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1 Introduction

There has been considerable activity recently in the area of computing four-point functions

in conformal field theories, motivated by the conformal bootstrap programme initiated

in [1]. This programme allows one to obtain non-trivial non-perturbative information about

certain quantities, from crossing symmetry and the conformal partial wave expansion.

Independently there has been a great deal of research on the computation of anomalous

dimensions and OPE coefficients in conformal field theories — in particular for N = 4

SYM — centred around integrability. The latter programme was given a remarkable boost

recently in the work of [2] allowing the computation of non-trivial OPE coefficients non-

perturbatively from so-called hexagon functions which are determined from integrability

assumptions. It has thus become important to obtain OPE coefficients independently of

this in order to test the integrability approach.

Information about OPE coefficients is contained within four-point correlation func-

tions. The method to extract these is via the conformal partial wave expansion. Dolan and

Osborn pioneered the use of conformal and superconformal partial waves for the practical

extraction of data from known four-point functions in higher (than two) dimensional theo-

ries [3–5], with further superconformal partial waves in four-dimensions studied in [6]. The

main application of this method so far has been in N = 4 SYM whose four-point functions

(of half BPS operators) have been computed both in perturbation theory and at strong

coupling in a large number of cases.1 The standard approach has been to solve the super-

conformal Ward identities via differential equations and then match the superconformal

partial waves onto this solution, by summing up all the partial waves of component fields

in a multiplet [4, 18–21]. More recently superconformal partial waves in N = 4 SYM as

well as N = 2 have been reconsidered from the conformal bootstrap perspective [22–24].

In [25] an alternative approach to solving the Ward identities of arbitrary four-point

functions was implemented in N = 4 analytic superspace. In [26] a general picture of

superspaces as cosets was developed. In particular the study of N = 4 SYM was devel-

oped in N = 4 analytic superspace which manifested the full superconformal symmetry

in a manner similar to the conformal group in Minkowski space [27–29]. Using analytic

superspace allows one to solve the superconformal Ward identities in a more direct manner

without ever seeing a differential equation. In [25] the four-point functions were written

as an expansion in super Schur polynomials. One practical advantage of this approach is

that the expansion automatically only ever sees unitary operators, thus there is no issue of

disentangling non-unitary operators as in other approaches (although as we will see, one

still has to understand the real physical problem of disentangling long and short opera-

tors). The precise form of the superconformal partial waves in this formalism was however

not found at the time. This paper can be viewed as a continuation of this programme,

1Most work has centred around the four-point function of stress-energy multiplets which has been com-

puted at weak coupling up to seven loops at the level of the integrand [7, 8] and to three loops analyti-

cally [9–13]. It is also known at strong coupling via the AdS/CFT correspondence [14]. Half BPS correlators

of (equal) higher charges are known at one- and two-loops [15] and at strong coupling [16] and recently

some mixed charge cases were computed to two-loops [17].
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obtaining the (super)conformal partial waves, first as a sum of Schur polynomials and also

then in a summed form and finally using the results to analyse a number of free theory

correlation functions of low charge half BPS operators.

We will in fact consider superconformal partial waves in a more general setting by

considering any Grassmannian field theory.2 By a Grassmannian field theory, we mean

any theory with SU(m,m|2n) symmetry given on the complexified space Gr(m|n, 2m|2n) of

m|n-planes in 2m|2n dimensions. For m = 2 this corresponds to an N = 2n superconformal

theory on analytic superspace (which reduces to conformal theory in Minkowski space in

the bosonic n = 0 case). The main case we will pursue in later sections will be m =

n = 2 corresponding to N = 4 SYM. For m = 1 the results apply to two dimensional

superconformal field theories. Finally for m = 0 this corresponds to a purely internal

SU(2n) group written on a coset space (for example for n = 1 the space would be a

2-sphere). Coordinates on the Grassmannian take the form

XAA′ =

(
xαα̇ ραa

′

ρ̄aα̇ yaa
′

)
where A = (α, a) and A′ = (α̇, a′), with α, α̇ = 1, . . .m and a, a′ = 1, . . . n. In the case

m = 2, xαα̇ is the four-dimensional Minkowski space co-ordinate written in spinor notation.

In this paper we will focus our attention on four-point functions of charged scalars,

Op, on the Grassmannian (meaning they do not transform non-trivially under the two

SL(m|n) subgroups which leave the plane invariant). For N = 4 SYM (m = n = 2) and

for N = 2 superconformal field theories (m = 2, n = 1) these are the half-BPS operators.

For conformal theories in four dimensions (m = 2, n = 0) they are Lorentz scalars (with

arbitrary dimension p) and in the purely internal case m = 0 they are representations of

SU(2n) defined by rectangular Young tableau of height n and length p.

