖i‖2 ≤ ‖j‖2 and therefore

Pt
j =

∑
k∈H(j)

P
t

k ≤
∑

k∈Zr : ‖k‖2≥‖j‖2

P
t

k ≤
∑

k∈Zr : ‖k‖2≥‖i‖2

P
t

k = O
(
e−‖i‖2/

√
t
)
.

Hence,

B1 =
∑

(i,j)∈
−→
E

σ(i)∑
t=1

(
Pt
i −Pt

j

)2

≤
∑

(i,j)∈
−→
E 6=0

σ(i)∑
t=1

(
max

{
Pt
i,P

t
j

})2
+

∑
(i,j)∈

−→
E 0

σ(0)∑
t=1

(
max

{
Pt
i,P

t
j

})2

≤
∑

(i,j)∈
−→
E 6=0

σ(i)∑
t=1

O
(

exp(−2 ‖i‖2/
√
t)
)

(since σ(0) = 0)

≤
∑
i∈V6=0

σ(i)∑
t=1

O
(

exp(−2 ‖i‖2/
√
t
)

≤
∑
i∈V6=0

σ(i) · O
(

exp(−2 log(2 ‖i‖22)/c)
)

≤
∑
i∈V6=0

‖i‖22
log2(2 ‖i‖22)

· O
(
‖i‖−4r

2

)
(since c ≤ 1/r)

= O

(∑
i∈V6=0

‖i‖−4r+5/2
2

)
.

Applying Lemma 4.3 on the last term finally gives B1 = O(1).

24

Rewriting the second part B2 of Equation 4.6 yields,

B2 =
∑

(i,j)∈
−→
E

κ∑
t=σ(i)+1

(
Pt
i −Pt

j

)2
=

∑
(i,j)∈

−→
E

κ∑
t=σ(i)+1

(∑
k∈H(i)

P
t

k −
∑

`∈H(j)

P
t

`

)2

=
∑

(i,j)∈
−→
E

κ∑
t=σ(i)+1

(∑
k∈H(i)

(
P
t

k −P
t

k+(j−i)

))2

.

We now define H(i, t) as a subset of H(i) by

H(i, t) :=
{
k ∈ H(i) : ‖k‖∞ ≤ 3 log n ·

√
t
}
⊆ H(i)

and split B2 as follows,

B2 =
∑

(i,j)∈
−→
E

κ∑
t=σ(i)+1

(∑
k∈H(i)\H(i,t)

(
P
t

k −P
t

k+(j−i)
)

+
∑

k∈H(i,t)

(
P
t

k −P
t

k+(j−i)
))2

≤ 2
∑

(i,j)∈
−→
E

κ∑
t=σ(i)+1

(∑
k∈H(i)\H(i,t)

(
P
t

k −P
t

k+(j−i)
))2

︸ ︷︷ ︸
=:B2,1

+ 2
∑

(i,j)∈
−→
E

κ∑
t=σ(i)+1

(∑
k∈H(i,t)

(
P
t

k −P
t

k+(j−i)
))2

︸ ︷︷ ︸
=:B2,2

,

where the last line follows from Lemma 2.2. Recall Equation 4.7 which states that∑
‖k‖2≥λ

√
t P

t

k = O(e−λ) for all t > 0 and λ > 0. This gives∑
k∈H(i)\H(i,t)

P
t

k ≤
∑

k∈Zr : ‖k‖∞≥3 logn·
√
t

P
t

k ≤
∑

k∈Zr : ‖k‖2≥3 logn·
√
t

P
t

k = O(e−3 logn) ≤ n−2.

If ‖k‖∞ ≥ 3 log n ·
√
t, then for any {i, j} ∈ E, ‖k + (j − i)‖∞ ≥ 3 log n ·

√
t− 1. Hence,∑

k∈H(i)\H(i,t)

P
t

k+(j−i) = O(e−3 logn+1/
√
t) ≤ n−2.

