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Abstract. We consider the problem of determining the topological
structure of a phylogenetic network given only information about the
path-length distances between taxa. In particular, one of the main re-
sults of the paper shows that binary tree-child networks are essentially
determined by such information.

1. Introduction

A core component in the development and analysis of algorithms for re-
constructing phylogenetic (evolutionary) trees has been the mathematical
properties relating the input data to the desired output structure. For ex-
ample the Build algorithm of Aho et al. [?] and its various generalisations
(e.g. [?, ?, ?]) rely on the property that the collection of rooted triples
of a rooted phylogenetic tree T determine the topological structure of T .
Another example is the classical clustering algorithm UPGMA [?], which
relies on the property that the closest pair of leaves in an ultrametric tree (a
rooted phylogenetic tree with branch lengths satisfying a “molecular clock”)
must share a common parent vertex. Understanding these properties, and
under what circumstances they hold, is vital to developing and selecting
accurate algorithms. For example, recognizing the reliance on the ultramet-
ric assumption and that it is too strong for many situations has led to the
widespread use of Neighbor Joining [?] instead of UPGMA to reconstruct
phylogenetic trees from inter-taxa distances. Indeed, Neighbor Joining is
one of numerous distanced-based methods for reconstructing phylogenetic
trees that have been developed and refined. Other methods include Least
Squares [?], BioNJ [?], Minimum Evolution [?], and Balanced Minimum
Evolution [?].

In this paper, we consider the task of reconstructing phylogenetic net-
works, rather than phylogenetic trees, from information about inter-taxa
distances, and what underlying mathematical properties of the data are re-
quired to determine the topological structure of such networks. This turns
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out to be a much more challenging and richer problem than that of recon-
structing phylogenetic trees: a phylogenetic tree is determined uniquely by
its inter-taxa distances, whereas this is not necessarily the case for phyloge-
netic networks (see Fig. ??). The rest of the introduction highlights three
main results and ends with a description of the organisation of the paper.

Throughout the paper, X denotes a non-empty finite set. A rooted phylo-
genetic X-tree T is a rooted tree with no degree-two vertices, except possibly
the root which has degree at least two, and whose leaf set is X. If |X| = 1,
then T consists of the single vertex in X. In addition, T is binary if either
|X| = 1 or the root has degree two and every other interior vertex has de-
gree three. In evolutionary biology, rooted phylogenetic X-trees are used
to represent the ancestral history of a collection X of present-day species.
Here, one assumes that all evolutionary events are tree-like. However, it is
now well-known that, for certain collections, phylogenetic networks rather
than rooted phylogenetic trees provide a more accurate representation of the
ancestral history as they allow for non-tree-like events. Collectively known
as reticulation events, these events include recombination and hybridisation.

A phylogenetic network N on X is directed acyclic graph with the follow-
ing properties:

(i) a unique vertex of in-degree zero called the root, which has out-degree
at least two (except in the case |X| = 1),

(ii) the set X is the set of vertices of out-degree zero, each of which has
in-degree one, and

(iii) every other vertex either has in-degree one and out-degree at least two,
or in-degree at least two and out-degree one.

The vertices of out-degree zero are called leaves, while the vertices of in-
degree one and out-degree at least two are called tree vertices and the vertices
of in-degree at least two and out-degree one are called reticulations. The
arcs directed into a reticulation are called reticulation arcs; all other arcs are
called tree arcs. If |X| = 1, then we also allowN to be the single vertex in X.
In addition, N is binary if either N is a single vertex or the root has degree
two and every other non-leaf vertex has degree three. To illustrate, Fig. ??(i)
shows a binary phylogenetic networkN on X = {x1, x2, x3, x4, x5}, where u3
and u4 are the reticulations of N . Observe that a rooted binary phylogenetic
X-tree is a binary phylogenetic network on X with no reticulations and,
more generally, a rooted phylogenetic X-tree is a phylogenetic network on
X with no reticulations.

Let N be a phylogenetic network on X. For any two vertices u and v in
N that are joined by an arc (u, v), we say u is a parent (or parent vertex ) of
v and, conversely, v is a child (or child vertex ) of u. We say N is a tree-child
network if every non-leaf vertex has a child which is either a tree vertex or
a leaf. The phylogenetic network in Fig. ??(i) is a tree-child network. An
underlying path (respectively, cycle) of N is a path (respectively, cycle) of
the undirected graph containing as undirected edges all arcs of N .
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Figure 1. (i) A binary phylogenetic network N on X =
{x1, x2, x3, x4, x5}, (ii) the binary phylogenetic network N ′
on X ′ = {x1, x2, x3, z} obtained from N by reducing the
cherry {x4, x5} and replacing it with a new leaf z, and (iii) the
phylogenetic network N ′′ on X obtained from N by reducing
the reticulated cherry {x1, x2}.

Given a phylogenetic network N on X, we define the multiset-matrix D of
inter-taxa distances as follows. For any two elements x, y ∈ X, an up-down
path from x to y is an underlying path x, v1, v2, . . . , vk−1, y in N such that,
for some i ≤ k − 1, N contains the arcs

(vi, vi−1), (vi−1, vi−2), . . . , (v1, x)

and

(vi, vi+1), (vi+1, vi+2), . . . , (vk−1, y).

The length of an up-down path is the number of arcs it contains, here k. For
example, in Fig. ??(i), x1, u2, u1, u4, x3 is an up-down path in N from x1 to
x3.

Now let Px,y be the set of distinct up-down paths from x to y in N . The
multiset of distances between x and y, denoted Dx,y, is the multiset of path
lengths in Px,y. Observe that Dx,y = Dy,x for all x, y ∈ X, and Dx,x = {0}
for all x ∈ X. As an example, in Fig. ??(i), it is easily checked that the
multiset of distances between x2 and x3 is {5, 5, 6, 8}. The multiset-matrix
D of N is the |X| by |X| matrix whose (x, y)-th entry is Dx,y. Note that,
when we restrict N to be a rooted phylogenetic X-tree, each Px,y has a
single element and thus D naturally corresponds to the standard matrix of
inter-taxa distances, though technically each entry in our matrix D would
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be a set containing a single integer, rather than simply an integer. If D is
the multiset-matrix of N , we say N realises D.

The first two results we highlight are the next two theorems. The first
theorem concerns tree-child networks, while the second theorem concerns a
subclass of temporal networks.

Theorem 1.1. Let D be a multiset-matrix of distances between elements of
a set X. If there is a binary tree-child network N on X realising D with no
arc joining the two children of the root, then, up to isomorphism, N is the
unique binary phylogenetic network on X realising D, in which case N can
be found in time quadratic in |D|.

