Behav Res
DOI 10.3758/s13428-015-0653-5

@ CrossMark

Digital LED Pixels: Instructions for use
and a characterization of their properties

Pete R. Jones! - Sara E. Garcia! - Marko Nardini!-2

© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract This article details how to control light emit-
ting diodes (LEDs) using an ordinary desktop computer. By
combining digitally addressable LEDs with an off-the-shelf
microcontroller (Arduino), multiple LEDs can be controlled
independently and with a high degree of temporal, chro-
matic, and luminance precision. The proposed solution is
safe (can be powered by a 5-V battery), tested (has been
used in published research), inexpensive (~ $60 + $2 per
LED), highly interoperable (can be controlled by any type of
computer/operating system via a USB or Bluetooth connec-
tion), requires no prior knowledge of electrical engineering
(components simply require plugging together), and uses
widely available components for which established help
forums already exist. Matlab code is provided, including
a ‘minimal working example’ of use suitable for use by
beginners. Properties of the recommended LEDs are also
characterized, including their response time, luminance pro-
file, and color gamut. Based on these, it is shown that the
LEDs are highly stable in terms of both luminance and
chromaticity, and do not suffer from issues of warm-up,
chromatic shift, and slow response times associated with
traditional CRT and LCD monitor technology.

Electronic supplementary material The online version of this
article (doi:10.3758/s13428-015-0653-5) contains supplementary
material, which is available to authorized users.

P4 Pete R. Jones
p.r.jones@ucl.ac.uk

Institute of Ophthalmology, University College London
(UCL), 11-43 Bath Street, London EC1V 9EL, UK

Department of Psychology, Durham University, Durham, UK

Published online: 20 October 2015

Keywords Light emitting diode - Arduino - Luminance -
Timing - Color gamut

Introduction

To present visual stimuli, psychophysicists in the 19" and
20" century developed many ingenious methods, including
the use of spinning tops (Maxwell, 1857), shadow-casting
by lamps or candles (Mach, 1959; Fry, 1948), and mechan-
ical systems in which viewable objects are physically
translated in space (Tschermak-Seysenegg, 1939; Howard,
2012).

Modern-day scientists typically prefer to use computer
monitors to present their visual stimuli. Computer moni-
tors are particularly effective at presenting high-resolution
static images in the central field. However, they are less
well suited to other applications; for example, when stim-
uli must span the entire visual field, are physically located
in an interactive 3D environment, or when high temporal
precision is required. In these cases, light emitting diodes
(LEDs) can provide a surprisingly simple and effective solu-
tion (Nygaard & Frumkes, 1982; Da Silva Pinto et al., 2011;
Teikari & et al. 2012; Demontis et al., 2005; Albeanu et al.,
2008). For example, in our own research, we have found
LEDs useful for constructing dynamically adjustable land-
marks for studying human navigation (Fig. la), and for
presenting peripheral stimuli in an audiovisual localization
task (Fig. 1b).

In the past, many researchers have been discouraged
from using LEDs because of the level of electrical engi-
neering required. Wires must be soldered together, the level
of electrical current must be regulated appropriately, and
control circuits must be designed and constructed to pro-
duce the specific behavior required. Furthermore, since

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1186/10.3758/s13428-015-0653-5-x&domain=pdf
http://dx.doi.org/10.3758/s13428-015-0653-5
mailto:p.r.jones@ucl.ac.uk

Behav Res

s A
start start

Fig. 1 Two example uses of LEDs in behavioral experiments. a Illu-
minated visual landmarks for a study of navigation (image adapted
from Nardini et al. (2008)). Duplicate sets of landmarks (shown lower-
right of panel a) were positioned at regular intervals around the room,
and could be switched on/off, effectively rotating the landmarks with
respect to the participant. The objects on the floor were illuminated
using chemiluminescent paint. Now, though, these movable objected
could be instead fitted with LEDs and wireless microcontrollers.

the equipment is typically made bespoke for each specific
experiment, it is typically expensive, inflexible, and hard to
maintain.

Recently though, these difficulties have been obviated
by the proliferation of cheap LED °‘Pixels’. Unlike tra-
ditional LEDs, an LED Pixel integrates all the necessary
electronic components into a single, prefabricated device.
This means that they simply need to be plugged in for
use. Furthermore, each LED Pixel contains its own digital
control chip that can receive instructions from a computer.
The LED Pixel can therefore be controlled purely at a
software level, in much the same way as a psychophysi-
cist might control a standard computer monitor (e.g., using
commands sent from MATLAB or Python) Multiple LED
Pixels can be chained together, often by simply plugging
the output lead of one LED Pixel into the input lead of
another. This allows effectively limitless numbers of Pix-
els to be controlled simultaneously. Crucially though, since
every LED Pixel contains its own digitally addressable con-
trol chip, the behavior (timing, intensity) of each Pixel can
be controlled independently. Finally, more advanced LED
Pixels house multiple LED elements—each with a differ-
ent spectral response curve—within a single, light-diffusing
enclosure. By additively mixing multiple color channels, a
wide range of colors and luminance levels can be produced.
The result is a cheap, flexible, and easy-to-use system in
which all the necessary hardware can be purchased in ready-
made ‘modules’, and can be controlled programmatically,
using simple, user-friendly commands.

@ Springer

b A 2.5-m-long arc of lights and speakers, for a study of audiovisual
localization (used in Garcia et al. (2015)). On each presentation, a sub-
set of the LEDs (outlined in purple) and/or speakers (outlined in blue)
at a particular location were activated. The LED hardware used was
identical to that described in the present paper, and allowed each of
100 LED lights to be controlled independently using commands sent
from a central control computer (not shown)

Three hurdles have limited the uptake of this new
technology within the behavioral sciences. Firstly, many
researchers are unaware of these recent developments. Sec-
ondly, the sheer number of competing brands and hardware,
together with the few technical bottlenecks that remain (e.g.,
how to install the necessary software, or communicate reli-
ably with the hardware), mean that exploiting such advances
remains a daunting proposition for the many researchers
who lack the time or expertise to sift through the range
of options available. Third, and finally, there is a general
uncertainty as to how the stimuli produced by LEDs relate
to those generated by computer monitors, which are felt
(though often erroneously') to be well understood.

The present paper aims to address each of these points.
In section “Methods”, we detail the necessary hardware
required in order to build an operational LED Pixel system,
and provide step-by-step instructions on how to assemble
it. In section “Usage (with minimal working example)”, we
describe the logic of how this equipment can be controlled

In fact, modern LCD monitors exhibit marked heterogeneity. Differ-
ent flat-screen technologies exhibit distinctive response characteristics,
and response characteristics may even differ between screens with
identical model numbers, either randomly, or as hardware/firmware
is changed or updated. Moreover, even within an individual screen,
response behavior is often highly dependent on where on the screen
the stimulus is presented, and on what is being displayed contiguously
with the stimulus (either in time or space). Finally, the behavior of
LCD monitors is very differently to that of older CRT monitors, which
themselves are now often highly variable due to aging components and
their own inherent non-stationarities.

Behav Res

using software, and provide a minimal working example
(MWE) of use. Finally, in section “Characterization” we
characterize the properties of our recommended LEDs, and
show how their luminance, spectral, and timing properties
compare to those of LCD and CRT monitors.

Methods
Hardware: Overview

The required hardware is shown graphically in Fig. 2, and is
listed in Table 1. The four key pieces of equipment are the
LED Pixels, a power supply, an Arduino microcontroller,
and a computer. Each of these is described in more detail
below.

The LED pixels (Fig. 2a)

An LED Pixel consists of one or more LED elements,
each connected to an integrated control chip. Multiple LED
Pixels can be chained together, but addressed indepen-
dently. Although many brands of LED Pixels exist (some
of which can be used interchangeably), here we concen-
trate on a single product: the Adafruit 12-mm diffused LED
Pixels (Adafruit Industries, New York, USA). These were
preferred as they support full 24-bit color, have a reason-
ably high modulation rate (2.5 kHz), are well supported
with an efficient software library and clear instructions,
require no technical assembly (e.g., no soldering), and have

D C

proven to be reliable and robust. However, the same basic
methods can be easily adapted to work with other similar
products.

