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A B S T R A C T

Conditions are described for the preparation of cholesterol with 17O and 18O labels from i-cholesteryl
methyl ether using minimal amounts of isotopically enriched water. Optimum yields employed
trifluoromethanesulfonic acid as catalyst in 1,4-dioxane at room temperature with 5 equivalents of water.
An isotopic enrichment >90% of that of the water used for the reaction could be attained. Tetrafluoroboric
acid could also be used as catalyst, at the expense of a lower overall reaction yield. Byproducts from the
reaction included dicholesteryl ether, methyl cholesteryl ether, compounds formed by ether hydrolysis,
and olefins arising from elimination reactions. Reactions in tetrahydrofuran yielded significant amounts
of cholesteryl ethers formed by reaction with alcohols arising from hydrolysis of the solvent.
ã 2016 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Cholesterol is one of the most important natural sterols because
of its role in modifying the properties of cell membranes (Róg and
Vattulainen, 2014) and the link between in vivo transport of
cholesterol in plasma lipoprotein fractions and disease states
related to dietary intake of cholesterol (Birner-Gruenberger et al.,
2014). Its presence modifies membrane fluidity (Fraenza et al.,
2014; Sanderson, 2012) and rigidity (Dimova, 2014), and in
mixtures of high and low melting lipids it is capable of inducing
phase separation to form cholesterol-rich liquid ordered phases in
the presence of more fluid disordered phases (Róg and Vattulainen,
2014; Simons and Vaz, 2004). The distribution of cholesterol
within plasma membranes has consequently been subject to a
great deal of investigation using a range of spectroscopic and
analytical techniques. The membrane activity of cholesterol is
intrinsically linked to its hydrocarbon structure. Minor perturba-
tions to the structure of cholesterol, such as the addition of a
chromophore to facilitate luminescence studies, frequently modify
the behaviour of the sterol in an unpredictable manner. For
example, the addition of an 7-nitro-2,1,3-benzoxadiazol-4-yl
(NBD) group in the aliphatic hydrocarbon region produces a
fluorescent analogue that preferentially partitions into the liquid
disordered phase rather than the liquid ordered phase (Loura et al.,
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2001). It is therefore desirable to be able to label cholesterol with
isotopic labels that are less intrusive than bulky chromophores and
permit study by NMR or mass spectrometry methodologies.
Isotopes of oxygen (17O, 18O) are potentially valuable for this
purpose. The 17O isotope, with spin 5/2, is suitable for NMR studies,
particularly as it exhibits a wide chemical shift range of �2000
ppm (Lemaître et al., 2004; Klemperer, 1978). However, with a
natural abundance of 0.038% and low receptivity, isotopic
enrichment is essential. The 18O isotope is not directly observable
by NMR, but does induce isotopic shifts in 13C NMR spectra (Risley
and Van Etten, 1979) that can be used analytically (Risley and Van
Etten, 1989). Both isotopes also have utility as isotopic markers for
mass spectrometry studies (Ye et al., 2009; Zyakun, 2011). A
convenient route to cholesterol analogues has been described in
the literature, involving acid-catalyzed reaction of the commer-
cially available i-cholesteryl methyl ether (1) with water
(Scheme 1).

This reaction has been known for some time and generally gives
good yields of cholesterol (2) when water is present in large excess
(Chu and Li, 2000; Riegel et al., 1946; Steele and Mosettig, 1963;
Smith et al., 1993; Nicotra et al., 1981). It has been used for the
preparation of 18O-cholesterol (Wong et al.,1995). However, for the
preparation of isotopically enriched cholesterol, particularly with a
17O isotope, the use of a large excess of water is undesirable given
the high cost of water enriched with oxygen isotopes
(e.g. 17O enriched water typically costs >$1000 per ml). Further-
more, in order to maximize isotopic enrichment, it is desirable to
either use an acid catalyst without exchangeable oxygen, or if the
ess article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Scheme 1. Acid-catalyzed reaction of i-cholesteryl methyl ether (1) with water to
form cholesterol (2).

Fig. 1. Byproducts from hydrolysis reactions of 1 in 1,4-dioxane.
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use of such a catalyst is unavoidable, minimize the amount of
catalyst required. In this communication, we investigate the ability
of different acids to catalyse the reaction, and establish conditions
that use minimal amounts of water and catalyst.