Note that we have specifically disallowed an arc between the children of
the root. If the children of the root are u and v and there is an arc (u, v) in
N , then the multiset-matrix of distances realised by N is also realised by the
network N ′ in which the arc (u, v) is deleted and replaced by the arc (v, u).
In this case, N and N ′ are the only two binary phylogenetic networks on X
realising D, and the algorithm presented may easily be adapted to return
both these networks.

To state the second theorem, let N be a binary phylogenetic network on
X. An underlying cycle of N is a crown if it consists entirely of reticulation
arcs. Further, a temporal labelling of N is a labelling t : V (N ) → Z+ of
the vertices of N with positive integers such that if (u, v) is a tree arc, then
t(u) < t(v), and if (u, v) is a reticulation arc, then t(u) = t(v). We say
N is temporal if it admits a temporal labelling. Biologically, the motiva-
tion for this definition is that if a phylogenetic network is temporal, then
it is guaranteed to satisfy two natural timing constraints. The first con-
straint is successively occurring speciation events, and the second constraint
is contemporaneously occurring reticulation events so that such events are
realised by coexisting ancestral species. Note that not every binary phyloge-
netic network is temporal. More particularly, binary tree-child networks are
not necessarily temporal as the binary phylogenetic network in Fig. ??(i)
illustrates, and not all temporal binary phylogenetic networks are binary
tree-child networks. A reticulation v is visible if there is a leaf ` such that
every directed path from the root of N to ` passes through v.

Theorem 1.2. Let D be a multiset-matrix of distances between elements of
a set X, and let N be a temporal binary phylogenetic network on X with no
crowns and in which every reticulation is visible. If N realises D, then, up
to isomorphism, N is the unique binary phylogenetic network on X realising
D, in which case N can be found in time quadratic in |D|.

Theorem ?? shows that, given a multiset-matrix D of distances between
elements of a set X, if there is a binary tree-child network on X realising D,
then, unless the children of the root are joined by an arc, N is the unique
binary phylogenetic network realising D. What if, instead, we are only given
the set, rather than the multiset, of distances between elements of X? Does
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the analogous result hold? The third result we highlight says the answer is
yes for temporal binary tree-child networks.

Let N be a phylogenetic network on X and let x, y ∈ X. The set of
distances between x and y, denoted Dx,y, is the set of lengths of distinct

up-down paths from x to y in N . The set-matrix D of N is the |X| by |X|
matrix whose (x, y)-th entry is Dx,y. If D is the set-matrix of N , we say N
realises D.

Theorem 1.3. Let D be a set-matrix of distances between elements of a set
X. If there is a temporal binary tree-child network N on X realising D,
then, up to isomorphism, N is the unique binary phylogenetic network on
X realising D, in which case N can be found in time quartic in |X|.

Tree-child networks were introduced by Cardona et al. [?]. By way of
comparison with Theorems ?? and ??, let u be a vertex of a phylogenetic
network N on X = {x1, x2, . . . , xn}. For each i ∈ {1, 2, . . . , n}, let pi(u)
denote the number of distinct directed paths from u to xi in N . Further,
let p(u) denote the n-tuple (p1(u), p2(u), . . . , pn(u)). The multiset P of path
n-tuples of N is the multiset {p(u) : u ∈ V (N )}. If P is the multiset of path
n-tuples of N , we say N realises P. The following theorem is established
in [?].

Theorem 1.4 ([?] Theorem 1). Let X be a set of size n and let P be a
multiset of path n-tuples. If N is a tree-child network on X realising P,
then, up to isomorphism, N is the unique tree-child network on X realising
P, in which case N can be found in polynomial time.

Note that, in the statement of Theorem ??, N is not necessarily binary.
However, if N realises P, then it is only guaranteed to be unique within the
class of tree-child networks. For further details, see [?].

Related work on reconstructing phylogenetic networks from inter-taxa
distances has been done by Willson [?, ?]. An arc (u, v) in a rooted phy-
logenetic network N is redundant if there is a directed path from u to v
in N which does not use the arc (u, v). A network in normal, if it is a
tree-child network with no redundant arcs. In [?] it is shown that given
both the network topology and average inter-taxa genetic distances for a
normal network, then individual arc lengths and probabilities at each retic-
ulation vertex can be inferred, which realize these average distances. In [?]
sufficient conditions are given for when the network topology itself may be
inferred from the average inter-taxa genetic distances, and these conditions
are shown to be satisfied whenever the distances arise from a normal network
with a single reticulation cycle. Hence Willson deals with a more complex
and general case (average genetic distances rather than sets of path lengths)
and so achieves more restricted results (handling a single reticulation, rather
than all tree-child networks). For further details, including the definition of
average genetic distance, see [?].
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Throughout the paper, notation and terminology follows Semple and
Steel [?]. The paper is organised as follows. The next section contains some
preliminaries, in particular, the concepts of cherries and reticulated cherries.
In Section ??, we describe an algorithm that is central to the paper. This
algorithm takes as input a multiset-matrix D of distances between elements
in a set X and constructs, if possible, a binary phylogenetic network on
X by recursively looking for values in D yielding cherries and reticulated
cherries. The main result of this section shows that if a binary phylogenetic
network N on X is returned by the algorithm, then N is the unique binary
phylogenetic network on X realising D. In Section ??, we make use of the
results in Section ?? to prove the uniqueness parts of Theorems ?? and ??.
Section ?? consists of the proof of the uniqueness part of Theorem ??. The
running-time parts of Theorems ??, ??, and ?? are established in Section ??.
The paper ends with a brief discussion based around several open problems.

2. Preliminaries

Let N be a binary phylogenetic network on X. A 2-element subset {x, y}
of X is a cherry in N if there is an up-down path of length two between x
and y. Equivalently, {x, y} is a cherry if the parents of x and y are the same.
Note that if there is an up-down path of length two between x and y, then
this is the unique up-down path between x and y. As an example, {x4, x5}
is a cherry in the phylogenetic network shown in Fig. ??(i). Reducing a
cherry {x, y} is the operation of deleting x and y, and their incident arcs,
and labelling their common parent (now itself a leaf) with an element not
in X. Observe that, by reducing a cherry, the number of leaves in the
resulting binary phylogenetic network is reduced by one, but the number
of reticulations is unchanged. In Fig. ??, the binary phylogenetic network
N ′ on X ′ = {x1, x2, x3, z} shown in Fig. ??(ii) has been obtained from the
binary phylogenetic network N on X shown in Fig. ??(i) by reducing the
cherry {x4, x5} and replacing it with a new leaf z.