This allows us to upper bound B2,1 as follows,

B2,1 =
∑

(i,j)∈
−→
E

κ∑
t=σ(i)+1

(∑
k∈H(i)\H(i,t)

(
P
t

k −P
t

k+(j−i)

))2

≤
∑

(i,j)∈
−→
E

κ∑
t=1

(∑
k∈H(i)\H(i,t)

max
{

P
t

k,P
t

k+(j−i)

})2

25

≤
∑

(i,j)∈
−→
E

κ∑
t=1

(
n−2

)2 ≤ n−4
∑

(i,j)∈
−→
E

κ = n−4O(n · n2/r log n) = o(1).

To bound B2,2, we relate P to the multivariate normal distribution given by P̃ which was
defined in Lemma 4.8. Using the triangle inequality, we obtain that

B2,2 =
∑

(i,j)∈
−→
E

κ∑
t=σ(i)+1

(∑
k∈H(i,t)

(
P
t

k −P
t

k+(j−i)
))2

≤
∑

(i,j)∈
−→
E

κ∑
t=σ(i)+1

 ∑
k∈H(i,t)

∣∣∣(Pt

k −P
t

k+(j−i)
)
−
(
P̃t
k − P̃t

k+(j−i)
)∣∣∣+

∣∣∣P̃t
k − P̃t

k+(j−i)

∣∣∣
2

≤ 2
∑

(i,j)∈
−→
E

κ∑
t=σ(i)+1

 ∑
k∈H(i,t)

∣∣∣(Pt

k −P
t

k+(j−i)
)
−
(
P̃t
k − P̃t

k+(j−i)
)∣∣∣
2

︸ ︷︷ ︸
=:B2,2,1

+

2
∑

(i,j)∈
−→
E

κ∑
t=σ(i)+1

 ∑
k∈H(i,t)

∣∣∣P̃t
k − P̃t

k+(j−i)

∣∣∣
2

︸ ︷︷ ︸
=:B2,2,2

.

Again we bound each part of the sum above separately and start with B2,2,1. By Lemma 4.8,

B2,2,1 =
∑

(i,j)∈
−→
E

κ∑
t=σ(i)+1

 ∑
k∈H(i,t)

∣∣∣(Pt

k −P
t

k+(j−i)
)
−
(
P̃t
k − P̃t

k+(j−i)
)∣∣∣
2

≤
∑

(i,j)∈
−→
E

κ∑
t=σ(i)+1

 ∑
k∈H(i,t)

O
(
t−(r+3)/2

)2

.

Note that the number of vertices in H(i, t) can be bounded by

|H(i, t)| ≤
(⌈

3 log n ·
√
t

n1/r

⌉)r
≤
(

3 log n ·
√
t

n1/r
+ 1

)r
,

since all coordinates of a vertex k ∈ H(i, t) are bounded by 3 log n ·
√
t and additionally, the

difference between a coordinate of k and the respective coordinate of i must be a multiple of
n1/r. Using Lemma 2.2, we can further estimate this by

|H(i, t)| ≤ 2r−1

(
(log n ·

√
t)r

n
+ 1r

)
= O

(
(log n)r tr/2

n
+ 1

)
.

26

Therefore,

B2,2,1 ≤
∑

(i,j)∈
−→
E

κ∑
t=σ(i)+1

(
|H(i, t)| · O

(
t−(r+3)/2

))2

=
∑

(i,j)∈
−→
E

κ∑
t=σ(i)+1

O
(

(log n)2r t−3

n2

)
+

∑
(i,j)∈

−→
E

κ∑
t=σ(i)+1

O
(
t−(r+3)

)
=

(log n)2r

n2

∑
(i,j)∈

−→
E

κ∑
t=σ(i)+1

O
(
t−3
)

+
∑

(i,j)∈
−→
E

κ∑
t=σ(i)+1

O
(
t−(r+3)

)

=
(log n)2r

n2

(∑
(i,j)∈

−→
E 6=0

∞∑
t=σ(i)+1

O
(
t−3
)

+
∑

(i,j)∈
−→
E 0

κ∑
t=σ(i)+1

O
(
t−3
))