By default, a strand of Adafruit 12-mm diffused LED
Pixels contains 25 independently addressable pixels. This
number can be increased by plugging together multi-
ple strands, or reduced if required by simply cutting off
unwanted pixels using scissors. Each pixel is composed of
three independent LED elements (red, green blue) housed
within a circular diffuser screen (8 mm in diameter), and
controlled by a 24-bit (8-bit per LED) programmable driver
chip (WS2801; Worldsemi Technology, Shenzhen, China).
Thus, each pixel can independently display 16.78 million
(i.e., 256 x 256 x 256) possible color combinations (see
section “Characterization” for full empirical characteriza-
tion). The chipset that drives each pixel uses 2.5-KHz pulse
width modulation (PWM) to vary luminance (i.e., lumi-
nance is controlled by rapidly flickering the light on/off,
ideally at a rate beyond that which can be perceived by
the human eye). For further discussion of issues relating
to PWM luminance-modulation, and for users who may
require a continuous light source of variable luminance, see
the Supplemental Material (Section S1).

The 5-V power supply (Fig. 2b)
The LED Pixels require a 5-V (£ 10 %) input, and each
LED Pixel draws up to 60 mA at maximum luminance. The

input can be constituted from four 1.2-V batteries, or a 5-
V mains adaptor. A mains adaptor is generally preferred for

icsp

www.arduino.cc
OWER aaocin @
GndVin 012345

Fig. 2 Schematic illustration of the key hardware required. a A strip
of digitally addressable LED ‘Pixels’. Each pixel consists of three
independent LEDs (red, green, blue), located behind a diffuser, and
controlled by an internal chip (WS2801). b A 5-V power supply (either

battery or mains adapter). ¢ An Arduino Uno microcontroller, used to
control the LED Pixels. d An ordinary laptop or PC to program, con-
trol, and supply power to the Arduino. See body text for details, and
Table 1 for further particulars

@ Springer

Behav Res

Table 1 Complete listing of required hardware, including illustrations of example products

Required Hardware

N

Image

Description

1+

1+

1+

Computer
Any latpop or desktop computer with a USB 2.0 connection (or newer).

Arduino Microcontroller

A microcontroller, used to interface between the Computer and the
LED Pixel Strand hardware. Any Arduino board is sufficient, but the
current ‘standard’ Uno board is recommended for consistency.

USB 2.0 Cable
One male (Type A) to male (Type B) USB 2.0 Cable, to transmit data between
the Computer and Arduino Microcontroller. Also used to supply power

to the Arduino Microcontroller.

LED Pixel Strand

One or more strand of Adafruit 12mm Pixels (25 LEDs per strand).

Multiple strands can be plugged together. First strand must be

connected to the Arduino Microcontroller via Jumper Wires.

To avoid power drain it is recommended that one 5V DC Power Adapter

is used per two strands, although fewer power supplies may be required if not

all LEDs are illuminated at any one time.

Jumper Wire

Male-to-male electrical ‘breadboard’ wires, to connect first

LED Pixel Strand with the Arduino Microcontroller (N.B. red

wire only required if drawing power from the board). Alternatively, any ordinary
insulated wire can be used (but will require stripping, and stranded wires may

require tinting to avoid fraying).

5V Power Adapter
Mains transformer. Recommended one per 50 LEDs. Alternatively can use a battery
power source, or, for a smaller number of LEDs, draw power directly from the 5V

pin on the Arduino Microcontroller.

Power Adapter Terminal

Takes 5V Power Adapter output, and connects to the built-in red
(positive) and blue (negative) wires on the LED Pixel Strand.
One required per 5V Power Adapter.

See Fig. 1 for how these components are assembled, and for further details see the manufacturer’s guide for the Adafruit 21-mm LED Pixels

consistency and ease of maintenance. Inputs greater than If only a small number of LED Pixels are required at any
5.5 V should not be used, and may permanently damage the ~ one time (e.g., two or three), and/or if high luminance

LED Pixels. For long strands requiring a large current, mul- is not required, then the LED Pixels can also draw their
tiple 5-V power supplies can be connected at regular inter- power directly from the 5-V pin on the Arduino board (i.e.,
vals to limit power drain (see section “Drain and halation”). connecting the red wire to the pin marked “5V” in Fig. 2).

@ Springer

Behav Res

The Arduino microcontroller (Fig. 2c)

A microcontroller is required to interface between the con-
trol computer and the LED Pixels (Fig. 2c). We recommend
using the latest Arduino microcontroller, which at the time
of writing is the Arduino Uno (SmartProjects, Strambino,
Italy). The code provided here will also work with other
Arduino boards, including the older Diecimila and NG vari-
ants. However, the limited memory in some other models
can prove prohibitive for any but the most basic programs
(e.g., for any paradigms where arrays of values must be
stored on the board). Instead of an Arduino board, the
same basic processes can also be implemented using more
powerful devices, such as the Raspberry Pi (Raspberry Pi
Foundation, Cambridge, UK), BeagleBone (Texas Instru-
ments, Dallas, TX, USA) or PCDuino (LinkSprite Tech-
nologies, Longmont, CO, USA). Note, however, that these
devices are not microcontrollers, but full application proces-
sors (miniaturized personal computers), and so can be more
complicated to set up and use (e.g., requiring the installation
and configuration of an operating system). Compared to the
Arduino boards, they also have less established user groups
and help forums, which will be a substantial limiting factor
for many users.

The computer (Fig. 2d)

A laptop or desktop computer is required to program, and
to optionally supply power to, the Arduino microcontroller
(see below). Both of these functions are carried out using
a single USB 2.0 cable (see Table 1). The computer is also
generally used to control the Arduino during the experiment,
via serial commands sent over USB. Alternatively, once
programmed the Arduino can be disconnected and used
autonomously (e.g., responding directly to user inputs, such
as button presses, and powered using a battery cell). How-
ever, it is generally more convenient to keep the Arduino
tethered to a host computer, which can then be used to pro-
cess participant responses, synchronize the Arduino with
other devices, and/or store experimental data. Almost any
computer can be used, as long as it supports a USB 2.0 con-
nection (see section “Software requirements” for details on
operating systems).

Software requirements

The methods described here should be compatible
with all operating systems (Windows XP/Vista/7/8, Mac
OS X, or Linux, all 32 or 64 bit), although users
should check the official Arduino support documents
if uncertain. We have tested the code given in section
“Usage (with minimal working example)” on PCs running

Windows XP and Windows 7, and on various MacBook Pros
running OS X 10.4-10.6.

The control computer must be able to run the Arduino
programming language (v1.0.6 at time of writing). This
is a simplified, open-source version of C/C++. Note that
although the Arduino code is written on a computer, once
compiled the code is uploaded onto the Arduino board itself
for execution. Note also that the computer used to program
the board does not necessarily need to be the same computer
that is used subsequently to control the board via serial com-
mands, although for simplicity we shall assume that that is
the case.

In addition the control computer must be capable of
sending serial commands to the Arduino over USB. In the
examples given here, we use MATLAB (R2012b, The Math-
Works, Natick, MA, USA) to do this, via the INSTRUMENT
CoNTROL ToOLBOX. However, the same principles can
be easily adapted to work with any modern programming
language (Python, proce55ing, java, c+-+).

Assembly and installation

1. Purchase the hardware. All components can be pur-
chased from most major electronics retailers. The 12-
mm diffused LED Pixels can also be purchased directly
from www.adafruit.com, which at the time of writing
also sells an Arduino starter kit, containing all other
necessary components. At the time of writing, the total
price for all hardware (excluding the control computer),
is approximately $110 (plus shipping). Each additional
strand of 25 LED Pixels costs a further $50 (includ-
ing additional power supplies for every 3" strand,
although these may not be needed if high luminance and
uniformity are not required)

2. Install the Arduino software on a computer with a USB
2.0 connection (or newer).

3. Connect the Arduino board to the computer via a USB
cable

4. Configure the Arduino software appropriately, by
ticking the appropriate item under “Tools =>
Board”, and under “Tools => Serial Port”. On
some machines—most notably Macbook Pro laptops—
no serial port will be listed. In this case, it may
be necessary to install Virtual Com Port [VCP]
drivers. At the time of writing, free versions of these
drivers can be found at: http://www.ftdichip.com/
Drivers/VCP.htm

5. Check that the Arduino is functioning properly by run-
ning one of the inbuilt example scripts (e.g., File =>
Examples => 01.Basics => Blink)

6. Install the necessary LED Pixel library
(“Adafruit_'WS2801”), which can be downloaded from

@ Springer

www.adafruit.com
http://www.ftdichip.com/Drivers/VCP.htm
http://www.ftdichip.com/Drivers/VCP.htm

Behav Res

https://learn.adafruit.com/12mm-led-pixels/code (for
details on how to install a custom Arduino library, see
http://arduino.cc/en/Guide/Libraries)

7. Connect the LED Pixels to the Arduino board and
power supply, using the wiring diagram shown in Fig. 2.
Note that jumper cables can be used to connect to the
board, while the built-in power cables on the LED Pixel
strip can be screwed directly into the power adapter
terminal (see Table 1). Also note that the LED Pixels
are not bidirectional, and must be connected at the end
marked as input, as per the manufacturer’s instructions.