A two-element subset {x, y} of X is a reticulated cherry in N if there is an
up-down path of length three, say x, v1, v2, y, between x and y with one of v1
and v2 a tree vertex and the other a reticulation vertex. Necessarily, the arc
joining v1 and v2 is directed from the tree vertex to the reticulation. This arc
is referred to as the reticulation arc of the reticulated cherry. The leaf ad-
jacent to the tree vertex is called the tree leaf of the reticulated cherry, and
the leaf adjacent to the reticulation is the reticulation leaf of the reticulated
cherry. Again note that if there is an up-down path of length three as above
between x and y, then it is the unique up-down path of length 3 between
x and y. In Fig. ??(i), {x1, x2} is a reticulated cherry in the phylogenetic
network N . Reducing a reticulated cherry {x, y} is the operation of deleting
the reticulation arc of the reticulated cherry and suppressing the degree-two
vertices resulting from the deletion. Observe that, by reducing a reticulated
cherry, the number of reticulations in the resulting binary phylogenetic net-
work is reduced by one, but the number of leaves and, in particular, the
leaf set, is unchanged. To illustrate, the binary phylogenetic network N ′′
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on X shown in Fig. ??(iii) has been obtained from the binary phylogenetic
network N on X shown in Fig. ??(i) by reducing the reticulated cherry
{x1, x2}.

3. Reconstructing a network from the multiset-matrix of
inter-taxa distances

In this section, we present the algorithm Multiset Cherry Reduction
for reconstructing a binary phylogenetic network from a multiset-matrix of
inter-taxa distances. We also show that, when the algorithm completes, it
correctly constructs the unique binary phylogenetic network realising those
distances. In the next section, we show that it always completes on binary
tree-child networks with no arc joining the children of the root and a certain
subclass of temporal binary phylogenetic networks.

For a set X and a multiset-matrix D of distances on X, Multiset
Cherry Reduction applied to input X and D informally works by re-
cursively finding a pair of elements x, y ∈ X that yields a cherry or a retic-
ulated cherry. After finding such a pair x, y, the algorithm reduces {x, y},
updates X and D, and repeats. Eventually, Multiset Cherry Reduc-
tion either reduces X to a singleton or determines that there is no pair of
leaves yielding a cherry or a reticulated cherry. If the former holds, then
the algorithm works backwards and constructs a binary phylogenetic net-
work on X, in which case, as we shall show, the constructed network is the
unique binary phylogenetic network on X realising D. Formally, Multiset
Cherry Reduction works as follows:

1. If |X| = 1, say X = {x}, then return the unique binary phylogenetic tree
on one leaf x.

2. Else,
(a) If there is a pair x, y ∈ X such that 2 ∈ Dx,y (thereby {x, y} forms a

cherry), then
(i) Reduce the cherry {x, y} by adjusting D as follows. Let z 6∈ X,

and set X ′ = (X − {x, y}) ∪ {z} and D′ to be the multiset-
matrix of inter-taxa distances on X ′ given by D′v,w = Dv,w if
v, w ∈ X − {x, y}, and

D′z,v = D′v,z = {d− 1 : d ∈ Dx,v}

if v ∈ X − {x, y}.
(ii) Reapply Multiset Cherry Reduction to input X ′ and D′.

If a binary phylogenetic network N ′ on X ′ is returned, form N
by reversing the cherry reduction, replacing leaf z with a cherry
{x, y} by attaching pendant children x and y to z. Return the
binary phylogenetic network N on X.

(b) Else,
(i) If there is a pair x, y ∈ X such that 3 ∈ Dx,y, |X| ≥ 3, and

{d + 1 : d ∈ Dy,v} ⊂ Dx,v
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for all v ∈ X −{x, y} (thereby {x, y} forms a reticulated cherry
with x the reticulation leaf), then

(I) For all v ∈ X − {x, y}, let Dy,v = {d1, d2, . . . , dk} and
Dx,v = {d1 + 1, d2 + 1, . . . , dk + 1} ∪ {d′1, d′2, . . . , d′l}. Set
D′ to be the multiset-matrix of inter-taxa distances on X
given by

D′x,v = D′v,x = {d′1 − 1, d′2 − 1, . . . , d′l − 1},

D′y,v = D′v,y = {d1 − 1, d2 − 1, . . . , dk − 1},
D′x,y = D′y,x = {d− 2 : d ∈ Dx,y − {3}},
and

D′v,w = Dv,w

if v, w ∈ X − {x, y}.
(II) Reapply Multiset Cherry Reduction to input X and
D′. If a binary phylogenetic network N ′ on X is returned,
formN by reversing the reticulated cherry reduction, sub-
dividing the arcs to x and y, and adding an arc from the
parent of y to the parent of x. Return the binary phylo-
genetic network N on X.

(ii) Else, there is no such pair of elements in X and return “Network
not found”.

Note that, in the description of Multiset Cherry Reduction, we explic-
itly assume that any network returned by the algorithm applied to a set X
and a multiset-matrix D of distances on X is a binary phylogenetic network
on X. It follows by construction that this is indeed the case.

The next three lemmas establish that the various steps in the algorithm
work. We then combine them to show that, up to isomorphism, when the
algorithm returns a binary phylogenetic network on X, it is the unique
binary phylogenetic network on X that realises the input X and D.

Lemma 3.1. Let N be a binary phylogenetic network on X, and let {x, y}
be a cherry of N . Let D be the multiset-matrix of inter-taxa distances of N .
Let z 6∈ X, and let X ′ = (X −{x, y})∪{z} and D′ be the multiset-matrix of
inter-taxa distances on X ′ given by D′v,w = Dv,w if v, w ∈ X − {x, y}, and

D′z,v = D′v,z = {d− 1 : d ∈ Dx,v}

if v ∈ X − {x, y}. Then D′ is realised by the binary phylogenetic network
N ′ on X ′ obtained from N by reducing the cherry {x, y}, where the new
leaf is labelled z. Moreover, up to isomorphism, if N ′ is the unique binary
phylogenetic network on X ′ realising D′, then, up to isomorphism, N is the
unique binary phylogenetic network on X realising D.

Proof. We begin by first noting that, if we label the parent of x and y in N
by z, and then delete x and y, and their incident arcs, we obtain N ′. Thus,
for all v, w ∈ X−{x, y}, any up-down path in N ′ between v and w does not
pass through z, and so the up-down paths between v and w in N are exactly



DETERMINING PHYLOGENETIC NETWORKS 9

the up-down paths between v and w in N ′. Further, for all v ∈ X − {x, y},
each up-down path between x (respectively, y) and v passes through the
common parent of x and y in N , and corresponds to precisely one up-down
path between z and v in N ′, namely the same up-down path but with (z, x)
(respectively, (z, y)) omitted. Hence the set of up-down paths between x
(respectively, y) and v in N induces a bijection with the set of up-down
paths between z and v in N ′, where each path maps onto a path that is
exactly one arc shorter. Hence D′ is realised by the binary phylogenetic
network N ′ on X ′.