+
∑

(i,j)∈
−→
E 6=0

κ∑
t=σ(i)+1

O
(
t−(r+3)

)

=
(log n)2r

n2

(∑
(i,j)∈

−→
E 6=0

O
(

log4(2 ‖i‖22)

‖i‖42

)
+O(1)

)
+

∑
(i,j)∈

−→
E 6=0

O

(
(log(2 ‖i‖22))(2r+4)

‖i‖(2r+4)
2

)

=
(log n)2r

n2

∑
(i,j)∈

−→
E 6=0

O (1) +
∑
i∈V
O
(
‖i‖−2r−3

2

)
= O(1),

where the last line follows from Lemma 4.3.
We continue to bound the remaining part B2,2,2. We first use H(i, t) ⊆ H(i), then apply

Lemma 4.9 twice, and obtain

B2,2,2 ≤
∑

(i,j)∈
−→
E

κ∑
t=σ(i)+1

 ∑
k∈H(i)

∣∣∣P̃t
k − P̃t

k+(j−i)

∣∣∣
2

=
∑

(i,j)∈
−→
E

κ∑
t=σ(i)+1

(
2r + 1

4πt

)r ∑
k∈H(i)

∣∣∣∣exp

(
−r ‖k‖

2
2

t

)
− exp

(
−r ‖k + (j − i)‖22

t

)∣∣∣∣
2

≤
∑

(i,j)∈
−→
E

κ∑
t=σ(i)+1

(
2r + 1

4πt

)r ∑
k∈H(i)

exp

(
−‖k‖

2
2

4t

)
r (2 ‖k‖2 + 1)

t

2

,

where we used Lemma 4.6 in the last line (note that in the case k = i we have ‖i‖22 ≤ ‖j‖22 by

definition of
−→
E and when k ∈ H(i) \ {i}, we have ‖k‖∞ ≥ n1/r/2).

Recalling that H(i) =
{
i+ n1/r p : p ∈ Zd

}
and r−1 ‖p‖1 ≤ ‖p‖2 ≤ ‖p‖1, we obtain

∑
k∈H(i)

exp

(
−‖k‖

2
2

4t

)
r (2 ‖k‖2 + 1)

t

27

=
∑
p∈Zr

exp

(
−‖i+ p n1/r‖22

4t

)
r (2 ‖i+ p n1/r‖2 + 1)

t

≤ 2r ‖i‖2 + 1

t
+
∑
p∈Zr6=0

exp

(
−‖p n

1/r‖22
16tr2

)
r
(
(r + 2) ‖p n1/r‖2 + 1

)
t

where the last inequality follows by using the fourth and third inequality of Lemma 4.4. We
continue to upper bound the last term:

=
2r ‖i‖2 + 1

t
+
∑
p∈Zr6=0

exp

(
−‖p n

1/r‖22
16tr2

)
(r2 + 2r) ‖p n1/r‖2 + r

t

≤ 2r ‖i‖2 + 1

t
+
∑
p∈Zr6=0

exp

(
−‖p n

1/r‖22
16tr2

)
(r2 + 2r) ‖p n1/r‖2 + r ‖p n1/r‖2

t

≤ 2r ‖i‖2 + 1

t
+
∑
p∈Zr6=0

exp

(
−‖p n

1/r‖21
16tr3

)
(r2 + 3r) ‖p n1/r‖1

t

≤ 2r ‖i‖2 + 1

t
+

∞∑
β=1

∑
p∈Zr : ‖p‖1=β

exp

(
−‖p‖

2
1 n

2/r

16tr3

)
4r2 ‖p‖1 n1/r

t

=
2r ‖i‖2 + 1

t
+O

(
n1/r

t

∞∑
β=1

(2β + 1)r−1 exp

(
−β2

/
16tr3

n2/r

)
β

)

=
2r ‖i‖2 + 1

t
+O

(
n1/r

t

∞∑
β=1

exp

(
−β2

/
16tr3

n2/r

)
βr

)
.

