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We explore the Minkowski functionals (MFs) of weak lensing convergence map to distinguish between
fðRÞ gravity and the general relativity (GR). The mock weak lensing convergence maps are constructed
with a set of high-resolution simulations assuming different gravity models. It is shown that the lensing
MFs of fðRÞ gravity can be considerably different from that of GR because of the environmentally
dependent enhancement of structure formation. We also investigate the effect of lensing noise on our
results, and find that it is likely to distinguish F5, F6, and GR gravity models with a galaxy survey of
∼3000 degree2 and with a background source number density of ng ¼ 30 arcmin−2, comparable to an
upcoming survey dark energy survey (DES). We also find that the fðRÞ signal can be partially degenerate
with the effect of changing cosmology, but combined use of other observations, such as the cosmic
microwave background (CMB) data, can help break this degeneracy.
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I. INTRODUCTION

It is fundamentally important to explain the observed
accelerating expansion of the Universe [1,2]. In the current
understanding, this accelerating expansion either is driven
by an exotic dark energy in the framework of general
relativity (hereafter GR) or indicates that GR needs to be
modified on large scales [3]. Awell-studied example of the
latter scenario is the so-called fðRÞ gravity [4], in which the
Ricci scalar R in the standard Einstein-Hilbert action is
replaced by a function fðRÞ. In most fðRÞ models studied
so far, the difference between fðRÞ and R remains roughly
a constant throughout the cosmic history, therefore accel-
erating the expansion of the Universe like in the standard
ΛCDM paradigm.
Although the background expansion history in fðRÞ

models could be practically indistinguishable from that of
ΛCDM, the structure formation can be very different for
these two scenarios. In fðRÞ gravity, df=dR is nontrivial
and behaves like a dynamical scalar field, which propagates
a “fifth force” between matter particles. The strength of this
fifth force can be maximally 1=3 of that of Newtonian
gravity, but it is usually weaker because of the well-known
chameleon mechanism [5], which strongly suppresses it in
regions with high matter density (or deep gravitational
potential). The idea is that any deviation from standard GR
gravitational law would be “screened” and therefore
undetectable in the solar system, in which the validity of
GR has been confirmed experimentally to very high
precision. However, it is worth stressing that the behavior
of the fifth force in solar-like systems relies heavily on what
is going on at much larger scales such as the Milky Way

galaxy, its dark matter halo and beyond. Although recent
works have demonstrated the encouraging potential of
constraining fðRÞ gravity using such systems [6,7], better
understandings of the large-scale behavior of the scalar
field will be needed before quantitative conclusions are
finally drawn. In this sense, it is crucial to study the
cosmological behavior of fðRÞ gravity, as a means to
constrain gravity using the constantly improving cosmo-
logical data (see [8] for a recent review).
Previous works on this subject using statistics of large

scale structure often compare matter power spectrum and
correlation functions of matter distribution in GR and fðRÞ
gravity [see, e.g., [9–12]]. In this work, we investigate the
topological difference in the lensing convergence κ map
between GR and fðRÞ universes. The lensing κ map reflects
the projected mass distribution of the Universe; its topo-
logical information can be described using Minkowski
functionals (MFs) [13,14]. In recent works, MFs have been
extensively used to study the geometry properties of cosmic
field ([15–20]). It has been shown that lensing MFs contain
significant information beyond other statistical quantities,
e.g., the power spectrum [21], thus might provide a
promising way to distinguish fðRÞ and GR model.
In this paper, we construct mock lensing maps with a set

of fðRÞ and GR cosmological simulations using the
ECOSMOG [22] code, and investigate whether or not the
MFs of lensing map can be used to distinguish different
gravity models. In addition, we investigate the degeneracy
effect between cosmic parameters and cosmic models.
This paper is organized as follows. In Sec. II, we briefly

introduce the general fðRÞ models and the N-body sim-
ulations used in this work. In Sec. III, we present our
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algorithm to calculate the MFs. In Sec. IV we present our
results. In Sec. V we discuss the effect of cosmic param-
eters, and we give a summary in Sec. VI.