Finally, suppose that, up to isomorphism, N ′ is the unique binary phylo-
genetic network on X ′ realising D′. Let N1 be a binary phylogenetic network
on X that realises D. Since {x, y} is a cherry in N , we have 2 ∈ Dx,y, so
{x, y} is a cherry in N1. By the first part of the lemma, the network N ′1,
obtained from N1 by reducing the cherry {x, y}, also realises D′, and so,
by assumption, N ′1 must be isomorphic to N ′. It now follows that N1 is
isomorphic to N , completing the proof of the lemma. �

Lemma 3.2. Let D be the multiset-matrix of inter-taxa distances on X with
|X| ≥ 3. Suppose there is a pair of elements x, y ∈ X such that 3 ∈ Dx,y

and {d + 1 : d ∈ Dy,v} ⊂ Dx,v for all v ∈ X − {x, y}. If N is a binary
phylogenetic network on X realising D, then {x, y} is a reticulated cherry of
N with x the reticulation leaf.

Proof. Suppose N is a binary phylogenetic network on X realising D. Then
there is an up-down path P of length 3 between x and y in N . Let p and
q be the parents of x and y, respectively, in N . Now P contains the arcs
(q, y) and (p, x), and an arc between q and p. Due to the condition relating
Dx,v and Dy,v for all v ∈ X − {x, y} in the statement of the lemma, it can
only be that the third arc is (q, p). Since q has two child vertices, it must
be a tree vertex. Suppose, for a contradiction, that p is also a tree vertex.
Then, for all v ∈ X −{x, y}, there is a bijection between the set of up-down
paths from y to v and those from x to v. In particular, |Dx,v| = |Dy,v| for
all v ∈ X −{x, y}, contradicting the assumption that {d+ 1 : d ∈ Dy,v} is a
proper subset of Dx,v for all v ∈ X − {x, y}. Hence p is a reticulation, and
the lemma immediately follows. �

Lemma 3.3. Let N be a binary phylogenetic network on X with |X| ≥ 3,
and let {x, y} be a reticulated cherry of N with x the reticulation leaf. Let
D be the multiset-matrix of inter-taxa distances of N . Then the following
hold:

(i) Let v ∈ X − {x, y}. If Dy,v = {d1, d2, . . . , dk}, then

Dx,v = {d1 + 1, d2 + 1, . . . , dk + 1} ∪ {d′1, d′2, . . . , d′l},

where the elements in the first set correspond to the lengths of up-down
paths between x and v that make use of the reticulation arc of the
reticulated cherry {x, y}, and the elements in the second set correspond
to the lengths of up-down paths between x and v that make use of the
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arc incident with the parent of x that is not the reticulation arc of
{x, y}.

(ii) Let D′ be the multiset-matrix of inter-taxa distances on X given by

D′x,v = D′v,x = {d′1 − 1, d′2 − 1, . . . , d′l − 1}
and

D′y,v = D′v,y = {d1 − 1, d2 − 1, . . . , dk − 1}
if v ∈ X − {x, y},

D′x,y = D′y,x = {d− 2 : d ∈ Dx,y − {3}},

and D′v,w = Dv,w if v, w ∈ X − {x, y}. Then D′ is realised by the
binary phylogenetic network N ′ on X obtained from N by reducing the
reticulated cherry {x, y}.

(iii) If, up to isomorphism, N ′ is the unique binary phylogenetic network
on X realising D′, then, up to isomorphism, N is the unique binary
phylogenetic network on X realising D.

Proof. Let p and q be the parents of x and y, respectively, in N . Since q is
a tree vertex, it has a unique parent q′ and, since p is a reticulation vertex,
it has a parent p′ additional to q. The reduction of the reticulated cherry
{x, y} involves removing the arc (q, p) and suppressing the resulting degree-
two vertices q and p. Intuitively, we delete q and p, and their incident arcs,
and introduce arcs (q′, y) and (p′, x). Part (i) of the lemma follows easily
from the definitions by noting that every up-down path P from x to a leaf
v ∈ X − {x, y} does exactly one of the following: either passes through q,
in which case we could remove the two arcs (q, p) and (p, x) from P , and
replace them with the arc (q, y) to obtain an up-down path from y to v that
is one arc shorter than P , or it does not pass through q, in which case it
uses the arc (p′, p).

For (ii), first note that any up-down path between a pair of vertices in
N that uses the reticulation arc of the reticulated cherry {x, y} is a path
between x and some other leaf. Consider first the up-down paths between
x and y in N . The only up-down path between x and y that uses the
reticulation arc of the reticulated cherry {x, y} is the unique up-down path
of length 3 between x and y. All other up-down paths between x and y are
preserved in the reduction of the reticulated cherry {x, y}, although their
lengths are shortened by 2 as the vertices q and p are suppressed.

Now consider the up-down paths between x and v in N , where v ∈ X −
{x, y}. The up-down paths present in N but not N ′ between x and v are
precisely those that use (q, p). All remaining up-down paths between x and v
each have their length reduced by 1 following the reduction of the reticulated
cherry {x, y} as the vertex p is suppressed. It is now easily checked that D′
is realised by N ′.

Finally, for (iii), suppose N ′ is the unique binary phylogenetic network on
X realising D′, and let N1 be a binary phylogenetic network on X realising
D. By Lemma ??, {x, y} is a reticulated cherry in N1. Furthermore, by (ii),
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the binary phylogenetic network N ′1 on X obtained from N1 by reducing
the reticulated cherry {x, y} also realises D′. Therefore, by the assumption
in the statement, N ′1 is isomorphic to N ′. It is now easily seen that N1 is
isomorphic to N . �

Theorem 3.4. Let D be a multiset-matrix of inter-taxa distances on X.
If Multiset Cherry Reduction applied to X and D returns a binary
phylogenetic network N on X, then, up to isomorphism, N is the unique
binary phylogenetic network on X that realises D.

Proof. Suppose that Multiset Cherry-Reduction applied to X and D
returns a binary phylogenetic network N on X. The proof is by induction
on the sum of the number n of leaves and the number r of reticulations in N .
The base case is when this sum is 1, in which case N has one leave and zero
reticulations. Up to isomorphism, there is only one binary phylogenetic
network on X with these parameters, which is the unique rooted binary
phylogenetic tree on one leaf, and it is correctly returned by the algorithm.
Now suppose that N has n leaves and r reticulations, where n + r ≥ 2.
The inductive hypothesis is that, for any multiset-matrix D′ of inter-taxa
distances on a set X ′, if Multiset Cherry Reduction applied to X ′ and
D′ returns a binary phylogenetic network N ′ on X ′ with n′ leaves and r′

reticulations such that 1 ≤ n′ + r′ < n + r, then, up to isomorphism, N ′ is
the unique binary phylogenetic network on X ′ that realises D′.

