How Predictable Are Equity Covariance Matrices?
Evidence From High Frequency Data For Four Markets
Mike Buckle?, Jing Chen?, Julian Williams®*

2School of Management, Swansea University, SA2 8PP, Wales, UK
b Durham University Business School, Durham, DH1 3LB, Scotland, UK.

Abstract

Most pricing and hedging models rely on the long run temporal stability of a sample covariance matrix. Using
a large data set of equity prices from four countries, the US, UK, Japan and Germany, we test the stability
of realized sample covariance matrices using two complementary approaches: a standard covariance equality
test and a novel matrix loss function approach. Our results present a pessimistic outlook for equilibrium
models that require the covariance of assets returns to mean revert in the long run. We find that whilst a
daily first order Wishart autoregression is the best covariance matrix generating candidate, this non-mean
reverting process cannot capture all of the time series variation in the covariance generating process.
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1. Introduction

The extent to which the covariance matrix describing the second moment of asset returns remains stable,
in the long run, is a fundamental question and a property that has a major influence on the effectiveness of
portfolio analysis and modeling of asset prices. Standard asset pricing models such as the CAPM and APT
are founded on the assumption that the covariance matrices between assets, and between assets and factors,
are time invariant.

In the dynamic covariance context, such models can still operate with short run fluctuations and non-
persistence in the covariance matrix as long as the long run stability exists. For instance, all multivariate
ARCH representations converge to an equilibrium covariance matrix in the long run.

Several studies, such as Bollerslev et al. (1994) and Hansen and Lunde (2006) have found that volatility
(as measured by realised standard deviations) is highly persistent in the long run, postulating that the
volatility process itself is either a unit root or near unit root. It is difficult to overstate the importance of
rejecting long-run mean reversion in the variance-covariance process to the finance industry and the method
by which most companies manage and trade risk. Williams and Ioannidis (2011), for instance, show that
for n assets, a hedging strategy would need n(n+ 1)/2 extra hedging instruments for full delta neutrality in
the presence of a covariance process driven by a matrix Brownian motion.
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There is plenty of empirical evidence to suggest large shocks, such as the global financial crisis since late
2006 or the terrorist attack on the US on September 11, 2001, can result in permanent structural changes
in the correlation and volatility between assets (see Bloom (2009)). However, for large highly diversified
multinational companies, such as the 30 public companies comprising the Dow Jones Industrial stock market
index, the covariance structure would be expected to be relatively stable, hence mean reverting, over longer
periods of time, given that their underlying dividend processes should be from a relatively small number of
principal components.

Designing statistical methods that distinguish between different covariance generating processes (CGP)
is therefore important for a wide range of financial activities. For instance, the use of equally weighted
portfolios may not be inferior to optimised portfolios as the optimised weights are computed from parameters
which are both stochastic and possibly non-mean reverting. The pricing of multi-asset derivatives such as
relax certificates, which place floors on individual stocks and combinations of stocks, must incorporate the
covariance risk directly into the pricing kernel.

Most classical financial theories rely on the asymptotic stability of the long run sample covariance ma-
trix of asset returns There is empirical evidence, mostly estimated on daily or lower frequency data, has
indicated that the covariance structure of assets changes substantially through time. The issues are whether
these fluctuations in the covariance structure are mean reverting or whether the forward looking covariance
structure is inherently uncertain. Further, identification of the level of variation in the covariance structure
relative to a long run benchmark allows us to identify whether standard equilibrium pricing models are
viable for certain types of mid to long term investors.

Traditional classical theories can still possibly be adapted to a time varying covariance framework,
with little loss of generality, if the conditional covariance matrix appears mean reverting in the long run
(see, for instance, Heston (1993)). However, in this paper, we present substantial and significant evidence
to suggest that the covariance matrices for a broad collection of US, UK, Japanese and German equity
returns do not exhibit any form of long run stability. The results suggest that even a first order Wishart
autoregressive process does not fully capture the variation in the covariance structure of minute returns.
Thus, the assumption of the stability of the covariance matrix appears to be questionable.

To address the issue of identifying whether the covariance matrix is stable, we utilise three recent contri-
butions to the literature. First, we propose new robust measures of realised covariance from high frequency
data by implementing the realized kernel methodology outlined in Barndorff-Nielsen et al. (2009a, 2008) to
provide solutions to the selection of the appropriate covariance matrix when constructing hedged portfolio.
This measure is less affected by the microstructure noise inherent in high frequency data.

Second, this research, for the first time, directly links estimation of the covariance generating process
(CGP) to the covariance equality test literature to develop a robust diagnostic test of covariance stability.
Specifically, we set covariance equality to be the null hypothesis. This means rejection of stability will be
considered as a type II error rather than a type I error. Thus, our hypothesis, instead of looking to find
instability, is seeking to reject stability. To achieve this, we propose a time varying loss function approach
with a one year rolling window to mitigate the possibility of transient outliers affecting the test. This
extends the current literature by proposing a time-varying unit root test of the covariance matrix to reveal
time varying features of the CGP.

Further, this large scale empirical study applies the latest development from the literature on forecast
breakdowns to a latent variable analysis. Prior research, for instance Zhang et al. (2005), has focused on
a fixed sampling frequency and consistency relative to simulation benchmarks. The modeling in this study
uses both a fixed sampling frequency (minute) and a systematically-varying time horizon (daily, weekly,
monthly and quarterly) to provide enhanced forecast stability through both in-sample and out-of-sample
comparisons.

In addition, comparison tests of out-of-sample forecasts are constructed for realised covariance matrices
using long run ex-post and short run ex-ante CGPs and are compared using a novel comparative loss function
approach.

Moreover, a Monte Carlo approach is applied to compute a rolling test statistic and corresponding
confidence bounds. Inference is taken from a combination of Monte-Carlo simulation, bootstrap re-sampling
and standard asymptotic theory. Our results generally suggest that neither of the simplest descriptions of
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the covariance are wholly adequate and it is evident that more complex models are needed to correctly
capture the covariance dynamics of asset returns.