By applying Lemma 4.5, the second summand can be upper bounded by

O

n1/r

t

(√
16tr3

n2/r

)r+1
 = O

(
t(r−1)/2 n1/r−1/r (r+1)

)
= O

(
t(r−1)/2 n−1

)
.

Plugging this into our upper bound on B2,2,2, we obtain

B2,2,2 ≤
(

2r + 1

4π

)r ∑
(i,j)∈

−→
E

κ∑
t=σ(i)+1

(
2r + 1

4πt

)r (
O
(
t(r−1)/2 n−1

)
+

2r ‖i‖2 + 1

t

)2

= O

(∑
(i,j)∈

−→
E

κ∑
t=1

t−1 n−2

)
+O

(∑
(i,j)∈

−→
E

κ∑
t=σ(i)+1

‖i‖22 + 1

tr+2

)

= O

(
n−2

∑
(i,j)∈

−→
E

log(κ)

)
+O

(∑
(i,j)∈

−→
E 6=0

∞∑
t=σ(i)+1

‖i‖22 + 1

tr+2

)
+O

(∑
(i,j)∈

−→
E=0

κ∑
t=1

‖i‖22 + 1

tr+2

)

= O(1) +O

(∑
(i,j)∈

−→
E 6=0

‖i‖22 (σ(i))−r−1

)
+O

(
κ∑
t=1

t−r−2

)

28

= O(1) +O

(∑
(i,j)∈

−→
E 6=0

‖i‖22
(

‖i‖22
log2(2‖i‖22)

)−r−1
)

+O(1)

= O(1) +O

(∑
i∈Zr6=0

‖i‖−2r+1/2
2

)
+O(1) = O(1),

where the last inequality is due to Lemma 4.3. This completes the proof.

4.3. Hypercube

Before we can calculate Υ2(G) and Ψ1(G) on the hypercube we state the following result
which can be easily derived from [21].

Lemma 4.10. For the d-dimensional hypercube with n = 2d vertices the following statements
hold.

1. For any edge {i, j} ∈ E, any vertex k ∈ V and any time step ϑ ∈ N,

∞∑
t=ϑ

∣∣Pt
i,k −Pt

j,k

∣∣ =

∣∣∣∣∣
∞∑
t=ϑ

(
Pt
i,k −Pt

j,k

)∣∣∣∣∣ .
2. Let 0 also denote the vertex 0log2 n ∈ V . For any two vertices i, j with {i, j} ∈ E, ‖i‖1 = p

and ‖j‖1 = p+ 1 we have

∞∑
t=0

(
Pt
i,0 −Pt

j,0

)
=

1

n
· log2(n) + 1(

log2 n
p

)
(log2(n)− p)

·
log2 n∑
`=p+1

(
log2 n

`

)
.

Proof. First we show 1). As shown in [6, Lemma 6], it holds for all triples of vertices i, j, k with
dist(i, k) ≤ dist(j, k) that for all time steps t ∈ N, Pt

i,k ≥ Pt
j,k. This immediately implies that

∞∑
t=ϑ

∣∣Pt
i,k −Pt

j,k

∣∣ =

∣∣∣∣∣
∞∑
t=ϑ

(
Pt
i,` −Pt

j,k

)∣∣∣∣∣ .
The second claim is a slight reformulation of [21, Thm. 5] (see also [20, Corollary 3.35]). Note
that in the notation of [20, 21], we have δ = 1 and wu − wv = αn δ

(∑∞
t=0 Mt

0,i −Mt
0,j

)
with

α = 1
log2(n)+1 (M is the same as matrix as P).

Theorem 4.11. For the d-dimensional hypercube G with n = 2d vertices, Υ2(G) =
√
d+O(1).

Note that since Υ2(G) ≥
√
d for any d-regular network, this bound is almost tight.

Proof. First note that since the d-dimensional hypercube is vertex-transitive, it suffices to
consider the case k = 0 = 0log2 n in the definition of Υ2(G). Therefore,

(Υ2(G))2 =
1

2

∑
i∈{0,1}d

∞∑
t=0

max
j∈N(i)

(
Pt
i,0 −Pt

j,0

)2
.

