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Within the context of the AdS=CFT correspondence, we show that the DC thermoelectric conductivity
can be obtained by solving the linearized, time-independent, and forced Navier-Stokes equations on the
black hole horizon for an incompressible and charged fluid.
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I. INTRODUCTION

A striking feature of the AdS=CFT correspondence is that
some fundamental properties of the dual conformal field
theory (CFT) are captured by the geometry of the black hole
horizon. The temperature of theCFT is equal to theHawking
temperature of the black hole which is determined by the
surface gravity of the black hole. Similarly, the entropy of
the CFT is the Bekenstein-Hawking entropy which is given
by one quarter of the area of the black hole event horizon.
Although not universal [1], it is also interesting that for a
subclass of holographic black holes the shear viscosity, η, is
also captured by the area of the black hole horizon via
η ¼ s=4π, where s is the entropy density [2,3].
Here we will argue that, remarkably, the DC thermal

conductivity and, more generally, the thermoelectric con-
ductivity of the dual field theory, are universally captured
by physics at the black hole horizon. Specifically, one
needs to solve linearized, time-independent and forced
Navier-Stokes equations for an incompressible charged
fluid on the curved horizon.
The thermal conductivity, a property relevant for

all dual field theories, determines the heat current, Q̄i, that
is produced after applying a temperature gradient,
ζi ¼ −∂iT=T, at the level of linear response. If the dual
field theory has a global Uð1Þ symmetry, then with the
additional application of an electric field Ei, the heat
current and electric current, J̄i, that are produced define
the thermoelectric conductivities via

�
J̄i

Q̄i

�
¼

�
σij Tαij

Tᾱij Tκ̄ij

��
Ej

ζj

�
: ð1Þ

It is important to emphasize that Q̄i, Ji are the total current
fluxes, defined later. In seeking applications of the
AdS=CFT correspondence to real materials, the DC con-
ductivities are important observables to study. Our results
can be used to determine whether or not the dual field
theory is a conductor or an insulator and, at a more refined
level, the temperature dependence of the conductivities,
including the appearance of any scaling laws.

From a theoretical point of view, the DC conductivities are
somewhat subtle to study, however, since they are generically
infinite unless there is some mechanism for momentum to
dissipate. A natural framework to study momentum dissipa-
tion is provided by “holographic lattices” [4], namley, black
hole solutions with asymptotic behavior at the AdS boundary
that are associatedwith adding sources to the dual CFTwhich
break spatial translations. There has been much interest in
these black holes since they can realize metal-insulator
transitions [5,6] as well as novel incoherent metals [5,7,8].
The holographic lattices depend on the holographic

radial direction as well as the spatial directions and, hence,
constructing them generically involves solving PDEs. As a
result, most examples that have been studied are one-
dimensional lattices, which break translation invariance in
just one of the spatial directions. An important exception is
provided by Q-lattices [6] (and similar constructions [9])
whose matter content can be used to break translational
invariance periodically in all spatial dimensions while the
metric remains translationally invariant.
A method for calculating the DC thermoelectric conduc-

tivity for Q-lattices and one-dimensional lattices was pre-
sented in [7,10,11]. For these lattices, the final result was
expressed explicitly in terms of the black hole solution at the
horizon. This substantially extended a similar result found for
the DC electric conductivity at zero charge density and with
no momentum dissipation [12]. Here we will show that for
generic lattices, breaking translations in all spatial directions,
one cannot obtain such an explicit formula for the DC
conductivity. However, the DC conductivity can always be
obtained by solving Navier-Stokes equations on the black
hole horizon. The earlier results can nowbeviewed as special
cases in which the fluid equations can be explicitly solved.
An early connection between gravity and fluids is the

membrane paradigm [13]. More recently, in the holo-
graphic fluid-gravity correspondence [14], approximate
solutions to the gravity equations are obtained by solving
relativistic hydrodynamic equations for the boundary
theory via a systematic derivative expansion. The
Navier-Stokes equations arise after taking a scaling limit
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and, hence, they too can be captured in a dual gravitational
description [15,16]. These connections are applicable in a
hydrodynamic limit. On the other hand, in [17] it was
shown how solutions of Navier-Stokes equations on hyper-
surfaces in Minkowski space give rise to solutions of
Einstein’s equations. Here, by contrast, solutions of
Navier-Stokes equations on the black hole horizon lead
to exact transport quantities, given by specific two-point
correlators, in the deformed dual CFT. In obtaining these
results, we do not take a hydrodynamic limit of the dual
field theory (or any other limit), and our results apply to
arbitrary horizon geometries that arise as solutions to the
equations of motion. We expect that the time-dependent
and nonlinear generalization of the fluid equations that we
obtain will also play a role in studying holographic lattices,
for example, in a suitable hydrodynamic limit (e.g. see
[18,19]). We emphasize, though, that our results here
already show that independently of the strength of trans-
lation breaking effects and the temperature, a hydrody-
namic description of DC transport is always possible in
terms of a specific fluid living on the black hole horizon.
For simplicity, we focus on holographic lattices ofD ¼ 4

Einstein-Maxwell theory; the main results extend very
simply to D ≥ 4, as well as the inclusion of other matter
fields. More details appear in [20].