We denote the more general operators which appear in the OPE of two of these special

operators by Oγλ where γ is the charge and λ is the (in general non-trivial) representation

of the isotropy group GL(m|n)×GL(m|n) (which leaves the plane invariant) under which

the operator transforms. A general operator can transform differently under the two copies

of GL(m|n) but those appearing in the OPE of scalar operators must transform in the same

representation for both subgroups.

Our method for finding the superconformal partial waves is as follows:

• We start with the well-known bosonic conformal partial waves in four-dimensions [3,

5]. The contribution of an operator Oγλ to a four-point function 〈Op1Op2Op3Op4〉
is given (up to some propagator factors which we omit here) by the conformal par-

tial wave

GL(4): Fαβγλ(x1, x2) =
det
(
x
λj+2−j
i 2F1(λj+1−j+α, λj+1−j+β; 2λj+2−2j+γ;xi)

)
1≤i,j≤2

x1 − x2
,

where α = 1
2(γ−p1+p2), β = 1

2(γ+p3−p4). Here x1, x2 are the two eigenvalues of the

2× 2 matrix (x12x
−1
24 x43x

−1
31 )αβ .

2The idea of considering a generalised Grassmannian field theory was first proposed by Paul Howe.
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• We then propose a natural lift of this result to the bosonic Gr(m, 2m) Grassmannian

field theory for any integer m, namely the contribution of the operator Oγλ to any

four-point function is

GL(2m): Fαβγλ(x) =
det
(
x
λj+m−j
i 2F1(λj+1−j+α, λj+1−j+β; 2λj+2−2j+γ;xi)

)
1≤i,j≤m

det
(
xm−ji

)
1≤i,j≤m

,

where similarly, x1, x2, . . . , xm are the eigenvalues of the m×mmatrix (x12x
−1
24 x43x

−1
31 )αβ.

We check that this uplift does indeed satisfy the correct Casimir differential equation

for the conformal partial wave.

• We now expand the above Gr(m, 2m) partial wave as a sum over Schur polynomials

sµ(x), where µ is a representation of GL(m)

GL(2m): Fαβγλ(x) =
∑
[µ]

Rαβγλµ sµ(x) .

Note that the numerical coefficients Rαβγλµ do not depend on m but only on the Young

tableaux of the representation λ, µ. This is a key point: it must be the case, since

on restricting the coordinates to any Gr(m−1, 2m−2) subgroup both the conformal

partial wave and the Schur polynomials reduce to the corresponding Gr(m−1, 2m−2)

ones, and since the numerical coefficients haven’t changed under this reduction, they

must be independent of m.

• Now we can go directly from here to an expression for the supersymmetric Gr(m|n,
2m|2n) partial waves. Again the key point is that the coefficients in this expansion

will be independent of m,n (by similar reasoning to above) and so we can immediately

know that the contribution of the super operator Oγλ to any superconformal four-

point function is

GL(2m|2n): Fαβγλ(x|y) =
∑
[µ]

Rαβγλµ sµ(x|y),

with the R coefficients derived from the GL(m) (and explicitly given later) and known

super Schur polynomials sµ(x|y). Here (x|y) = (x1, . . . , xm, y1, . . . yn) are the eigen-

values of the (m|n)× (m|n) matrix (X12X
−1
24 X43X

−1
31 )AB.

Now for finding OPE coefficients we in fact needn’t go any further. Indeed one

can write any free theory correlator as a sum over super Schur polynomials (using

an application of Cauchy’s identity) and then comparing with the partial waves ex-

panded in Schur polynomials. Since the Schur polynomials form an independent basis

this allows us to equate coefficients on both sides and determine the OPE coefficients.

Indeed remarkably one never even needs to know the form of the Schur polynomials

themselves in this approach! We do precisely this in a number of cases later in the

paper.
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• However for conformal bootstrap applications it is essential to have a summed up form

of the partial waves. Using a beautiful determinantal formula for the super Schur

polynomials found by Moens and van der Jeugt [30] as inspiration we then obtain

a determinantal formula, summing up the above expansion, for the superconformal

partial waves analogous to the GL(m) one above.

• As a byproduct we then obtain a formula for the partial waves in the compact SU(2n)

case (corresponding to m = 0). Remarkably this gives an entirely different form for

the same numerical coefficients Rαβγλµ . The equality of these two forms for Rαβγλµ

produces an infinite number of non-trivial numerical identities. The checking of these

remarkable identities provides a strong self-consistency check on our method.

Note that we have given a full summary of the final results for the superconformal

partial wave expansion both in its expanded and summed up form in section 3.5.

The paper proceeds as follows. In section 2 we explain the formalism and notation

for fields on Grassmannian spaces. In section 3 we review (super) Schur polynomials and

derive the superconformal partial waves on a general (super)Grassmannian field theory as

summarised above. Both to provide further checks as well as to obtain new results, in sec-

tion 4 we specialise to the case m = n = 2 and use our results to initiate a detailed analysis

of mixed charge four-point correlators. In particular we compute the OPE coefficients for

a number of low charge cases. In this section all multiplets are considered as being in their

naive free theory representations. In section 5 we then also consider the problem of multi-

plet recombination where free-theory short operators can combine to become long operators

in the interacting theory and hence develop anomalous dimensions [29, 31]. In particular,

we fully solve this rather intricate problem for the 〈tr(W 3) tr(W 3) tr(W 3) tr(W 3)〉 case.