Consider the run of the algorithm on input X and D. Since it returns
a binary phylogenetic network on X, the first iteration finds either (i) a
pair of elements x, y ∈ X at distance 2 in D, or (ii) no pair of elements in
X at distance 2 in D, but a pair x, y ∈ X such that 3 ∈ Dx,y, |X| ≥ 3,
and {d + 1 : d ∈ Dy,v} ⊂ Dx,v for all v ∈ X − {x, y}. If (i) occurs in
the first iteration, let X ′ = (X − {x, y}) ∪ {z}, where z 6∈ X is the new
element replacing the cherry {x, y}, and set D′ to be the multiset-matrix of
inter-taxa distances on X ′ given by D′v,w = Dv,w if v, w ∈ X − {x, y}, and

D′z,v = D′v,z = {d− 1 : d ∈ Dx,v}

if v ∈ X −{x, y}. After the first iteration, Multiset Cherry Reduction
is recursively applied to X ′ and D′, and eventually constructs a binary phy-
logenetic network N ′ on X ′. Since n′ < n and, by construction, r′ = r,
it follows by the inductive hypothesis that, up to isomorphism, N ′ is the
unique binary phylogenetic network on X ′ realising D′. By Lemma ??, N ,
which the algorithm constructs from N ′ by replacing the leaf z with the
cherry {x, y}, is the unique binary phylogenetic network on X realising D
up to isomorphism.

We may now assume that (ii) occurs. Let D′ be the multiset-matrix of
inter-taxa distances on X as given in the statement of Lemma ??(ii). After
the first iteration, Multiset Cherry Reduction is recursively applied to
X and D′, and constructs a binary phylogenetic network N ′ on X with r′

reticulations. Finally, the algorithm constructs N from N ′ by subdividing
the pendant arcs incident with the leaves x and y, and adding an arc from
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the parent of y to the parent of x. Since this creates a new reticulation,
r′ < r. As n′ = n, it follows by the inductive hypothesis that, up to
isomorphism, N ′ is the unique binary phylogenetic network on X realising
D′. By Lemmas ?? and ??, up to isomorphism, N is the unique binary
phylogenetic network on X realising D. This completes the proof of the
theorem. �

4. Tree-child networks

In this section, we prove the uniqueness parts of Theorems ?? and ??.
For an arbitrary phylogenetic network on X, a non-leaf vertex u has the
tree-child property if it has a child that is either a tree vertex or a leaf. With
this definition, a phylogenetic network on X is a tree-child network if each
non-leaf vertex has the tree-child property. We begin with the following
lemma.

Lemma 4.1. Let N be a binary tree-child network on X. Then the following
hold:

(i) If |X| ≥ 2, then N contains either a cherry or a reticulated cherry.
(ii) If N ′ is obtained from N by reducing either a cherry or a reticulated

cherry, then N ′ is a binary tree-child network.

Proof. To prove (i), suppose that |X| ≥ 2 and N does not contain a cherry.
Since all rooted binary phylogenetic X-trees with |X| ≥ 2 contain a cherry,
it follows that N has a reticulation. Let v be a reticulation in N such that
amongst all reticulations it is at maximum distance from the root; thus a
longest directed path P from the root to v is a maximum length directed
path from the root to any reticulation in N . Let u1 and u2 denote the
parent vertices of v. If ui is a reticulation for some i ∈ {1, 2}, then, as v is
a reticulation and the only child of ui (since N is binary), it follows that ui
does not have the tree-child property; a contradiction. Thus both u1 and
u2 are tree vertices. Now P passes through either u1 or u2. Without loss of
generality, we may assume it passes through u1. Let the child vertex of u1
that is not v be w. Note that w is a tree vertex or a leaf; otherwise, u1 does
not have the tree-child property. By the maximality of P , no reticulations
can be reached by a directed path from either v or w. Intuitively, this
implies that the structures below v and below w are tree-like. If two or
more leaves are reachable from v via a directed path, then N contains a
cherry; a contradiction. So the only vertex reachable from v is a single leaf,
x say. A similar argument shows that w itself is a leaf. Thus {x,w} is a
reticulated cherry in N with x the reticulation leaf. This establishes (i).

For the proof of (ii), let N ′ be obtained from N by reducing either a
cherry or a reticulated cherry. Consider some non-leaf vertex u′ in N ′, and
let u denote the corresponding non-leaf vertex in N . Since N is a tree-child
network, u has a child vertex w in N which is either a tree vertex or a leaf.
First assume we reduced a cherry {x, y} to create N ′. Let z 6∈ X denote the
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leaf in N ′ that replaces the cherry {x, y}. Then either u′ is the parent of z in
N ′ and the vertex corresponding to w in N ′ is z (hence a leaf) or the vertex
corresponding to w in N ′ is unchanged and therefore still a tree-vertex or
a leaf in N ′ after the reduction. In both cases, N ′ is a binary tree-child
network. Now assume we reduced a reticulated cherry {x, y} with x the
reticulation leaf to create N ′. Then either u′ is the parent of x or y in N ′,
or the vertex corresponding to w in N ′ is unchanged and still a tree-vertex
or a leaf after the reduction. Regardless, N ′ is a binary tree-child network,
thereby establishing (ii). �

Proposition 4.2. Let N be a binary tree-child network on X with no arc
joining the children of the root, and let D be the multiset-matrix of inter-taxa
distances of N . Then Multiset Cherry Reduction applied to X and D
returns N , up to isomorphism.

Proof. If |X| = 1, then there is only one possible binary tree-child network
on X, and this is the unique binary phylogenetic network consisting of the
vertex in X, in which case it is correctly returned by the algorithm. Using
this as the base case, a simple induction argument in combination with
Lemmas ??, ??, and ?? proves the proposition. �

Combining Theorem ?? and Proposition ?? establishes the uniqueness
part of Theorem ??. We next prove the uniqueness part of Theorem ??.

Lemma 4.3. Let N be a temporal binary phylogenetic network on X with
no crowns and in which every reticulation is visible. Then the following
hold:

(i) If |X| ≥ 2, N contains either a cherry or a reticulate cherry.
(ii) If N ′ is obtained from N by reducing either a cherry or a reticulated

cherry, then N ′ is a temporal binary phylogenetic network with no
crowns and in which every reticulation is visible.