II. BACKGROUND BLACK HOLES

We consider the D ¼ 4 bulk action [21]:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Rþ 6 −

1

4
F2

�
: ð2Þ

The unit radius AdS4 vacuum solution is dual to a d ¼ 3
CFT with a global Uð1Þ symmetry. We will focus on the
class of electrically charged, static black holes given by

ds2 ¼ −UGdt2 þ F
U
dr2 þ ds2ðΣ2Þ; A ¼ atdt; ð3Þ

where ds2ðΣ2Þ≡ gijðr; xÞdxidxj is a metric on a two-
dimensional manifold, Σ2, at fixed r. Also, U ¼ UðrÞ,
while G, F, and at are all functions of ðr; xiÞ.
At the AdS4 boundary, as r → ∞, we have

U → r2; F → 1; G → ḠðxÞ;
gijðr; xÞ → r2ḡijðxÞ; atðr; xÞ → μðxÞ: ð4Þ

The spatial dependence of the boundary metric, given by
ḠðxÞ, ḡijðxÞ, corresponds to a source for the stress tensor of
the dual CFT. Similarly, μðxÞ is a spatially dependent
chemical potential for the global Uð1Þ symmetry. An
interesting subclass of solutions is associated with adding
spatially periodic sources to a CFT in flat space. In this

case, the functions are all periodic in the spatial coordinates
xi, and we can, in effect, take Σ2 to be a torus.
The black hole horizon is assumed to be located at r ¼ 0.

By considering the Kruskal coordinate v ¼ tþ ln r
4πT þ � � �,

we deduce that the near-horizon expansions are given by

UðrÞ ¼ rð4πT þ Uð1Þrþ � � �Þ;
atðr; xÞ ¼ rðað0Þt ðxÞGð0ÞðxÞ þ að1Þt ðxÞrþ � � �Þ;
Gðr; xÞ ¼ Gð0ÞðxÞ þ Gð1ÞðxÞrþ � � � ;
Fðr; xÞ ¼ Gð0ÞðxÞ þ Fð1ÞðxÞrþ � � � ;
gijðr; xÞ ¼ gð0Þij ðxÞ þ gð1Þij ðxÞrþ � � � ; ð5Þ

where the factor of Gð0Þ in the leading term of atðr; xÞ has
been added so that electric charge density at the horizon is

simply
ffiffiffiffiffiffi−gp

FtrjH ¼ ffiffiffiffiffiffiffiffi−g0
p

að0Þt .

III. PERTURBING THE BLACK HOLES

We will consider a perturbation that provides sources E,
ζ for the electric and heat currents, respectively, that are
linear in t. Specifically, generalizing [7,10,11], we study

δðds2Þ ¼ δgμνdxμdxν − 2tGUζidtdxi;

δA ¼ δaμdxμ − tEidxi þ tatζidxi; ð6Þ

with δgμν, δaμ functions of ðr; xiÞ, while Ei ¼ EiðxÞ,
ζi ¼ ζiðxÞ are one-forms on Σ2, and we demand that

dðEidxiÞ ¼ dðζidxiÞ ¼ 0: ð7Þ

This perturbation solves the time dependence of the
equations of motion at linear order.
At the AdS4 boundary, we demand that the falloff of

δgμν, δaμ is such that the only sources are parametrized by
E, ζ. At the black hole horizon, as r → 0, regularity implies
that we must have

δgtt ¼ Uðδgð0Þtt ðxÞ þOðrÞÞ; δgrr ¼
1

U
ðδgð0Þrr ðxÞ þOðrÞÞ;

δgij ¼ δgð0Þij ðxÞ þOðrÞ; δgtr ¼ δgð0Þtr ðxÞ þOðrÞ;

δgti ¼ δgð0Þti ðxÞ− ζiGU
ln r
4πT

þOðrÞ;

δgri ¼
1

U
ðδgð0Þti ðxÞ þOðrÞÞ;