29

Our aim is to prove that (Υ2(G))2 = d+O(1). Using Lemma 2.9, we obtain for κ := (4 lnn)/(1−
λmax) = O(log2 n) that

∑
i∈{0,1}d

∞∑
t=κ+1

max
j∈N(i)

(
Pt
i,0 −Pt

j,0

)2
= O(1).

Furthermore for t = 0, we have ∑
i∈{0,1}d

max
j∈N(i)

(
P0
i,0 −P0

j,0

)2
= 2d.

Hence,

(Υ2(G))2 =
1

2

∑
i∈{0,1}d

κ∑
t=1

max
j∈N(i)

(
Pt
i,0 −Pt

j,0

)2
+ d+O(1)

and it remains to consider only the time steps between 1 and κ in the following.
We now move on to exploit further symmetries of the hypercube. As the hypercube is

distance-transitive [2], we have for any two vertices i, j with ‖i‖1 = ‖j‖1 and for any t ∈ N0,

Pt
i,0 = Pt

j,0. (4.8)

A simple consequence of this fact is that for any vertex i,

Pt
i,0 ≤ 1

/(log2 n

i

)
. (4.9)

To simplify the notation, we also define for p ∈ N with 0 ≤ p ≤ log2 n,

Pt
p,0 := Pt

0p1log2 n−p,0.

We will use the following result from [6].

Lemma 4.12 ([6, Lemma 6]). For any fixed t, Pt
p,0 is decreasing in p (0 ≤ p ≤ log2 n).

Combining Equation 4.9 and Lemma 4.12, we obtain the following lemma.

Lemma 4.13. For any t ∈ N>0, Pt
0,0 ≤ 1

log2 n+1 . Moreover, for any 1 ≤ p ≤ log2(n)/2 and

t ∈ N,

Pt
p,0 ≤

1(
log2 n
p

) ,
and for any log2(n)/2 ≤ p ≤ log2 n,

Pt
p,0 ≤

1(log2 n
log2(n)/2

) .

30

With the notation identifying all vectors i ∈ {0, 1}d with ‖i‖1 = p

∑
i∈{0,1}d

κ∑
t=1

max
j∈N(i)

(
Pt
i,0 −Pt

j,0

)2
=

log2 n∑
p=0

(
log2 n

p

) κ∑
t=1

max
j∈{p−1,p+1}

(
Pt
p,0 −Pt

j,0

)2
≤

log2(n)−1∑
p=1

(
log2 n

p

) (κ∑
t=1

(
Pt
p,0 −Pt

p−1,0

)2
+

κ∑
t=1

(
Pt
p,0 −Pt

p+1,0

)2)

+

κ∑
t=1

(
Pt

1,0 −Pt
0,0

)2
+

κ∑
t=1

(
Pt

log2 n,0
−Pt

log2(n)−1,0

)2

≤
log2(n)−1∑

p=0

((
log2 n

p

)
+

(
log2 n

p+ 1

)) κ∑
t=1

(
Pt
p,0 −Pt

p+1,0

)2
=

log2(n)−1∑
p=0

(
log2 n+ 1

p+ 1

) (κ∑
t=1

(
Pt
p,0 −Pt

p+1,0

))2

.

We split the outer sum in three parts:

log2(n)∑
p=0

(
log2 n+ 1

p+ 1

) (κ∑
t=1

(
Pt
p,0 −Pt

p+1,0

))2

=

5∑
p=0

(
log2 n+ 1

p+ 1

) (κ∑
t=1

(
Pt
p,0 −Pt

p+1,0

))2

︸ ︷︷ ︸
=:B1

+

log2(n)−6∑
p=6

(
log2 n+ 1

p+ 1

) (κ∑
t=1

(
Pt
p,0 −Pt

p+1,0

))2

︸ ︷︷ ︸
=:B2

+

log2(n)∑
p=log2(n)−5

(
log2 n+ 1

p+ 1

) (κ∑
t=1

(
Pt
p,0 −Pt

p+1,0

))2

︸ ︷︷ ︸
=:B3

.