In this paper, a cross-country comparison of covariance stability is undertaken using data for ac-
tively traded stocks from the US (New York Stock Exchange - NYSE), UK (London Stock Exchange -
LSE), Japanese (Tokyo Stock Exchange - TSE) and German (Deutsch Borse Group, Frankfurter Wertpa-
pierborse/Frankfurt Stock Exchange - FSE) equity markets. A large data set of minute frequency sampled
equity returns is utilised to compute covariance matrices from daily, weekly, monthly and quarterly blocks;
and compare them, in sample, to a long run (yearly and whole sample of 14 years) covariance matrix using
an equality test based on the properties of the Wishart distribution. This, to the authors’ knowledge, is the
first paper to model such large scale cross markets of stocks over long sample periods. In total, fourteen
years of data are utilised at the minute as the highest frequency for sampling 94 stocks in these four markets.

In summary, this paper is to outline a simple framework to assist in identification of the CGP and test
it on a large ultra-high frequency dataset over a long time period for broad classes of equities crossing
four major stock markets. The computed test statistics generally reject the null of equality of the short
run daily, weekly and monthly high frequency sample groups versus the long run, yearly and whole sample
sets. Interestingly, the results suggest that the short run covariance matricies do not appear to improve on
the long run covariance matrices in forecasting day by day risk. This finding suggests that the covariance
structure exhibits high degrees of variation and that models with explicit non-convergent stochastic covari-
ance dynamics, such as the Williams and Ioannidis (2011) or the Buraschi et al. (2010) models, should be
recommended to measure risk ahead of traditional long run constant covariance models or mean reverting
stochastic covariance models.

The paper is organised as follows: §(2) briefly reviews some of the related literature; §(3)outlines the
testing approach and describes the two broad types of stability test that are implemented; §(4) covers the
extensive data processing needed for high frequency research; §(5) briefly reviews the empirical analysis and
results, whilst §(6) concludes. An internet appendix with the asymptotic form of the Wishart distribution
estimated via a heteroskedasticity and autocorrelation consistent (HAC) kernel estimator is available from
the authors.

2. Related Literature

Whilst univariate high frequency realised variance analysis has a relatively long history, the computational
issues associated with the multivariate context is a more recent development in the financial econometrics
literature. Ledoit and Wolf (2004, 2003) offer comprehensive reviews of modern techniques for computing
well-conditioned covariance matrices of asset returns. More recent work by Barndorff-Nielsen and Shephard
(2004) and Barndorff-Nielsen et al. (2009a, 2008) has focused on the sampling and consistency of realised
covariance estimators over a variety of time-scales ranging from tens of minutes to one second in frequency.
The choice of sampling scale is a key feature of realised covariance estimation. One of the major issues with
estimating covariance matrices is that for most common uses, regression analysis and portfolio selection
included, the covariance matrix must be invertible and, therefore, well conditioned. In low dimensional
settings, this invertibility requirement becomes a more acute and common problem in financial econometrics
with cross sections.

Recent work by Kyj et al. (2010) has shown a variety of covariance models sampled at five minute intervals
and demonstrated their performance in actively managed portfolios targeting the global minimum variance
portfolio. In contrast to Kyj et al. (2010), however, our study implements a one minute sampling frequency
to estimate daily covariances, to ensure that the sampling interval is high enough to fulfil the criteria of
m > 10n as suggested by Ledoit and Wolf (2003) !. The consequent issue that as the sampling frequency
increases, micro-structure effects can contaminate the covariance estimator, is discussed, for example, in

!Ledoit and Wolf (2003) suggest that if the data generating process is assumed to be conditionally multivariate-Gaussian or
fairly closely related, sampling at a frequency that results in a conditional data matrix with rows m approximately ten times
more than a system with the dimensionality of n is more desirable as a well conditioned covariance matrix.
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Bandi and Russell (2006). As such, we propose the simple linear covariance estimator needs to be replaced
with a heteroskedasticity and autocorrelation consistent (HAC) alternative.

By contrast to the recent realised covariance literature, there is substantial research on comparisons
between competing forecast models. The Diebold and Mariano (1995) approach on competing forecasts offers
a good summary of the properties of these comparative approaches. More recently, Giacomini and White
(2006) and Giacomini and Rossi (2009) have outlined various bootstrap methods for assessing predictive
accuracy and enhancing robustness checks to the significance of these comparisons.

Another issue of interest is to compute comparative loss functions on the second moments when the
conditional variance-covariance matrix is measured with error. Patton (2006) discusses this issue with respect
to univariate forecasts of variance, suggesting a series of robust loss functions, and it is the multivariate
extension of these that motivates the second part of the analysis in this paper.

3. Methodology

Two methods for testing the stability of the conditional covariance matrix relative to a longer run
benchmark are implemented in this paper. First, in §§(3.1) an ‘in sample’ matrix equality test based around
the Wishart matrix distribution is demonstrated. Second, in §§(3.3) a matrix loss function approach is
derived for comparing the fit of alternative forecasting models. Some further results on the asymptotic
distributions of the test statistic are available in an internet appendix.

For n assets, the notation is as follows, y; ¢t = [Y1,i.¢s---,Yn,i,e) is the vector of log prices, where t €
{1,...,T} is the index of the assets by day and i € {1,...,m + 1} is the index of intraday prices. For
simplicity of initial notation assume that m;—1 = my—2 = ... = my—r_1 = mp: therefore the total number
of observations is mT'. The m x n matrix of intraday centred returns X; = [x1,4, o4, .., Zm,]" is formed

by filtering the log differences of the prices Ay, ; = yit1,+ — ¥i,+ by the ex-post daily mean, x; ; = Ay, 1 — i,
where p; = m™! > Ay;y. The returns are filtered in this way as the object of interest is the variation
and covariation of the returns and not the direction. Next consider an index j which represents the daily,
weekly or monthly collections of filtered return matrices X;. Setting X = [X{,..., X7]’, where X is the
mT x n matrix of all data, X; = [X{,,,...,X{,,]} for appropriate ¢ to be the collection of daily h = 1,
weekly h ~ 5, monthly h ~ 22 and quarterly h ~ 67 data matrices?. As such, there are J = Th~! collections
of daily data matrices over the sample T'.

