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CENTROIDAL POWER DIAGRAMS, LLOYD’S ALGORITHM, AND
APPLICATIONS TO OPTIMAL LOCATION PROBLEMS∗

D. P. BOURNE† AND S. M. ROPER‡

Abstract. In this paper we develop a numerical method for solving a class of optimization
problems known as optimal location or quantization problems. The target energy can be written
either in terms of atomic measures and the Wasserstein distance or in terms of weighted points
and power diagrams (generalized Voronoi diagrams). The latter formulation is more suitable for
computation. We show that critical points of the energy are centroidal power diagrams, which
are generalizations of centroidal Voronoi tessellations, and that they can be approximated by a
generalization of Lloyd’s algorithm (Lloyd’s algorithm is a common method for finding centroidal
Voronoi tessellations). We prove that the algorithm is energy decreasing and prove a convergence
theorem. Numerical experiments suggest that the algorithm converges linearly. We illustrate the
algorithm in two and three dimensions using simple models of optimal location and crystallization
(see online supplementary material).
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1. Introduction. In this paper we derive and analyze a numerical method for
minimizing a class of energies that arises in economics (optimal location problems),
electrical engineering (quantization), and materials science (crystallization and pat-
tern formation). Applications are discussed further in section 1.5. These energies can
be formulated either in terms of atomic measures and the Wasserstein distance (see
(1.1)) or in terms of generalized Voronoi diagrams (see (1.9)). These formulations are
equivalent, but (1.1) is more common in the applied analysis literature (e.g., [4], [8])
and (1.9) is more common in the computational geometry and quantization literature
(e.g, [11], [13]). Importantly for us, formulation (1.9) is much more convenient for
numerical work. We work with formulation (1.9) throughout the paper after first
deriving it from (1.1) in sections 1.1 and 1.2. We start from (1.1) rather than directly
from (1.9) in order to highlight the connection between the different communities.

1.1. Wasserstein formulation of the energy. Let Ω be a bounded subset of
R

d, d ≥ 2, and ρ : Ω → [0,∞) be a given density on Ω. Let f : [0,∞) → R. We
consider the following class of discrete energies, which are defined on sets of weighted
points {xi,mi}Ni=1 ∈ (Ω× (0,∞))N , xi �= xj if i �= j:

(1.1) F ({xi,mi}) =
N∑
i=1

f(mi) + d2

(
ρ,

N∑
i=1

miδxi

)
.

The second term is the square of the Wasserstein distance between the density ρ and
the atomic measure

∑N
i=1 miδxi . It is defined below in (1.2). This energy models, e.g.,
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the problem of optimally locating resources (such as recycling points, polling stations,
or distribution centers) in a city or country Ω with population density ρ. The points
xi are the locations of the resources, and the weights mi represent their size. The
first term of the energy penalizes the cost of building or running the resources. The
second term penalizes the total distance between the population and the resources.
In our case the Wasserstein distance d(·, ·) can be defined by

(1.2) d2

(
ρ,

N∑
i=1

miδxi

)

= min
T :Ω→{xi}N

i=1

{
N∑
i=1

∫
T−1(xi)

|x− xi|2ρ(x) dx :

∫
T−1(xi)

ρ dx = mi ∀ i

}
.

See, e.g., [30]. In two dimensions the minimization problem (1.2) can be interpreted
as the following optimal partitioning problem: The map T partitions a city (for
example), occupying Ω, with population density ρ into N regions, {T−1(xi)}Ni=1.
Region T−1(xi) is assigned to the resource (e.g., polling station) located at point xi

of size mi. The optimal map T does this in such a way as to minimize the total
distance squared between the population and the resources subject to the constraint
that each resource can meet the demand of the population assigned to it.

The Wasserstein distance is well defined provided that the weights mi are positive
and satisfy the mass constraint

(1.3)
∑
i

mi =

∫
Ω

ρ(x) dx.

It can be shown that d(·, ·) is a metric on measures and that it metrizes weak conver-
gence of measures, meaning that if ρn converges to ρ, then d(ρ, ρn) → 0. See, e.g.,
[30, Ch. 7]. It is not necessary to be familiar with measure theory or the Wasserstein
distance since we will soon reformulate the minimization problem minF as a more
elementary computational geometry problem involving generalized Voronoi diagrams
(power diagrams).

The given data for the problem are Ω, f , ρ. We assume that

Ω is compact and convex, ρ ∈ C0(Ω), ρ ≥ 0,(1.4)

f ∈ C1([0,∞)), f is concave, f(0) ≥ 0, lim
m→0

f(m)

m
= +∞.(1.5)

Assumptions (1.5)2, (1.5)3 imply that

(1.6) f is subadditive: f(m1) + f(m2) ≥ f(m1 +m2) ∀ m1,m2 ≥ 0.

The number N of weighted points is not prescribed and is an unknown of the problem:
The goal is to minimize F over the set of at most countably many weighted points
{xi,mi} subject to the constraint (1.3).

If f(0) > 0, then it is easy to see that F has a minimizer and that minimizers
consist of a finite number of weighted points (since minimizing F reduces to minimiz-
ing a continuous function on a compact subset of RM for some sufficiently large M).
If f(0) = 0, then the existence of a minimizer of F is more tricky and follows from
(1.5)4, (1.6), and a characterization of lower semicontinuous functionals of measures.
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See [8, Thm. 2.1]. Since f is locally Lipschitz continuous, minimizers consist of a
finite number of weighted points [8, Thm. 4.1].

The optimal number N of weighted points is determined by the competition
between the two terms of F . The first term is minimized when N = 1, due to the
subadditivity of f . The infimum of the second term is zero, which is obtained in
the limit N → ∞ (this is because the measure ρ dx can be approximated arbitrarily
well with Dirac masses, e.g., by using a convergent quadrature rule, and because the
Wasserstein distance d(·, ·) metrizes weak convergence of measures).

Energies of the form of F and generalizations have received a great deal of at-
tention in the applied analysis literature; e.g., [4] and [8] study the existence and
properties of minimizers for broad classes of optimal location energies. There is far
less work, however, on numerical methods for such problems. Exceptions include the
case of (1.1) with f = 0, which has been well studied numerically. This is discussed
in section 1.4.

1.2. Power diagram formulation of the energy. Minimizing F numerically
is challenging due to the presence of the Wasserstein term, which is defined implicitly
in terms of the solution to the optimal transportation problem (1.2). This is an
infinite-dimensional linear programming problem in which every point in Ω has to be
assigned to one of the N weighted points (xi,mi). Therefore, even evaluating the
energy F is expensive. One option is to discretize ρ so that (1.2) becomes a finite-
dimensional linear programming problem. This is still costly, however, and it turns
out that by exploiting a deep connection between optimal transportation theory and
computational geometry we can reformulate the minimization problem minF in such
a way that we can avoid solving (1.2) altogether.

First we need to introduce some terminology from computational geometry. The
power diagram associated to a set of weighted points {xi, wi}Ni=1, where xi ∈ Ω are
distinct, wi ∈ R, is the collection of subsets Pi ⊆ Ω defined by

(1.7) Pi = {x ∈ Ω : |x− xi|2 − wi ≤ |x− xk|2 − wk ∀ k}.

The individual sets Pi are called power cells (or cells) of the power diagram. The power
diagram is sometimes called the Laguerre diagram, or the radical Voronoi diagram.
If all the weights wi are equal, we obtain the standard Voronoi diagram; see Figure 1.
From (1.7) we see that the power cells Pi are obtained by intersecting half planes and
are therefore convex polytopes (or the intersection of convex polytopes with Ω in the
case of cells that touch ∂Ω): in dimension d = 3 the cells are convex polyhedra, and
in dimension d = 2 the cells are convex polygons. Note that some of the cells may be
empty. Comprehensive treatments of Voronoi diagrams include [3], [27].

Given weighted points {xi,mi}Ni=1 ∈ (Ω × (0,∞))N , let T∗ be the minimizer in
(1.2). The optimal transport regions {T−1

∗ (xi)}Ni=1 form a power diagram. There
exists {wi}Ni=1 ∈ R

N such that the power diagram {Pi}Ni=1 generated by {xi, wi}Ni=1

satisfies Pi = T−1
∗ (xi) for all i (up to sets of ρ dx-measure zero). Conversely, if {Pi}Ni=1

is any power diagram with generators {xi, wi}Ni=1, then

(1.8) d2

(
ρ,

N∑
i=1

miδxi

)
=

N∑
i=1

∫
Pi

|x− xi|2ρ dx, where mi =

∫
Pi

ρ dx.