II. THE f ðRÞ COSMOLOGY

A. The f ðRÞ gravity model

The fðRÞ gravity model is a simple generalization of
standard ΛCDM paradigm by replacing the Ricci scalar R
in the Einstein-Hilbert action with an algebraic function of
R. The modified action can be written as:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

PI

2
½Rþ fðRÞ� þ Lm

�
; ð1Þ

in whichMPI is the reduced Planck mass,M−2
PI ¼ 8πG,G is

Newton’s constant, g is the determinant of the metric gμν
and Lm is the Lagrangian density for matter fields.
There is plenty of literature about the derivation and

properties of the modified Einstein equations in fðRÞ
gravity, and here we shall not repeat the details. Instead,
we simply present the equations that are directly relevant to
the cosmic structure formation. These are the modified
Poisson equation:

∇2Φ ¼ 16πG
3

a2δρm þ a2

6
δRðfRÞ; ð2Þ

and the equation of motion (EoM) of the scalar field
fR ≡ dfðRÞ=dR:

∇2fR ¼ −
a2

3
½δRðfRÞ þ 8πGδρm�; ð3Þ

in which

δR≡ R − R̄; δρm ≡ ρm − ρ̄m: ð4Þ
Φ denotes the gravitational potential, ρm is the total density
of matter (cold dark matter and baryons), and an overbar
denotes the background average. a is the cosmic scale
factor and a ¼ 1 at present.
The fðRÞ model has a GR limit, which is given by

fR → 0. In this limit, the scalar field fR becomes non-
dynamical (identically zero); Eq. (3) gives the GR relation
δR ¼ −8πGδρm and Eq. (2) reduces to the standard
Poisson equation:

∇2Φ ¼ 4πGa2δρm: ð5Þ
For general fðRÞ gravity, on the other hand, the scalar field
fR has a complicated behavior, and leads to an environ-
mentally dependant effective Newton’s constant Geff .
As described in the introduction, local tests of gravity

based on solar system observations put a tight constraint on
any deviation from the Newtonian gravity. The chameleon

mechanism is introduced to evade the constraint by varying
Geff in different environments. In dense regions, δfR
becomes negligible, and one has δRðfRÞ ≈ −8πGδρ, thus
Eq. (2) returns to the GR equation, Eq. (5). In underdense
environments, the δRðfRÞ term in Eq. (2) becomes small
and the Eq. (2) turns into:

∇2Φ ¼ 16

3
πGa2δρ; ð6Þ

where the effective Newton’s constant is enhanced by a
factor of 1=3 (Geff ¼ 4G=3) compared to its value in dense
environments.
Note that the maximum enhancement of G in fðRÞ

gravity is always 1=3, independent of the functional form
of fðRÞ. fðRÞ, on the other hand, determines how Geff
changes from G to 4G=3 when environmental density
changes. Therefore, the form of fðRÞ is crucial for a given
model. To date, various fðRÞ functions have been designed
to explain the accelerated cosmic expansion while evading
solar system constraints, of which the most well studied is
the one proposed by [23]:

fðRÞ ¼ −M2
c1ð−R=gM2Þn

c2ð−R=M2Þn þ 1
; ð7Þ

whereM2 ≡H2
0Ωm withH0 the Hubble constant, Ωm is the

matter density parameter, and n is an integer parameter
which is normally set to 1, though other values have been
studied as well. To match1 the expansion of a standard
ΛCDM universe, the dimensionless parameters c1 and c2
should satisfy:

c1
c2

¼ 6
ΩΛ

Ωm
; ð8Þ

where ΩΛ is the current dark energy density parameter.
In any reasonable cosmological model, we have

−R̄ ≫ M2, and so f̄R can be simplified as:

fR ≃ −
nc1
c22

�
M2

−R

�
nþ1

: ð9Þ

Therefore, the model can be described by two free
parameters, n and c1=c22, and the latter is determined by
fR0, the value of fR today.

1We note that this is an approximate match, with a error of
order fR, which is practically too small to be observable. As
mentioned earlier, it is possible to have an exact ΛCDM
expansion history in fðRÞ gravity, but the corresponding form
of fðRÞ is more complicated.
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B. Numerical simulations

Numerical simulations used in this study include three
high resolution cosmological N-body simulations, two of
which assume fðRÞ gravity and one assumes ΛCDM. For
two different fðRÞ simulations, we have fixed the model
parameter n to be 1 but varied the parameter fR0 by jfR0j ¼
1.289 × 10−5 and 1.289 × 10−6, which will hereafter be
referred to as F5 and F6 model, respectively. All simu-
lations evolve 10243 particles in a 250 h−1Mpc cubic
volume and start from exactly the same initial conditions at
z ¼ 49.0. The simulations were performed with the adap-
tive mesh refinement code ECOSMOG [22]. The cosmologi-
cal parameters assumed to generate initial conditions
are Ωm ¼ 0.267, ΩΛ ¼ 0.733, h ¼ 0.71, ns ¼ 0.958 and
σ8 ¼ 0.801, in which h ¼ H0=ð100 km=s=MpcÞ, ns is the
spectral index of the primordial power spectrum and σ8 is
the rms density fluctuation within spherical tophat windows
of radius 8 h−1 Mpc. In this work, we place source galaxy
at z ¼ 1 and use the snapshot at z ≈ 0.1 to construct lensing
κ maps.