Conditional correlation matrices R; are computed from the decomposition f]j =R;- hjh;., where h; is
element by element square root of the diagonals of the h? = diagf]j and - is the Hadamard element by
element product. Using the notation of Muirhead (1983), the total quadratic variation is denoted A = X'X

and the j** time indexed quadratic variation is denoted as Aj=X ;X j- The 4t indexed sample covariance

matrix is denoted ij = (mh)~'A;. Gourieroux et al. (2009) outline a multivariate stochastic volatility
model driven by a Wishart progression. Following from this innovation this paper seeks to discriminate
between two potential candidate processes

Aj ~W (mh,n,X) Long run ex-post
Aj~W (mh, n, (mh)_lAj_l) Short run ex-ante

The second CGP can be rewritten as A; ~ W(mh,n, f]j_l), i.e. a first order Wishart Autoregression. The
degree of variation is dictated by the row-wise degrees of freedom mh, assuming that the covariance over a
single day is stable, then the degree of stochastic covariation is entirely dictated by h. The analysis is split
into two sections, first to establish whether there is covariance equality between ¥;—1 = X0 =,...,= 2.
Second, an estimate 3 = (mT) "' X’X of ¥ is used as a forecast benchmark and run comparative forecasts
against f]j. These two steps are outlined in §§(3.1) and §§(3.3) respectively.

2Weekly, monthly and quarterly collections are approximate = is used as national holidays are excluded.



3.1. Static Covariance Equality Tests

The covariance equality statistic of the null hypothesis ¥;_1 = ¥;_2 =,...,= X is defined as,
.~
det (2
AF — _det () © (1)

mh

J N
T (det %)
j=1

If X ~ N(0,%), Muirhead (1983) shows that 2logA* ~ x*(3n(n+1) (J — 1)), therefore for a given
critical value ¢, the null hypothesis of ¥;cr1 . ;3 = X is rejected for A* > ¢,. The proof of the asymptotic
distribution of A* is well known and the interested reader is directed to Muirhead (1983) or Ledoit and Wolf
(2002) for Monte-Carlo evidence for large cross sections. All tests in this paper are described in terms of
level of significance in rejecting the null (e.g. 10, 5, 1%) and use the term confidence level to denote whether
a rolling test statistic is above a certain significance threshold. All test and critical statistics are divided by
a constant, in this case, 10e6 following the procedure suggested in Muirhead (1983).

3.2. Rolling Variation Tests and Resampling

Financial data, particularly at very high frequencies, exhibits high degrees of autocorrelation and het-
eroskedasticity and as such the covariance estimator needs to be corrected for these contaminants. A variety
of HAC covariance estimators are available and various choices can inject some considerable variation in the
resultant covariance matrices. Barndorff-Nielsen et al. (2008) conduct a variety of Monte Carlo experiments
to test for the best unbiased kernel suggesting that estimate for the covariance on day t

S 1 «— r PO m Tit@ i—per >0
Yi(r) = Z K <r+1> r,T.= { Zi{‘r“'“ ot ot

. . l.
m == i=|r 1)1 Titrt i, <0

computed with a Parzen Kernel is the best performer. It is stated in a normalised time such that for a
variable z, the functional form is

1-622+62° 0<z2<3
K(z)=¢ 2(1-2)° 1<z<1 (2)
0 z>1

To test for the optimal bandwidth parameter a Frobenius matrix norm convergence criteria is imple-
mented, such that b(7 —7) = ||24(7) — £¢(7)||, where 7 > 7. The optimal bandwidth is chosen when
Ab(T — ) is monotonic.

The object of interest is to test the variation of the local short run covariance matrix ij in relation to
an ex-post estimated long run covariance matrix 3. The choice of time periods is arbitrary and primarily
driven by data availability and an attempt to find investment horizons compatible with standard investment
management strategies. The system is resampled by choosing random start days within the first 6 month
period to account for starting time effects and take an average loss (averaging across the confidence bounds is
also implemented). In effect the rolling loss functions allow the econometrician to identify periods when one
particular forecast model dominates another, for a given choice of loss function that comparatively penalises
a lack of fit.

3.3. Matriz Loss Function

The second approach for testing the stability of the ex-post realised covariation of asset returns is to
utilise a matrix loss function approach along the lines of the Diebold and Mariano (1995). Consider two
competing forecasts ¥y € C"*" and %! € C"*", for example the long run and short run forecasts described
in the previous section, where C"*™ is the field of all positive definite covariance matrices. For a function,
f (€ C™*™) — Ry, the comparative loss for the current day is

0(0) =1 (24.5010) - £ (=, Sigma 10 (3)
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Following Diebold and Mariano (1995) the heteroskedasticity and autocorrelation consistent normalised
moving average sum of this forecast is denoted as

N N
Li@) =N 0 (0) [ Y kjamjili—i (0) 61— (6) (4)
1=0

i,j=0

where 6 is the parameter vector of the function f(-), k; ; is a kernel weight and N is again the size of the
daily moving average window. In keeping with convention, Bartlett weights kj;_; =1 — % are used to
construct the HAC variance of the mean comparative loss. For comparative forecast evaluations, the test
statistic for the Diebold and Mariano (1995) approach is assumed to be N'(0,1). To our knowledge, the
current statistical literature on matrix functions of random matrices has not yet proved the generality of
this distributional assumption, so a Monte-Carlo approach is implemented to derive the confidence bounds.