2. Results and discussion

2.1. Choice of acid catalyst

Initial studies were conducted using 1 and non-enriched water
in 1,4-dioxane using a selection of acid catalysts (Table 1). This
solvent was chosen because of its miscibility with water and its
good solvation properties for cholesterol. In addition, as an aprotic
solvent it was not expected to participate in the reaction. All acid
catalysts were investigated at a ratio of 5 mol% with respect to 1.
The acids investigated covered a range of pKa values in organic
solvents, including the superacids trifluoromethanesulfonic acid
(pKa = �11.4 in dichloroethane) and tetrafluoroboric acid
(pKa = �10.3 in dichloroethane) (Kütt et al., 2011). From the data
it is apparent that trifluoromethanesulfonic acid produced by some
margin the greatest yield of cholesterol, at the expense of having
exchangeable oxygen. Tetrafluoroboric acid, on the other hand,
gave a poor yield of cholesterol but, being a hydracid, did offer the
potential for preparing cholesterol with an isotopic enrichment
matching that of the water used for its preparation. It should be
noted though, that in the reaction utilizing this acid, a significant
quantity of 1 remained unreacted after 5 h, raising the possibility
that a longer reaction time would increase the yield of cholesterol.
In all cases, unreacted 1 was present, alongside a number of
byproducts, the structures of which are given in Fig. 1.

Some of these byproducts, including dicholesteryl ether 3 and
cholesteryl methyl ether 4 could be accounted for by reaction of 1
with other nucleophiles formed during the progress of the
reaction. Alcohol 5 was formed by a competing nucleophilic
displacement of methanol from 1. The other products, 6 and 7,
could be accounted for by elimination reactions of either
cholesterol, 3 or 4 (for 6) and 1 or 5 (for 7).

2.2. Optimization of reaction conditions

On the basis of this preliminary work, further experiments were
conducted to investigate the effects on cholesterol yield of
Table 1
The influence of acid catalyst on the formation of cholesterol from 1 in the presence o

Acid Yield cholesterol (%)b

CF3SO3H 73 (61) 

p-TsOH trace 

CH3SO3H 1 

HBF4 18 (16) 

HCl 7 (6) 

a Conditions in all cases: 5 eq. water, 0.05 eq. acid, 1,4-dioxane, 80 �C, 5 h.
b Yields are calculated from analysis of crude NMR spectra. Figures in parentheses in
c Yields are calculated from analysis of crude NMR spectra. Trace products were detec

products were determined on the basis of 3-H signals or pairs of olefinic signals that c
temperature and the ratios of trifluoromethanesulfonic acid
catalyst and water to ether 1. These outcomes of these experiments
are summarised in Table 2 and Fig. 2. The best yield of cholesterol
was found with 0.05 equivalents of acid and 5 equivalents of water
at 20 �C (entry 8). Increasing the number of equivalents of water
beyond 5 did not lead to significant benefits, either in overall yield
(entry 11) or in the ratio of cholesterol to other products (entry 9).
Although in the latter case the reaction had not gone to completion
within 5 h, the major product after this time was alcohol 5 (full
details are in the ESI). Increasing the number of equivalents of acid
catalyst led to a significant increase in the formation of byproducts,
particularly methyl ether 4, which formed >20% of the products
when 1 equivalent of acid was used. Decreasing the amount of acid
below 0.05 equivalents gave incomplete reactions after 5 h at 20 �C,
but in all cases cholesterol was not the major product after this
time and would not have given cholesterol yields greater than
entry 8 had they been allowed to go to completion.

When the mole fraction of cholesterol in the products is
analysed in relation to the ratio of acid to water (Fig. 2) in the
reaction, the conditions corresponding to entries 7 and 8 in Table 2,
with an acid/water ratio of 0.01, are found to be optimal for
increasing the proportion of cholesterol in the mixture. At lower
acid to water ratios, the predominant byproduct is the alcohol 3
resulting from hydrolysis of ether 1. At higher ratios, the major
byproduct becomes methyl ether 4.

On the basis of the optimal conditions, and assuming complete
exchange between the 16O isotope of the catalyst and the
18O isotope of the enriched water, the maximum isotopic
enrichment of cholesterol theoretically attainable (not allowing
f water.a

Byproductsc

3 (9%), 4 (9%), 5 (trace), 6 (trace), other (9%) + 1 (trace)
3,4, 5 (all trace) + 1 (>99%)
3 (trace), 4 (2%), 5 (2%), 7 (1%), other (1%) + 1 (93%)
3 (1%), 4 (3%), 5 (12%), 6 (1%), 7 (trace), other (10%) + 1 (55%)
3 (1%), 4 (2%), 5 (9%), 6 (trace), 7 (1%), other (1%) + 1 (79%)

dicate isolated yields.
table by thin layer chromatography but not 1H NMR. The relative yields of ‘other’
ould not be attributed to any of 1–7.
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Fig. 2. Mole fraction of cholesterol in the steroid products of reactions in 1,4-
dioxane with CF3SO3H as catalyst in response to changes in the ratio of acid to water.
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for residual water in the catalyst and solvent) would be 97.1% of
that of the original water, which is acceptable.