Proof. Let t be a temporal labelling of N . For the proof of (i), let v be a
reticulation of N that maximises t(v). Starting at v construct a maximal
underlying path P consisting entirely of reticulation arcs. Since each retic-
ulation is visible, the child vertex of every reticulation in N is a tree vertex
or a leaf, and so P alternates between following arcs against the direction
and with the direction. Furthermore, as N has no crowns, this path even-
tually terminates at each end at a tree vertex, u say, with one child u1 of
u a tree vertex or a leaf and the other child u2 a reticulation in P . Since
t(u1) > t(u) = t(v), it follows by the maximality of t(v) that no reticulation
can be reached from u1, that is there is no directed path starting at u1 and
ending at a reticulation. Moreover, as t(u2) = t(u) = t(v), no reticulation
can be reached from u2 except for u2 itself. If two or more leaves can be
reached from u1, or two or more leaves can be reached from u2, then N
contains a cherry. Therefore we may assume that u1 itself is a leaf and the
child vertex of u2, say x, is a leaf. But then {x, u1} is a reticulated cherry
of N with x the reticulation leaf, completing the proof of (i).
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To prove (ii), let N ′ be a binary phylogenetic network obtained from N
by reducing either a cherry or a reticulated cherry, {x, y} say. First assume
that {x, y} is a cherry, and N ′ is obtained by reducing {x, y} and replacing
it with a leaf z 6∈ X. Let t′ : V (N ′) → Z+ be the labelling obtained from
t by setting t′(u′) = t(u), where u is the vertex of N corresponding to u′

if u′ 6= z, and t′(z) = t(p), where p is the parent of x and y in N . Since
t is a temporal labelling of N , it follows that t′ is a temporal labelling of
N . Furthermore, it is easily checked that, as N has no crowns and each
reticulation is visible, N ′ has no crowns and each reticulation is visible.

Now assume that {x, y} is a reticulated cherry with x the reticulation
leaf. Let t′ : V (N ′) → Z+ be the labelling obtained from t by setting
t′(u′) = t(u), where u is the vertex of N corresponding to u′. Noting that
t(x) > t(p) and t(y) > t(q), where p and q are the unique parents of x and
y in N , respectively, it follows that t′ is a temporal labelling of N ′. Also,
since deleting a reticulation arc keeps the property of having no crowns and
each reticulation being visible, N ′ has no crowns and each reticulation is
visible. This completes the proof of (ii). �

A simple induction argument in combination with Lemmas ??, ??, and ??
establishes the following proposition.

Proposition 4.4. Let N be a temporal binary phylogenetic network on X
with no crowns and in which every reticulation is visible. Then Multiset
Cherry Reduction applied to X and D returns N up to isomorphism.

The uniqueness part of Theorem ?? now follows from Theorem ?? and
Proposition ??.

5. Temporal tree-child networks

This section consists of the proof of the uniqueness part of Theorem ??.
The overall approach is similar to that used to prove the analogous parts of
Theorems ?? and ?? but, instead of working with multisets, we are working
with sets. We begin with three lemmas.

Let N be a binary phylogenetic network on X. A triple (x, y, z) of distinct
elements of X is a double-reticulated cherry if both {x, y} and {x, z} are
reticulated cherries of N , in which case, necessarily, x is the reticulation leaf
for both {x, y} and {x, z}. To illustrate, (x3, x2, x4) is a double-reticulated
cherry of the binary phylogenetic network N on {x1, x2, x3, x4, x5} shown in
Fig. ??.

Lemma 5.1. Let N be a temporal binary tree-child network on X. Then
the following hold:

(i) If |X| ≥ 2, then N contains either a cherry or a double-reticulated
cherry.
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x1 x2 x5

N

x3 x4

Figure 2. A binary phylogenetic network N on
{x1, x2, x3, x4, x5} with a double-reticulated cherry
(x3, x2, x4).

(ii) If N ′ is obtained from N by reducing either a cherry or a reticulated
cherry, then N ′ is a temporal binary tree-child network.

Proof. To prove (i), let t be a temporal labelling of N , and suppose that
|X| ≥ 2 and N has no cherries. Then N has a reticulation. Let v be a
reticulation in N that maximises t(v). Let u1 and u2 be the parents of v.
Furthermore, let y and z be the child of u1 and u2, respectively, that is
not v. Since each of u1 and u2 has the tree-child property, y and z exist.
Now t(y) > t(u1) = t(v) and t(z) > t(u2) = t(v). Therefore, as N has no
cherries, it follows by the maximality of t(v) that both y and z are leaves.
A similar argument shows that the unique child of v, say x, is also a leaf.
Hence (x, y, z) is a double-reticulated cherry, completing the proof of (i).

For the proof of (ii), first note that, as each non-leaf vertex in N has the
tree-child property, N has no crowns and every reticulation is visible. Thus,
by combining Lemmas ??(ii) and ??(ii), we deduce (ii). �

Lemma 5.2. Let D be the set-matrix of inter-taxa distances on X. Suppose
that there are distinct elements x, y, z ∈ X with the following properties:

(i) 3 ∈ Dx,y and 3 ∈ Dx,z,

(ii) {d + 1 : d ∈ Dy,v} ⊆ Dx,v for all v ∈ X − {x, y}, and

(iii) {d + 1 : d ∈ Dz,v} ⊆ Dx,v for all v ∈ X − {x, z}.

If N is a binary phylogenetic network on X realising D, then (x, y, z) is a
double-reticulated cherry of N .

Proof. Suppose N is a binary phylogenetic network on X realising D. Then
there are up-down paths P1 and P2 of length 3 between x and y, and between
x and z, respectively. If p denotes the parent of x, and q1 and q2 denote the
parents of y and z, respectively, then P1 contains (q1, y) and (p, x), and P2

contains (q2, z) and (p, x). As x, y, z satisfy (ii) and (iii) in the statement of
the lemma, P1 must contain (q1, p) and P2 must contain (q2, p). Thus p is
a reticulation, and it follows that (x, y, z) is a double-reticulated cherry of
N . �
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The proof of the next lemma is similar to the proofs of Lemmas ??
and ??, and omitted. However, we note that Lemma ?? is used to prove
Lemma ??(ii) in the analogous way that Lemma ?? was used to prove
Lemma ??.

Lemma 5.3. Let N be a binary phylogenetic network on X, and let D be
the set-matrix of inter-taxa distances of N . Then the following hold:

(i) Let {x, y} be a cherry of N and let z 6∈ X. Let X ′ = (X−{x, y})∪{z},
and let D′ be the set-matrix of inter-taxa distances on X ′ given by

Dv,w
′
= Dv,w if v, w ∈ X − {x, y}, and

Dz,v
′
= Dv,z

′
= {d− 1 : d ∈ Dx,v}

if v ∈ X − {x, y}. Then D′ is realised by the binary phylogenetic
network N ′ on X ′ obtained from N by reducing the cherry {x, y}, where
the new leaf is labelled z. Moreover, if, up to isomorphism, N ′ is

the unique binary phylogenetic network on X ′ realising D′, then, up
to isomorphism, N is the unique binary phylogenetic network on X
realising D.