III. THE MINKOWSKI FUNCTIONALS (MFS)
OF WEAK LENSING κ MAP

A. Weak lensing convergence map

Weak lensing observations measure small distortions on
the shapes of background galaxies, which can be used to
generate convergence κ map. The convergence map κðxÞ is
related to projected density map ΣðxÞ as:

κðxÞ ¼ ΣðxÞ
Σcr

; ð10Þ

with the critical surface density

Σcr ¼
c2

4πG
Ds

DlDls
; ð11Þ

in which Dls is the angular diameter distance between
source galaxies and the lens, and Dl and Ds are the angular
diameter distances from the observer to the lens and to the
sources. c is the speed of light.
To generate a theoretical convergence map, we project

particles in the whole simulation box onto a plane. Next we
employ the cloud in cell (CIC) method to project dark
matter particles to a 50002 grid surface density map. On
average, there are about 43 particles on each grid, the grid
separation is about 50 h−1 kpc. Then we convert the surface
density map to convergence map by assuming our lens
plane to be at z ¼ 0.1, and all source galaxies at redshift
z ¼ 1. The total sky area of our mock lensing observation is
about 3000 degree2, comparable to forthcoming dark
energy surveys (e.g., LSST [24] and Euclid [25]).
In real observations, the intrinsic ellipticity of source

galaxies introduces noise to the convergence map. The

Gaussian smoothing is often adopted to suppress the small
scale noise. The uncertainties of a smoothed κ map are
specified by the number density of source galaxies, ng, and
the smoothing aperture size θG. van Waerbeke 2000 [26]
shows that the noise can be approximated by a Gaussian
distribution with rms:

σ2noise ¼
σ2ϵ

4πθ2Gng
; ð12Þ

where σ2ϵ is the rms amplitude of the source intrinsic
ellipticity distribution.
To simulate a more realistic convergence map, we first

smooth our convergence map with the Gaussian window.We
then add the noise resulting from intrinsic ellipticity of source
galaxies using Eq. (12). Following [27], we set σϵ ¼ 0.4.
To investigate the effect of smoothing scale on our

results, we adopt three different smoothing scale θG ¼ 0.5,
1 and 5 arcmin. For ng, we adopt two values: ng1 ¼
30 arcmin−2 for upcoming surveys such as DES and
ng2 ¼ 100 arcmin−2 for future more ambitious surveys.

B. Minkowski functionals

Minkowski functionals provide morphological statistics
for any given smoothed random field characterized by a
certain threshold ν. Compared with traditional power
spectrum methods, MFs contain not only information of
spatial correlation of a random field, but also information of
topology and object shapes. For a Rn field one can get
nþ 1 MFs Vi. Weak lensing convergence map is a two-
dimensional field, thus 3 MFs can be defined, namely V0,
V1, and V2.
For a smoothed field uðxÞ in a 2D space, we define the

area Qν and boundary ∂Qν to be

Qν ≡ fx ∈ R2juðxÞ > νg; ∂Qν ≡ fx ∈ R2juðxÞ ¼ νg:

Then, MFs can be written as follows:

V0ðνÞ ¼
Z
Qν

dΩ; ð13Þ

V1ðνÞ ¼
Z
∂Qν

1

4
dl; ð14Þ

V2ðνÞ ¼
Z
∂Qν

1

2π
κcdl: ð15Þ

V0 is the area of Qν, V1 is the total boundary length of Qν

and V2 is the integrated geodesic curvature κc along the
boundary.
We follow the method described in [21,28] to calculate

the MFs from the pixelated maps. On each grid, we
calculate:
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I0ðν; pjÞ ¼ Θðu − νÞ; ð16Þ

I1ðν; pjÞ ¼
1

4
δðu − νÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2;x þ u2;y

q
; ð17Þ

I2ðν; pjÞ ¼
1

2π
δðu − νÞ 2u;xu;yu;xy − u2;xu;yy − u2;yu;xx

u2;x þ u2;y
;

ð18Þ
where ux; uy are the two partial derivatives of uðxÞ. The
numerical MFs of Vi can be computed by summing
integrands over all pixels:

ViðνÞ ¼
1

Npix

XNpix

j¼1

I iðν; pjÞ: ð19Þ

In the above, Θ is the Heaviside step function. For the bin
width Δν, the delta function can be numerically calculated
as follows:

δNðνÞ ¼ ðΔνÞ−1½Θðνþ Δν=2Þ − Θðν − Δν=2Þ�: ð20Þ
Note that the numerical MFs, Eq. (19), is actually the

surface density of Eqs. (13), (14) and (15). In what follows,
we refer to both of them as MFs and notation Vi.