8. Test that the LED Pixels are working by running one
of the inbuilt example scripts (e.g., File => Sketch-
book => libraries => Adafruit WS2801 =>
strandtest.

In case of difficulties, users are advised to con-
sult the detailed online tutorials that are available for
both the Arduino microcontroller (http://arduino.cc/en/
Guide/HomePage), and Adafruit LED Pixels (https://learn.
adafruit.com/12mm-led-pixels/). For further assistance, the
Arduino is also supported by a highly active forum dedi-
cated to the control of LEDs (http://forum.arduino.cc/index.
php?board=6.0).

Usage (with minimal working example)

To be able to use the LED Pixels effectively within an exper-
iment, it is important to be able to control their behavior
precisely using a computer. This requires communication
between three systems: (i) the programming environment
on the control computer (here assumed to be MATLAB);
(ii) The Arduino microcontroller, running a preprogrammed
script; and (iii) the control chip within each LED Pixel. In
this section, we detail the processes necessary for achieving
this. The key processes are also shown graphically in Fig. 3.
Readers may also wish to refer to Listings 1, 2 and 3, which
provide MATLAB and Arduino code for turning a specified
LED Pixel on or off. To run this code, Listing 3 must be
compiled in Arduino and uploaded to the Arduino micro-
controller. The code in Listings 1 and 2 must be placed in
the same directory as each other. To run, Listing 1 should be
executed in MATLAB. The logic of this program is described
in the remainder of this section.

The first step is to establish a serial connection between
MATLAB and the Arduino board, via the USB port. This
can be done most straightforwardly using the INSTRUMENT
CoNTROL TooLBOX(Listing 1, L10-16). The appropriate
port address for the Arduino USB connection can be found
by opening the Arduino IDE and clicking Tools => Serial
Port. On a Apple Mac computer, the port address will gener-
ally resemble the value of ‘/dev/tty.usbserial-A6004011’, in

@ Springer

Windows it may resemble the string ‘COM3’. At this point,
or subsequently (Listing 1, L31-34), the user can optionally
specify a callback function (Listing 2). A callback function
is a MATLAB function that will be automatically invoked
if/when the Arduino attempts to transmit serial data back
to the computer. A callback function can be used to return
information from the Arduino to the control computer (e.g.,
regarding presentation timings, or the results of any com-
putations). Further details on the example callback function
are given below.

Once the Arduino board has accepted the serial connec-
tion it will automatically reset, causing the Arduino function
‘Setup’ to run (Listing 3, L13-37). As part of this function,
the LED Pixel library is initialized (with a user-specified
number of pixels), causing the LED Pixels to revert to their
default ‘awaiting handshake’ state (Listing 3, L18: all pix-
els flash white at maximum luminance for 100 ms, and then
remain off, (0, 0,)).

Next a ‘handshake’ is performed between Matlab and
Arduino. A handshake is an automated process that occurs
prior to the transmission of content, and is used to set param-
eters and ensure that both systems are in a suitable state to
proceed. In the simple example shown here, the handshake
ensures that neither the Matlab or Arduino scripts continues
until each has sent and received a predetermined passcode
(Listing 1, L18-29; Listing 3, L81-107). If the Matlab script
does not receive a passcode within a certain period (default:
10 s) then the script will throw an error. This helps with
debugging, and prevents the two scripts from becoming out
of synch. In practice, the handshake is performed by having
the Arduino continuously broadcast an arbitrary passcode
character (in this case ‘Z’), and checking for an arbitrary
input passcode in return (in this case ‘A’). In MATLAB, the
program waits to receive the Arduino passcode (“Z’) before
transmitting its own passcode (‘A’). At this point, the system
is ready to be used.

Once the ‘setup’ function is complete, the Arduino will
automatically execute the ‘loop’ function (Listing 3; L39-
79), and will continue to do so indefinitely, so long as
the board is supplied with power. In Listing 3, the loop
function causes the Arduino to continuously check the
serial port for incoming control commands, which are
then executed. These control commands are broadcast from
MATLAB using the following, arbitrary communication pro-
tocol:

CN\n 1

where C is the character “*” (on) or ‘!” (off), ‘N’ is an integer
specifying the pixel number (where indices start at 0), and
‘\n’ is a linebreak character, signifying the end of the com-
mand. Thus, the Matlab expression serialObj.println(‘*9”)
will cause the 10 LED Pixel to turn on, while the expres-
sion serialObj.println(‘!0”) will cause the 1%t LED Pixel to

https://learn.adafruit.com/12mm-led-pixels/code
http://arduino.cc/en/Guide/Libraries
http://arduino.cc/en/Guide/HomePage
http://arduino.cc/en/Guide/HomePage
https://learn.adafruit.com/12mm-led-pixels/
https://learn.adafruit.com/12mm-led-pixels/
http://forum.arduino.cc/index.php?board=6.0
http://forum.arduino.cc/index.php?board=6.0

Behav Res

ARDUINO

Prepare for data transfer between
the Arduino board and the LED
Pixels. Set all pixels to blank:
<0,0,0>.

MATLAB
main.m callback.m
(‘Establish serial connection)
Use Instrument Control Toolbox to Acknowledge serial connection.
create serial port connection over Automatically resets the Arduino
USB. Optionally specify callback board, causing the LED Pixel library
function. to be initialized.
\ * J
~
Perform handshake
Keeping checking serial port, until Keep broadcasting Arduino
predermined Arduino passcode is passcode and checking for Matlab
received. Broadcast Matlab passcode
asscode in response.
& "* J
s P——
Send dispayinfo (_Checkforinput ocp))
Send a serial command instructing Keep checking the serial port
> the Arduino to prepare for writing buffer until something resembling
new RGB values to the pixels a command string is received (i.e.,
e.g., 1ED=1,R=255,6=0,8=55" text ending in a carriage return
N * J character).
4 Send display command Extract any user-specified
parameters, and execute the
Send a serial command instructing appropriate command(s).
the Arduino to ‘flip’the
pre-specified values onto the LED
Pixels.
g J
5)\
Callback function
No Asynchronously receive serial data.
Perform arbitrary (user-specified) | <=
operations, such as saving values,
or printing to the console.
Yes In advanced scripts this could be
> > used to‘block’the main Matlab
(Discconect serial port W control script. For example, to
N.B. this will cause the Arduino to prevent display commands being
reset, as per when a new serial broadcast until the Arduino had
connection is established. transmitted confirmation of having
(ecelved the new display info. S)

Update the current RGB value for

the specified LED Pixel.
N.B. the old value will continue to
be displayed on the LED Pixel.

Push ('flip’) the current RGB value
for each LED Pixel device onto the
hardware. This will make visible

any user-specified changes.

| @]

WS2801 Chipset

(Display luminance levels)

Continuously display the specified
RGB value, by sending the
appropriate current to each of the
three (Red, Green, Blue) LED
components. Pulse Width
Modulation [PWM] is used to
achieve sub-maximum luminance.

Keep displaying this value until a
new value is requested, or the
power s cut.

(N.B. Technically this box
represents Nindependent
processes, since each LED Pixel
contains its own independent
WS2801 Chip)

.

J

Fig. 3 Flow chart showing how the MATLAB (orange), Arduino (cyan), and LED (gray) systems interact. Example source code for main.m,
callback.m, and amain.ino is provided in Listings 1-3, respectively. See body text for details

turn off (note that ‘println()’, unlike ‘print()’, automatically
appends the ‘\n’ line character to the end of the user-defined
string). Alternatively, the user is free to implement what-
ever communication protocol they like. For example, it is
possible to imagine a system in which multiple LED Pixels
are updated at once within a single command, each with a
different luminance, hue and temporal periodicity.