δat ¼ δað0Þt ðxÞ þOðrÞ; δar ¼
1

U
ðδað0Þt ðxÞ þOðrÞÞ;

δai ¼
ln r
4πT

ð−Ei þ atζiÞ þOðrÞ; ð8Þ

with δgð0Þtt þ δgð0Þrr − 2δgð0Þrt ¼ 0. Note that the logarithm
terms combine with the terms linear in time in (6).
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A. Electric and heat currents

We define the bulk electric current density as

Ji ¼ ffiffiffiffiffiffi
−g

p
Fir: ð9Þ

At the AdS4 boundary, we find that Jij∞ is the electric
current density of the dual field theory. The gauge equa-
tions of motion, ∇μFμν ¼ 0, imply

∂iJi ¼ 0; ∂rJi ¼ ∂jð
ffiffiffiffiffiffi
−g

p
FjiÞ; ð10Þ

and another equation which will not play a further role.
For the heat currents, we want to identify equations of

motion involving the metric perturbation that have a similar
structure to the gauge equations of motion. First, consider a
vector k which satisfies

∇μkμ ¼ 0; ∇μ∇ðμkνÞ ¼ αkν; ð11Þ
for some function α, which would vanish if k is a Killing
vector. We alsowrite φ ¼ kμAμ and kμFμν ¼ ∂νθ þ sν, with
s a one-form and θ a globally defined function. In the special
case that the Lie derivative of F with respect to k vanishes,
we have ∂ ½μsν� ¼ 0. We now define the two-form G:

Gμν ¼ −2∇½μkν� − k½μFν�σAσ −
1

2
ðφ − θÞFμν: ð12Þ

The equations of motion then imply that

∇μGμν ¼ ðα − 6Þkν þ 1

2
Fνρsρ −

1

2
ðLkFÞνρAρ; ð13Þ

where Lk is the Lie derivative with respect to k. In
our case, k ¼ ∂t, and at linearized order, φ ¼ at þ δat,
θ ¼ −at − δat, s ¼ −Eidxi þ atζidxi, and α ≠ 0
when ζ ≠ 0.
We can now define the following bulk current density:

Qi ¼ ffiffiffiffiffiffi
−g

p
Gir: ð14Þ

From (13) we deduce, in particular, that

∂iQi ¼ 0; ∂rQi ¼ −∂jð2
ffiffiffiffiffiffi
−g

p
GjiÞ: ð15Þ

By calculating the holographic stress tensor, tμν, we find

Ḡ3=2
ffiffiffī
g

p
tti − μJij∞ ¼ Qij∞ − tḠ3=2

ffiffiffī
g

p
tijζj; ð16Þ

and we conclude that Qij∞ is the time-independent part of
the heat current density [22].

B. Navier-Stokes on the horizon

The next step in our analysis is to examine the equations
of motion for the perturbed black holes in the context of a
Hamiltonian decomposition with respect to the radial

direction. As is well known, the Hamiltonian is simply a
sum of constraints. We want to evaluate the constraints as
an expansion in the radius at the black hole horizon. The
details of this calculation are technically involved and will
be fully described in [20]. The final results, however, are
simple to explain. We find that the Gauss law constraint
implies that ∂iJið0Þ ¼ 0, where Jið0Þ ≡ JijH. Furthermore,
the t components of the momentum constraint, Ht ¼ 0, as
well as the Hamiltonian constraint, H ¼ 0, each separately
imply that ∂iQi

ð0Þ ¼ 0 with Qi
ð0Þ ≡QijH. Finally, the i

components of the momentum constraint, Hi ¼ 0, give
additional equations which, when combined with the
others, gives the linearized Navier-Stokes equations on
the black hole horizon, presented below.
To summarize, evaluating the constraints at the horizon

leads to a closed system of equations for a subset of the
perturbation which must be satisfied at the black hole
horizon. The black hole horizon is as in (3)–(5). The
perturbation at the horizon is given as in (6)–(8), and it is
illuminating to introduce the following notation:

vi ≡ −δgð0Þit ; w≡ δað0Þt ;

p≡ −4πT
δgð0Þrt

Gð0Þ − gijð0Þ∇j lnGð0Þδgð0Þit : ð17Þ

The current densities at the horizon can be written as

Jið0Þ ¼ ρHvi þ σijHð∂jwþ EjÞ;
Qi

ð0Þ ¼ TsHvi; ð18Þ
where we define the horizon quantities as follows:

ρH ¼ ffiffiffiffiffiffiffi
gð0Þ

p
að0Þt ; sH ¼ 4π

ffiffiffiffiffiffiffi
gð0Þ

p
;