These results can be shown using Brenier’s Theorem [30, Thm. 2.12] or the Kan-
torovich Duality Theorem [30, Thm. 1.3]. See [25, Thms. 1 and 2] or [5, Prop. 4.4].
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Fig. 1. A comparison of a standard Voronoi diagram (left) with a power diagram (right).
The location of the generators in both cases is the same, but the power diagram carries additional
structure via the weights associated with each generator. The size of the weights in the power diagram
is indicated by the radii of the dashed circles. Notice that in the power diagram it is possible for
the generator to lie outside the cell or for the cell associated with a generator to be empty (the
Voronoi diagram has 20 cells, and the power diagram has 19 cells). The geometrical construction
of the power diagram in terms of the generator locations and the circles is simple; for each point x
construct a tangent line from x to the circles centered at xi with radii ri; the length of the tangent
line is called the power of the point x, and the point x belongs to the power cell that has minimum
power. The weights of the generators in this case are wi = r2i .

As far as we are aware, these results first appeared in [2], although they are not stated
in the language of Wasserstein distances.

Equation (1.8) gives an explicit formula for the Wasserstein distance, without the
need to solve a linear programming problem, provided that the weights mi can be
written as

∫
Pi

ρ(x) dx for some power diagram {Pi} (with generating points xi). In
practice actually finding this power diagram involves solving another linear program-
ming problem (the generating weights wi come from the solution to the dual linear
programming problem to (1.2); see [5, Prop. 4.4]), but in our case this can be avoided
since we are interested in minimizing F rather than evaluating it at any given point.

We use this connection between the Wasserstein distance and power diagrams
to rewrite the energy F in new variables, changing variables from {xi,mi}Ni=1 ∈
(Ω× (0,∞))N to {xi, wi}Ni=1 ∈ (Ω× R)N , with xi distinct and wi such that no cells
are empty. By the results above, minimizing F is equivalent to minimizing

(1.9) E ({xi, wi}) =
N∑
i=1

{
f(mi) +

∫
Pi

|x− xi|2ρ(x) dx
}

where {Pi} is the power diagram generated by {xi, wi} and mi :=
∫
Pi

ρ dx. The

equivalence of E and F is in the following sense: Given {xi, wi}Ni=1 ∈ (Ω× R)N and
the corresponding power diagram {Pi}Ni=1, (1.8) implies that

E ({xi, wi}) = F ({xi,mi}) for mi =

∫
Pi

ρ(x) dx.
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Conversely, it can be shown (e.g., [5, Prop. 4.4]) that given any {xi,mi}Ni=1 ∈ (Ω ×
(0,∞))N , there exists {wi}Ni=1 ∈ R

N such that the power diagram {Pi}Ni=1 generated
by {xi, wi}Ni=1 satisfies

∫
Pi

ρ(x) dx = mi for all i. Then it follows from (1.8) that

F ({xi,mi}) = E ({xi, wi}). The weights {wi}Ni=1 ∈ R
N are unique up to the addition

of a constant; it is easy to see from (1.7) that {wi + c}Ni=1 and {wi}Ni=1 generate the
same power diagram.

While the energies E and F are equivalent, from a numerical point of view it is
far more practical to work with E since it can be easily evaluated, unlike F , since
computing power diagrams is easy while solving the linear programming problem (1.2)
is not. In the rest of the paper we focus on finding local minimizers of E.

1.3. Centroidal power diagrams and a generalized Lloyd algorithm.
From now on we will write (X,w) = ((x1, . . . ,xN ), (w1, . . . , wN )) ∈ ΩN × R

N to
denote the generators of a power diagram. In this section we introduce an algorithm
for finding critical points of E = E(X,w).

Let GN ⊂ ΩN ×R
N be the smaller class of generators such that no two generators

coincide and there are no empty cells:

(1.10) GN = {(X,w) ∈ ΩN × R
N : xi �= xj if i �= j, Pi �= ∅ ∀ i}.

Define ξ : GN → ΩN and ω : GN → R
N by

(1.11)
ξ(X,w) := (ξ1(X,w), . . . , ξN (X,w)), ω(X,w) := (ω1(X,w), . . . , ωN(X,w)),

where

(1.12) ξi(X,w) :=
1

mi(X,w)

∫
Pi(X,w)

xρ(x) dx, ωi(X,w) := −f ′(mi(X,w)).

Here Pi(X,w) is the ith power cell in the power diagram generated by (X,w), and
mi(X,w) is its mass:

mi(X,w) =

∫
Pi(X,w)

ρ(x) dx.

Note that ξi(X,w) is the centroid (or center of mass) of the ith power cell. We will
sometimes denote this by xi. In section 2 we show that critical points of E are fixed
points of the Lloyd maps:

∇E(X,w) = 0 ⇐⇒ (ξ(X,w),ω(X,w)) = (X,w)

(up to the addition of a constant vector to w; see Proposition 2.6 for a precise state-
ment). The condition ξ(X,w) = X means that the power diagram generated by
(X,w) has the property that xi is the centroid of its power cell Pi for all i. These
special types of power diagrams are called centroidal power diagrams (CPDs). This
is in analogy with centroidal Voronoi tessellations (CVTs), which are special types of
Voronoi diagrams with the property that the generators of the Voronoi diagram are
the centroids of the Voronoi cells. See [11] for a nice survey of CVTs. Note also that
CVTs can be viewed as a special type of CPD where all the weights are equal; wi = c
for all i, c ∈ R, since power diagrams with equal weights are just Voronoi diagrams.
Other examples of CPDs appear in section 2.4.

The following algorithm is an iterative method for finding fixed points of (ξ,ω)
and therefore critical points of E.
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Algorithm 1. The generalized Lloyd algorithm for finding critical points of E.

Initialization: Choose N0 ∈ N and (X0,w0) ∈ GN0 .
At each iteration:

(1) Update the generators: Given (Xk,wk) ∈ GNk , compute the corresponding
power diagram and define (Xk+1,wk+1) ∈ ΩNk × R

Nk by

Xk+1 = ξ(Xk,wk), wk+1 = ω(Xk,wk).

(2) Remove empty cells: Compute the power diagram {P k+1
i }Nk

i=1 generated by
(Xk+1,wk+1) and let

J =
{
j ∈ {1, . . . , Nk} : P k+1

j = ∅} .
For all j ∈ J , remove (xk+1

j , wk+1
j ) from the list of generators. Then replace

Nk with Nk+1 = Nk − |J |.

In particular, this algorithm computes CPDs, and it is a generalization of Lloyd’s
algorithm [22], which is a popular method for computing CVTs. See [11]. The classical
Lloyd algorithm is recovered from our generalized Lloyd algorithm by simply taking
the weights to be constant at each iteration, e.g., wk = 0 for all k. Due to this
relation, we refer to ξ and ω as generalized Lloyd maps.

Somewhat imprecisely, the role of the update xk+1
i = ξi(X

k,wk) in step (1) of
the algorithm can be thought of as being to decrease the second term of the energy
(while possibly increasing the first term). To be precise,∫

Pk
i

|x− xk+1
i |2 ρ dx ≤

∫
Pk

i

|x− xk
i |2 ρ dx.

Note that both integrals are over P k
i . The role of the update w

k+1
i = −f ′(mi(X

k,wk))
can be thought of as being to decrease the first term of the energy (while possi-
bly increasing the second term). Since f is concave, then f ′ is nonincreasing and
wk+1

i ≥ wk+1
j if mk

i ≥ mk
j . This suggests that the weight update transfers mass to

larger cells from smaller neighboring cells, which would decrease the first term of the
energy since f is concave. This reasoning is not completely correct since both updates
take place simultaneously and the size of cells depends in a complicated way on both
the weights and locations of all the generators. Nevertheless, the algorithm is in fact
energy decreasing; see Theorem 3.1.

Step (2) of the algorithm means that, given N0 ∈ N and (X0,w0) ∈ GN0 , the
algorithm can converge to a fixed point (X,w) ∈ GN with N < N0. This means that
the algorithm can partly correct for an incorrect initial guess N0 (recall that we are
minimizing E(X,w) over (X,w) ∈ GN and over N). It is still possible, however, that
the algorithm converges to a local minimizer of E, possibly with a nonoptimal value
of N . Note also that the algorithm can eliminate generators, but it cannot create
them. Therefore, it is impossible for the algorithm to find a global minimizer of E if
the initial value of N0 is less than the optimal value.