Within the Arduino microcontroller, command strings
are received as individual characters, sent in series over the

USB 2.0 connection (e.g., Listing 1; L41, L45). These char-
acters are accumulated in a buffer within the Arduino until a
linebreak character (‘\n’) is reached (Listing 3; L49). At this
point the command is evaluated and executed, and the buffer
is cleared (Listing 3; L50-70). The actual interface with the
LED Pixel hardware is mediated by the (freely available)

Adafruit- WS2801 Arduino library. Note that the logic of

this library is that separate commands are used to update an
internal table of LED luminance values, and to display the

@ Springer

Behav Res

% closes the connection.

5| %% (1/4) initialize
clear all;

%% (2/4) Connect to hardware
w|% prepare serial object

% open serial connection

fopen(aobj);

fprintf('Searching for sync...\n');
w| received = fscanf(aobj, '%s');
if (received == 'Z')

»|else

'(actually recieved: %s)!'],
end

% establish callback function
fprintf('Establishing callback...\n');
aobj.BytesAvailableFcn = @callback;
WaitSecs(0.5);

%% (3/4) run
fprintf('\nRunning script..\n');
for i = 1:10

% turn on a random LED

0 LED = randi(25)-1;
fprintf(aobj, '*%¥i\n', LED); % send
% pause for N seconds
pause(0.5);
% turn off the (same) LED
e fprintf(aobj, '!%i\n', LED); % send
end

%% (4/4) finish up
fprintf('\nClosing connection...\n');
w| fclose(aobj); % close the serial port
fprintf('All done\n');

1|% Minimal -working-example Matlab script that connects to an Arduino running
% amain.iso, asks it to toggle on/off a random LED 10 times, and then

delete(instrfindall); % close any extant serial connections (defensive)

port = '/dev/tty.usbserial -A6004011'; % replace with appropriate address
aobj = serial(port, 'BaudRate', 9600, 'terminator', 'LF');

s| fprintf('Opening serial connection...\n');

% establish connection with the Arduino script (handshake)

fprintf('Connection established\n');
fprintf('Sending confirmation packet...\n');
fprintf(aobj, 'A\n'); % send Matlab passcode

delete(instrfindall); % force-close connection
error (['Connection failed. First character received must be ''Z'''
received);

'ON' command

'OFF' command

Listing 1 Matlab main program script (main.m), for interacting with LED Pixels via an Arduino microcontroller. See body text for details

update values. Thus, it is possible to send multiple update
commands, before triggering the display change (i.e., just as
with a computer monitor, multiple commands may be writ-
ten to an offscreen buffer at times #; and #,, before flipping
this buffer onto the display at time #3).

@ Springer

As well as receiving data over the serial port, the Arduino
is also able to write information back to the host com-
puter, using Serial.print() commands. Thus, after executing
a command, the code in Listing 3 (L72-76) transmits a mes-
sage confirming that the command was completed. If, as in

Behav Res

1| function [] = callback(aobj, callbackDataStruct) %#ok
% create a persistant data buffer
persistent datFromArduino
% reads data from the Arduino...
newData = fscanf(aobj);
% surround in try..catch because callback errors are suppressed, and we
% want to implement a manual way of reporting error messages
try
% if we have new data...
if isempty(newData)
% ...add it to our persistant data store, via concatenation
datFromArduino = [datFromArduino newData];
% if we've reached a linebreak, print the data to the console
% and clear the buffer
if regexp(newData, '\n', 'once')
% strip out linebreaks carriage-return from the message
2 txt = regexp(datFromArduino, '["\n\r]+', 'match', 'once');
% print to console (optional)
fprintf('Arduino: "%¥s"\n', txt);
% reset buffer
datFromArduino = '';
end
end
catch ME
%0 warning('Callback Error: %s', ME.message);
rethrow(ME);
end
end

Listing 2 Matlab callback code (callback.m), for receiving data returned over the serial connection from Arduino. See body text for details

Listing 1 (L31-34), a MATLAB callback function was spec-
ified, then this will automatically execute on receipt of any
incoming data. In Listing 2, the logic of this code is the
same as in the Arduino Loop() function. Namely, incoming
serial data is accumulated in a buffer until a linebreak char-
acter is received, at which point the information is processed
(in this case by simply printing the message to the MAT-
LAB console; Listing 2, L1-33). Note that these callback
commands are executed asynchronously from the main con-
trol script. This means that although the callback code in
Listing 2 is executed in the same thread as the main script
(Listing 1), it can be executed at any time (i.e., calling
Listing 2 briefly pauses the main MATLAB script, which
then automatically resumes upon completion). This means
that the main script does not have to wait to receive the
information before proceeding (e.g., to the next trial). How-
ever, in some circumstances it may be beneficial to force
the program to pause to await incoming data, for example
if the Arduino is expected to return important information

that must be saved at the end of each experimental trial.
Note also that although in the present example the data
returned from the Arduino is simply printed to the MAT-
LAB console, it could equally be saved to a hard disk, or
used to directly control the behavior of the main Matlab
script.

Once the main MATLAB experiment script is complete, it
closes the serial connection with the Arduino, and releases
any demands on memory (Listing 1; L48-51). Note that
disconnecting the serial connection will cause the Arduino
board to reset and the ”Setup()” function to be executed
(Listing 3, L13-37), just as opening the serial connection
did in step one. In practice, this will cause the LED Pixel
library to be reinitialized, and all the LED Pixels will be
turned off. Because of the use of a handshake step, the
Arduino script should then remain in the ‘awaiting hand-
shake’ phase (Listing 3, L84-107) indefinitely, until a new
serial connection is establish and the Arduino script once
again resets.

@ Springer

Behav Res

w

15

%7

s

&S

55

@ Springer

// State libraries to include
#include "SPI.h"
#include '""Adafruit_WS2801.h"

// Declare a WS2801 object

int const N_LEDS = 2§5; // total number of LEDs connected

int const dataPin = 2; // yellow wire on Adafruit Pixels

int const clockPin = 3; // green wire on Adafruit Pixels
Adafruit_WS2801 strip = Adafruit_WS28601 (N_LEDS,dataPin,clockPin);
// Prepare input buffer

String inData = ""; // Set other parameters

/Q
* Main entrance point. Run once (automatically) on Arduino reset
*/
void setup() {
// Adafruit library contains procedure 'begin' that initialises Adafruit
library.
strip.begin();

// Begin by flashing white on all LEDs, to show that they are working
for (int i=0; i<N_LEDS; i++){
strip.setPixelColor (i, 255,255,255);
}
strip.show();
delay(100); // show for 100 milliseconds...
for (int i=0; i<N_LEDS; i++){
strip.setPixelColor (i, 0,0,0);
}
strip.show(); // ... and then turn off all LEDs

// open up serial communication
Serial .begin(9660) ;
Serial.flush();

// establish connection with Matlab
performHandshake () ;
}

/ﬁ
* Run continually (automatically) after setup()
uf 3
void loop) {
// Wait for input command from Matlab
while (Serial.available() > 0) {
char received = Serial.read();
// Process message only when new line character is received
if (received != '\n') {
inData += received;
} else if (inData != "") {
// Execute command
int LED, RGB;
// parse command
if (inData.indexOf("!",0) != =-1) {
RGB = 0;
} else if (inData.index0£f("*",0) != =-1) {
RGB = 255;
} else {
// command not recognized; abort
Serial.print("Command string not recognized: ");
Serial.printin(inData);

Behav Res

return;
}
// exract LED number and clear
inData.setCharAt (0,
LED = inData.toInt();
inData = ""; // clear buffer

// update LED Pixels
h strip.show();

// echo
Serial.print("Setting LED ");
Serial.print(LED);

7 Serial.print(” to ");
Serial.println(RGB);

* Perform handshake with Matlab.
.'./
void performHandshake () {
(1) {
J// 1. read
inData = "";

wh

85 while

char received = Serial.

read();

inData += received; //

} else {

9 if (inData == "A") {

Serial.flush();
return;
}

100 imData = ""; // clear buffer

}
[2.

write

105 delay(200);

ffer

'0'); // remove command character

strip.setPixelColor (LED,RGB, RGB,RGB);

executed command back to Matlab in human readable format

Send a 'Z' byte until Matlab responds 'A’

le (Serial.available() > 0) { // Wait until there is data
// Read data

// Process message when new line character is received

if (received != '\n') { // if not a linebreak..