Tetrahydrofuran (THF) was investigated as an alternative
solvent to 1,4-dioxane and good yields of cholesterol could be
obtained in this solvent. However, in all cases, products arising via
lysis of the solvent were significant byproducts, with compounds
8–10 (Fig. 3) typically forming 20–50% of the reaction products.

Further experiments were not conducted in THF and we would
not recommend using this solvent as first choice for reactions that
are not conducted in the presence of a large excess of water. For
reactions in 1,4-dioxane, products equivalent to those in Fig. 3 were
present in some cases (as judged by NMR), but were not isolated in
sufficient quantity to characterise and always represented less
than 3% of the reaction products.

2.3. Synthesis of labelled cholesterol

Having determined suitable reaction conditions for the
preparation of cholesterol labelled with oxygen isotopes, the final
step was to verify that yields and isotopic enrichment were as
expected. Reactions were therefore performed with 1 and 18OH2

(95.7 atom% 18O) in two sets of conditions, with either
trifluoromethanesulfonic acid or tetrafluoroboric acid as catalyst.
The latter was included to examine the maximum achievable
isotopic enrichment achievable:

1. 1 + 0.05 eq. CF3SO3H + 5 eq. 18OH2 at 20 �C for 5 h; and
Table 2
Formation of cholesterol from 1 using trifluoromethanesulfonic acid as catalyst in
1,4-dioxane.

Entry T (�C) Equiv.
CF3SO3Ha

Equiv. waterb Yield cholesterol (%)c xchol
d

1 20 0.005 2 9 0.37
2 20 0.005 5 4 0.35
3 20 0.01 2 30 0.47
4 80 0.01 2 52 0.52
5 20 0.01 5 21 0.50
6 20 0.05 2.5 19 0.58
7 80 0.05 5 73 0.73
8 20 0.05 5 76 0.76
9 20 0.05 20 7 0.27
10 20 1 5 59 0.59
11 20 1 20 57 0.57

a Equivalents relative to 1.
b Yields are calculated from analysis of NMR spectra of the crude reaction

products.
c Cholesterol mole fraction in the steroid products (i.e. excluding 1). Errors are

�7%.
2. 1 + 0.05 eq. HBF4 + 5 eq. 18OH2 at 80 �C for 40 h.

These gave isolated yields of 62% and 40% respectively.
Following purification, the isotopic enrichment of the cholesterol
was determined by 13C NMR spectroscopy (Fig. 4).

The inclusion of the 18O induced a readily detectable isotopic
shift of the 3-C 13C resonance of 17 Hz. Isotopic enrichment was
determined by the relative peak areas for the 13C signals of the 16O-
and 18O-isotopomers to be 90.1 �1.9 atom % with trifluorometha-
nesulfonic acid as catalyst, and 90.9 � 1.9 atom % with tetrafluor-
oboric acid as catalyst. These isotopic enrichments are lower than
the theoretical maximum achievable of 92.9 � 0.04 atom % when
consideration is given to the exchangeable atoms of the catalysts
and the isotopic enrichment of the water. The differences are
accounted for by residual water in the solvent and acid catalysts.
Using the same procedure, 17O-cholesterol was also prepared using
17OH2.

3. Conclusions

From the data presented above, we conclude that 1,4-dioxane is
the best solvent for the preparation of isotopically enriched
cholesterol. For maximum recovery of cholesterol where a small
dilution of the 17O or 18O isotope is acceptable, trifluorometha-
nesulfonic acid is the optimum choice of acid catalyst. In order to
obtain an acceptable yield of product, it should not be necessary to
use more than 5 equivalents of enriched water relative to
i-cholesteryl methyl ether.

4. Experimental procedures

4.1. General methods

Dry solvents were sourced from Fisher Scientific (Lough-
borough, UK; THF) and Sigma–Aldrich (Dorset, UK; 1,4-dioxane;
�0.003% H2O manufacturers specification, measured as 0.007% by
a Karl–Fischer titration at the time of use). Cholesterol,
i-cholesteryl methyl ether (95%), 4 M HCl in dioxane, tetrafluor-
oboric acid diethyl ether complex and the rest of the acids were
obtained from Sigma–Aldrich (Dorset, UK). Isotopically enriched
water was obtained from Cortecnet (Voisins-Le-Bretonneux,
France). Isotopic enrichments were 95.7 atom % for 18OH2 (our
measurement, lot number 139808A-P) and 41.1% for 17OH2