Algorithm 1 was introduced for the special case of d = 2, ρ = 1, f(m) =
√
m in

[5, sec. 4]. In the current paper we extend it to the broader class of energies (1.9),
analyze it (prove that it is energy decreasing and that it converges; see Theorems
3.1 and 3.3), and implement it in both two and three dimensions. In addition, the
derivation here, unlike in [5], is accessible to those not familiar with measure theory
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and optimal transport theory since we work with formulation (1.9) rather than (1.1).

1.4. The case f = 0 and N fixed: CVTs and Lloyd’s algorithm. Setting
f = 0 in (1.1) and fixing N gives the energy

FN ({xi,mi}) = d2

(
ρ,

N∑
i=1

miδxi

)
.

It is necessary to fix N since otherwise this has no minimizer; the infimum is zero,
which is obtained in the limit N → ∞ by approximating ρ with Dirac masses. It can
be shown that minimizing FN is equivalent to minimizing

EN ({xi}) =
N∑
i=1

∫
Vi

|x− xi|2ρ(x) dx,

where {Vi}Ni=1 is the Voronoi diagram generated by {xi}Ni=1:

Vi = {x ∈ Ω : |x− xi| ≤ |x− xk| ∀ k}.
See [5, sec. 4.1]. Numerical minimization of EN has been well studied. A neces-
sary condition for minimality is that {xi}Ni=1 generates a CVT. CVTs can be easily
computed using the classical Lloyd algorithm. See, e.g., [11]. Convergence of the al-
gorithm is studied in [10], [11], and [28], among others, and there is a large literature
on CVTs and Lloyd’s algorithm. However, we are not aware of any work (other than
[5]) on numerical minimization of E for f �= 0.

1.5. Applications. Energies of the form (1.9), or equivalently (1.1), arise in
many applications.

1.5.1. Simple model of pattern formation: Block copolymers. The au-
thors first came in contact with energies of the form (1.1) in a pattern formation
problem in materials science [5]. The following energy is a simplified model of phase
separation for two-phase materials called block copolymers, for the case where one
phase has a much smaller volume fraction than the other:

(1.13) E ({xi, wi}) =
N∑
i=1

{
λm

d−1
d

i +

∫
Pi

|x− xi|2 dx
}
,

where mi =
∫
Pi

1 dx = |Pi| and d = 2 or 3. The measure ν =
∑

imiδxi represents
the minority phase. In three dimensions, d = 3, this represents N small spheres of
the minority phase centered at {xi}Ni=1. The weights mi give the relative size of the
spheres. These spheres are surrounded by a “sea” of the majority phase. In two
dimensions, d = 2, the measure ν represents N parallel cylinders of the minority
phases and Ω is a cross-section perpendicular to the axes of the cylinders. The first
term of E penalizes the surface area between the two phases and so prefers phase
separation (N = 1), and the second term prefers phase mixing (N = ∞). The
parameter λ represents the repulsion strength between the two phases. Equation

(1.13) is the special case of (1.9) with ρ = 1 and f(m) = λm
d−1
d .

This energy can be viewed as a toy model of the popular Ohta–Kawasaki model
of block copolymers (see, e.g., [9]). Like the Ohta–Kawasaki energy, it is nonconvex
and nonlocal (in the sense that evaluating E involves solving an auxiliary infinite-
dimensional problem). Unlike the Ohta–Kawasaki energy, however, it is discrete,
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which makes it much more amenable to numerics and analysis. In general it can be
viewed as a simplified model of nonconvex, nonlocal, energy-driven pattern formation,
and it has applications in materials science outside block copolymers, e.g., to crystal-
lization. It is also connected to the Ginzburg–Landau model of superconductivity [6,
p. 123–124].

In [5] it was demonstrated numerically that for d = 2 minimizers of E tend to a
hexagonal tiling as λ → 0 (in the sense that the power diagram generated by {xi, wi}
tends to a hexagonal tiling). This was proved in [6], and it agrees with block copolymer
experiments, where in some parameter regime the minority phase forms hexagonally
packed cylinders. It was conjectured in [5] that for the case d = 3, minimizers of E
tend to a body-centered cubic (BCC) lattice as λ → 0 (meaning that {xi} tend to a
BCC lattice and wi → 0). A brief examination of this conjecture can be found in the
online supplementary material. In particular, numerical minimization of E in three
dimensions suggests that the BCC lattice is at least a local minimizer of E when Ω is
a periodic box. Again, this agrees with block copolymer experiments, where in some
parameter regime the minority phase forms a BCC lattice.

1.5.2. Quantization. Energies of the form (1.9) can be used for data compres-
sion using a technique called vector quantization. By taking f = 0 in (1.9) and
evaluating the resulting energy at wi = 0 for all i, so that the power diagram {Pi}Ni=1

generated by {xi, 0}Ni=1 is just the Voronoi diagram {Vi}Ni=1 generated by {xi}Ni=1, we
obtain the energy

(1.14) D({xi}) =
N∑
i=1

∫
Vi

|x− xi|2ρ(x) dx ≡
∫
Ω

min
i

|x− xi|2ρ(x) dx.

This is known in the quantization literature as the distortion. See [15, sec. 33] for a
mathematical introduction to vector quantization and [13] and [14] for comprehensive
treatments. Roughly speaking, the points x of Ω represent signals (e.g., parts of an
image or speech) and xi represent codewords in the codebook {xi}Ni=1. The function ρ
is a probability density on the set of signals Ω. If a signal x belongs to the Voronoi cell
Vi, then the encoder assigns to it the codeword xi, which is then stored or transmitted.
D measures the quality of the encoder, the average distortion of signals. The minimum
value of D is called the minimum distortion.

In practice distortion is minimized subject to a constraint on the number of bits
in the codebook. The codewords xi are mapped to binary vectors before storage
or transmission. In fixed-rate quantization all these vectors have the same length.
In variable-rate quantization the length depends on the probability density ρ: Let
mi =

∫
Vi

ρ dx be the probability that a signal lies in Voronoi cell Vi. If mi is large,
then xi should be mapped to a short binary vector since it occurs often. For cells
with lower probabilities, longer binary vectors can be used. The rate of an encoder
has the form

R =

N∑
i=1

limi,

where li is the length of the binary vector representing xi. Note that R is the expected
value of the length. Distortion D is decreased by choosing more codewords. On the
other hand, this means that the rate R, and hence the storage/transmission cost, is
increased. Optimal encoders can be designed by trading off distortion against rate
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by minimizing energies of the form λR +D, where λ is a parameter determining the
tradeoff. See [14, p. 2342]. Our energy (1.9) generalizes this: Take li = l(1/mi)
for some concave function l so that m �→ l(1/m)m is concave. In addition, l should
be increasing so that the code length decreases as the probability m increases. We
replace the Voronoi cells in (1.14) with power cells, which means that signals in power
cell Pi are mapped to codeword xi. Then the energy λR +D has the form of (1.9):

E({xi, wi}) =
N∑
i=1

{
f(mi) +

∫
Pi

|x− xi|2ρ(x) dx
}
, where f(m) = λl

(
1

m

)
m.

1.5.3. Optimal location of resources. As discussed in section 1.1, energies of
the form (1.1) and (1.9) can be used to model the optimal location of resources {xi} in
a city or country Ω with population density ρ. The resources have sizemi, serve region
Pi, and cost f(mi) to build or run. The assumption that f is concave, introduced for
mathematical convenience to prove Theorem 3.1, is also natural from the modeling
point of view; along with the assumption f(0) ≥ 0 it implies that f is subadditive,
which corresponds to an economy of scale. The energy trades off building/running
costs against distance between the population and the resources.

1.5.4. Other applications and connections. Energies of the form (1.9), usu-
ally with f = 0, also arise in data clustering and pattern recognition (k-means clus-
tering) [16], [24], image compression (this is a special case of vector quantization)
[11, sec. 2.1], numerical integration [11, sec. 2.2], [15, p. 497–499], and convex ge-
ometry (packing and covering problems; approximation of convex bodies by convex
polytopes) [15, sec. 33]. Taking f �= 0 in (1.9) gives the algorithm more freedom, e.g.,
to automatically select the number of data clusters in addition to their location, based
on a cost per cluster. Energies involving the Wasserstein distance also arise from the
time-discrete gradient flow formulation of PDEs [18].