..add incoming byte to command buffer

// process any current command

inData = ; // clear buffer

Serial.println('2'); // send Arduino passcode

Listing 3 Arduino code (amain.iso), for receiving serial commands from Matlab, controlling LED Pixels accordingly, and returning status updates

to Matlab

Characterization

To characterize the properties of the Adafruit 12mm dif-
fused LED Pixels (see section “Hardware: Overview”),
measurements of luminance color spectrum, and temporal
response were made (Leachtenauer, 2004; Brainard et al.,

2002). Details of how recordings were made are given
within the relevant subsection. Where stated, analogous
recordings from an example Cathode Ray Tube [CRT] mon-
itor (ViewSonic G90fB 19”; ViewSonic Corporation, Brea,
CA, United States) and liquid-crystal display [LCD] moni-
tor (Samsung SyncMaster 305T 30”; Samsung Electronics

@ Springer

Behav Res

ot
o
~

W
o
=

30k

20k

10k

Luminance (cd/m?)

0 85 170
Command Level

Fig. 4 Gamma function: mean (+ 1 S.E., across five LED Pixels)
luminance output, as a function of command level input. Shown for a
white light, and for each red, green, blue LED presented in isolation.
Error bars not visible when standard error < marker size

Co., Ltd., Seoul, South Korea) were also taken for compar-
ison. Further details of those recordings are reported in the
Supplemental Material Statistical tests were evaluated at the
95 % significance level (¢ = 0.05).

Luminance measures
Luminance measurements were made using a Minolta

CS-100 colorimeter (Minolta Camera Co., Osaka, Japan)
fitted with a 1.3mm zoom lens (Minolta Model No. 122)

Input/Output (gamma) function

To characterize LED gamma response, luminance measure-
ments were made as a function of command [input] level.
Measurements were made at 13 uniformly spaced command
levels (CL = 0-255, inclusive). Measurements were made
for a white light (same CL values in each RGB channel;
Fig. 4a black line), and also for each color channel in isola-
tion (Fig. 4a colored lines). This procedure was carried out
independently for ten uniformly spaced LED Pixels (one set
of measurements per LED Pixel).

As shown in Fig. 4, the luminance profile of the
LEDs was highly linear (all r> > 0.98), and each LED
Pixel was capable of producing a wide range of lumi-
nance levels (white: 250-52,250 cd/m?). There was also
very little variability between LED Pixels, indicating that
their response is highly stable (e.g., across input levels,
the mean coefficient of variation between white-light LED
Pixels was 4.9 %). To put these values in context, the lumi-
nance of the LCD screen varied by 15.0 % across its spatial
extent.

From the Input/Output function, it is also possible to
derive a number of other useful measures (Leachtenauer,
2004), such as Dynamic Range (23.2 dB), Dark Cutoff (1),
and Gamma (2.40).

Maximum acceptable viewing angle
The luminance of an LED tends to be highly dependent on

the angle at which it is viewed. To quantify this directional-
ity, maximum acceptable viewing angle was operationalized

> 50k

40k

30k

20k

10k

Luminance (c¢d/m

32.7

45 0 15 30 45

Half Angle (deg)

Fig. 5 a Half-luminance viewing angle (HLVA) for a full-intensity
white light. The vertical dashed line indicates the largest angle at
which measured luminance was 50 % of the maximum. Variability in
luminance not accounted for by the least-square linear fit (> = 0.89)
is likely due to human error in where the colorimeter was positioned

@ Springer

relative to the center of the LED Pixel (i.e., error in the x-axis of the
graph). See Supplemental Material (Fig. S1) for analogous recordings
from a CRT and LCD monitor. b Analogous recordings for each of the
three individual RGB elements

Behav Res

A
N=19 O o) 0
N=d6 O O~ (O
N=1 o.0. 0
N=0 (000
—~—~ b4k r
B
=
O 52k
N—"
& drain (-3.7%)
=
E 50k
5 48k 1 1 1 1 1

49 37 25 12

0

B N=49 O (0] (@)
N=46 (0] (0] (@)
N=1 0.0 0
N=0 (000)
255
halation (+1.8%) ﬁ
24500
global
drain (-3.3%)
235
225 1 1 1 1

49 37 25 12 0

Flanker Gap (+ N Pixels)

Fig. 6 Drain a and halation b. Markers show mean (£ 1 S.E.) luminance for a single LED Pixel (same throughout), as two flanker pixels are
brought progressively closer to the target. See body text for details. See Supplemental Material (Fig. S2) for analogous measurements for each

individual RGB element

as half luminance viewing angle (HLVA)—the largest angle
at which the measured luminance of a full intensity white
light was 50 % of the maximum (as measured at 0°). The
result, shown in Fig. 5a, was HLVA = £+ 32.7°, corres-
ponding to a full (left-to-right) span diameter of 65.4°. This
range of viewing angle is approximately half that of the
LCD screen (HLVA cp = 62.4°) and smaller still than
that of the CRT screen (HLVAcrT = 82.5°)—CRT technol-
ogy being highly tolerant of off-angle viewing (Krupinski
et al., 2005). From these results, it can be concluded that
a potential limitation of LED Pixels are their directional-
ity, making them best suited to situations where the stimuli
are never viewed obliquely (e.g., as in Fig. 1b), and/or
where variations in stimulus intensity are not a concern.
The luminance measurements for each individual RGB ele-
ment (Fig. 5b) were qualitatively similar to those for a white
light (R: +32.7° ; G: £ 29.8° , B: £ 46.9°), and indicated
a linear dependency of luminance on viewing angle. Note
that the different slopes for the three color channels means
that precise hue of any additively mixed colors is liable to
vary with viewing angle, though subjectively these varia-
tions are not typically salient (see section “Characterization
of chromaticity” for data regarding chromaticity).

Drain and halation

Drain describes a bleeding effect, whereby the luminance
of one LED Pixel is reduced when those around it are

turned on also (i.e., due to a decrease in available current).
Drain is a conspicuous problem for most output displays,
including LCD and CRT monitors, where dependencies
between neighboring regions of the screen can result in
stimulus artifacts of sufficient magnitude to confound a
precise psychophysical experiment (Garcia-Perez and Peli,
2001).

Drain was assessed by measuring output luminance at
a fixed, central LED Pixel (the target), as LED Pixels at
two other locations (the flankers) were illuminated with
increasing proximity (as illustrated in Fig. 6). Both target
and flankers were set to maximum luminance throughout
(command level = (255, 255,255)). Drain was quanti-
fied as percentage difference to mean target luminance
when no flankers were present (Fig. 6a, horizontal dashed
line). The result is shown in Fig. 6a. Drain effects were
small but clear, and increased progressively with proxim-
ity. When the flankers were relatively distal (global drain),
target luminance was reduced by 3.7 %. When the flankers
were immediately adjacent to the target (local drain), target
luminance was reduced by 6.6 %. (N.B. flankers were physi-
cally occluded from the colorimeter to prevent measurement
confounds).

Halation is the inverse of drain, whereby a dark (low
luminance) pixel surrounded by bright (high luminance)
pixels, exhibits an increase in luminance (i.e., a higher
luminance response than would be predicted by the input
command level alone (Leachtenauer, 2004)).

@ Springer

Behav Res

As indicated in Fig. 6b, halation was assessed by repeat-
ing the drain measurement procedure, but setting the tar-
get LED Pixel output to its minimum measurable level
(command level = (1,1, 1)2). Global drain was largely
unchanged, (compared to the previous test using a max-
imum level target), but the effects of local drain were
swamped by halation, which resulted in luminance increas-
ing by 1.8 % (compared to the 6.6 % decrease due to local
drain, measured previously).

To put these data in context, the just noticeable difference
[JND] for detecting a change in luminance is approximately
2 % for a white light presented against a dim-photopic back-
ground (3-40 cd/m?), rising to around 3 % for a 100 cd/m?
background (comfortable viewing level of a monitor; see
Supplemental Material for more info on typical luminance-
detection JND values). The effects of halation reported here
will therefore not be generally apparent to observers, and
so will be of little concern for many behavioral scientists.
However, the effects of drain may be detectable under close
inspection. If performing stringent psychophysical proce-
dures (e.g., where perception of luminance is the measure of
interest), it would therefore be advisable to correct for the
variations in luminance caused by drain, particularly when
presenting ‘flanking’ stimuli immediately either side of the
target.