We leave a few more technical points to appendices. In appendix A we give the proof that

our simple uplift of the partial waves from Gr(2, 4) to Gr(m, 2m) is correct, by deriving

the Casimir operator which defines the partial waves and showing that the result satisfies

the Casimir eigenvalue equation. In appendix B we give some further analysis of some

mixed charge correlators which we felt were too detailed to go in the main text. Finally

in appendix C we give an alternative version of the determinantal formula for super Schur

polynomials. Our form for the summed up superconformal partial waves reduces to this

alternative form rather than the original one.

During the final writing up stage the preprint [32] appeared on the arxiv which has

partial overlap with the results presented here.

2 Representations as fields on the (super)Grassmannian

We will be considering four-point functions in a class of theories which we call Grassmannian

field theories. These are theories whose configuration space is the super Grassmannian of

(m|n)-planes through the origin of a (2m|2n) complex dimensional vector space. Thus the

theories have a GL(2m|2n) symmetry (which will be broken down to SL(2m|2n)). This

symmetry group will be viewed as the complexification of the group SU(m,m|2n) and the

operators we consider will all be unitary representations of this real group. In particular
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then we view the SL(m) subgroup as non-compact (complexification of SU(m,m)) but the

SL(n) subgroup to be compact (complexification of SU(n)).

This family includes several cases of physical interest (the rest are presumably of only

mathematical interest). The case m = 2, n = 0 corresponds to Minkowski space (well

known to be equivalent to the space of 2-planes in four dimensions Gr(2, 4)) and their the

symmetry group is SU(2, 2), the conformal group. The case m = 2, n = 1 corresponds to

N = 2 analytic superspace [33] and the case m = 2, n = 2 which will be of most interest to

us is N = 4 analytic superspace [26]. In both these cases the symmetry group, SU(2, 2|2n),

is the 2n-extended superconformal group. Furthermore one can consider the cases m = 0,

arbitrary n, which correspond to the compact spaces SU(2n).

We wish to consider coordinates on Gr(m|n, 2m|2n). To do this consider a point in

this space (i.e. an (m|n)-plane) and consider a basis for this (m|n)-plane in the (2m|2n)-

dimensional vector space. This is equivalent to writing an (m|n) × (2m|2n) matrix (with

the rows corresponding to the basis vectors). Choosing another basis for the same plane is

equivalent to multiplication on the left by a GL(m|n) matrix. We can use this freedom of

basis choice to choose unique coordinates on the Grassmannian as

XAA′ =

(
xαα̇ ραa

′

ρ̄aα̇ yaa
′

)
, (2.1)

corresponding to the (m|n)-plane specified by the (m|n)× (2m|2n) matrix:(
1m×m x 0n×m ρ

0n×m ρ̄ 1n×n y

)
. (2.2)

Here the indices A,A′ are (m|n)-dimensional indices, α, α̇ are m-dimensional and a, a′ are

n-dimensional. This superspace is a supersymmetric generalisation of a Grassmannian

manifold. This Grassmannian can also be thought of as a supercoset, and is an example

of a much more general construction whereby the isotropy group is a parabolic subgroup

generated by a parabolic subalgebra [26].

Representations of GL(2m|2n) are written as fields (or operators) on this super Grass-

mannian. The operators are specified by the representations of the two GL(m|n) sub-

groups which leave the (m|n)-plane invariant. For the operators considered in this paper

(i.e. which appear in the four-point functions we consider here) the representations of the

two GL(m|n) subgroups will always be identical. We include a further quantum number γ,

which although redundant for generic representations, is needed to describe short represen-

tations in the supersymmetric case. We thus define our representations through operators

on the Grassmannian space Oγλ = Oγλ(A)λ(A′)(X
BB′) where λ is a Young tableau defining

a representation of GL(m|n) via a tensor product of the fundamental representation, and

λ(A) is a multi-index symmetrised according to this Young tableau.

It is useful to consider an explicit realisation of the operators. We will build all repre-

sentations from a very special representation carrying the trivial representation of the two

GL(m|n) subgroups and with γ = 1. In the case (m,n) = (2, 2) this special representation

corresponds to the N = 4 Maxwell/Yang-Mills supermultiplet, or for (m,n) = (2, 1) it cor-

responds to the N = 2 hypermultiplet and for (m,n) = (2, 0) it is a massless scalar field.

– 6 –
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When m = 0 it corresponds to the representation of SU(2n) defined by an n row, single

column Young tableau (i.e. the representation with dimension (2n)!/(n!)2). We denote this

special representation as a field on the Grassmannian by W (X).