The Monte-Carlo algorithm proceeds as follows, first before the time loop draw pairs of m X n random
matrices, Afe{lwa} and A?e{l,...,B}’ consisting of independent and identically, B = 1,000, distributed
N(0,1) random numbers. At each time step compute the alternative covariance matrix forecasts ¥f and %7
and compute their Cholesky factorized counterparts Qf and Q7. Next, construct sets of candidate covariance
matrices ¢, = Q{ AIA'YQ'{ and I, = QI Al A'!Q'}. Substitute these random draws into Equations 3 and
4. At each time step sort the draws of the test statistic L; and extract the values at the 10, 50 and 100 row
and check their sign versus the original L. Finally, an average of the 10, 5 and 1% significance level and
plot these lines versus the evolution of L;. Three choices of loss function are used, which are labelled as the

matriz norm loss function, the inverse trace loss function and the mazimum divergence loss function. *.
Matriz Norm Loss Function, (ML)
The matrix norm loss function is f(X1,%2) = [|X1 = Xallr = /327 (0ij,1 — 0i,5,2)%, which is the Frobe-

nius norm i.e. the square root of the sum of the squared differences between the realized covariance matrix
¥; = % and the competing forecast matrices ¥y = {27, X}, the comparative loss function is therefore

0, = Hzt _ 5y

-
F

(5)

F
This is therefore the comparative sum of absolute errors, between the competing forecasts.
Inverse Trace Loss Function, (IT)

The inverse trace loss function, f(X;,%s) = tr(X;38; ' — I)? is the trace of the product of the realized
covariance matrix with the inverse of the forecast minus equivalently sized identity matrix I,

b= (S50 = 1)) = (St - 1)) (6)
where tr is the trace of a matrix.

Mazimum Divergence Loss Function, (MD)

The final loss function postulates the maximum feasible divergence between the realised and fore-
casted covariance matrix for a pair of n vectors a # b # 0, the generating loss function is, f(X1,%2) =
(H;abx(azlb(aZQb)*l) —1)2, hence the comparative loss function,

3For the long run versus short run stability tests this is actually quite quick as all of the Cholesky factorisations are computed
during the first pass when the covariance estimates are computed and the same matrices are used in each time step.

4Appendix B in the Internet Appendix discusses some aspects of the relative properties of the three loss functions. The
matrix loss functions chosen here are the simplest parameter - free loss functions available and are multivariate extensions of
those reviewed in Patton (2006)
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The maximisation problem is solved using a standard quadratic programming procedure. For each loss
function set X7 to be the long run CGP, with p = 252 days and %Y to be the short run CGP. Therefore
positive values indicate that the long run forecast is preferred and negative values suggest that lower losses are
associated with the short run forecasts. The normalised matrix loss functions are denoted by LQE{ML’IT’MD}
and the simulations are for the selected LSE stocks. The system is demonstrated for daily variations,
therefore m = 510 minutes. To illustrate how the confidence intervals are built, the ML is implemented
between the two potential CGPs. The distribution of the test statistics for a random draw from an n—variate
Wishart distribution with an identity generating matrix and n degrees of freedom is also demonstrated, in
each case when neither candidate CGP is correct and when each one is correct.

In Figure 1 shows how the distribution of the average correlation changes as the system evolves over 1,000
iterations (the first 1,000 days are plotted to assist the reader, the simulations run over the same number of
days as there are trading days in the sample). The top plot shows the situation when the system is long run
stable. The centre line is the mid projection of the average correlation and the lines emanating outwards
parallel to the centre line are in half standard deviation lots, running to plus and minus three standard
deviations. For the long run stable CGP the mean correlation is expected to be constant, however within
three standard deviations the correlation can substantially vary between 0.38 and 0.62. The second plot,
is for the short run stable CGP, the projected mean correlation is slightly below 0.5, due to the truncation
at one and minus one. The variation in average correlation is, however, far more pronounced. Within 100
iterations the three standard deviation range of the daily average correlation could be between minus one
and plus one. At around 500 iterations the two standard deviation range covers minus one to one. Once the
loss and corresponding test statistics are computed, then average across the random starting points and the
pathways to compute the normalised confidence intervals.

[FIGURE 1 HERE]

4. Dataset and Pre Sampling

The underlying data set consists of all informative traded prices for 27 selected stocks from the NYSE,
25 from the LSE, 22 from the TSE and 20 from the FSE from January 1, 1996 to June 1, 2010°. The
Thompson Reuters Tick History service records time and sales data for most available global equities. We
restrict our sample to only those stocks that have been continuously traded over the whole sample period
and only the largest traded companies within the selected markets. Stocks are ranked by cumulative trading
volumes by year and we eliminate stocks that have more than two years of thin trading. The descriptive
statistics for the sample are reported in Table 1.6

[TABLE 1 HERE]

For the US and Japanese stocks in the sample the Thomson-Reuters Tick History data are clean and
few prices are adjusted or removed. However, for Germany and the UK data, prior to 2002, there are great
number of rogue reported transactions. But most of these are > 500% higher than the local median price,
therefore, are relatively easy to deal with.

However, the LSE and FSE data are slightly exceptional in this context. For instance, stocks from some
exchange such as the Shanghai stock exchange, exhibited only 12 rogue trades for 86 cross listed stocks, albeit
with a lower number of transactions per stock. Vodafone, in contrast, exhibited more ‘rogue’ transactions

5In this paper transaction data is used in the sample, future work intends to use both trade and quotes data.
6 An issue occurred with the German stocks, as the data had a consistent gap from January 1, 1998 to January 1, 2002. The
author would like to thank the data vendor for providing the missing tick information.
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from the LSE or FSE in the period of January 1, 1996 to December 31, 2002 than all of the stocks from the
Tokyo Stock Exchange (TSE) together. Therefore, days of data of stocks in these two exchanges are dealt
with exclusion from the sample set where the total number of rogue transactions exceeds 1% of the total
transactions for all stocks.