Moreover, it is important to note that the effects of drain
can be exacerbated by increasing the number of flankers.
For example, when the number of flankers was increased
to 100 (with a £10 LED notch around the target), target
luminance decreased by 74 % (Fig. 7, circles). As shown
in Fig. 7 (squares), such drain was mitigated but not erad-
icated (74 % => 44 %) by connecting a second power
supply to the trailing end of the strand. It is likely that con-
necting additional power inputs would have further reduced
drain, but this was not tested. For dense LED Pixel displays
requiring precise absolute luminance levels, careful cal-
ibration, and multiple power supplies, may therefore be
required.

Spectral measures

Spectral measurements were made using a telescopic
spectroradiometer (Gamma Scientific, San Diego, CA,
USA). Measurements of overall color gamut were also
made using the CS-100 colorimeter detailed previously
(Section “Luminance measures”).

2N.B. Unlike LCD screens, an input of (0, 0,) produces no measurable
luminance output, and so could not be used to assess the effects of
Global Drain.

@ Springer

o 1X5V

ot

=)

—
T

Luminance (cd/m?)

0 20 40 60 80 100
N Flankers

Fig. 7 Drain effects for increasing dense displays. Each point gives
mean (£ 1 S.E.) luminance for 12 measurements of the same, ‘target’
LED Pixel. Error bars were smaller than marker size in all cases and
so are not visible. The target was the central LED Pixel in a strand
of 123 LED Pixels. The flanker gap was fixed at + 10 pixels, and
the number of flankers was varied, with half either side of the target.
The target and any flankers were set to maximum luminance (RGB
= (255, 255, 255))

Power spectral density [PSD]

The power spectral density (PSD) of the LED Pixel, mea-
sured for a white light at full brightness, is shown in Fig. 8a.
Unlike a laser (sinusoidal spectra) or an incandescent bulb
(broadband spectra), an LED has a narrowband spectral
response. The individual response from each of the three
constituent LEDs is therefore clearly visible in Fig. 8a. The
peak output wavelengths of the three elements were 464.5,
512.3, and 633.4 nm, and they approximately followed nor-
mal distributions with standard deviations of 16.7, 25.5, and
12.2 nm? (respectively). This corresponds to full width half
modulation [FWHM] values of 39.3 (blue), 60.0 (green),
and 28.7 nm (red). These response spectra mean, for exam-
ple, that the ‘red” LED element emits extremely little light
below 600 nm. Since rod photoreceptors are highly insensi-
tive to wavelengths above 600 nm, the ‘red” LED element
can therefore be particularly useful for isolating cone func-
tionality; for example, in order to monitor residual function
in cone dystrophies such as achromatopsia (Moore, 1992).
The width of the spectral power distributions for each of
the three color channels were similar to those reported pre-
viously for CRT phosphers (Brainard, 1989), though the
‘blue’ and ‘green’ elements were somewhat more narrowly
distributed.

3Note that the optical bandwidth of a spectroradiometer is liable to
broaden the spectral shape of a measured source. The true values may
be marginally lower.

Behav Res

Rel. Power Density >

400 500 600
Wavelength (nm)

Fig. 8 a Relative power spectral density of a LED Pixel at maximum
luminance (i.e., relative whitelight irradiance as a function of wave-
length). b CIE (1936) color space chromaticity diagram, with triangles

Color gamut

Color gamut describes the subset of visible hues that can be
produced reliably by the device. The industry, SRGB, stan-
dard for commercial display devices (Anderson et al., 1996)
is shown by the thin blue line in Fig. 8b. Compared to this,
the LEDs perform favorably (Fig. 8b, thick black line). They
were able to produce 99.9 % of the sSRGB colorspace, along
with substantially deeper hues of green.

Characterization of chromaticity

To further characterize the chromatic properties of the LED
Pixels, many of the previous analyses of luminance were
repeated using chromaticity instead of luminance as the
dependent variable. Chromaticity was defined in terms of
the u” and v’ chromaticity coordinates of the CIE 1976 color
space4 (ak.a. CIELUV) (Robertson, 1977). Values of (L, v/,
v') were computed from the recorded x/y coordinates using
the OptProp Matlab toolbox (Wagberg, 2007), assuming a
D65 illuminant and a 2 degrees observer.

A difference in chromaticity (“Chromatic Shift”) was
defined as the Euclidean distance of the observed (v, v/)
coordinates from the ideal. The ideal coordinates, (ui’deal,
Vijeal) Were defined as those measured when the same pixel
was: (i) set to maximum luminance, (255, 255, 255); (ii)
measured from straight on, 0°; (iii) switched on for 10 min
to allow for any potential warm-up (though warm-up effects
are shown below to be negligible). Thus, lower values of
chromatic shift indicate greater stability in terms of hue

4The CIELUV color space is designed to be perceptually uniform,
such that two colors that are equally distant in the color space are
equally distant perceptually.

700

showing the gamut of the LED Pixels (thick black) and the sSRGB
industry display standard (thin blue)

and saturation. Although there is no universally accepted
JND value for chromaticity, here we took 0.003 (a three-
step MacAdam Ellipse (Wyszecki & Stiles, 2000; Royer
et al., 2013; Mahy et al., 1994)) as the minimum unit of dis-
criminability when considering whether observed chromatic
shift values were substantive.

From inspection of Fig. 9, it can be seen that the LED
Pixels generally exhibited good chromatic stability. Com-
pared with CRT and LCD technology, chromaticity was
much less dependent of luminance (Fig. 9a). The green ele-
ment in particular was highly consistent, exhibiting almost
constant chromaticity across all luminance levels (< 0.001;
see Supplemental Material for details). The red element
was also relatively stable across luminance levels, exhibit-
ing chromatic shifts on the order of ~ 0.006. This would
be detectable, though only under close inspection. The blue
element was substantively less stable (~ 0.036), exhibit-
ing luminance-dependent variations in chromaticity which
would need to be corrected for if performing precise psy-
chophysical procedures. However, these variations in chro-
maticity were still markedly smaller than those exhibited
by CRT (~ 0.560) or LCD (~ 0.153) devices’, and would
not be noticeable under casual viewing. In the LED Pix-
els, the smallest programmable increment in chromaticity
(e.g., (128, 128, 128) vs. (128, 129, 128)) produced a mean
chromatic shift of 0.012.

SNB recordings were made in dark (mesopic) conditions, so ambi-
ent/external flare would be minimal. However, in the case of the
LCD device, chromaticity at low command levels will have been con-
founded by internal flare due to backlighting (Fernandez-Maloigne,
2012). Such a chromatic shift can be straightforwardly corrected for.
However, even at higher command levels (> 100), the mean level
of chromatic shift in the LCD screen, 0.094, was approximately four
times greater than that observed in LED Pixels (0.024).

@ Springer

Behav Res

A B c
™ 160
g 1 T T T) T T T T T 0.02 0.8
g LED 1 CRT LCD
<% 075} + + 4 0.015 - 0.6
~ A Red
e
\I-s 0.5 Green T 4} —-@ 4 0.01F 04k
N O Blue 0.005 F 02}
+ " 1 | = | A'A—A-z-A-H./
AQ Poog . . . e e e aaa
T RR2R2RResea@! é@@.m@ ssal’-4%45.2228] -
§ 30 128 225 30 128 225 30 128 225 0.015 - 06 L
= Command Level (0 ... 255)
| 0.01F 04
\Ss OAI T T T T T T 0-4 T 1 T 1 0005 | 02 |
= o001} 1 03 P
+o
H 0.001 | AA 1 =L sk
% a5 geof 0.2 0.015 0.6
S) 0.0001 . 0.01 F 0.4 F
=
S le—05} 4 Ot 0.005 02}
g
o *
b 0 phe— T 0
= 0 1 2 3 4 5 49 37 25 12 0 49 37 25 12 0
O

Time (mins)

Fig. 9 Changes in LED Pixel chromaticity coordinates (& 1 S.E.) as
a function of a input command level, b drain, ¢ halation, d warm-up,
and e viewing angle. The out-of-axes markers in (e) indicate additional

Effects of drain (Fig. 9b) and halation (Fig. 9x) were
generally either zero or negligibly small (< 1 JND). One
notable exception to this overall trend was halation caused
by immediately adjacent LED Pixels. Thus, when a max-
imally intense white light was presented next to a dim
red, green, or blue light, there was some visible distor-
tion in the color of dim light. Such effects could be
avoided in practice by leaving a one pixel ‘buffer’ around
very dim lights. Warm-up times were negligible, with no
systematic variations in chromaticity over time (Fig. 9d),
confirming that a warm-up period is not required when
using LED Pixels. Finally, chromaticity was highly sta-
ble with viewing angle for the red and green elements,
but was substantive confound for the blue element. Thus,
as followed previously from considerations of luminance
(section “Maximum acceptable viewing angle”), it would
be important to always view the LED Pixels at a constant
(e.g., perpendicular) angle if precise stimulus constancy
were required.