Recently there has been a resurgence of interest in centroidal Voronoi and power
diagrams and Lloyd’s algorithm [7], [20], [29]. Voronoi diagrams have also gained a
lot of interest in the materials science community, e.g., to model solid foams [1] and
grains in metals [19], although this is usually done in a manner more heuristic than
energy minimization. Global minimizers of E can be difficult to find if they have
a large value of N , and the generalized Lloyd algorithm tends to converge to local
minimizers. These often resemble grains in metals (see Figure 5), which suggests
that energy minimization might be a good method to produce Representative Volume
Elements for the finite element simulation of materials with microstructure.

1.6. Structure of the paper. The generalized Lloyd algorithm, Algorithm 1,
is derived in section 2. In section 3 we prove that it is energy decreasing, prove a
convergence theorem, and study its structure. Implementation issues, such as how to
compute power diagrams, are discussed in the online supplementary material. Nu-
merical illustrations in two and three dimensions are given in section 4, with further
illustrations in the online supplementary material.

2. Derivation of the algorithm. In this section we derive the generalized
Lloyd algorithm, Algorithm 1, which is a fixed point method for the calculation of
stationary points of the energy E, defined in (1.9). Calculating the gradient of E
requires care since this involves differentiating the integrals appearing in the definition
of E with respect to their domains. We perform this calculation in sections 2.2 and 2.3
after introducing some notation in section 2.1.
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2.1. Notation for power diagrams. Throughout this paper we take Ω to be
a compact, convex subset of Rd, d ≥ 2. We will take d = 2 or 3 for purposes of
illustration, but the theory developed applies for all d ≥ 2.

Given weighted points (X,w) = ((x1, . . . ,xN ), (w1, . . . , wN )) ∈ GN and the as-
sociated power diagram {Pi}Ni=1, we introduce the following notation:

dij = |xj − xi|, nij =
xj − xi

dij
, Fij = Pi ∩ Pj ,(2.1)

mi =

∫
Pi

ρ(x) dx, mij =

∫
Fij

ρ(x) dx,(2.2)

xi =
1

mi

∫
Pi

xρ(x) dx, xij =
1

mij

∫
Fij

xρ(x) dx,(2.3)

Ji = {j �= i : Pi ∩ Pj �= ∅}.(2.4)

Here dij is the distance between points xi and xj ; nij is the unit vector pointing from
xi to xj; the set Fij is the face common to both cells Pi and Pj ; mi is the mass of
cell Pi; mij is the mass of face Fij ; xi is the center of mass of the cell Pi; and xij is
the center of mass of face Fij . The set of indices of the neighbors of cell Pi is given by
the index set Ji. In the case d = 2 the power cells are convex polygons, and, rather
than referring to the intersections of neighboring cells as faces, we refer to them as
edges.

Recall that we sometimes write Pi(X,w) for the power cells generated by (X,w),
instead of simply Pi, to emphasize that the power diagram is generated by (X,w).
Similarly, we will sometimes write mi(X,w) for the mass of the ith power cell. From
(1.7) it is easy to see that adding a constant c ∈ R to all the weights generates the
same power diagram: Pi(X,w + c) = Pi(X,w) for all i, where c = (c, . . . , c) ∈ R

N .
Let R+ = [0,∞), and let m : ΩN × R

N → R
N
+ be the function defined by

(2.5) m(X,w) = (m1(X,w), . . . ,mN(X,w)),

which gives the mass of all of the cells generated by (X,w). Note that some of
the cells may be empty (at most N − 1 of them), in which case the corresponding
components of m take the value zero. Given a density ρ : Ω → [0,∞), let the space
of admissible masses be

(2.6) MN =

{
M ∈ R

N
+ :

N∑
i=1

Mi =

∫
Ω

ρ(x) dx

}
.

Throughout this paper Im denotes the m-by-m identity matrix.

2.2. The helper function H. Motivated by [10], where convergence of the
classical Lloyd algorithm is studied, we introduce a helper function H defined by

(2.7) H
(
(X1,w1), (X2,w2),M

)
:=

N∑
i=1

{
Miw

1
i + f(Mi) +

∫
Pi(X2,w2)

(|x− x1
i |2 − w1

i )ρ(x) dx

}
,

where (Xk,wk) = ((xk
1 , . . . ,x

k
N ), (wk

1 , . . . , w
k
N )) for k ∈ {1, 2}, M = (M1, . . . ,MN ),

and the domain of H is (ΩN × R
N ) × (ΩN × R

N ) × R
N
+ . The energy E is recovered

by choosing the arguments of H appropriately:

(2.8) E (X,w) = H ((X,w), (X,w),m(X,w)) .
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Note that H is invariant under addition of a constant to all the weights:

(2.9) H
(
(X1,w1 + c1), (X

2,w2 + c2),M
)
= H

(
(X1,w1), (X2,w2),M

)
for all ci = ci(1, . . . , 1) ∈ R

N , i ∈ {1, 2}, provided that M ∈ MN and the N
points x2

1, . . . ,x
2
N are distinct. The following lemma will be used to prove that the

generalized Lloyd algorithm is energy decreasing.
Lemma 2.1 (properties of H). Let ξ, ω be the Lloyd maps defined in (1.11).

Then

(i) min
X1∈ΩN

H
(
(X1,w1), (X2,w2),M

)
= H

((
ξ(X2,w2),w1

)
, (X2,w2),M

)
,

(ii) H
(
(X,w1), (X,w),m(X,w)

)
= E (X,w) , i.e., is independent of w1,

(iii) H
(
(X1,w1), (X2,w2),M

) ≥ H
(
(X1,w1), (X1,w1),M

)
,

with equality if and only if Pi(X
1,w1) = Pi(X

2,w2) for all i.

(iv) If f is concave, then

max
M∈R

N
+

H
((
X1,ω(X2,w2)

)
, (X2,w2),M

)
= H

((
X1,ω(X2,w2)

)
, (X2,w2),m(X2,w2)

)
.

Proof. Property (i): For fixed X2 ∈ ΩN , w1,w2 ∈ R
N , and M ∈ MN , define

the function h : ΩN → R by h(X1) := H
(
(X1,w1), (X2,w2),M

)
. Then

∂h

∂x1
i

(X1) = 2

∫
Pi(X2,w2)

(x1
i − x)ρ(x) dx = 2mi(X

2,w2)(x1
i − ξi(X

2,w2))

by the definition (1.11) of ξi. Therefore, ξ(X
2,w2) is a critical point of h. Moreover,

it is a global minimum point since h is convex:

∂2h

∂x1
i ∂x

1
j

=

{
2mi(X

2,w2)Id if i = j,
0 if i �= j,

where Id and 0 are the d-by-d identity and zero matrices. (Note that h is not nec-
essarily strictly convex since mi(X

2,w2) may be zero for some i, which is the case
when the power cell Pi(X

2,w2) is empty.)
Property (ii) is immediate from the definitions of H and E.
Property (iii): This follows from the fact that for any partition {Si}Ni=1 of Ω we

have ∑
i

∫
Si

(|x− x1
i |2 − w1

i )ρ(x) dx ≥
∑
i

∫
Pi(X1,w1)

(|x− x1
i |2 − w1

i )ρ(x) dx

with equality if and only if {Si}Ni=1 is the power diagram generated by (X1,w1) (up
to sets of ρ dx-measure zero). This follows since∑

i

∫
Pi(X1,w1)

(|x− x1
i |2 − w1

i )ρ(x) dx =

∫
Ω

min
i
{|x− x1

i |2 − w1
i }ρ(x) dx.

Property (iv): Define g (M) = H
((
X1,ω(X2,w2)

)
, (X2,w2),M

)
. Then

g
(
m
(
X2,w2

))− g (M)

=
∑
i

{
f
(
mi

(
X2,w2

))
+ f ′ (mi

(
X2,w2

)) (
Mi −mi

(
X2,w2

))− f(Mi)
} ≥ 0
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since f is concave, as required.
Remark 2.2 (relation between F and H). By results from [3, pp. 98–99], the

energy F introduced in (1.1) is related to H by

F ({xi,mi}) = max
{wi}

H({xi, wi}, {xi, wi}, {mi}).

Therefore, the problem of minimizing F is equivalent to solving a saddle point problem
for the function {xi,mi, wi} �→ H({xi, wi}, {xi, wi}, {mi}). If {xi, wi} is a fixed point
of the Lloyd map ω, then Lemma 2.1(iv) implies that

E ({xi, wi}) = max
{mi}

H({xi, wi}, {xi, wi}, {mi}).