σijH ¼ ffiffiffiffiffiffiffi
gð0Þ

p
gijð0Þ; ηH ¼ sH

4π
: ð19Þ

The four unknowns in (17) satisfy the following system of
four linear partial differential equations:

∇ivi ¼ 0; ð20Þ

∇2wþ vi∇iðað0Þt Þ ¼ −∇iEi; ð21Þ
ηH½−2∇i∇ðivjÞ þ∇jp� ¼ TsHζj þ ρHðEj þ ∂jwÞ; ð22Þ
where the covariant derivatives are with respect to the
metric on the black hole horizon gð0Þij , and all indices are
being raised and lowered with this metric. The first two
equations are simply ∂iQi

ð0Þ ¼ ∂iJið0Þ ¼ 0. Note that in (22)

we can also write 2∇i∇ðivjÞ ¼ ∇2vj þ Rjivi.
Remarkably, we have obtained the time-independent,

linearized Navier-Stokes equations for a forced, incom-
pressible, charged fluid on the curved horizon. Such
equations are also called Stokes equations. The fluid
velocity is vi, the effective pressure is p, and w is a scalar
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potential. The forcing terms are given by the one-forms
4πTζ and E. In (18) and (22), we see that ρH, sH, σ

ij
H, and

ηH can be viewed as coefficients in the constitutive relations
for the horizon fluid: ρH and sH are the charge density and
the entropy density, while σijH and ηH are transport
coefficients associated with the electric conductivity and
the shear viscosity of the horizon fluid, respectively. We
stress that ηH, σ

ij
H are not, in general, the shear viscosity and

DC electric conductivity of the deformed dual CFT [23]. It
is also worth noting that possible thermoelectric transport
coefficients for the black hole horizon fluid αH, ᾱH, and κ̄H
are all absent in the expressions (18).
We now establish a number of interesting properties of

this set of equations. First, we multiply (22) by vj and then
integrate over the horizon, leading toZ

d2x
ffiffiffiffiffi
g0

p ½2∇ðivjÞ∇ðivjÞ þ ð∇wþ EÞ2�

¼
Z

d2xðQi
ð0Þζi þ Jið0ÞEiÞ: ð23Þ

In the case of noncompact horizons, we have assumed that
possible boundary terms vanish. Observe that the left-hand
side is a manifestly positive quantity, and this is associated
with the thermoelectric conductivities being a positive
semidefinite matrix.
Second, we consider the issue of uniqueness for (20)–

(22). If we have two solutions, then the difference of the
functions will satisfy the same equations but with vanishing
forcing terms, ζ ¼ E ¼ 0. Denoting the difference by
ðvi; w; pÞ, we immediately conclude from (23) that

∇ðivjÞ ¼ 0; ∇iw ¼ 0: ð24Þ

We also have vi∂ia
ð0Þ
t ¼ 0 from (21) and ∇p ¼ 0 from

(22). We conclude that the solution space is unique up to
Killing vectors of the horizon metric, with p, w constant
and δgrt fixed by (17). This results agrees with the intuition
that one should be able to boost along the orbits of Killing
vectors to obtain a solution with momentum.
Third, we observe that when ðE; ζÞ are exact forms,

ðE; ζÞ ¼ ðde; dzÞ with e, z globally defined functions on
Σ2, we can solve Eqs. (20)–(22) by taking w ¼ −e and
p ¼ 4πTz, plus possible constants, and vi ¼ 0. We observe
that this solution gives zero contribution to the current
densities (18) at the horizon. This solution gives no
contribution to the DC thermoelectric conductivity, which
we discuss below. Thus, the DC conductivity is determined
by the harmonic part of E and ζ.

C. The thermoelectric DC conductivity

We have shown that the electric and heat currents at the
horizon, given in (18), can be expressed in terms of the
sourcesE, ζ after solving the Stokes equations (20)–(22). To
obtainDC conductivities of the field theory, we need to relate

the currents at the black hole horizon to the currents at the
AdS boundary. In some cases, these are the same. In general,
however, the currents depend on the radial coordinate r and
one needs to integrate (10), (15). In general, however, we can
always define total current fluxes which are independent of r
and hence obtain associated DC conductivities.
As a concrete example, assume [24] we have a periodic

holographic lattice onR1;2. That is, the lattice deformations
ḠðxÞ, ḡijðxÞ and μðxÞ in (4) are periodic functions of the
spatial coordinates ðx1; x2Þ ∼ ðx1 þ L1; x2 þ L2Þ. Defining
the total electric current flux densities through the x2 plane
or the x1 plane, respectively,

J̄1 ≡ 1

L2

Z
J1dx2; J̄2 ≡ 1

L1

Z
J2dx1; ð25Þ

and defining Q̄i in a similar way, we can immediately
deduce from (10) and (15) that ∂rJ̄i ¼ ∂rQ̄i ¼ 0, which is
just Stokes’s theorem in the bulk. These current fluxes at
the AdS boundary are, thus, given by their values at the
black hole horizon which, in turn, are fixed by E, ζ after
solving (20)–(22) in order to obtain vi and w and then
using (18). These data then give the DC thermoelectric
conductivities via (1).