More general operators all then have the schematic form

Oγλ ∼ ∂|λ|λ(A)λ(A′)W
γ , (2.3)

where the derivatives ∂AA′ = ∂/∂XAA′ can act on different W s. We have in mind the

case (m,n) = (2, 2) of N = 4 SYM where W is the Yang-Mills multiplet and it sits in the

adjoint representation of some gauge group.

We define the GL(m|n) representation λ = [λ1, λ2, . . . ] via Young tableaux where λi
is the length of row i. It is also useful to define the heights of column j to be λTj (so λT

denotes the conjugate or transpose representation). Representations of GL(m|n) are given

by all Young tableaux that fit into a thick hook tableau with thickness m horizontally and

n vertically:

m

n
λT1

λT2

λT3 =λT4

λT5

λT6 =λT7

λT8 =..=λT11

λT12=λT13

λT14=..=λT17

λT18=..=λT20

λ1λ2λ3λ4λ5λ6λ7λ8λ9

The operator Oγλ defines a representation of GL(2m|2n) and thus of SL(2m|2n) and

in turn then of the real form SU(m,m|2n). Representations of SU(m,m|2n) are more

familiarly given via Dynkin labels for the compact SU(2n) subgroup m1, . . .m2n−1, then

Dynkin labels for the two (left and right) SL(m) groups jL1 , . . . j
L
m−1, j

R
1 , . . . j

R
m−1 (in the

physical case with m = 2 this is just (twice) the left and right spin) and finally giving the

dilatation weight ∆ (weight under x → λx as usual). The translation between the labels

of the operator then Oγλ and the corresponding representation is given by

mi = mn−1−i = λTn−i − λTn−i+1 for 1 ≤ i ≤ n−1,

mn = γ − 2λT1 ,

ji = jLi = jRi = λ̂m−i − λ̂m−i+1 for 1 ≤ i ≤ m−1,

∆ =
m

2
γ +

m∑
i−1

ji , (2.4)

where we defined

λ̂i :=

{
λi − n if λi ≥ n
0 if λi < n

. (2.5)

– 7 –
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This translation can be obtained by considering the highest weight state (HWS) in a

standard way (see [29]). In particular, the special representation W has mn = 1,∆ = m/2

and all other quantum numbers vanishing.

We can now consider the degeneracy in our description of operators Oγλ mentioned

above. A generic GL(m|n) Young tableau can be uniquely determined by m+ n numbers

(e.g. the first m row lengths, λ1, . . . , λm and the first n column heights, λT1 , . . . , λ
T
n ). To-

gether with γ then Oγλ has m+n+1 quantum numbers. On the other hand the correspond-

ing SL(m|n) representations require only n+m quantum numbers (m1, . . . ,mn, j1, . . . jm−1,

∆). Thus there must be some degeneracy in (2.4). Indeed we see that the relations (2.4)

are invariant under the following shift:

(if λm ≥ n+ 1)

λi → λi − 1, for 1 ≤ i ≤ m
λTi → λTi + 1, for 1 ≤ i ≤ n
γ → γ + 2

(if λTn ≥ m+ 1)

λTi → λTi − 1, for 1 ≤ i ≤ n
λi → λi + 1, for 1 ≤ i ≤ m
γ → γ − 2 .

(2.6)

This corresponds to deleting a full (height m) column from the horizontal part of the

“hook” and adding a full (length n) column to the vertical part (or vice versa). The

condition λm ≥ n + 1 is simply the condition that there exists a full (height m) column

to delete, and similarly the condition λTn ≥ m+ 1 states that there exists a full (length n)

row to delete. Such Young tableau necessarily correspond to long (typical) representations

of GL(m|n). The transformation (2.6) relates representations that are equivalent under

SL(m|n) but not under GL(m|n). The modification of γ then ensures the corresponding

induced SL(2m|2n) representation is unchanged. Note that the above transformations

are also valid as they stand in the two bosonic cases m = 0 or n = 0. For n = 0 the

condition λTn ≥ m + 1 does not make sense and is interpreted as always being satisfied

for any Young tableau. Then the transformation adds columns to the Young tableau in

favour of reducing γ. One possibility is to use this freedom to ensure that γ = 0. This

then corresponds precisely to the form chosen in [5]. Similarly in the case n = 0 we can

ensure that γ = 0. However for short supersymmetric representations we can not remove

γ entirely. Furthermore, if we perform this transformation to change γ, we no longer have

the direct connection between γ and the number of basic fields W .3 Indeed a simple way

of removing the ambiguity would be to insist that we always have λTn ≤ m (or equivalently

λm+1 < n) and if this is not the case then we use the above transformation to make it so.