2.3. Critical points of E. In this section we show that critical points of E are
fixed points of the Lloyd maps ξ, ω.

Lemma 2.3 (partial derivatives of E). The partial derivatives of E are

∂E

∂xi
(X,w) = 2mi(xi − ξi(X,w)) +

N∑
j=1

∂mj

∂xi
(wj − ωj(X,w)),(2.10)

∂E

∂wi
(X,w) =

N∑
j=1

∂mj

∂wi
(wj − ωj(X,w))(2.11)

for i ∈ {1, . . . , N}. In matrix notation,

(2.12)

(∇XE
∇wE

)
=

(
2M̂ ∇Xm
0 ∇wm

)(
X − ξ(X,w)
w − ω(X,w)

)
,

where

(2.13) M̂ := diag(m1, . . . ,mN )⊗ Id = diag(m1Id, . . . ,mNId).

Proof. From (2.8),

(2.14)
∂E

∂xi
(X,w) =

∂H

∂x1
i

+
∂H

∂x2
i

+
∑
j

∂H

∂Mj

∂mj

∂xi
,

where the derivatives of H are evaluated at ((X,w), (X,w),m(X,w)). The second
term on the right-hand side is zero by Lemma 2.1(iii). Direct computation (as in the
proof of Lemma 2.1(i),(iv)) gives

(2.15)
∂H

∂x1
i

= 2mi(xi − ξi),
∂H

∂Mj
= wj + f ′(mj(X,w)).

Combining (2.14), (2.15), and the definition of ωj yields (2.10).
Differentiating (2.8) with respect to wi gives

(2.16)
∂E

∂wi
(X,w) =

∂H

∂w1
i

+
∂H

∂w2
i

+
∑
j

∂H

∂Mj

∂mj

∂wi
,

where the derivatives of H are evaluated at ((X,w), (X,w),m(X,w)). The first two
terms on the right-hand side are zero by Lemma 2.1(ii),(iii). Therefore, combining
(2.16) and (2.15)2 yields (2.11).
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Weighted graph Laplacian matrices. Given a power diagram {Pi(X,w)}, define
a graph G that has vertices X and edges given by the neighbor relations of the power
diagram: xi is connected by an edge to xj if and only if i ∈ Jj (and equivalently
j ∈ Ji). If we associate a weight uij = uji to each edge of this graph, then we can
define the weighted graph Laplacian matrix L = L(G, u) by

(2.17) Lij =

⎧⎪⎪⎨
⎪⎪⎩

∑
k∈Jj

ujk if i = j,

−uij if i ∈ Jj ,
0 otherwise.

The symmetric matrix L is the difference between the weighted degree matrix and the
weighted adjacency matrix of G. It is well known that the dimension of the null space
of L equals the number of connected components of G. See [26, Thm. 3.1, p. 117]. In
our case G is connected, and so, for any edge-weighting u, the null space of L(G, u) is
one-dimensional and is spanned by (1, 1, . . . , 1). In an analogous way, one can define
(block) weighted graph Laplacian matrices for vector-valued weights uij .

Computing the derivatives of mj that appear in (2.10) and (2.11) is delicate since
this involves differentiating the integrals mj =

∫
Pj(X,w)

ρ dx with respect to xi and

wi. It turns out that these derivatives are weighted graph Laplacian matrices.
Lemma 2.4 (weighted graph Laplacian structure of ∇Xm and ∇wm). Let

(X,w) ∈ GN be the generators of a power diagram with the generic property that
adjacent cells have a common face (a common edge in two dimensions). The partial
derivatives of m(X,w) are

∂mj

∂xi
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
k∈Jj

mjk

djk
(xjk − xj) if i = j,

−mij

dij
(xij − xi) if i ∈ Jj ,

0 otherwise,

∂mj

∂wi
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
k∈Jj

mjk

2djk
if i = j,

−mij

2dij
if i ∈ Jj ,

0 otherwise

for i, j ∈ {1, . . . , N}. In particular, the N -by-N matrix ∇wm, which has components
[∇wm]ij = ∂mj/∂wi, is the weighted graph Laplacian matrix of G(X,w) with respect
to the weights

mij

2dij
. Therefore, the null space of ∇wm is one-dimensional and is

spanned by (1, 1, . . . , 1) ∈ R
N . Note that (1, 1, . . . , 1) also belongs to the null space of

the (Nd)-by-N matrix ∇Xm, which has d-by-1 blocks [∇Xm]ij = ∂mj/∂xi.
Proof. Given the power diagram {Pj}Nj=1 generated by (X,w) ∈ GN , let {P t

j }Nj=1

be the power diagram generated by (Xt,wt) := (X + tX̃,w + tw̃) for some X̃ ∈
(Rd)N , w̃ ∈ R

N . For t in a small enough neighborhood of zero, this family of power
diagrams has the same number of cells, and each cell has the same number of faces,
as the power diagram generated by (X,w) (this follows from the assumption that
adjacent cells have a common face). Let ϕt : Ω → Ω be any flow map with the
properties that ϕ0 is the identity map, ϕt(X) = Xt, ϕt(Pj) = P t

j for all j, and ϕt

maps the faces of Pj to the faces of P t
j for all j. Fix j and consider

(2.18) mj(X
t,wt) =

∫
P t

j

ρ dx =

∫
ϕt(Pj)

ρ dx.

Define V (x) = d
dtϕ

t(x)|t=0. By the Reynolds Transport Theorem, differentiating
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(2.18) with respect to t and evaluating at t = 0 gives

(2.19)

N∑
i=1

∂mj

∂xi
· x̃i +

∂mj

∂wi
w̃i =

∫
∂Pj

ρ V · n dS =
∑
k∈Jj

∫
Fjk

ρ V · njk dS.

Now we compute V ·njk. Choose a face Fjk = Pj ∩Pk and some point x ∈ Fjk. Then
xt := ϕt(x) ∈ F t

jk = P t
j ∩ P t

k, and so it satisfies

|xt − xt
j |2 − wt

j = |xt − xt
k|2 − wt

k.

Differentiating with respect to t and setting t = 0 gives

(2.20) 2(x− xj) · (V (x)− x̃j)− w̃j = 2(x− xk) · (V (x)− x̃k)− w̃k.

Recall that njk = (xk − xj)/djk. Therefore, rearranging (2.20) and dividing by djk
yields

(2.21) V (x) · njk =
(x− xj) · x̃j − (x− xk) · x̃k

djk
+

w̃j − w̃k

2djk
.

Substituting this into (2.19) and using (2.2)2 and (2.3)2 gives

N∑
i=1

∂mj

∂xi
· x̃i +

∂mj

∂wi
w̃i =

∑
k∈Jj

mjk

djk
[(xjk −xj) · x̃j − (xjk −xk) · x̃k] +

mjk

2djk
(w̃j − w̃k).

The derivatives in Lemma 2.4 can be read off from this equation by making suitable
choices of (X̃, w̃).

Remark 2.5. The fact that (1, 1, . . . , 1) ∈ R
N belongs to the null space of the

matrix ∇wm corresponds to the fact that the power diagram has fixed total mass
and that it is invariant under the addition of a constant to all its weights:

(2.22)
∑
j

mj =

∫
Ω

ρ(x) dx, mj(X,w + (c, c, . . . , c)) = mj(X,w).

Differentiating the first equation with respect to wi gives
∑

j ∂mj/∂wi = 0 for all
i, and so (1, 1, . . . , 1) belongs to the null space of ∇wm. Differentiating the second
equation with respect to c and then setting c = 0 gives

∑
i ∂mj/∂wi = 0 for all j,

and so (1, 1, . . . , 1) belongs to the null space of (∇wm)T (which equals ∇wm since
∇wm is symmetric).

The main result of this section is the following proposition.
Proposition 2.6 (critical points of E are fixed points of the Lloyd maps). Let

(X,w) ∈ GN be a critical point of E. Assume that the power diagram generated by
(X,w) has the generic property that adjacent cells have a common face (a common
edge in two dimensions). Then, up to the addition of a constant to the weights, (X,w)
is a fixed point of the Lloyd maps ξ and ω:

(2.23) ξ(X,w) = X, ω(X,w) = w + c,

where c = c(1, 1, . . . , 1) ∈ R
N . In particular, critical points of E are CPDs.

Proof. Equation (2.11) yields

0 = ∇wE = ∇wm(w − ω(X,w)).
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By Lemma 2.4, ω(X,w) = w + c for some c = c(1, 1, . . . , 1) ∈ R
N . Since c belongs

to the null space of ∇Xm, (2.10) implies that

(2.24) 0 =
∂E

∂xi
(X,w) = 2mi(xi − ξi(X,w)).