IV. EXAMPLES

For the special case that the lattice depends on only one
of the spatial coordinates, we can explicitly solve the
Stokes equations and recover the results of [11]. We will
present the details of this calculation in [20]. Here we will
consider the case of a perturbative and periodic lattice
associated with coherent metals with Drude peaks [25].
Specifically, we consider perturbative solutions about the
AdS-RN black brane with a flat horizon. If λ is the
expansion parameter, at the horizon we assume

Gð0Þ ¼ fð0Þ þ λfð1Þ þ � � � ; gð0Þij ¼ gδij þ λhð1Þij þ � � � ;
að0Þt ¼ aþ λað1Þ þ � � � ; ð26Þ

with fð0Þ, g, and a constants, and the remaining functions
are periodic on the torus Σ2. For the Ricci tensor, we have

Rð0Þij ¼ λRð1Þ
ij þλ2Rð2Þ

ij þ�� � and similarly for the Christoffel

symbols.
We can solve (20)–(22) perturbatively, using the expan-

sion v ¼ 1
λ2
vð0Þ þ 1

λ vð1Þ þ � � �, w ¼ 1
λwð1Þ þ wð2Þ þ � � �, and

p ¼ 1
λpð1Þ þ pð2Þ þ � � �. At leading order we find that

∂ivið0Þ ¼ 0, □við0Þ ¼ 0, implying that við0Þ are constant on

the torus. At next order, we have við1Þ ¼ Ni
ð1Þjv

j
ð0Þ with

Ni
ð1Þj¼−□−1ð∂kðΓð1ÞÞikjþRð1Þi

j−∂ið□−1∂jRð1ÞÞÞ: ð27Þ

Note that the function□−1f is defined up to a constant on a
torus. Such constants are fixed at third order in the
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expansion, and they do not affect the DC result at
leading order.
We next integrate equation (22) on the black hole

horizon, discarding any boundary terms in the non-
compact case, and keep the λ0 part. After defining Σj≡
ð4πTζj þ aEjÞ, now with ζi, Ei constant on the torus, we
deduce that, at leading order in λ, we have

vi ≈ ðL−1ÞijΣj; Jið0Þ ≈ ρHvi; Qi
ð0Þ ≈ Tsvi: ð28Þ

Here ρH ¼ g2a is the charge density at the horizon, s ¼
4πg2 is the entropy density, and the constant matrix L is
given by

Lji ¼ λ2g−1
Z
H

�
g−1

2
∂jh

ð1Þ
kl ∂ihð1Þkl þ ∂jh

ð1Þ
kl ∂kNl

ð1Þi

þ 1

2
hð1Þ∂jð□−1∂iRð1ÞÞ þ g2að1Þ∂jð□−1∂iað1ÞÞ

�
;

ð29Þ
where Nð1Þ is given by (27) and hð1Þ ¼ hð1Þij δ

ij.

Using (25) we can write J̄i ≈ ρvi, Q̄i ≈ Tsvi, where
ρ ¼ ðL1L2Þ−1

R
dx1dx2

ffiffiffiffiffiffi−gp
Ftrj∞ ¼ ρH is the total

averaged charge density. Hence, from (1) the DC con-
ductivities are given by κ̄ij ¼ ðL−1Þij4πsT, α ¼ ᾱ ¼
ðL−1Þij4πρ, σ ¼ ðL−1Þij4πρ2=s.
It is interesting to observe, for this general class of

holographic lattices, that at leading order κ̄ijðσTÞ−1jk ¼
s2=ρ2δik, corresponding to a kind of Wiedemann-Franz
law. Also the thermal conductivity when J ¼ 0, κ≡
κ̄ − Tᾱσ−1α as well as the electric conductivity when
Q ¼ 0, σQ¼0 ≡ σ − Tακ̄−1ᾱ appear at order λ0 in the
expansion. These general results complement those using
other techniques in [26].
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