Ticks are pre-filtered by using the procedure suggested in Oomen (2005) to clean the data-set. This
includes smoothing of instantaneous price inversions and the extraction and smoothing of business time
returns greater than 8 standard deviations from a 20 minute moving average. The irregularly timed ticks
are mapped to a standardised minute grid using a combination of moving average, importance sampling
and, finally, a piecewise cubic spline. This yields m = 390 sampled observations per day for the New York
traded stocks, m = 510 for London, m = 270 for Tokyo and m = 480 for Frankfurt. For each stock index a
standardised business time is created for each available working day (holidays are recorded and an index is
used to eliminate them from the sample).

Barndorfl-Nielsen et al. (2009a, 2008) discuss the issue that how correctly mapping informative price
ticks converted into returns can correctly assign directional shifts to changes in the fundamental price
and microstructure noise. Audrino and Corsi (2008) address the off-diagonal issue by suggesting a return
covariance matching, the so called “needlework” approach, to interpolating the returns and hence improving
the accuracy of the covariance estimator. This approach has many benefits, however it is computationally
intractable for large cross sections of data. To construct a high frequency covariance estimator the following
approach is used: generate daily prices and tick-times of stocks at a high frequency sampling interval,
in this case, second by second, including the opening or closing call auction if it is present. A grid of
standardised tick-times is constructed and mapped onto the ticker history. A 12 second lead-lag moving
average, incorporating lagged information from the last 20% of the preceding minutes/ticks and the following
20% of the next minute. The 12 second lead-lag moving average is then interpolated at the minute grid
and this is the final recorded grid price. In practice, the second by second data is very irregularly spaced
and depends on the underlying ticker updating. For certain stocks there are not enough updated ticks to
populate the moving average and in this case a cubic spline across the tick grid is used to interpolate the
missing price.

[FIGURE D.15 HERE] [A SINGLE PANEL OF TABLES D.2, D.3 AND 1]

Once the grid prices are interpolated returns are computed and subtracted from the daily average returns
to form the daily excess returns matrix X;. It may be considered a surprise, but there are many occasions
where certain stocks have long periods before a new tick price occurs. If two or more stocks have long
periods of delay in updating, then this results in a poorly conditioned sample covariance matrix. Moving to
calendar time does not improve the situation as many stocks may have had updated ticks whilst the prices of
a subset do not move at all. We overcome this issue by resampling with replacement across the cross section
of stocks. The daily realised covariance matrix ¥ is computed as well as the inverse conditioning number”.
Inverse conditioning numbers near zero suggest a poorly conditioned matrix. A threshold of 10e — 4 is set,
below which a resampling algorithm with replacement is implemented. The rows of the excess return matrix,
X, are resampled 100 times and the conditioning numbers of the resulting resampled covariance matrix are
computed.

Figures D.17 and 2 plot the evolution of the equally average correlations and volatilities for the UK
stocks at minute sampling frequency for different aggregations. A bootstrap resampling routine is used to
construct the confidence intervals.

[A SINGLE PANEL HERE OF FIGURES D.17 AND 2]

5. Results and Analysis

In this section, we present our two main sets of results: those from the static matrix equality test and
the results from the loss function approach across four markets. The equality tests demonstrate whether the

2—1

"The inverse conditioning number is the reciprocal of the ratio of p norms of the matrix and its inverse, HEt H 12
p=1

[,
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short run and long run covariance matrix processes are equally mean reverting at different frequency across
different markets. Therefore, we can test the stability of the actual dynamics of the covariance generating
process (CGP).

[A SINGLE PANEL HERE OF FIGURES D.17 AND 2]

Tables D.5 to D.8 present the results of the covariance equality tests year by year (1996-2001) and for
the whole sample period in the US, UK, Japanese and German stock markets. The test statistics of the
equality tests are reported and we use *** ** or * to indicate whether the statistics is significant at the 1,
5 and 10% levels. To assist readers, we follow the Muirhead (1983)procedure and divide the test and critical
statistics by a constant(10e6). The results for the static matrix equality tests generally reject the null that
the daily, monthly and quarterly covariance matrices are equivalent to the yearly and whole sample matrices
for most of these markets at the 1% significance level. Only a few tests reject the null at the 5% or 10%
significant levels; for instance, for the whole sample for the UK which fails to reject the null at 1%. This
is very surprising given the expectation that the continuing market turmoil from the 2007-2010 financial
crisis would create extra turbulence in the covariance structure. However, this only fails to reject at 1%
significance but rejects at the 5% significant level.

The static test results are fairly surprising, given that even in years when there was a consistent bull
market (2002-2006), the minute level covariance matrix varies enough that even for quarterly blocks the
covariance matrix does not properly converge to the years covariance matrix, let alone the whole sample
matrix. The results suggest that there is substantial variation in the covariance structure over the sample
and at different scales and blocks of time. The non-rejection of the null for the whole sample for the German
stocks may reflect the data problems mentioned in the 4 section when more extensive data cleaning required
for this market.

[A SINGLE PANEL HERE OF TABLES D.5, D.6, D.7 AND D.§8 |

The uniformity of the results as well as the magnitude of the rejection is striking. This finding has
a substantial implication for asset pricing models assuming long run covariance stability, in so far as the
level of risk being exposed to is substantially mis-specified, when looking at the asset price dynamics at
the minute level. A substantive point should be made here, sampling returns at a lower frequency (e.g.
days, weeks or months) only smooths the covariance dynamics to a certain extent. Williams and Ioannidis
(2010) demonstrate that if the underlying continuous time process exhibits stochastic covariance, then low
frequency sampling will only hide the variation in covariance for a certain period (depending on the degree
of variation in the CGP), however, eventually this property will emerge if the CGP is not mean reverting.
The static results suggest that blocking the data in daily, monthly and quarterly blocks does not converge to
the yearly or whole sample covariance matrices. This implies that the CGP is probably not mean reverting
at a speed quicker than one quarter (or we would fail to reject equality for the quarterly blocks). Therefore,
short sample back testing of correlation/covariance dynamics (e.g. using weekly data for say three years)
could result in a catastrophic mis-specification of the level of risk, for covariance forecasts over a horizon of
more than one week.