IV. RESULTS

In Fig. 1, we show the MFs of surface density from our
simulations. The MFs are plotted as functions of surface
density in unit of mean surface density, Σmean. The overall
shapes of MF curves of the fðRÞ and GR models are similar.
However, the amplitude of MFs of the fðRÞ surface density
map is higher at Σ=Σmean > 2. For the F6 case, V0 is ∼10%
higher than that of GR model at Σ=Σmean ∼ 3 − 5, while in
denser regions (Σ=Σmean > 15) the V0 of both models are
almost identical. On the other hand, the difference in V0

between F5 and GR increases with Σ=Σmean and persists to
larger density. At Σ=Σmean ∼ 20, the V0 of F5 model is about
60% larger than that of GR model. The V1 and V2 of F5 and
F6 models show similar trends.
The apparent differences shown here reflect the envi-

ronmentally dependent structure formation in universes
with different gravity theories. As is shown in Ref. [29],
compared with the GR universe, there are more massive
halos and larger size voids in fðRÞ models because of the
enhanced gravity in low density environments. As a result,
the surrounding regions (including the filaments) of dark
matter halos are denser in fðRÞ gravity than in GR.
Therefore, in fðRÞ models, V0, which represents the area
of regions with density higher than certain threshold, is
smaller than that of GR in the low density regions
(Σ=Σmean < 1), but is larger at relatively high density
regions. For F6, in very high density regions, the chame-
leon screening ensures that both the gravity and MFs are
similar to the results in GR.

The difference in V1 and V2 can also be explained in the
similar way. However, unlike V0, V1 and V2 encode
additional information on topology (which describes con-
nectivity) of the κ map. As an example, the turn over trend
in the lower panel of V1 indicates transition of the topology
of κ map from the isolated halo dominated case to the voids
dominated one.
In real observations, noise resulting from the intrinsic

ellipticity distribution of galaxies contaminates the lensing
κ map. Gaussian smoothing is usually adopted to suppress
the noise; however, it will also mix the MFs of different
density thresholds.
In Fig. 2, we show the MFs of the simulated κ maps

without taking into account the noise. We apply smoothing
to the map with different smoothing scales, θG ¼ 0.5, 1 and
5, respectively. Reference [27] claimed that for cluster
survey, the best smoothing scales is ∼1 arcmin. We find
that the amplitudes of MFs at high density regions decrease

Σ / Σmean

FIG. 1 (color online). The MFs of surface density maps as a
function of surface density normalized to mean of the universe
Σmean for our fðRÞ and GR simulations. The black solid, red
dashed, and blue dotted lines represent result for GR, F5 and F6
simulation, respectively. Interior small figures each panel show
the ratios between GR and fðRÞ simulations and the residuals as a
function of surface density.
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significantly while the Poisson noises increase dramatically
at the same region. This is because the smoothing pro-
cedure reduces total area of high density region. We
conclude that a small smoothing scale is better for
measuring MFs.

We show MFs of the κ map in Fig. 3 by taking into
account the noise. Here we adopt two different noise cases,
ng ¼ 30 and ng ¼ 100, in order to investigate effects of
different noise levels on our results. For comparison we
also include the case without noise. In the figure, we use a

Σ / Σmean Σ / Σmean Σ / Σmean

κκκ

FIG. 2 (color online). The MFs of the noiseless κ maps as a function of κ (lower axis) and Σ=Σmean (upper axis). The black solid, red
dashed, and blue dotted lines represent result of GR, F5 and F6 models, respectively. The panels from left to right show results with
different smoothing scales: 0.50, 10 and 50, respectively.
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smoothing scale of 10 and generate 100 maps using
different background noises which sharing the same stan-
dard deviation σnoise. The shaded regions show the standard
deviation of MFs, which is an estimation of the noise level.