We first consider B2. By using the second statement of Lemma 4.10 and recalling that Pt
p,0 −

Pt,0
p+1 ≥ 0, we can upper bound B2 by

B2 ≤
log2 n−6∑
p=6

(
log2 n+1
p+1

)
(

log2 n
p

)2
(

1

n
· log2(n) + 1

log2(n)− p

log2 n∑
`=p+1

(
log2 n

`

))2

=

log2 n−6∑
p=6

log2 n+ 1

p+ 1

1(
log2 n
p

) (1

n
· log2(n) + 1

log2(n)− p

log2 n∑
`=p+1

(
log2 n

`

))2

31

Using that
∑log2 n
`=p+1

(
log2 n
`

)
≤ n and plugging in the bound 6 ≤ p ≤ log2 n− 6 we can continue

with

≤
log2 n−6∑
p=6

(log2 n+ 1)3

7

1(
log2 n
p

)
=

(log2 n+ 1)3

7

(
log2 n/2∑
p=6

1(
log2 n
p

) +

log2 n−6∑
p=log2 n/2+1

1(
log2 n
p

))

= O(log3 n)

log2(n)/2∑
p=6

1(
log2 n
p

)
≤ O(log3 n)

(√
logn∑
p=6

(
p

log2 n

)p
+

log2(n)/2∑
p=
√

logn

(
p

log2 n

)p)

≤ O(log3 n)

(√
logn∑
p=6

(log2 n)−p/2 +

log2(n)/2∑
p=
√

logn

2−p

)

= O(log3 n) · O
(

1

log3(n)
+ 2−

√
logn

)
= O(1)

To upper bound B3, we use again the second statement of Lemma 4.10 to obtain

B3 ≤
log2 n∑

p=log2 n−5

log2 n+ 1

p+ 1

1(
log2 n
p

)
 1

n
· log2(n) + 1

log2(n)− p

log2 n∑
`=p+1

(
log2 n

`

)2

= o(1),

as 1
n dominates all other factors which are at most polylogarithmic in n.
It remains to upper bound B1. Using Lemma 4.12, we obtain

B1 =

5∑
p=0

(
log2 n+ 1

p+ 1

) κ∑
t=1

(
Pt
p,0 −Pt

p+1,0

)2 ≤ 5∑
p=0

2

(
log2 n+ 1

p+ 1

)
·
κ∑
t=1

(
Pt
p,0

)2
.

We now split the inner sum into two parts: 1 ≤ t ≤ 14, and 15 ≤ t ≤ κ. We first consider the
sum with 1 ≤ t ≤ 14. For bounding the term Pt

p,0, we now use Lemma 4.13 to obtain that

5∑
p=0

2

(
log2 n+ 1

p+ 1

)
·

14∑
t=1

(
Pt
p,0

)2
≤ 2

(
log2 n+ 1

1

)
· 14

(log2 n+ 1)2
+

5∑
p=1

2

(
log2 n+ 1

p+ 1

)
· 14((

log2 n
p

))2

= O(1). (4.10)

For larger time steps t ≥ 15, we examine Pt
p,0 for 0 ≤ p ≤ 5 more closely. Observe that a

random walk that starts from p increases the distance to 0log2 n in step t with probability at

32

least 1 − t+p
log2 n+1 . Moreover, in order to arrive at a vertex q with 0 ≤ q ≤ 5 at step 15, the

random walk can at most 10 times increase the distance to 0log2 n during 15 steps. This implies
that for all 0 ≤ p ≤ 5,

5∑
q=0

P15
p,q ≤

(
15

5

)
·
(

20

log2 n+ 1

)5

= O((log n)−5). (4.11)

Combining Equation 4.11 and Lemma 4.13, we obtain that

κ∑
t=15

(
Pt
p,0

)2 ≤ (κ∑
t=15

Pt
p,0

)2

≤

(
κ∑

t=15

(
5∑
q=0

P15
p,q ·Pt−15

q,0 +

logn∑
q=6

P15
p,q ·Pt−15

q,0

))2

≤

 κ∑
t=15

 5∑
q=0

P15
p,q · 1 +

log(n)/2∑
q=6

1 · 1(
log2 n
q

) +

logn∑
q=log(n)/2+1

1 · 1(log2 n
log2(n)/2

)
2

≤
(
κ ·
(
O((log n)−5) +O((log n)−5)

))2
= O((log n)−6).