By assumption the power diagram generated by (X,w) has no empty cells. Therefore,
mi �= 0 for any i and (2.24) gives X − ξ(X,w) = 0, as required.

Remark 2.7 (examples of critical points of E). Any CVT of Ω with the property
that all cells have the same mass is a critical point of E. If ρ = constant and Ω is
a domain with nice symmetry, e.g., a square or a disc, then it is easy to write down
several, in fact infinitely many, CVTs with this property and hence find infinitely many
critical points of E (although not all will be local minima). The highly nonconvex
nature of the energy landscape makes it difficult to find global minima. See section 4.1.

2.4. Centroidal power diagrams. In this section we give more examples of
centroidal power diagrams (CPDs) and critical points of E.

Example 2.8 (CPDs in one dimension). All partitions of intervals are CPDs. If
a = y0 < y1 < · · · < yN = b is any partition of [a, b], then the following choice of
generators gives rise to the centroidal power cells Pi = [yi−1, yi] with respect to the
density ρ = 1:

xi =
yi−1 + yi

2
, i = 1, . . . , N,

w1 = 0, wi = wi−1 +
1

4
(yi − yi−2) (yi + yi−2 − 2yi−1) , i = 2, . . . , N.

Example 2.9 (CPDs in two dimensions). Figure 2 gives two examples of a CPD
in two dimensions for ρ = 1. These are nontrivial examples in the sense that they are
not centroidal Voronoi tessellations (CVTs). The diagrams were generated using a
modification of the classical Lloyd algorithm, in which the weights of the generators
are fixed and only the locations are updated at each iteration (to the centroids of
the power cells). For the examples shown, the generators were initially arranged
in a square lattice with a checkerboard pattern of weights, the generator locations
were perturbed very slightly, and the modified Lloyd algorithm was applied. This
procedure produced the patterns shown in Figure 2.

Having obtained examples of CPDs, we address the question of which CPDs can
arise as critical points of E.

Definition 2.10 (monotone power diagrams). Given a density ρ ∈ L1(Ω; [0,∞)),
a power diagram {xi, wi} in Ω is monotone with respect to ρ if it satisfies the follow-
ing:

If wi > wj, then mi ≥ mj. If mi = mj, then wi = wj .

Proposition 2.11 (all monotone CPDs are critical points of E for some f). Let
ρ ∈ L1(Ω; [0,∞)). Let {xi, wi} generate a CPD in Ω. The following are equivalent:

1. The CPD is monotone with respect to ρ.
2. There exists a function f satisfying (1.5) such that the CPD is a critical point

of E for this choice of f .
The proof, which is constructive, appears in the online supplementary material.

This proposition implies that critical points of E are not only CPDs but in fact
monotone CPDs.

Example 2.12 (monotone CPDs). Both examples in Figure 2 are monotone CPDs
with respect to ρ = 1. In each case we can construct an admissible f that is affine in
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Fig. 2. CPDs of 36 points with density ρ = 1. In the first example (left) the 18 small cells have
weights w ≈ −0.01389, and the 18 large cells have weights w = 0. In the second example (center)
the 18 small cells have weights w ≈ −0.01667, and the 18 large cells have weights w = 0. Both
diagrams were obtained by applying a modified form of Lloyd’s algorithm (in which the locations are
updated to the centroids but the weights are fixed) to an initial checkerboard pattern in which the
generators lie on a square lattice with an alternating pattern of weights. Both examples are fixed
points of Algorithm 1 with an appropriately constructed f .

a neighborhood of the points mi and has slopes f ′(mi) = −wi. The f for Figure 2
(left) is shown in Figure 3. By construction, the power diagrams {Pi}36i=1 shown in
Figure 2 are local minimizers of E for their respective f . To see this, consider a small
perturbation of {Pi}36i=1. Since f is affine in a neighborhood of {mi}36i=1, each iteration
of the generalized Lloyd algorithm produces a power diagram with exactly the same
weights as {Pi}36i=1 provided that the perturbation is small enough. Moreover, since
{Pi}36i=1 was constructed using the classical Lloyd algorithm (with the weights fixed),
the generator locations {xk

i }36i=1 produced by the generalized Lloyd algorithm converge
to the generator locations of {Pi}36i=1 for small enough perturbations.

Remark 2.13 (optimal partitions with cells of different sizes). Typically optimal
partitions exhibit cells of roughly the same size (see section 4). Example 2.12 pro-
vides evidence that there exist optimal partitions with cells of different sizes. (Note,
however, that we have only shown that these are local minimizers.) In [4, sec. 3.4] a
closely related optimal location energy is studied, and analytical evidence is given for
the existence of optimal partitions with different cell sizes. Example 2.12 is a concrete
example. This example is also loosely related to the problem of creating materials
with designer microstructure. The function f could be thought of as a control to
produce a desired microstructure, represented by a monotone CPD.

3. Properties of the algorithm. Our main result is the following theorem.
Theorem 3.1. Assume that f is concave. Then the generalized Lloyd algorithm

is energy decreasing:

E(Xn+1,wn+1) ≤ E(Xn,wn),

where Xn+1 = ξ (Xn,wn), wn+1 = ω (Xn,wn), (Xn,wn) ∈ GN . The inequality is
strict unless (Xn+1,wn+1) = (Xn+2,wn+2), i.e., unless the algorithm has converged.
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Fig. 3. The leftmost CPD in Figure 2 is a monotone CPD and is a critical point of the
energy with appropriately constructed f . For this CPD, the construction of f following the proof
of Proposition 2.11 gives the function f(m) shown here (left). As a test, our generalized Lloyd
algorithm using this f was applied to a random initial configuration of 36 cells. The algorithm
converged to the CPD with two different cell sizes shown above (right).

Proof. The proof follows easily by stringing together the properties of H from
Lemma 2.1:

E (Xn,wn)

= H
((
Xn,wn+1

)
, (Xn,wn) ,m (Xn,wn)

)
(by Lemma 2.1(ii))

= H ((Xn,ω (Xn,wn)) , (Xn,wn) ,m (Xn,wn)) (by definition of wn+1)

≥ H
(
(Xn,ω (Xn,wn)) , (Xn,wn) ,m

(
Xn+1,wn+1

))
(by Lemma 2.1(iv))

= H
((
Xn,wn+1

)
, (Xn,wn) ,m

(
Xn+1,wn+1

))
(by definition of wn+1)

≥ H
((
ξ (Xn,wn) ,wn+1

)
, (Xn,wn) ,m

(
Xn+1,wn+1

))
(by Lemma 2.1(i))

= H
((
Xn+1,wn+1

)
, (Xn,wn) ,m

(
Xn+1,wn+1

))
(by definition of Xn+1)

≥ H
((
Xn+1,wn+1

)
,
(
Xn+1,wn+1

)
,m

(
Xn+1,wn+1

))
(by Lemma 2.1(iii))

= E
(
Xn+1,wn+1

)
(by (2.8)).

By Lemma 2.1(iii) the last inequality is strict unless Pi

(
Xn+1,wn+1

)
= Pi (X

n,wn)

for all i, up to sets of ρ dx-measure zero, in which case xn+2
i (which is the centroid of

Pi(X
n+1,wn+1)) equals xn+1

i (which is the centroid of Pi(X
n,wn)) and

wn+2
i = −f ′(|Pi(X

n+1,wn+1)|) = −f ′(|Pi (X
n,wn) |) = wn+1

i ,

as required.
Remark 3.2 (elimination of generators is energy decreasing). The generalized

Lloyd algorithm removes generators corresponding to empty cells; i.e., if Pn
i = ∅, then

the generator pair (xn
i , w

n
i ) is removed in step (2) of Algorithm 1. The assumption

that f(0) ≥ 0 ensures that removing generators is energy decreasing.
Recall from (1.10) that GN is the set of N generators such that no two generators

coincide and that the corresponding power diagram has no empty cells. The energy
decreasing property of the algorithm can be used to prove the following convergence
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result, which is a generalization of the convergence theorem for the classical Lloyd
algorithm [10, Thm. 2.6].

Theorem 3.3 (convergence of the generalized Lloyd algorithm). Assume that
f is concave. Assume that E has only finitely many critical points with the same
energy. Let (Xk,wk) be a sequence generated by Algorithm 1. Let K be large enough
such that, for all k ≥ K, (Xk,wk) ∈ GN for N fixed, i.e., there is no elimination
of generators after iteration K. If the sequence (Xk,wk)k>K is a compact subset of
GN , then it converges to a critical point of E.