We finish this section by giving three tables with the translation between our descrip-

tion of representations and the usual one in three cases of interest: the bosonic conformal

3A simple example of this in conformal field theory is provided by considering the two operators Wn

and �Wn−2 in Minkowski space where W is a scalar field and the derivatives in � = ∂αα̇∂
αα̇ can act

anywhere appropriately to make a conformal primary (in fact one needs sums of such terms but we are

being schematic here). These two operators have the same dimension and spin and thus transform under

the same representation of the conformal group. In our notation the first operator is given as On[0], the

second as On−2 [1,1].
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group, N = 2 and N = 4 SYM.

Translation between 4d conformal reps and fields Oγλ

GL(2) rep λ dimension spin

[λ1, λ2] γ + λ1 + λ2 λ1 − λ2

Translation between N = 2 superconformal reps and superfields Oγλ

GL(2|1) rep λ dimension spin SU(2) rep multiplet type

[0] γ 0 γ half BPS

[λ] (λ ≥ 1) γ+λ−1 λ−1 γ − 2 semi-short

[λ1, λ2, 1
µ] (λ2 ≥ 1) γ+λ1+λ2−2 λ1−λ2 γ−2µ− 4 long

Translation between N = 4 superconformal reps and superfields Oγλ

GL(2|2) rep λ dimension spin SU(4) rep multiplet type

[0] γ 0 [0, γ, 0] half BPS

[λ, 1µ] (λ ≥ 2) γ+λ−2 λ−2 [µ, γ−2µ−2, µ] semi-short

[1µ] γ 0 [µ, γ−2µ, µ] quarter BPS

[λ1, λ2, 2
µ2 , 1µ1 ] (λ2 ≥ 2) γ+λ1+λ2−4 λ1−λ2 [µ1−µ2, γ−2µ1 − 4, µ1−µ2] long

3 Conformal partial waves in (super)Grassmannian field theories

In this section we consider four-point functions of scalar operators of arbitrary weight on

the Grassmannian and in particular obtain the (super) conformal partial wave associated

with any operator occurring in the OPE of two of them. We will obtain explicit formulae

for the partial waves, both as an expansion in Schur polynomials with given coefficients,

and in a summed up form.

3.1 The OPE and its relation to an expansion in Schur polynomials

We here examine the connection between the OPE and conformal partial waves of four-

point functions in a general Gr(m|n, 2m|2n) field theory. We take the OPE of two scalar

operators, Op1 ,Op2 with arbitrary integer weight p1, p2. In the N = 4 context this corre-

sponds to taking two half BPS operators with dimension pi and lying in the SU(4) reps

with Dynkin labels [0, pi, 0].

The OPE takes the general form [34]

Op1(X1)Op2(X2) =
∑
O
COp1p2

g
p1+p2−γ

2
12 Cγ,λ;AA′(X12, ∂2)Oγλ

AA′
(X2),

γ = |p21|, |p21|+ 2, . . . , p1 + p2 , (3.1)

where we define pij = pi − pj and where

gij = sdet(Xi −Xj)
−1 (3.2)
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which becomes the (super)propagator in the physical cases where m = 2. Here the sum is

over all superconformal primary operators in the theory. The object Cγ,λ;AA′(X12, ∂2) is a

formal expansion in powers of XAA′
12 and derivatives (∂/∂X2)AA′ which act on the primary

operator (thus producing descendant operators). It takes the form

Cγ,λ;AA′(X12, ∂2)Oγλ
AA′

(X2) =
∑
µ≥λ

Cγλµ
(
X
|µ|
12

)BB′[
∂
|µ|−|λ|
2 Oγλ

]
BB′

, (3.3)

where the sum is over all Young tableaux µ containing λ, with |µ| =
∑

i µi the number of

boxes in the Young tableau µ. There are |µ| powers of X12 and both primed and unprimed

indices are symmetrised into the representation µ according to the usual Young tableau

rules. This appropriately symmetrised multi-index is denoted B and B′. Similarly in the

descendant operator there are a total of |µ| primed and unprimed downstairs indices coming

from both O and the derivatives. These too are to be both symmetrised into the rep µ as

indicated by the multi-index B,B′. Finally one should contract the B and B′ indices

The first term in this expansion is always normalised to one

C
γλ
λ = 1, (3.4)

but the remaining coefficients are unknown in general (although they are fixed by sym-

metry).

To obtain the contribution of operators to the four-point function, insert the OPE into

the four-point function twice (once at points 1, 2 and once at points 3, 4) and use the

two-point functions (fixed by symmetry)

〈Oγλ
AA′

(X2)Õγλ
BB′

(X4)〉 = COÕ g
γ
24(X

−|λ|
24 )A′B(X

−|λ|
24 )B′A, (3.5)

to obtain

〈Op1(X1)Op2(X2)Op3(X3)Op4(X4)〉

=
∑
O,Õ

COp1p2C
Õ
p3p4COÕ g

p1+p2−γ
2

12 g
p3+p4−γ

2
34 Cγ,AA

′
(X12, ∂2)Cγ,BB

′
(X34, ∂4)gγ24(X

−|λ|
24 )A′B(X

−|λ|
24 )B′A .