Hence we obtain,

5∑
p=0

2

(
log2 n+ 1

p

)
·

κ∑
t=15

(
Pt
p,0

)2 ≤ 5∑
p=0

2

(
log2 n+ 1

p

)
· O
(
(log n)−6

)
= O(1). (4.12)

Combining Equation 4.10 and Equation 4.12, we find that also B3 = O(1), which finishes the
proof.

4.4. Hypercube

In the following we give an exact bound on Ψ1(G).

Theorem 4.14. Let G be a hypercube with n vertices. Then,

Ψ1(G) =
log2(n) + 1

n

log2(n)−1∑
p=0

log2 n∑
`=p+1

(
log2 n

`

)
= Θ(log2 n).

Proof. By symmetry, it suffices to consider k = 0 = 0log2 n for Ψ1(G). By using Lemma 4.10
twice, we get

Ψ1(G) =

∞∑
t=0

∑
[i:j]∈E

∣∣Pt
i,0 −Pt

j,0

∣∣
=

log2(n)−1∑
p=0

∑
{i,j}∈E :

‖i‖1=p, ‖j‖1=p+1

∣∣∣∣∣
∞∑
t=0

(
Pt
i,0 −Pt

j,0

)∣∣∣∣∣

33

=

log2(n)−1∑
p=0

·
∑

{i,j}∈E :
‖i‖1=p,‖j‖1=p+1

1

n
· log2(n) + 1(

log2 n
p

)
(log2(n)− p)

·
log2 n∑
`=p+1

(
log2 n

`

)

=
log2(n) + 1

n

log2(n)−1∑
p=0

log2 n∑
`=p+1

(
log2 n

`

)
, (4.13)

where in the last equality we have used the fact that for any 0 ≤ p ≤ log2(n) − 1, there are(
log2 n
p

)
(log2 n− p) edges {i, j} ∈ E with ‖i‖1 = p and ‖j‖1 = p+ 1. We can upper bound this

term by

Ψ1(G) ≤ log2(n) + 1

n
log2(n) 2log2 n = O(log2 n).

For the lower bound on Equation 4.13,

Ψ1(G) ≥ log2(n) + 1

n

log2(n)/2∑
p=0

log2 n∑
`=log2(n)/2

(
log2 n

`

)
= Ω(log2 n).

As the discrepancy of the RSW algorithm is at most Ψ1(G) after τ(G,K) rounds [23, Cor. 3],
we obtain:

Corollary 4.15. The discrepancy of the RSW algorithm [23] is at most O(log2 n) after
τ(G,K) = O(log(Kn) · log2 n) time steps.

Note that the best possible result from [23, Theorem 4] yields only a weaker bound of
O(log3 n). Our result is tight since d · diam(G) = (log2 n)2 is a simple lower bound.

5. Discussion

We presented a new diffusion-based load-balancing scheme which is very simple and avoids
negative load. We show bounds on the discrepancy for general graphs depending on the local (or
refined local) divergence and the eigenvalue gap of the graph. For (constant-degree) expander
graphs we prove a discrepancy of O(log log n), for hypercubes of O(log n), and for r-dimensional
torus graphs of O(

√
log n).

We also note that our proof techniques are not restricted to the algorithm presented in this
paper. For example an adversarial algorithm where the adversary is allowed to specify the
destinations of the excess tokens could also be analyzed. Adapting the proof of Theorem 1.1
to this algorithm, one can show that the deviation is at most O(dΥ1(G)).

References

[1] N. Alon and B. Sudakov. Bipartite subgraphs and the smallest eigenvalue. Combinatorics,
Probability & Computing, 9(1), 2000.

[2] N. Biggs. Algebraic Graph Theory. Cambridge University Press, 1993.