The equality tests do not identify the CGP but simply confirm that the covariance matrices for the
chosen periods are not equal. With these results in hand, we can move on and compare how well the long
and short run CGPs forecast the forward looking realised covariance over a variety of blocks of time.

The loss function component results aim to provide a robustness check of the stability of the covariance
matrix by comparing different loss functions in generating covariances, namely: ML, IT and MD. Again, it
is applied to daily, weekly and monthly levels across the four markets we study in this paper.

We report the evolution of the daily loss function test statistics with 90, 95 and 99% confidence intervals.
The rolling windows are computed from 252 trading days, the slight kinks in the confidence intervals are
caused by Monte-Carlo simulation adjustments. Only the results of daily loss functions are shown here in
figures 3to 6. The rest loss functions results for the weekly, monthly and quarterly test statistics for these
four markets provide similar conclusions to their daily findings and therefore, are not reported but available
on request.



If the test statistic is in the negative domain, the short run CGP is outperforming the long run CGP. By
contrast, if the test statistic is in the positive domain, then the long run CGP is outperforming the short
run CGP. What is clear from these plots is that for long periods neither the ex-post covariance matrix or
the ex-ante covariance matrix are completely adequate in describing the true CGP and this is supportive of
the strong rejections from the static equality tests. Another striking aspect is that the three different loss
functions (ML, IT and MD)produce very similar results. This is important for large dimensional systems as
the ML loss function is computationally by far the simplest loss function to compute. This finding suggests
that the degree of variation of the conditional covariance matrix is of a form that is consistent across loss
functions and as such analysis of this kind may be robust to their particular choice.®

[FIGURE 3 HERE AS SINGLE PANEL WITH FIGURES 4, 5 AND 6 HERE]

The ML, IT and MD based test statistics are highly variable during the 2004-2010 period. All three loss
functions produce comparative test statistics that suggest that neither loss function is adequate in describing
the daily realized covariance matrix for most of the 1996-2003 period. However, the short run statistic is
significantly preferred for a substantial epoch from 2004 to 2008. The pattern of the loss functions, when
normalised, is virtually identical, with the ML loss function illustrating some slight increase in variability
relative to the other two. The results are qualitatively robust to changes in the block size from weekly to
quarterly blocks. The the pattern is slightly smoother (as expected), however, the trends are very similar
to the daily blocks.

The CGPs for the LSE components offer very little predictive power over the whole sample, with only
a short period in 2009, for the ML loss function generated test statistic, significantly favouring the short
run CGP. Figures D.17 and 2 present the average correlation and standard deviations for the chosen LSE
components for each day, week, month and quarter over the sample. The degree of variation is quite striking,
with the crisis post 2007 represented by an extremely high spike in volatility and a substantial change in the
correlation dynamics post 2007. The loss function results suggest that neither CGP appropriately captures
the day to day, week on week or month on month shifts.

Similarly to the selected LSE components the dynamics of the covariance structure of the selected TSE
components is not well captured by either the short or long run CGP. Matrix equality tests, see Table D.7,
suggest that the long run CGP does not adequately describe the daily, weekly or monthly realized covariances.
Rolling IT and MD loss function test statistics indicate that the short run CGP does significantly improve
on the long run CGP over the 1996-2010 sample. Rolling ML loss function analysis suggests that the short
run CGP significantly outperforms the long run CGP for brief periods, evenly scattered over the sample
period.

In contrast to other markets, the daily realized covariance matrices of the FSE selected components
exhibit more persistent bias towards one model over the other for all three loss functions. The rolling ML
loss function test statistics shows a general tendency to favour the long run CGP with brief periods where
the short run CGP is strongly favoured. However, matrix equality tests reject the long run CGP for daily,
weekly, monthly and quarterly concatenations and this is implied by the marginal significance of the test
statistic in the negative domain.

6. Conclusions and Future Directions

In this paper, a set of covariance stability tests have been outlined and implemented for selected stocks. In
each case the CGP for each day, week, month and quarter are treated as a draw from a Wishart distribution.
For each forecast the goodness of fit is compared a likelihood ratio test and using a matrix loss function
approach. This method follows in the footsteps of the well established Diebold and Mariano (1995) framework
for univariate forecast comparisons.

8The loss functions results for these four markets at the weekly, monthly and quarterly are mentioned in the discussions of
the results in the following four subsections. The actual figures of such loss functions are available in the internet appendix.
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These tests are then implemented using a high frequency data set for a large cross section of selected
constituents sampled from four equity markets. The results indicate that neither of the two candidate CGPs,
short run ex-ante and long run ex-post, adequately capture the true covariance dynamics. This is a very
significant result as it implies that true CGP is far more variable than a simple Wishart autoregression (which
the short run CGP actually is). The implications for portfolio management, risk measurement and many
asset pricing models are stark, as most of these models rely on the assumption that correlations between
assets and between assets and non-traded factors is, in the long run, mean reverting. This assumption
includes popular models such as the ARCH/GARCH model and most standard stochastic volatility models.
The fact that the covariance and correlation structure is not only stochastic, but is also not mean reverting
suggests that most models of asset prices are only valid for particular epochs and that in the long run no
model with mean reverting second moments can fully capture the overall risk exposure.

In two recent contributions Williams and Ioannidis (2011) and Buraschi et al. (2010) have suggested
methods to construct and price instruments that hedge correlation and covariance risk. The results of this
study suggest that without such instruments proper control of the risk of equity portfolios is not possible.
However, given the difficulty in identifying the correct CGP the parameters of the pricing kernel for such
instruments would be difficult to identify.

Future research in this area should attempt to isolate better performing CGPs than the simple short
and long run types used in this study. Alternative CGPs, such as the Wishart stochastic covariance models,
which might be of use in certain contexts are presented in the Internet Appendix.