(3.6)

Here for COÕ to be non-zero, the representations of O and Õ must be the same. In

particular γ takes on values appearing both in the range for the OPE Op1(X1)Op2(X2),

(|p12| ≤ γ ≤ p1 + p2) as well as for the OPE Op3(X3)Op4(X4), (|p34| ≤ γ ≤ p1 + p2). If we

assume (without loss of generality) that p1 + p2 ≤ p3 + p4 then there are two inequivalent

cases to consider

Case 1: |p12| ≥ |p34| ⇒ |p12| ≤ γ ≤ p1 + p2

Case 2: |p12| ≤ |p34| ⇒ |p34| ≤ γ ≤ p1 + p2 . (3.7)

Note that in case 2, for a non-zero four-point function we clearly need p1 + p2 − |p34|
to be positive and even. In N = 4 SYM, the minimal cases with p1 + p2 − |p34| and
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p1 +p2−|p34| = 2 correspond to the so-called extremal and next-to-extremal cases and are

protected [35, 36].

The conformal partial wave expansion given in (3.6) hides the conformal symmetry of

the four-point function. It is however possible to re-expand the conformal partial wave in

a way that makes the superconformal symmetry manifest in terms of Schur polynomials.

〈Op1(X1)Op2(X2)Op3(X3)Op4(X4)〉 =
∑
γ,λ

Ap1p2p3p4
γλ g

p1+p2
2

12 g
p3+p4

2
34

·
(
g24

g14

) 1
2
p21
(
g14

g13

) 1
2
p43
(
g13g24

g12g34

) 1
2
γ

Fαβγλ(Z),

α =
1

2
(γ − p12) β =

1

2
(γ + p34) , (3.8)

where

Ap1p2p3p4
γλ =

∑
Oγλ,Õγλ

COp1p2
CÕp3p4

COÕ (3.9)

and where the conformal partial wave is given as a sum over Schur polynomials sµ(Z) =

Zµ(A)
µ(A) (traces over irreps as described in the next section)

Fαβγλ(Z) =
∑
µ

Rαβγλµ Zµ(A)
µ(A) , (3.10)

of the GL(m|n) cross-ratio matrix Z

Z = X12X
−1
24 X43X

−1
31 , (3.11)

for some numerical coefficients Rαβγλµ with

R
αβγλ
λ = 1 . (3.12)

Here we have restricted ourselves to two cases without loss of generality

Case 1:
(
p1 + p2 ≤ p3 + p4, p1 ≥ p2, p3 ≥ p4, p12 ≥ p34

)
α =

(
0, 1, . . . p2

)
β =

(
1

2
(p12 + p34

)
,

1

2
(p12 + p34) + 1, . . . ,

1

2
(p1 + p2 + p34)

)
γ =

(
p12, p12 + 2, . . . , p1 + p2

)
Case 2:

(
p1 + p2 ≤ p3 + p4, p2 ≥ p1, p4 ≥ p3, p21 ≤ p43

)
α =

(
1

2
(p21 + p43),

1

2
(p21 + p43) + 1, . . . p2

)
β =

(
0, 1, . . . ,

1

2
(p1 + p2 + p34)

)
γ =

(
p43, p43 + 2, . . . , p1 + p2

)
. (3.13)

Note that in (3.8) we have fixed the symmetry in swapping points 1, 2 and 3, 4 differently

in the two cases. This allows a universal form for the prefactor. We can always choose an
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ordering of operators consistent with the conformal partial wave expansion which fits into

one of the two cases above.

It is one of the main purposes of this paper to derive a formula for the numerical

coefficients in (3.10), Rαβγλµ . Furthermore we would like to sum up the conformal partial

wave expansion.

Crucially the coefficients Rαβγλµ only depend on α, β, γ and the Young tableaux µ, λ

but are independent of the group. This fact can be seen by considering the limit of the

GL(2m|2n) Grassmannian field theory to either GL(2(m−1)|2n) or GL(2m|2(n−1)). In

this limit the partial waves F pabλ(Z) simply become the equivalent partial waves for the

reduced group (or vanish if the corresponding representation λ does not exist for the reduced

isotropy group GL(m−1|n) or GL(m|n−1) respectively). Similarly the Schur polynomials

Zµ(A)
µ(A) become the equivalent Schur polynomial for the reduced Z (or vanish). We thus

conclude that the coefficients of the Schur polynomials in the partial wave must reduce

directly, and hence be independent of m,n.