Proof. This follows by combining a minor modification of the proof of the Global
Convergence Theorem from [23, p. 206] with a convergence theorem for the classical
Lloyd algorithm [10, Thm. 2.5]. Note that the Lloyd maps ξi, ωi and the energy E
are continuous on GN by the continuity of the mass and first and second moments of
mass of the power cells Pi, and the continuity of f .

Let (Xkj ,wkj ) be a convergent subsequence converging to (X,w) ∈ GN . By
the continuity of E on GN , E(Xkj ,wkj ) → E(X,w). Take J large enough so that
E(XkJ ,wkJ ) − E(X,w) < ε. By Theorem 3.1 the whole sequence E(Xk,wk) con-
verges to E(X,w) since for all k > kJ

0 ≤ E(Xk,wk)−E(X,w) ≤ E(Xk,wk)−E(XkJ ,wkJ )+E(XkJ ,wkJ )−E(X,w) < ε.

Next we check that (X,w) is a fixed point of the Lloyd maps and hence a critical
point of E. Consider the sequence (Xkj−1,wkj−1). By the compactness of (Xk,wk)
there is a subsequence (Xkjl

−1,wkjl
−1) converging to (X−,w−) ∈ GN . The continu-

ity of the Lloyd maps on GN implies that

(ξ(Xkjl
−1,wkjl

−1),ω(Xkjl
−1,wkjl

−1)) = (Xkjl ,wkjl ) → (ξ(X−,w−),ω(X−,w−)).

But (Xkjl ,wkjl ) → (X,w). Therefore, (ξ(X−,w−),ω(X−,w−)) = (X,w). Since
E(Xk,wk) → E(X,w), we obtain that

E(X−,w−) = E(X,w) = E(ξ(X−,w−),ω(X−,w−))

and thus, by Theorem 3.1, (ξ(X−,w−),ω(X−,w−)) = (X,w) is a fixed point of the
Lloyd maps.

We have shown that any accumulation point of (Xk,wk) is a fixed point of the
Lloyd maps and, by the energy decreasing property of the algorithm, all accumulation
points have the same energy. Therefore, by the first assumption of the theorem, it
follows that (Xk,wk) has only finitely many accumulation points.

Finally, the whole sequence (Xk,wk) converges to (X,w) by the following result,
which is proved in [10, Thm. 2.5] for the classical Lloyd algorithm but holds for general
fixed point methods of the form zk+1 = T (zk): If the sequence {zk} generated by
zk+1 = T (zk) has finitely many accumulation points, T is continuous at them, and
they are fixed points of T , then zk converges. This completes the proof.

Remark 3.4 (assumptions of the convergence theorem). The assumption that E
has only finitely many critical points with the same energy is true for generic domains
Ω but not for all; e.g., if Ω is a ball and ρ is radially symmetric, then there could
be infinitely many fixed points with the same energy by rotational symmetry. The
assumption that (Xk,wk)k>K is a compact subset of GN is stronger. It means that
in the limit there is no elimination of generators. We need this assumption since
the Lloyd maps are not defined if there are empty cells; Pi = ∅ for some i. While
numerical experiments suggest that cells do not disappear in the limit, it is difficult
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to prove. For the classical Lloyd algorithm it was proved in one dimension in [10,
Prop. 2.9] and in higher dimensions in [12]. For further convergence theorems for the
classical Lloyd algorithm, see [11] and [28].

Remark 3.5 (interpretation of the Lloyd algorithm as a descent method). In
the following proposition we study the structure of the generalized Lloyd algorithm.
Recall that an iterative method is a descent method for an energy E if it can be
written in the form

(3.1) zn+1 = zn − αnBn∇E ,
where Bn is positive-definite, αn is the step size, and −Bn∇E is the step direction;
e.g., Bn = I is the steepest descent method, Bn = (D2E)−1, and αn = 1 is Newton’s
method. The following proposition asserts that the generalized Lloyd algorithm can
be written in the form (3.1), but not that Bn is positive-definite, which we are unable
to prove.

Proposition 3.6. The generalized Lloyd algorithm can be written in the form

(3.2)

(
Xn+1

wn+1

)
=

(
Xn

wn

)
−Bn

(∇XEn

∇wEn

)
+

(
0
c

)
,

where Bn is a square matrix of dimension N(d+ 1) and c = c(1, 1, . . . , 1)T for some
c ∈ R.

The proof is given in the online supplementary material.
Remark 3.7 (alternative algorithm). The following proposition gives explicit

expressions for the derivatives of the Lloyd maps ξ and ω. These could be used to
find critical points of E in an alternative way, e.g., by solving the nonlinear equations
(2.23) using Newton’s method. For recent work on quasi-Newton methods for the
calculation of CVTs, see [17, 21].

Proposition 3.8 (derivatives of the Lloyd maps). Given a face F of a power
diagram, define the matrix S(F ) by

S(F ) =
1

m(F )

∫
F

x⊗ x ρ(x) dS,

where m(F ) =
∫
F
ρ dS is the mass of the face. Let f ∈ C2([0,∞)). Let (X,w) ∈ GN

be the generators of a power diagram with the generic property that adjacent cells
have a common face (a common edge in two dimensions). The derivatives of the
Lloyd maps ξ(X,w) and ω(X,w) are

(
∂ξ

∂X

)
ij

=
∂ξi
∂xj

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

mi

∑
k∈Ji

mik

dik
(S(Fik)− xik ⊗ xi + xi ⊗ (xi − xik)) if i = j,

− mij

midij
(S(Fij)− xij ⊗ xj + xi ⊗ (xj − xij)) if j ∈ Ji,

0 otherwise,

(
∂ξ

∂w

)
ij

=
∂ξi
∂wj

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

2mi

∑
k∈Ji

mik

dik
(xik − xi) if i = j,

− mij

2midij
(xij − xi) if j ∈ Ji,

0 otherwise,
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(
∂ω

∂X

)
ij

=
∂ωi

∂xj
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−f ′′(mi)
∑
k∈Ji

mik

dik
(xik − xi) if i = j,

f ′′(mi)
mij

dij
(xij − xi) if j ∈ Ji,

0 otherwise,

(
∂ω

∂w

)
ij

=
∂ωi

∂wj
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−f ′′(mi)
∑
k∈Ji

mik

2dik
if i = j,

f ′′(mi)
mij

2dij
if j ∈ Ji,

0 otherwise.

We order the block matrices ∂ξ/∂X, ∂ξ/∂w, ∂ω/∂X, and ∂ω/∂w so that they have
dimensions (Nd)-by-(Nd), (Nd)-by-N , N -by-(Nd), and N -by-N .

The proof appears in the online supplementary material. Potentially these deriv-
atives could also be used to prove convergence of the Lloyd algorithm by proving that
the Lloyd map pair (ξ,ω) : GN → GN is a contraction. These derivatives are also
needed to evaluate the Hessian of E, which can be used to check the stability of fixed
points.

Proposition 3.9 (Hessian of E evaluated at fixed points). Let f ∈ C2([0,∞)).
If (X,w) is a fixed point of the Lloyd maps ξ and ω, i.e., if it satisfies (2.23), then
the Hessian of E evaluated at (X,w) is(

EXX EXw

EwX Eww

)
=

(
2M̂ ∇Xm
0 ∇wm

)(
INd − ∂ξ

∂X − ∂ξ
∂w

− ∂ω
∂X IN − ∂ω

∂w

)
,

where 0 is the N -by-(Nd) zero matrix, M̂ is as defined in (2.13), EXX is the (Nd)-
by-(Nd) block matrix with d-by-d blocks ∂2E/∂xi∂xj, Eww is the N -by-N matrix
with entries [Eww]ij = ∂2E/∂wi∂wj, EXw is the (Nd)-by-N block matrix with d-
by-1 blocks ∂2E/∂xi∂wj, and EwX is the N -by-(Nd) block matrix with 1-by-d blocks
∂2E/∂wi∂xj.

Proof. The proof follows immediately from (2.12).

4. Illustrations and applications. In this section we implement the algorithm
in two dimensions. We use a crystallization problem to illustrate the typical flatness
and nonconvexity of the energy landscape and the rate of convergence of the algorithm.
In the online supplementary material we provide further examples of the algorithm
with an optimal location problem with nonconstant ρ and a three-dimensional example
where we test a conjecture about the optimality of the BCC lattice for a crystallization
problem.