(manufacturers specification, lot number 1040171A-P). Stock
solutions of acids in THF or 1,4-dioxane were prepared immedi-
ately before use. Purification was performed by flash column
chromatography using a silica gel support (230–400 mesh, 40–
60 mm) from Sigma–Aldrich (UK). NMR data were collected on a
Bruker Avance-400 (at 400 MHz for 1H; 100.6 MHz for 13C) or
Varian VNMRS (at 700 MHz for 1H; 176 MHz for 13C). NMR spectra
were obtained in CDCl3 and are reported in ppm using residual
CHCl3 at 7.26 ppm as the internal reference. 13C NMR spectra were
referenced to solvent as internal reference (77.23 ppm for CDCl3).
Atmospheric solids analysis probe (ASAP) mass spectrometry was
performed on a Xevo QToF mass spectrometer (Waters Ltd,
Wilmslow, UK) equipped with an Agilent 7890 GC gas
Fig. 3. Major products from reactions of 1 in THF.



Fig. 4. The region of the 13C NMR spectrum (176 MHz, CDCl3) corresponding to the
3-carbon of 18O-cholesterol prepared by Method 1.
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chromatography apparatus (Agilent Technologies UK Ltd, Stock-
port, UK) at 450 �C. Full details are presented in the supporting
information.

4.2. Optimised experimental procedure in 1,4-dioxane

A 12.5 mM solution of the acid in dry 1,4-dioxane (1 ml,
12 mmol) was added to a solution of 1 (0.10 g, 0.25 mmol), and
water (22 ml, 1.2 mmol) in 1,4-dioxane (4 ml) and the solution
stirred for 5 h at 20 �C. After concentrating to �1 ml in vacuo,
CH2Cl2 (20 ml) was added and the organic solution washed with
water (2 � 10 ml). The organic solution was dried (MgSO4), filtered
and concentrated in vacuo. Purification was by flash column
chromatography on silica using a gradient of CH2Cl2/hexane, 1:1 to
CH2Cl2.

The procedure when using HBF4 as acid catalyst followed the
same procedure, except that the solution was heated at 80 �C for
40 h.

4.3. Synthesis of 17O-cholesterol

Using the optimised procedure with CF3SO3H as the acid
yielded the title compound (0.069 g, 67%) as a white solid.

1H NMR (400 MHz, CDCl3) d (ppm): 0.68 (s, 3H, 18-H), 0.86 (dd,
J = 6.6 and 1.8 Hz, 6H, 26-H/27-H), 0.91 (d, J = 6.5 Hz, 3H, 21-H),
0.94–1.68 (m, 24H), 1.77–1.88 (m, 4H), 1.92–2.04 (m, 2H), 2.17–2.34
(m, 2H), 3.46–3.58 (m, 1H, 3a-H), 5.33–5.37 (m, 1H, 6-H).

13C NMR (100 MHz, CDCl3) d (ppm):
MS (ASAP) m/z (%): 388.4 (8) [17O–M + H]+, 387.4 (8.5) [17O–M+�

]
and [16O–M + H]+, 386.4 (6) [M+�

, 16O], 385.4 (2), 369.4 (100).

4.4. Synthesis of 18O-cholesterol

Using the optimised procedure with CF3SO3H as the acid and 1
(0.075 g) yielded the title compound (0.047 g, 62%) as a white solid.

1H NMR (400 MHz, CDCl3) d (ppm): 0.68 (s, 3H, 18-H), 0.86 (dd,
J = 6.6 and 1.8 Hz, 6H, 26-H/27-H), 0.91 (d, J = 6.5 Hz, 3H, 21-H),
0.93–1.63 (m, 24H), 1.77–1.88 (m, 4H), 1.92–2.04 (m, 2H), 2.18–2.33
(m, 2H), 3.48–3.57 (m, 1H, 3a-H), 5.32–5.38 (m, 1H, 6-H).

13C NMR (100 MHz, CDCl3) d (ppm): 12.08, 18.94, 19.61, 21.31,
22.78, 23.04, 24.05, 24.51, 28.23, 28.45, 31.88, 32.12, 32.13, 36.00,
36.41, 36.72, 37.48, 39.74, 40.00, 42.52, 42.54, 50.35, 56.38, 56.98,
71.98 (3-C; 18O), 72.00 (3-C; 16O), 121.91, 140.97.

MS (ASAP) m/z (%): 389.4 (5.5) [18O-M + H]+, 388.4 (10) [18O
-M+�

], 387.4 (6) [16O–M + H]+, 386.4 (4) [M+�, 16O], 385.4 (10), 383.4
(8.5), 369.4 (100).
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