Let us derive explicitly the first term in the expansion as a sum over Schur polynomi-

als (3.8) starting from the form (3.8). The first term in (3.6) is obtained by inserting the

first term in the expansion (3.3) together with (3.4) into (3.8) to obtain

〈Op1(X1)Op2(X2)Op3(X3)Op4(X4)〉

=
∑
O,Õ

COp1p2C
Õ
p3p4COÕ g

p1+p2−γ
2

12 g
p3+p4−γ

2
34 (X

|λ|
12 )AA

′
(X
|λ|
34 )BB

′
gγ24(X−124 )A′B(X−124 )B′A +O(X12, X34)

=
∑
O,Õ

COp1p2C
Õ
p3p4COÕ g

p1+p2−γ
2

12 g
p3+p4−γ

2
34 gγ24(X12X

−1
24 X34X

−1
24 )λ(A)

λ(A) +O(X12, X34) . (3.14)

The object (X12X
−1
24 X34X

−1
24 )AA is the trace over the representation λ of Z = X12X

−1
24 X34

·X−1
24 and is hence equal to the Schur polynomial sλ(x|y) (as we shall see shortly).

3.2 Free field theory OPE and Wick’s theorem

The discussion of the OPE in section 3.1 is completely general and essentially only uses

symmetry. However in a free quantum field theory we can be much more explicit and give

precise expressions for the operators under consideration.

As described in [37] the easiest way to derive the OPE in a free field theory context is

to simply use Wick’s theorem. The time ordered product of two operators Op1(X1)Op2(X2)

is equal to the normal ordered product, together with the sum over contractions multiplied

by appropriate powers of propagators. In this context, we get that (for p1 ≤ p2)

Op1(X1)Op2(X2) =: Op1(X1)Op2(X2) : +

p1−1∑
p=0

gp1−p
12 Op2−p1+2p(X1, X2) , (3.15)

where for example Op1+p2−2 is the result of a single contraction4

Op2−p1+2p(X1, X2) = tr(W p1−1W )(X1) tr(WW p2−1)(X2) : , (3.16)

4Here, so this can be applied to N = 4 SYM we are including the possibility of some colour structure

in the definition of our operators. So Op1 := tr(W p1) is a single trace gauge invariant operator. Then

: Op1(X1)Op2(X2) : is a double trace bilocal operator. We can of course ignore the gauge structure if we

wish to consider a more abstract context (as we will do shortly) or equivalently simply consider the gauge

group to be U(1).
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whereas Op1−p2−4 will involve two contractions etc. Here the contractions simply give a

Kronecker delta in the corresponding adjoint gauge index.

Now one Taylor expands the r.h.s. and rearranges into primaries and descendants to

obtain (3.1) but with explicit expressions for the operators which appear.

So if γ = p1 +p2, the operators are double trace operators from the product (in general

with derivatives) of Op1 and Op2 . If however γ = p1 + p2 − 2, then in the U(N) theory the

single Wick contraction will glue together the two traces to form a single trace. Similarly

for the SU(N) theory in the large N limit. For finite N in the SU(N) theory however

there will be a 1/N correction (from writing the Kronecker delta’s in adjoint indices back

in terms of fundamental gauge indices via T aijT
a
kl = δilδjk−1/Nδijδkl) giving back a double

trace operator.

3.3 Schur polynomials of GL(m|n)

3.3.1 GL(m) characters (Schur polynomials)

Given a partition λ = [λ1, λ2, . . . , λm] with λ1 ≥ λ2 ≥ · · · ≥ λm, the corresponding Schur

polynomial is the symmetric polynomial of m variables xi, i = 1 . . .m, given by

sλ(x) =
det
(
x
λj+m−j
i

)
1≤i,j≤m

det
(
xm−ji

)
1≤i,j≤m

. (3.17)

The Schur polynomial is the character of the corresponding GL(m) representation described

by a Young tableau with row lengths λi. In particular, the Schur polynomial is the trace

over the representation Rλ of an element Z ∈ GL(m) written as a function of the m

eigenvalues xi of Z,

sλ(x) = tr
(
Rλ(Z)

)
. (3.18)

A GL(m) Schur polynomial containing a full, length m, column is equal to the Schur

polynomial with that column deleted, multiplied by the product of all x’s:

s[λ+1](x) =

(
m∏
i=1

xi

)
× s[λ](x) (3.19)

where [λ+ 1] := [λ1 + 1, λ2 + 2, . . . ].

For example for GL(2) the fundamental representation has character tr(Z) = x1 +

x2 in agreement with the formula above for λ = [1]. As another example, again for

GL(2), consider λ = [1, 1] corresponding to the antisymmetric rep. The trace over the

representation gives

tr
(
R (Z)

)
= Z

[i
i Z

j]
j = 1/2

(
tr(Z)2 − tr(Z2)

)
= x1x2 (3.20)

and the Schur polynomial formula (3.17) gives the same result s[1,1](x) = x1x2.
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3.3.2 GL(m|n) characters (super Schur polynomials)

In just the same way we define the super-Schur polynomial as the characters of the super-

group GL(m|n) just as in (3.18) but this time using the supertrace

sλ(x|y) = str
(
Rλ(Z)

)
, (3.21)

where we define the eigenvalues of g ∈ GL(m|n) to be xi yj i = 1 . . .m, j = 1 . . . n. Thus for

example for the fundamental representation the character is simply the supertrace of g so

s(1)(x|y) = str(Z) =
∑

i xi−
∑

j yj with the minus sign due to the nature of the supertrace.