[TABLE D.4 HERE]
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Table 1: Descriptive Statistics
The first section of the table reports the minute level descriptive statistics. The second section reports the number of included
stocks, total exchange closure days and the total size of the minute grid. The third section reports what proportion of the grid
data is actually a real observation (i.e. the actual price within 100 milliseconds) or an interpolated price using the cubic spline
procedure outlined in §(4). *This includes the ‘Flash Crash’ of May 6, 2010.

US* UK Japan Germany
Mean 0.00039100 -0.00018000 0.00932700 -0.00022400
Standard Deviation 0.02295000 0.03019000 0.02084860 0.02057100
Median -0.00000000 -0.00000000 0.00000100 -0.00002900
Minimum -0.49741000 -1.88744200 -1.83025300 -0.36240000
Maximum 0.47130000 1.92619300 0.82711800 0.36561000
Skewness 0.07568100 1.28767200 -37.73241100 0.06990200
Kurtosis 130.15257000  8605.69242300 6951.26492700  132.90961000
No. Stocks 27 25 22 20
Grid Mins. 390 510 270 480
Candidate Grid Days 3,766 3,766 3,766 3,766
Holidays and Excluded 111 119 136 222
Total Minute Obs 1,415,700 1,859,970 956,880 1,754,400
Usable Obs. 31,519,123 39,628,942 13,787,592 24,645,142
Grid Obs. 38,223,900 46,499,250 21,051,360 35,088,000
Adjusted Obs. 6,704,777 6,870,308 7,263,768 10,442,858
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The dotted lines

Figure 1: The projected variation in average correlation for 24 simulated assets over 1,000 pathways, with an initiating average correlation of 50%.

present the central expected value at t1, the dashed lines represent the variation in average correlation between 0.5 and 3 standard deviations
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INTERNET APPENDIX
Appendix A. Further Details of Data Cleaning

This appendix provides further details of data sorting and grid mapping in order to get the final clean
data set for the modeling.

Further cleaning of the data is more complex and several prior studies have provided discussion on how
to pre-filter the data without ‘over cleaning’ it, see Barndorff-Nielsen et al. (2009b). Most of the filtration
is on the price level and not returns as this tends to be easier to verify and less likely to result in systematic
contamination of the return series that must then be corrected in the covariance computation stage. Cross
market analysis such as this one has the added complication that the source of contaminants in the data is
systematically different for different exchanges. In addition, the level of contamination varies through time.

Details of further filtration of these transactions is as follows: first, the day trades are partitioned into
a morning and afternoon session. For the Tokyo case we use the exchanges break at 11am. and prices are
sorted for the two periods and used to compute the median price for each z; ;. The log difference is computed
for each price relative to the median price. Prices that are more than 300% different to the median price,
which is identified as being a rogue transaction, are identified and rescaled relative to their neighbouring
prices. Excluding these prices completely, however risks eliminating potentially important information that
these rogue transactions may have.

Figure D.16 illustrates how the data and standardised time stamps are arranged for each day. The
Softbank Corp. (RIC Code 9984.T) is shown as an illustration of how the day, week, month and quarter
blocks of data are constructed. At the minute frequency the main data matrix is very large, for example the
UK data matrix is 1,920,660 by 24 and is 352 Mb in size. Manipulation of this matrix can lead to memory
issues, however a 64 bit operating system can accommodate very large memory blocks up to 8Tb and as
such the all of the data and relevant projections can be loaded into memory.

Appendix B. Properties of Loss Functions

The ML and IT loss functions have analytic structures and the properties of these two loss functions are
easily explored. The MD loss function is computed numerically by quadratic programming, the properties
of this loss function are explored using a numerical simulation approach.

Consider the (at least) twice differentiable function f : (C"*"™ C"*") — R, for any two matrices
{¥1,32} € C"*™, where [0; ;x| is the {7, j} element of matrix k € {1, 2} setting A = f (X1, X2), the gradient
h and hessian H are defined as follows,

Vi, ) = |:808)\7k:| =h(oijk) (B.1)
2
VAf(51,82) = [%} = H (i1 0i5k) (B2)
Partitioning the gradient,
hioigr) = [h(oij) h(oij2)] (B.3)
H(Ui i,1,0% '1) H(Ui i,1,04% '2)
H(0ijk:0ijk) = o S B.4
(ks Oiik) [ H (04j,1,0i52) H(0ij2,0i;2) (B4)

Definition 1: Convergence
A function f(¥1,¥2) is a convergent loss function if for when A = 0, £; = Y5 and for when A > 0,

¥ # Do

Definition 2: Equivalence
A twice differentiable loss function is element by element equivalent if and only if for 80(?/\- - = 6 and
%) w
8oi,j,k8zn,j,k

=e¢, Vi, j,k, where § and € are constants.
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Definition 3: Symmetry
A loss function is symmetrical if for a constant distance & ; = 051 — 07,2, A(&;) = A (=& ;). Vi, J.

Definition 4: Accelerative

. . . . 2
A loss function is accelerative if 3 92

Fo—pe— = 9 (&), where g(-) is a strictly increasing function w.r.t.
KV ELY KV ELY
g

Appendiz B.1. Properties of Chosen Loss Functions

The various properties of the chosen loss functions are evaluated starting with the simplest, the ML loss
function.

Proposition 1a: ML Convergence
The ML loss function f (31,%2) = [|31 — Ea|| is convergent.

Proof 1a: ML Convergence
Setting = = X1 — Yo, when X; = 3y, Z = [0], where [0] is an n x n matrix of zeros. ||[0]||127:1 =302 =0.
4,3

When 3, # 35, E # (0], |\E||i:1 = > &7 and subsequently by definition Y- &7, >0 W
(2] 4,J
Proposition 1b: ML Equivalence

The ML loss function f (%1, %) = [|% — Zal|,_, is equivalent and symmetric.”