We note that the noise map due to intrinsic galaxy shapes
can be approximated with a Gaussian map, which migrate
into MFs, thus suppressing the difference between fðRÞ
and GR models. However, this effect is less important in

κ κ

FIG. 3 (color online). Comparisons of the predicted MFs of lensing κ maps between the fðRÞ and GR simulations for three different
source number densities, ng ¼ 30, 100 and infinity (noise-free). In all cases the smoothing scale is taken to be 10. The left panel show
comparison between F5 and GR models, while the right panel show comparison between F6 and GR models. The shaded regions show
standard deviation of MFs from 100 mocked lensing maps.
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dense regions (κ > 0.015). Therefore, it is still possible to
distinguish the F5, F6 and GR models in high density
regime. It is also interesting to see that even for the higher
noise level, where ng ¼ 30 arcmin−2, the difference among

different gravity models is still much larger than the
observational lensing noise, indicating that weak lensing
MFs can be a powerful tool to distinguish the fðRÞ and GR
models with upcoming galaxy surveys.

κ κ

FIG. 4 (color online). Lensing MFs at z ¼ 0.8, 0.5, 0.2 and 0.1, with the same smoothing scale (10) and source number density
(ng ¼ 30). The left panels show the comparison between F5 and GR, while the right panels are the comparison between F6 and GR. The
dashed (solid) lines are results for fðRÞ gravity (GR).
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We further tested the evolution of lensing MFs with
redshift. For this we fixed the source galaxy at z ¼ 1 and
employed four snapshots at different lens redshifts
(z ¼ 0.8, 0.5, 0.2 and 0.1 respectively). Figure 4 presents
the results, where for simplicity we have used the same
source galaxy density (ng ¼ 30) and smoothing scale (10).
The amplitudes of V1 and V2 of both GR and fðRÞ gravity
increase with time, and the relative differences of MFs
between F5 and GR grow from 15% (at z ¼ 0.8) to 50 ∼
60% (at z ¼ 0.1). The same trend is found for F6 but the
deviation from GR is much weaker. The results suggest that
even with a more realistic line-of-sight integration to fully
account for the matter distribution, we expect the model
difference to be still present. Note that such an integration
would somewhat distort the results and suppress the non-
Gaussianity of the signal.

V. THE EFFECT OF COSMIC PARAMETERS

In this work, we have mainly focused on the difference
between the MFs for fðRÞ gravity and GR, but note that
this signal could in principle be degenerate with the effect
of changing cosmology [30]. To gain a rough idea of this

degeneracy, we have employed two additional simulations:
the Millennium simulation (MS) and a MS-W7 simulation.
These simulations are identical on the simulation box and
mass resolution, but with the cosmology changed from
WMAP1 [31] to WMAP7 [32]. Because these two simu-
lations are carried out by different simulation codes from
fðRÞ and GR runs, this code changing could bring about
another effect in the MFs’ measurement. We think it is
better to check the effect of changing cosmology and
changing gravity models individually, we present the
comparison between twoMS runs and comparison between
different gravity models separately.
In Fig. 5, we compare the ratios of MFs for F5/GR

(dotted lines), F6/GR (dashed lines) andWMAP1/WMAP7
(solid lines). The results of the noise-free case are shown in
the left panels, while the right panels are the results
assuming a source galaxy number density of 30. We find
that the change of cosmology from WMAP7 to WMAP1
can have a similar impact as having F5 instead of GR
as the gravity model. However, with the precision of
current observations, the WMAP1 and WMAP7 cosmol-
ogies can be distinguished by using cosmic microwave
background (CMB) data alone. In the cases of F6 and F5,

Σ/Σmean κ

FIG. 5 (color online). Comparison of the effects on MFs from changing cosmological parameters (from WMAP7 to WMAP1) and
changing the gravity model [from GR to fðRÞ gravity]. The left panels show the results without noise, while the right panels assume a
source number density ng ¼ 30. In all cases the smoothing scale is 10.
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the CMB power spectra are practically the same as GR
predictions with the same cosmological parameters.
Therefore, the CMB constraints on those cosmological
parameters can be used to break the degeneracy above.

VI. SUMMARY

In this work, we make use of high-resolution fðRÞ (F5,
F6) and GR simulations to generate mock lensing κ map by
taking into account different noise levels. We find that due
to environmental dependent nature of fðRÞ gravity, the
MFs of their κ maps show considerable deviation from the
GR case. We also investigate the effect of lensing noise on
our results, and find that while noise due to limited
background source density induce pollution to the κ
map, the difference between F5, F6 and GR gravity models
can still be distinguished with a survey of ∼3000 degree2

area and with a background source number density
ng ¼ 30 arcmin−2. Such a requirement can be achieved
by upcoming lensing surveys. We compared the effect of
changing cosmological parameters and found that it can
partly degenerate with the signal found in modified gravity.
However, combined use of CMB data can help to break this
degeneracy. Our results hence suggest that the MFs of
lensing κ map will be a powerful tool to study the nature of
gravity in the future.
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