(ii) Let (x, y, z) be a double-reticulated cherry of N . Let D′ be the set-
matrix of inter-taxa distances on X given by

Dx,v
′
= Dv,x

′
= {d : d ∈ Dz,v}

and

Dy,v
′
= Dv,y

′
= {d− 1 : d ∈ Dy,v}

if v ∈ X − {x, y, z},

Dx,y
′
= Dy,x

′
= {d− 2 : d ∈ Dx,y − {3}},

Dy,z
′
= Dz,y

′
= {d− 1 : d ∈ Dy,z},

Dx,z
′
= Dz,x

′
= {2}

and Dv,w
′

= Dv,w if v, w ∈ X − {x, y, z}. Then D′ is realised by the
binary phylogenetic network N ′ on X obtained from N by reducing
the reticulated cherry {x, y}. Moreover, if, up to isomorphism, N ′ is

the unique binary phylogenetic network on X realising D′, then, up
to isomorphism, N is the unique binary phylogenetic network on X
realising D.

We next present an algorithm, called Set Cherry Reduction, that
plays the role of Multiset Cherry Reduction for the results in the
previous two sections. The input to Set Cherry Reduction is a set-
matrix D of inter-taxa distances on a set X. Furthermore, its description
is the same as that for Multiset Cherry Reduction except that any
multiset is replaced by its set counterpart, and Step 2.(b) is replaced with
the following:

2.(b) Else,
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(i) If there are distinct elements x, y, z ∈ X such that 3 ∈ Dx,y,

3 ∈ Dx,z,

{d + 1 : d ∈ Dy,v} ⊆ Dx,v

for all v ∈ X − {x, y}, and

{d + 1 : d ∈ Dz,v} ⊆ Dx,v

for all v ∈ X−{x, z}, thereby (x, y, z) forms a double-reticulated
cherry, then

(I) Set D′ to be the set-matrix of inter-taxa distances on X
given by

Dx,v
′
= Dv,x

′
= {d : d ∈ Dz,v}

and

Dy,v
′
= Dv,y

′
= {d− 1 : d ∈ Dy,v

′}
if v ∈ X − {x, y, z},

Dx,y
′
= Dy,x

′
= {d− 2 : d ∈ Dx,y − {3}},

Dy,z
′
= Dz,y

′
= {d− 1 : d ∈ Dy,z},

Dx,z
′
= Dz,x

′
= {2},

and

Dv,w
′
= Dv,w

if v, w ∈ X − {x, y, z}.
(II) Reapply Set Cherry Reduction to input X and D′. If a

binary phylogenetic network N ′ on X is returned, form N
by reversing the reticulated cherry reduction, subdividing
the arcs to x and y, and adding an arc from the parent
of y to the parent of x. Return the binary phylogenetic
network N on X.

(ii) Else, there is no such three elements in X and return “Network
not found”.

The proof of the next theorem is similar to that of Theorem ?? but,
instead of using Lemmas ??, ??, and ??, it uses Lemmas ?? and ??. It is
worth noting that the crucial point here is that when we reduce a cherry,
or reduce a reticulated cherry that is part of a double-reticulated cherry in

a binary phylogenetic network N , the set-matrix D′ of inter-taxa distances
of the resulting binary phylogenetic network N ′ is recoverable from D, the
set-matrix of inter-taxa distances of N .

Theorem 5.4. Let D be a set-matrix of inter-taxa distances on a set X. If
Set Cherry Reduction applied to X and D returns a network N , then,
up to isomorphism, N is the unique binary phylogenetic network on X that
realises D.

A simple induction together with Lemmas ?? and ?? establishes the fol-
lowing proposition.
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Proposition 5.5. Let N be a temporal binary tree-child network on X and
let D be the set-matrix of inter-taxa distances of N . Then Set Cherry
Reduction applied to X and D returns N , up to isomorphism.

The proof of Theorem ?? now follows by combining Theorem ?? and
Proposition ??.

6. Running times

In this section, we analyse the running times of Multiset Cherry Re-
duction and Set Cherry Reduction, thereby establishing the running-
time parts of Theorems ??, ??, and ??. The input is a set X and a multiset-
matrix D (respectively, set-matrix D) of inter-taxa distances on X. We
iteratively search through the input for a cherry or reticulated cherry (re-
spectively, double-reticulated cherry), and then either recurse or end the
algorithm. We will show that there are at most |D| (respectively, |D|) itera-
tions with each iteration taking at most O(|D|) (respectively, O(|D|)) steps.
Hence both algorithms run in time quadratic in their input size. Moreover,
we will show that if Set Cherry Reduction is applied to an input realised
by a temporal binary tree-child network N on X, then, up to isomorphism,
N is found in time O(|X|4).

6.1. Multiset Cherry Reduction. The algorithm Multiset Cherry
Reduction takes as input a set X, and a |X| by |X| multiset-matrix D
of inter-taxa distances on X. For all x, y ∈ X, we will assume that each
entry Dx,y is presented as a sorted list of distances. Each step involves
searching the entries in D for an element 2, or an element 3 with additional
conditions. Since any 2 will be the smallest element in its entry, and any 3
will be the smallest element in its entry if there is no 2, we can find every 2
or candidate 3 in O(|X|2) steps. Checking the additional conditions on a 3
involves comparing the multisets in two columns of D, which may be done
in time O(|D|). Therefore identifying any cherries or reticulated cherries, or
deciding there are none can be done in time O(|X|2|D|) = O(|D|2). However,
if X and D arises from a binary phylogenetic network N on X, then, as any
leaf x in N can be at distance 3 from at most two other leaves, any column
of D has at most two entries containing a 3, and thus each column will be
compared with at most two other columns. Using this knowledge, we can
find and check all candidate 3’s, or reject the input as not being realised by
a binary phylogenetic network on X in time O(|X|2 + |D|) = O(|D|).

If a 2 or suitable 3 is found in some entry, we compute D′, as in the
description of Multiset Cherry Reduction, and this can be done in
O(|D|) time. Furthermore, if a binary phylogenetic network N ′ is returned,
then it can augmented toN in constant time. Thus the whole iteration takes
time linear in |D|. If we recurse, then the multiset-matrix D′ passed to the
recursive call is strictly smaller than the current input since we have either
reduced a cherry, and thereby D′ has one less row and column, or reduced a
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reticulated cherry, and thereby removed at least one element, namely 3, from
an entry in D. Thus the total number of iterations is at most |D|, and so
the algorithm completes in time O(|D|2). This establishes the running-time
parts of Theorem ?? and ??.