Temporal measures
Timing measurements were made using a CRS LMO03 pho-

todiode (Cambridge Research Systems, Cambridge, UK),
sampling at a rate of 5 us.

@ Springer

Half Angle (deg)

Flanker Gap (£ N Pixels)

measurements made at +-70°. The numeric values for (a) are given in
the Supplemental Material (Table SI)

Response time and onset lag

Response time was measured as the number of millisec-
onds taken for the display device to transition from fully off
to fully on (black-to-white response time; BWRT), or from
full on to full off (white-to-black response time; WBRT).
As can be seen in Fig. 10a, b, the results from the LED
Pixels were indistinguishable from a step function, mean-
ing that the response time was virtually instantaneous (<
0.001 ms). This compares favorably with the LCD display
(BWRT: 7.46 ms; WBRT: 6.68 ms), and is faster even than
the impulse response time of the CRT (BWRT: 0.58 ms;
WBRT: 2.45 ms), details for which are given in the Supple-
mental Material (see also Elze and Tanner (2012) for a more
detailed and comprehensive analysis of LCD technology)
A related measure to response time is onset lag: the dura-
tion between a command being sent and it being actualized
by the display. This includes both the response time and
any other limitations due to transmission speed and refresh
rate. From Fig. 10c it can be seen that onset lag was ~ 6
ms. This compares favorably with the typical refresh rates
of an LCD or CRT monitor (60-120 Hz; ~ 8-16 ms), and
means that the LED Pixels can be manipulated in near real
time, and with a far higher temporal fidelity that can be
achieved using a standard LCD or CRT monitor. The LED

Behav Res

Pixels are therefore well suited to situations where pre-
cise control of temporal duration is required—for example
to maximize responsiveness when designing an interactive
(user controlled) display.

There was also very little variability in onset lag across
repeated observations (Fig. 10c, d, vs. Figs. S3, S4 in
the Supplemental Material). This means that the temporal
response of the LED Pixels is not only fast but also highly
reliable/predictable. Such fast and reliable response times
are especially appealing to users looking to synchronize the
visual output with a secondary output, such as an audio
device.

Refresh rate

An onset lag of 6 ms (see section ‘“Response time and onset
lag”) corresponds to a potential refresh rate of 167 Hz. This
is already faster than most commercial monitors, which typ-
ically operate at 60—120 Hz. Notably though, the 6-ms lag is
due in part to the time taken to encode/transmit/decode com-
mands sent in series over the USB port. Thus, even higher
refresh rates can be achieved by sending whole sequences
of commands to the microcontroller in advance (e.g., to be
executed at specified time in the future, or following a pre-
determined trigger). For example, Fig. 11 shows an LED
Pixel following a predetermined on/off sequence. Here, a
refresh rate of 446 Hz was possible. Thus, LED Pixels may
also be particularly well suited for experiments that require a
high flicker rate (Brindley et al., 1966; Simonson & Brozek,
1952).

_ T T T T T T
= 1F]
=
e}
S LA B
= 0.75F T T
3]
a 05k < 0.01 ms 1 < 0.01 ms i
<
=]
or—
g o025f T .
(=)
—
1 1 1 il il L

2000 F ' ' ' T ' ' ' E

= 1000 | + .
0 1 1 1

1 1 1
0 20 40 60 80 100 120 140 160
Time (ms)

Fig. 10 a, b Response time curves, averaged over 10,000 off-on (a)
or on-off (b) transition. Individual measurements were aligned tempo-
rally via crosscorrelation prior to averaging. Panels ¢ and d show the
distribution of cross-correlation lag times (i.e., amount of trial-by-trial
lateral variability in the response curve shown above). The shape of the
curves in the upper panels indicates the response time. The distribu-
tions in the lower panels indicate mean onset lag (green vertical line),
and variability in onset lag (histograms)

Note, however, that a refresh rate of 446 Hz is an upper
limit, and the maximum refresh rate decreases as the num-
ber of LED Pixels increases (N.B. where N is the number
of LED Pixels specified when the WS2801 Arduino library
is initialized—Listing 3, L9—and not how many LED Pix-
els are physically connected). This reduction in refresh rate
is because, while it takes the same amount of time to ‘flip’
one pixel as it does for an entire strip (the ‘show’ command;
Listing 3, L70), luminance update commands are briefly
‘held’ by each LED Pixel, and so incur a cumulative time
cost (the ‘setPixelColor’ command; Listing 3, L69). As a
consequence, it can take longer than 2 ms (446 Hz) to update
the luminance levels of even a single LED Pixel if a large
number of LED Pixels have been specified as addressable.
For applications requiring exceptionally high refresh rates
(e.g., 446 Hz), therefore only one or two LED Pixels can be
addressed

Warm-up rate

In section “Response time and onset lag” we discussed
response time: how long it takes for the device to transi-
tion from one state (e.g., minimum luminance) to another
(e.g., maximum luminance). With traditional visual out-
put devices such as CRT and LCD monitors, there is
also a longer-term dynamic in which maximum luminance
increases gradually for a period after the device is turned
on. Thus, the maximum luminance output of an LCD or
CRT screen will be greater after 60 min than it is when first
powered up for the day, though most of this change typi-
cally occurs within the first 5-10 min (Bird, 2010). With
LED technology, such warm-up effects are still a potential
concern, since the temperature at the junction of the LED

1 1 1
< 2.2 ms (446 Hz)

—_
! |
]

L-_—-

Luminance (norm)

o

o t

1

[

-

[
1

10 20 30 40
Time (ms)

Fig. 11 LED Pixel refresh rates. Curve shows relative luminance
output (normalized by dividing by maximum observed level) as a func-
tion of time, as a single LED Pixel was turned on/off without any
user-specified delay. Highlighting shows a single, example sustained
duration, which lasted 2.2 ms

@ Springer

Behav Res

chip can affect forward voltage, and thus the amount of light
emitted.

To examine whether LED warm-up is a practical concern
for behavioral scientists, measurements were made every 30
s for LED Pixels that had not been powered in the previ-
ous 24 h. The results are shown in Fig. 12, and indicated
that no warm-up effect was detectable at low (¢ test compar-
ison of linear regression slope to zero: t9 = -2.01, p =.076,
n.s.), medium (9 = 1.05, p =.323, n.s.), or maximum
(ty = -0.94, p = 0.372, n.s.) luminance settings. Thus,
while we cannot rule out extremely small, extremely rapid,
or extremely gradual effects, warm-up is unlikely to be a
concern when using LED Pixels. This makes them more
convenient than traditional visual displays (which typically
need to be turned on at least 30 min prior to testing when
a high degree of precision is required), and eliminates a
potential source of measurement error.

Discussion

The present paper describes a simple, cheap, and flexible
solution for controlling LED light sources, using digitally
addressable LED Pixels connected to an Arduino microcon-
troller. It also details the properties of such a system, in
terms of output luminance, color, and temporal precision.
In some instances, such a system can provide unique
advantages over traditional LCD or CRT monitors. For
example, LED Pixels were shown to have exceptionally fast
and reliable response properties, narrowband color spectra,
and a wide dynamic range of luminance levels. Each of

50k

W
[aw]
=
I
1

30k .

20k | 1

10k

Luminance (cd/m?)

0 1 2 3 4 5
Time (mins)

Fig. 12 LED Pixel warm-up dynamics, showing luminance measure-
ments for three grey levels (CL = 8, 128, 255), and for each of the three
RGB color elements (CL = 255), as a function of time. Markers show
mean (+-SE) luminance levels for each of seven LED Pixels, measured
independently (error bars not visible when smaller than marker). Lines
represent least-square regression fits, and did not differ from zero in
any case (no change in luminance with time; see body text for details)

@ Springer

these properties may make them appealing for psychophysi-
cists, as might their high degree of linearity (which makes
them extremely easy to calibrate and manipulate). For more
general users, their ease of use and flexibility may make
LED Pixels an attractive proposition in a range of set-
tings. For example, the fact that LED Pixels can be placed
anywhere, either in isolation or in clusters, makes them
especially well suited to more ‘ecologically valid’ exper-
iments (i.e., where stimuli are presented in a real-world
environment, rather than on a screen or headset). As noted
by previous authors (Teikari & et al. 2012), LED technology
may also be particularly suited to experiments employing
electrophysiological equipment, due to their relatively low
electromagnetic interference emissions.