4.1. Nonconvexity and flatness of energy landscape. In this section we
look for critical points of the two-dimensional block copolymer energy from sec-
tion 1.5.1:

(4.1) E ({xi, wi}) =
N∑
i=1

{
λ
√
mi +

∫
Pi

|x− xi|2 dx
}
,

where xi ∈ Ω = [0, 1]2. This example first appeared in [5]. It is the special case
of (1.9) with ρ = 1, f(m) = λ

√
m, where λ > 0 is a parameter representing the
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N = 16, E = 0.0303837758 N = 17, E = 0.030462854 N = 17, E = 0.030472869

N = 17, E = 0.030484319 N = 17, E = 0.030490777 N = 17, E = 0.030512245

Fig. 4. Flatness of the energy landscape: Some local minimizers of the energy (4.1) for λ =
0.005. The polygons are the power cells Pi, and the points are the generators xi. The weights wi

are not shown. The shading corresponds to the number of sides of the cells.

strength of the repulsion between the two phases of the block copolymer. The scaling
of the energy suggests that the optimal value of N scales like λ− 2

3 . Figure 4 shows
local minimizers of E for λ = 0.005. We believe that the top left figure is a global
minimizer. These were generated using 25000 random initial conditions to probe the
nonconvex energy landscape. The energy has infinitely many critical points, e.g.,
every CVT of [0, 1]2 with cells of equal area (such as the checkerboard configuration)
is a critical point. The flatness of the energy landscape can be seen from the energy
values in Figure 4.

As λ decreases it becomes harder to find global minimizers. Figure 5 shows two
local minimizers for λ = 10−5. The figure on the left was obtained by using the
triangular lattice as an initial condition. It was proved in [6] that the triangular
lattice is optimal in the limit λ → 0. The figure on the right was obtained with a
random initial condition. The “grains” of hexagonal tiling resemble grains in metals.
This suggests that energies of the form (1.9) could be used to simulate material
microstructure—for example, to produce Representative Volume Elements for finite
element simulations [1].

4.2. Convergence rate. In this section we study the rate of convergence of
the algorithm to critical points of the energy (4.1) with λ = 0.005. Figure 6 shows
the logarithm of the approximate error of the energy plotted against the number of
iterations n for three simulations with random initial conditions. The initial number
of generators wasN = 6, 10, 25, and there was no elimination of generators throughout
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N = 1037, E = 4.775× 10−4, λ = 10−5 N = 1037, E = 4.787× 10−4, λ = 10−5

Fig. 5. Two local minimizers of the energy (4.1) for λ = 10−5 with N = 1037 in both cases.
In the first case the cell generators were initially arranged in a triangular lattice; in the second case
they were distributed randomly.

the simulations. The approximate error was computed using the value of the energy
at the final iteration. The graph shows that the energy converges linearly, meaning
that the error at the nth iteration εn satisfies εn+1/εn → r, where r ∈ (0, 1) is the rate
of convergence. We observe that the rate of convergence decreases as the number of
generators increases and that r ∼ 1− C

N for some constant C. In [10] it was found that
for the classical Lloyd algorithm with ρ = 1 in one dimension the rate of convergence
of the generators (rather than the energy) is approximately 1− 1/(4π2N2). This was
found from the spectrum of the derivative of the Lloyd map. In principle the rate of
convergence of the generalized Lloyd algorithm could be found using the derivatives
given in Proposition 3.8. We believe that region (�) in the figure is the result of the
Lloyd iterates passing close to a saddle point of the energy on the way to a local
minimum.

5. Concluding remarks.

5.1. Limitations of the algorithm. First we discuss the assumptions on the
data given in (1.4), (1.5).

The assumption that Ω is convex ensures that the centroid of each power cell lies
in Ω. Without this assumption the algorithm could produce an unfeasible solution
with xi /∈ Ω for some i. For example, if Ω is the annulus A(r1, r2) centered at the
origin, ρ = 1, and f is chosen suitably, then E is minimized when N = 1 by (x1, w1)
in which |x1| = r1 (the generator lies on the interior boundary of the annulus) and
w1 is irrelevant (in the case where there is only one cell the weight is not determined).
The generalized Lloyd algorithm, however, initialized with N0 = 1, would return
x = 0 /∈ Ω. This strong limitation on the shape of Ω means that the algorithm
cannot be used to solve optimal location problems in highly nonconvex countries like
Scotland. We plan to address this issue in a future paper.

The concavity assumption on f was used to prove Theorem 3.1, which asserts
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(�)
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r = 0.939
r = 0.840
r = 0.741

Fig. 6. Rate of convergence of the generalized Lloyd algorithm to critical points of the energy
(4.1) with λ = 0.005. The approximate deviation of the energy from its minimum against the number
of iterations is plotted on semilog axes for three simulations, each using random initial conditions.
The initial number of generators in the three cases was N = 6, 10, 25, and there was no elimination
of generators throughout the simulations. We see that the algorithm converges linearly with rate r.
The rate was computed by fitting straight lines to the data.

that step (1) of the algorithm decreases the energy at every iteration. The assumption
f(0) ≥ 0 ensures that iteration step (2) is energy decreasing as well. These are also
reasonable modeling assumptions for many applications, as discussed in section 1.5,
and the energy decreasing property is used to prove the convergence theorem. The
concavity of f , however, is not necessary for the existence of a minimizer of E, which
merely requires that f be subadditive (along with the growth condition (1.5)4 and
sufficient regularity). For example, E has a minimizer if we take f to be the convex,
subadditive function f(m) = e−m. Therefore, there is a gap between the assumptions
needed for existence of a minimizer and those needed for the performance of the
algorithm.

As discussed in section 1.3, another limitation of the algorithm is that, while it
can annihilate generators (step (2)), it cannot create them. Therefore, the initial guess
N0 for the optimal number of generators should be an overestimate. This limitation
could be addressed by using a simulated annealing method to randomly introduce
new generators at certain iterations. This could also be used to prevent the algorithm
from getting stuck at a local minimizer.

5.2. Generalizations. While we have focused on energy (1.9), our general
methodology could be easily applied to broader classes of optimal location energies
where the first term is more general, e.g., to

E ({xi, wi}) = g({xi,mi}) +
N∑
i=1

∫
Pi

|x− xi|2ρ(x) dx,

where mi =
∫
Pi

ρ dx. Our algorithm can also be modified to minimize the following

energy, which is obtained from (1.1) by replacing the square of the 2-Wasserstein
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distance with the pth power of the p-Wasserstein distance, p ∈ [1,∞):

Fp ({xi,mi}) =
N∑
i=1

f(mi) + dpp

(
ρ,

N∑
i=1

miδxi

)
.

See [30, Chap. 7] for the definition of dp(·, ·). In this case the energy can be rewritten
in terms of what we call p-power diagrams. These are a generalization of power
diagrams where the cells generated by {xi, wi} are defined by

Pi = {x ∈ Ω : |x− xi|p − wi ≤ |x− xk|p − wk ∀ k}.

For p = 2 this is just the power diagram. For p = 1 this is known as the Appollonius
diagram (or the additively weighted Voronoi diagram, or the Voronoi diagram of
disks). For general p there does not seem to be a standard name, although they fall
into the class of generalized Dirichlet tessellations, or generalized additively weighted
Voronoi diagrams. It can be shown that minimizing Fp is equivalent to minimizing

(5.1) Ep ({xi, wi}) =
N∑
i=1

{
f(mi) +

∫
Pi

|x− xi|pρ(x) dx
}
,

where {Pi} is the p-power diagram generated by {xi, wi} and mi :=
∫
Pi

ρ dx. See [5,

sec. 4.2]. Critical points of Ep can be found using a modification of the generalized
Lloyd algorithm where for each i the map ξi returns the p-centroid of the p-power cell
Pi, i.e., ξi(X,w) satisfies the equation

(5.2)

∫
Pi

(ξi − x)|ξi − x|p−2 dx = 0.

See [5, Thm. 4.16]. For the case p = 2 this equation just says that ξi is the centroid
of Pi. Therefore, in principle the algorithm can be extended to all p ∈ [1,∞). In
practice it is much harder to implement. Except for the cases p = 1, 2, we are not
aware of any efficient algorithms for computing p-power diagrams. This is due to the
fact that for p �= 2 the boundaries between cells are curved (unless all the weights are
equal). In addition, evaluating the Lloyd map ξ(X,w) involves solving the nonlinear
equation (5.2). We plan to say more about these aspects in a future paper.

Acknowledgments. The generalized Lloyd algorithm was derived for a spe-
cial case in collaboration with Mark Peletier [5]. The authors would like to thank
Alexander Rand for insightful comments that strengthened the paper. All plots were
prepared using Gnuplot.
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