Lastly, we note that D can be very much larger than X. The number of
distinct up-down paths between two leaves in a binary phylogenetic network
on X, or even a binary tree-child network on X, can be exponential in the
number of vertices in the network. Although we might locate a pair of
elements at distance 2, or a pair of elements at distance 3 in time polynomial
in |X|2, checking whether a pair of elements at distance 3 form a reticulated
cherry may involve a number of individual checks that is exponential in |X|.

6.2. Set Cherry Reduction. The algorithm Set Cherry Reduction
takes as input a set X, and a |X| by |X| set-matrix D of inter-taxa distances
on X, and its analysis is almost the same as that for Multiset Cherry
Reduction. The only step that is significantly different is that we must
check for a double-reticulated cherry in D. However, we can again use the
observation above. In particular, if we find more than two entries containing
a 3 in a single column of D, we can reject the input as not being realised by a
binary phylogenetic network on X. Therefore, each column of D is involved
in a constant number of checks for being part of a double-reticulated cherry,
and so we can find a cherry or double-reticulated cherry in time O(|D|).

As for Multiset Cherry Reduction, the reduction and augmentation
steps are easily implemented in time linear in |D|, and the number of iter-
ations is again bounded by |D|, so the whole algorithm completes in time
O(|D|2). However, since we are dealing now with sets, rather than multi-
sets, of distances, we are also able to bound D in terms of the size of the
outputted binary phylogenetic network on X if that is what is finally re-
turned by the algorithm. Suppose Set Cherry Reduction applied to X
and D returns such a network N . Let |N | denote the number of edges in
N . Then the maximum distance between any two leaves is bounded by |N |,
and so each entry in D is a set of size at most N . Thus

|D| ≤ |X|2|N | ≤ |N |3.
This gives a running-time bound for Set Cherry Reduction of O(|N |4)
since, in each iteration, we effectively reduce the number of edges in N
by at least one, and so there are no more than N iterations, each taking
time O(|D|). Lastly, if N is a binary tree-child network on X, then N
has O(|X|) edges [?, Proposition 1], in which case the running time of Set
Cherry Reduction applied to X and D is O(|X|4). This establishes the
running-time part of Theorem ??.

7. Open problems

In this section, we raise several questions relating to the work presented
in the paper.
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x1

x2

x3

N1

Figure 3. A binary phylogenetic network N1 on {x1, x2, x3}
that is neither tree-child nor has the property that every
reticulation is visible.

Question 1. What is the class M of binary phylogenetic networks that, up
to isomorphism, are uniquely determined by their multiset-matrix of inter-
taxa distances? Theorems ?? and ?? show that M contains all binary
tree-child networks, and all temporal binary phylogenetic networks with no
crowns and in which every reticulation is visible. However, M is strictly
bigger than the union of these two classes. For example, consider the binary
phylogenetic network N1 on {x1, x2, x3} shown in Fig. ??. Let D1 be the
multiset-matrix of inter-taxa distances of N1. It is easily checked that when
Multiset Cherry Reduction is applied to {x1, x2, x3} and D1, the algo-
rithm completes and so, by Theorem ??, N1 is in M. But N1 is neither a
tree-child network nor has the property that every reticulation is visible.

We also note that M is not the class of all binary phylogenetic networks
as the following example illustrates. Let N2 and N3 denote the binary phy-
logenetic networks on {x1, x2, x3, x4, y} shown in Fig. ??(i) and Fig. ??(ii),
respectively. The multiset-matrices D2 and D3 of inter-taxa distances of N2

and N3 have exactly the same entries, namely

Dx1,x2 = {4, 6, 9, 9},
Dx1,x3 = {6, 6, 9, 9},
Dx1,x4 = {4, 6, 9, 9},
Dx1,y = {5, 6},
Dx2,x3 = {4, 6, 9, 9},
Dx2,x4 = {6, 6, 9, 9},
Dx2,y = {5, 6},
Dx3,x4 = {4, 6, 9, 9},
Dx3,y = {5, 6},
Dx4,y = {5, 6}.

But N2 is not isomorphic to N3.
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x1 x2 x3 x4

(i) N2
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x1 x2 x3 x4

(ii) N3

y

Figure 4. Two non-isomorphic binary phylogenetic net-
works N2 and N3 on {x1, x2, x3, x4, y} with the same
multiset-matrix of inter-taxa distances on {x1, x2, x3, x4, y}.

Question 2. What is the class of binary phylogenetic networks that, up to
isomorphism, are correctly reconstructed when Multiset Cherry Reduc-
tion is applied to their multiset-matrix of inter-taxa distances? Again, as
the binary phylogenetic network N1 in Fig. ?? shows, this class is strictly
bigger than the union of the class of binary tree-child networks and the class
of temporal binary phylogenetic networks with no crowns and in which every
reticulation is visible. This prompts the next question.

Question 3. Can Multiset Cherry Reduction applied to a set X and a
multiset-matrix D of inter-taxa distances on X be extended to allow networks
which exhibit neither a cherry nor a reticulated cherry, i.e. with a minimum
distance of 4 between elements of X? Of course, one also wants the property
that if the extended algorithm returns a binary phylogenetic network N on
X, then, up to isomorphism, N is the unique binary phylogenetic network
on X that realises D.

Questions 1–3 are posed in the context of multiset-matrices. However,
given the results in Section ??, the analogous questions in the context of
set-matrices can also be asked.

Question 4. What is the class of binary phylogenetic networks that, up
to isomorphism, are uniquely determined by their set-matrix of inter-taxa
distances?

Question 5. What is the class of binary phylogenetic networks that, up to
isomorphism, are correctly reconstructed when Set Cherry Reduction is
applied to their set-matrix of inter-taxa distances?

Question 6. Can Set Cherry Reduction applied to a set X and a set-
matrix D of inter-taxa distances on X be extended to allow for networks
exhibiting neither a cherry nor a double-reticulated cherry?
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In this paper, we have measured the distance between taxa as the graph-
theoretic path length. However, practical methods for phylogenetic recon-
struction will need to be based on distance estimates of the amount of ge-
netic mutation along a path, and not simply the number of speciation and
reticulation events along a path. This motivates our final question.

Question 7. Given a binary phylogenetic network N on X with positively-
weighted edge lengths, when does the information of up-down path lengths
between elements in X, as measured by the sum of edge lengths in the path
and not the number of edges, determine N up to isomorphism?
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