[3] J. E. Boillat. Load balancing and poisson equation in a graph. Concurrency: Pract. Exper.,
2:289–313, 1990.

34

[4] J. Cooper and J. Spencer. Simulating a random walk with constant error. Combinatorics,
Probability & Computing, 15:815–822, 2006.

[5] G. Cybenko. Load balancing for distributed memory multiprocessors. Journal of Parallel
and Distributed Computing, 7:279–301, 1989.

[6] P. Diaconis, R. Graham, and J. Morrison. Asymptotic analysis of a random walk on a
hypercube with many dimensions. Random Structures and Algorithms, 1:51–72, 1990.

[7] R. Diekmann, A. Frommer, and B. Monien. Efficient Schemes for Nearest Neighbor Load
Balancing. Parallel Computing, 25:789–812, 1999.

[8] B. Doerr and T. Friedrich. Deterministic random walks on the two-dimensional grid.
Combinatorics, Probability & Computing, 18:123–144, 2009.

[9] D. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of Randomized
Algorithms. Cambridge University Press, 2009.

[10] R. Elsässer and B. Monien. Load balancing of unit size tokens and expansion properties
of graphs. In 15th ACM Symposium on Parallel Algorithms and Architectures (SPAA’03),
pages 266–273, 2003.

[11] R. Elsässer and T. Sauerwald. Discrete Load Balancing is (Almost) as Easy as Continuous
Load Balancing. In 29th Annual ACM Principles of Distributed Computing (PODC’10),
pages 346–354, 2010.

[12] R. Elsässer, B. Monien, and S. Schamberger. Distributing unit size workload packages in
heterogeneous networks. Journal of Graph Algorithms and Applications, 10:51–68, 2006.

[13] T. Friedrich and T. Sauerwald. Near-perfect load balancing by randomized rounding. In
41st Annual ACM Symposium on Theory of Computing (STOC’09), pages 121–130, 2009.

[14] T. Friedrich, M. Gairing, and T. Sauerwald. Quasirandom load balancing. SIAM J.
Comput., 41(4):747–771, 2012.

[15] B. Ghosh, F. T. Leighton, B. M. Maggs, S. Muthukrishnan, C. G. Plaxton, R. Rajaraman,
A. W. Richa, R. E. Tarjan, and D. Zuckerman. Tight analyses of two local load balancing
algorithms. SIAM Journal on Computing, 29:29–64, 1999.

[16] G. Lawler. Intersections of random walks. Probability and its Applications. Birkhäuser,
1991.

[17] G. F. Lawler and V. Limic. Random Walk: A Modern Introduction. Cambridge Studies
in Advanced Mathematics. Cambridge University Press, 2010.

[18] L. Lovász. Combinatorial Problems and Exercises. Elsevier North Holland, 1993.

[19] L. Lovász and P. Winkler. Mixing of random walks and other diffusions on a graph. Surveys
in combinatorics, pages 119–154, 1995.

[20] H. Meyerhenke. Disturbed Diffusive Schemes for Solving Partitioning Problems on
Graphs. PhD thesis, University of Paderborn, Germany, 2008. URL http://www2.cs.

uni-paderborn.de/cs/ag-monien/PERSONAL/HENNINGM/pubs.html.

35

[21] H. Meyerhenke and T. Sauerwald. Analyzing Disturbed Diffusion on Networks. In 17th
International Symposium on Algorithms and Computation (ISAAC’06), pages 429–438,
2006.

[22] S. Muthukrishnan, B. Ghosh, and M. H. Schultz. First- and second-order diffusive methods
for rapid, coarse, distributed load balancing. Theory Comput. Syst., 31:331–354, 1998.

[23] Y. Rabani, A. Sinclair, and R. Wanka. Local divergence of Markov chains and the analysis
of iterative load balancing schemes. In 39th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’98), pages 694–705, 1998.

[24] R. Subramanian and I. D. Scherson. An analysis of diffusive load-balancing. In 6th ACM
Symposium on Parallel Algorithms and Architectures (SPAA’94), pages 220–225, 1994.

36