Proof 1b: ML FEquivalence and Symmetry
For the ordered pair of elements (o5 ;1,05 5,2),

Aig) = =M= (B.5)

= D (Oig1—0i0) (B.6)
i

. . NGY NG . .. 2
therefore by symmetric construction, # = # = ¢, similarly for the second derivative 3o ,‘9 6}‘ — =
Ti,j,1 T4,5,2 04,5,1004,5,1
9%\ 92\ _ 9%\ _ Eap) _
004,200 5,2 and 80:,,100152  00i;200i,1  00s,100,1  © -

Proof 1c: ML Acceleration
The ML loss function f (31, %2) = |31 — 2| ,_, is not accelerative.

Proof 1c: ML Acceleration
For a given direction do; j 1, basic differentiation dictates that:

NGy = D)~ @) (B.7)

= \/(0oijr)’ (B.8)
= 10715 (B.9)
NG

Therefore by construction all T”) =1 N
i,5,k

9The drawback here is that the loss function is element by element symmetric, however over the domain of available positive
definite covariance matrices, this property is bounded, see the numerical examples below.
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Proposition 2a: IT Convergence
The IT loss function f(Xq,%s) = (tr (2122_1 — I))2 is convergent.

Proof 2a: IT Convergence
When ¥ = X, 21251 = I, therefore (I —1)? = 0. When X; # ¥, the uniqueness of invertible matrices
states that for an inverse @ = Efl of an invertible matrix 1, @ is unique, therefore for another invertible

matrix 3o # Xy, with inverse P, £1 P # I. As such, tr (3, P — I) # 0, therefore (tr (21251 — I))2 >0 N

Proposition 2b: IT Equivalence and Symmetry
The IT loss function f (X1,%5) = (tr (21 Z;l - I))2 is not necessarily equivalent or symmetric.

Proof 2b: IT Equivalence and Symmetry
The proof is by use of constructing a counter example. If f(¥X1,%5) = (tr (21251 — I))2 is equivalent

and symmetric, then aa‘?)‘v - = 0, Vi,j, k. Consider the 2 x 2 pair of invertible matrices
1,7,k
o o o o
5 = LLL 0121 | 5 1,1,2 01,22 (B.10)
01,2,1 0221 01,22 02272

computing the functional form of the loss function is:

2
P 201,2,101,2,2 01,1,202,2,1 01,1,102,2,2 (B 11)
= 2 2 2 :
—O0{22 101120222 —0{291+01,120222 —0{9 101120222
differentiation with respect to o111 and 01,12
A\ o *202,2,2(201,2,101,2,2*20%,2,2*01,1.202,2,1*01.1,102,2,2+201,1,202,2,2) B.12
do - 2 _ 2 ( . )
1,1,1 (07 2,2—01,1,202,2,2)
AA _ 2(—2012,101,22+20%F 5 5401,1,202,2,1401,1,102,2.2—201,1,202,22)(0F 5 502,2,1-201,2101,2.202,2,2401,1,105 5 5)
901,1,2 (U?,2,2—01,1,2U2,2,2)3
(B.13)
given that clearly 8083‘1 - is not always equal to 8081’\1 . then the IT loss function is not equivalent (and by

definition not symmetric)ll

Proposition 2c: IT Acceleration
The IT loss function is not accelerating w.r.t o; ; .

Proof 2c¢: IT Acceleration

Again, by counter example, differentiating B.12 again with respect to o111, yields — ,
Y (‘7'1,2,2_‘71.1,202,2,2)2

2
20559

which is not a continuously increasing function w.r.t. o;;; W

Properties of MD Loss Function
The MD loss function is based on the covariance equality test developed by Roy (1953). The loss

2
profile associated with the function f(3,%5) = <m%)x (aZlb(aEgb)A) — 1) is computed by numerical

optimisation. By construction when ¥; = Y5, A = 0 as for any n length non-zero vectors a and b in the
vector spaces A and B, a¥1b = aXob when X1 = 3.

0.1 0.05
0.05 0.1
a < 5, Figure 8(c) plots the loss function over the specified range of «, recall that when o = 1, ¥ = Xs.
The graphic illustrates the MD loss function relative to the ML and IT functions for this particular example.

24

For demonstration purposes a 2x2 example is used. Setting 31 = [ ] and ¥ = a1, 0.01<



ML Loss Function Examples IT Loss Function Examples
T T T T T

IT Loss Function Examples
T T

s

Figure B.8: Evaluation of loss functions w.r.t. 32 = a¥;, 0.01 < a < 5. Optimisation for the MD loss function is carried
out using the fmincon sequential quadratic programming minimisation algorithm in MatLab.
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Appendix C. Loss Functions For Weekly, Monthly and Quarterly Projections

Appendix D. Other Figures and Tables
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Table D.3: Stock Exchange Trading Times.

Notes: Thomson Reuters Tick History provides time stamps in GMT and an exchange local time offset (e.g. +1 for Daylight
Saving in the UK, or -8 for Japan). Tick dates and times are converted to a decimal index using the datenum utility in MatLab
(dates are all relative to January 1, 0000) and add the offset divided by 25 to convert to the exchange time. Therefore only one
standardised minute grid is needed with the exchange hours above included, this avoids mistakes such as changes in daylight
saving. It is also possible to use the universal time to compute intra-day correlations between stocks at points of overlap, for
instance for the UK and US exchanges.

*For the FSE floor trading is continuous until 20:00, The sample is truncated at 17.30 as trading volumes thin out dramatically
until the closing call auction.

Stock Exchange  Times Holidays

NYSE 09:30 to 16:00 ET Between 8 and 9 holidays per year

LSE 08:00 to 16:30 BST 8 holidays per year, subject to yearly review
TSE 09:00 to 11:00 and 12:30 to 15:00 JST 15 to 16 holidays per year, subject to review
FSE 09:00 to 20:00* CET 5 Holidays per year, subject to review
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