The potential caveats of the LED Pixels were shown to
be their relatively narrow viewing angle (i.e., appearing sub-
stantially less bright when viewed eccentrically), and the
fact that both timing and luminance properties were depen-
dent on the number of LED Pixels used (i.e., the greatest
luminance and refresh rates were only possible when using
a single LED Pixel). It should also be noted that the LED
Pixels presented here do not support analog (direct current)
dimming, though their relatively high PWM means that this
will not be a limiting factor for the majority of users (see the
Supplemental Material for discussion).

The hardware described here is easily extensible. The
number of lights can be increased simply by clipping
together additional LED Pixels. More generally, the basic
computer/microcontroller setup can also be adapted for
qualitatively distinct purposes. For example, previous
authors have detailed more complicated setups in which
an Arduino microcontroller is combined with custom-built
circuit boards to control both LED elements and incan-
descent (civil aviation standard) light bulbs, in order to
model the effects of different light sources on visual percep-
tion and action (Gildea & Milburn, 2013). Furthermore, the
same basic Arduino system (D’Ausilio, 2012) can be eas-
ily extended to send and receive data from other devices,
including both other forms of outputs (e.g., motors, ser-
vos, piezoelectric speakers), as well as various forms of
input sensors (e.g., temperature, geolocation, galvanic skin
response, compass direction).

Finally, it is worth stressing that the system described
here only requires the plugging together of standardized,
off-the-shelf components. This makes it a cheap and easy-
to-use solution for users with a wide range of technical
expertise, and the large amount of online support means that
users are likely to be able to find help if/when problems
occur.

Acknowledgments The authors thank Gary Rubin, Andrew Stock-
man, and Andy Rider for use of equipment, and Aisha McLean for
assistance with chromatic measurements. This work was supported by

Behav Res

the Special Trustees of Moorfields Eye Hospital, the NIHR Biomedi-
cal Research Centre at Moorfields Eye Hospital and the UCL Institute
of Ophthalmology, and the James S. McDonnell Foundation.

Open Access This article is distributed under the terms of
the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unre-
stricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if
changes were made.

References

Maxwell, J.C. (1857). Experiments on Colour, as perceived by the
Eye, with Remarks on Colour-Blindness. Transactions of the
Royal Society Edinburgh, 21, 275-298.

Mach, E. (1959). The analysis of sensations (Translated by CM
Williams & S. Waterlow, original work published, 1886).

Fry, G. A. (1948). Mechanisms subserving simultaneous brightness
contrast. Am. J. Optom. Arch. Am. Acad. Optom., 25, 162—178.
Tschermak-Seysenegg, A. (1939). Uber parallaktoskopie. Pfliiger’s
Arch. fiir die gesamte Physiol. des Menschen und der Tiere, 241,

455-469.

Howard, 1.P. (2012). Perceiving in depth, volume 1: Basic mecha-
nisms. Oxford University Press.

Nygaard, R. W., & Frumkes, T. E. (1982). LEDs: Convenient, inexpen-
sive sources for visual experimentation. Vision Research, 22, 435—
440.

Da Silva Pinto, M. .A., de Souza, J. K. S., Baron, J., & Tierra-Criollo,
C.J. (2011). A low-cost, portable, micro-controlled device for
multi-channel LED visual stimulation. Journal of Neuroscience
Methods, 197, 82-91.

Teikari, P, et al. (2012). An inexpensive Arduino-based LED stimula-
tor system for vision research. Journal of Neuroscience Methods,
211, 227-236.

Demontis, G.C., Sbrana, A., Gargini, C., & Cervetto, L. (2005).
A simple and inexpensive light source for research in visual
neuroscience. Journal of Neuroscience Methods, 146, 13-21.

Albeanu, D.F.,, Soucy, E., Sato, T.F.,, Meister, M., & Murthy, V.N.
(2008). LED arrays as cost effective and efficient light sources for
widefield microscopy. PLoS One, 3, €2146.

Nardini, M., Jones, P., Bedford, R., & Braddick, O. (2008). Develop-
ment of cue integration in human navigation. Current Biology, 18,
689-693.

Garcia, S.E., Jones, P.R., G, R, & M., N. (2015). Visual-auditory
localization in central and peripheral space. In Vis. Sci. Soc. St.
Pete Beach, Florida.

Leachtenauer, J. C. (2004). in Vol. 113, pp. 53-81. SPIE Press.

Brainard, D. H., Pelli, D. G., & Robson, T. (2002). Display characteri-
zation. Encycl. imaging Sci. Technol.

Krupinski, E. A., Johnson, J., Roehrig, H., Nafziger, J., & Lubin, J.
(2005). On-axis and off-axis viewing of images on CRT displays
and LCDs: Observer performance and vision model predictions.
Academic Radiology, 12, 957-964.

Garcia-Perez, M. A., & Peli, E. (2001). Luminance artifacts of
cathode-ray tube displays for vision research. Spatial Vision, 14,
201-216.

Moore, A.T. (1992). Cone and cone-rod dystrophies. Journal of
Medical Genetics, 29, 289.

Brainard, D.H. (1989). Calibration of a computer controlled color
monitor. Color Research and Application, 14, 23-34.

Anderson, M., Motta, R., Chandrasekar, S., & Stokes, M. (1996). Pro-
posal for a standard default color space for the internet—sRGB. In
Color Imaging Conf. (Vol. 1996, pp. 238-245).

Robertson, A.R. (1977). The CIE 1976 Color-Difference Formulae.
Color Research and Application, 2, 7-11.

Wagberg, J. (2007). Matlab Toolbox for calculation of color related
optical properties—Version 2.1. More Res. DPC Digit. Print. Cent.

Wyszecki, G., & Stiles, W.S. (2000). Color Science (pp. 306-313).
New York: Wiley.

Royer, M. P,, Tuttle, R., Rosenfeld, S. M., & Miller, N. J. (2013). Color
maintenance of LEDs in laboratory and field applications.

Mahy, M., Eycken, L., & Oosterlinck, A. (1994). Evaluation of uni-
form color spaces developed after the adoption of CIELAB and
CIELUV. Color Research and Application, 19, 105-121.

Elze, T., & Tanner, T. G. (2012). Temporal properties of liquid crystal
displays: Implications for vision science experiments. PLoS One,
7, e44048.

Brindley, G. S., Du Croz, J. J., & Rushton, W. A. H. (1966). The flicker
fusion frequency of the blue-sensitive mechanism of colour vision.
Journal of Physiology, 183, 497-500.

Simonson, E., & Brozek, J. (1952). Flicker fusion frequency. Physio-
logical Reviews, 32, 349-378.

Bird, D. (2010). Display Warm Up Rates — How Long is Enough?

Gildea, K.M., & Milburn, N. (2013). Open-source products for a
lighting experiment device. Behaviour Research and Methods, 1-
24.

D’Ausilio, A. (2012). Arduino: A low-cost multipurpose lab equip-
ment. Behaviour Research and Methods, 44, 305-313.

Fernandez-Maloigne, C. (2012). Advanced Color Image Process-
ing and Analysis (pp. 98-104). Springer Science & Business
Media.

@ Springer

http://creativecommons.org/licenses/by/4.0/

	Digital LED Pixels: Instructions for use and a characterization of their properties
	Abstract
	Introduction
	Methods
	Hardware: Overview
	The LED pixels (Fig. 2a)
	The 5-V power supply (Fig. 2b)
	The Arduino microcontroller (Fig. 2c)
	The computer (Fig. 2d)

	Software requirements
	Assembly and installation

	Usage (with minimal working example)
	Characterization
	Luminance measures
	Input/Output (gamma) function
	Maximum acceptable viewing angle
	Drain and halation

	Spectral measures
	Power spectral density [PSD]
	Color gamut
	Characterization of chromaticity

	Temporal measures
	Response time and onset lag
	Refresh rate
	Warm-up rate

	Discussion
	Acknowledgments
	Open Access
	References