In 2003 Moens and Van der Jeugt wrote down a remarkable determinantal formula

for the super Schur polynomials [30]. This formula is the analogue of the determinantal

formula (3.17) for the standard Schur polynomials and takes the form of a (n + k − 1) ×
(n+ k − 1) determinant5

sλ(x|y) = (−1)(n−1)(m+(k−1)+n/2)D−1 det

(
Xλ R

0 YλT

)
, (3.22)

where

Xλ =
(
x
λj+m−n−j
i

)
1≤i≤m
1≤j≤k−1

R =

(
1

xi − yj

)
1≤i≤m, 1≤j≤n

YλT =
(

(−yj)λ
T
i +n−m−i

)
1≤i≤k′−1
1≤j≤n

D =

∏
1≤i<j≤m(xi − xj)

∏
1≤i<j≤n(yi − yj)∏

1≤i≤m, 1≤j≤n(xi − yj)
. (3.23)

and

k = min{j : λj +m− n− j < 0} k′ = min{i : λTi + n−m− i < 0} . (3.24)

In [30], the number k was called the “atypicality” of the representation and in fact, as we

shall see shortly

k′ = k −m+ n . (3.25)

Here λT is the conjugate partition to λ (so λTi is the length of column i). This formula is

only valid if the Young tableau has an allowed shape consistent with GL(m|n) i.e. λm+1 ≤ n.

If this is not the case the Schur polynomial vanishes (although the above formula will not

give this automatically).

The restriction on the number of columns of Xλ to k−1 is explained by considering the

power appearing in Xλ and comparing with the definition of k (3.24). Clearly the number

of columns of Xλ is defined to be as large as possible without having negative powers of

xi. The same is true for the restriction on the number of rows of YλT to be less than or

5The minus signs here agree with those of [30] after sending yj → −yj (bringing a (−1)n(n−1)/2 from D)

and swapping the columns so that R appears in the top left block.
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equal to k′ − 1. It is useful to consider this pictorially. Here we consider an example of a

GL(m|n) rep (with m = 7, n = 10):

m

n

λT
k′=k

λk k′ i

j

Any non-zero GL(m|n) Young tableau is restricted to fit into a hook shape of height m

and width n as illustrated by the dashed lines. This is equivalent to the statement that

λm+1 ≤ n for a non-zero representation. We label the row number as i and the column

number with j. Then consider boxes with i − n = j −m (shaded boxes in the diagram).

The atypicality of the representation, k, is the row number (and k′ the column number) of

the shaded box lying just below (or just to the right) of the Young tableau (the pink box

in the diagram).

The power of xi in the matrix Xλ, λj + m − n − j is represented by the number of

boxes to the right of the shaded box in row j. Clearly this number becomes negative if

j ≥ k and thus the matrix must be restricted to j ≤ k − 1 if we wish to avoid negative

powers. Similarly the power of yj in the matrix YλT , λTi + n−m− i is represented by the

number of boxes below the shaded box in column i (one should think of the shaded boxes

as continuing above the Young tableau in the example). This number becomes negative if

i ≥ k′ and thus this matrix must be restricted to i ≤ k′ − 1. From the diagram it is also

clear that (3.25) k′ = k −m+ n.

Let us give an explicit example. Consider GL(2|3) and λ = (3, 2, 2, 1). We have

λT = (4, 3, 2) and (k, k′) = (2, 3) so the formula for the Schur polynomial (3.22) and the

associated shaded Young tableau are

sλ(x|y) = D−1 det


1

x1−y1

1
x1−y2

1
x1−y3

x1
1

x2−y1

1
x2−y2

1
x2−y3

x2

y4
1 y4

2 y4
3 0

y2
1 y2

2 y2
3 0

 . (3.26)

Here we see explicitly that the row lengths to the right of the shaded diagonal give the x

exponents (here just a single row of length 1) and the column lengths to the left of the

diagonal give the y exponents (here they are 2 and 4).

In appendix C we give an alternative form for the super Schur polynomials. The

alternative form reduces straightforwardly to the form here, but has a closer relation to

the super conformal partial waves.
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3.3.3 Long (typical) reps and multiplet shortening for Schur polynomials

In supergroups, representations occur as “typical” or “atypical” representations. Typical

representations are Long representations, essentially having the maximal odd dimension

allowed, whereas “atypical” representations are short. Typical representations of GL(m|n)

are ones for which the atypicality k = m+ 1 (implying k′ = n+ 1 from (3.25)) and so the

first m rows and first n columns are fully occupied and λm ≥ n, (λT )n ≥ m. Thus their

Young tableau can be described by the arbitrarily long horizontal Young tableau λx to the

right of the m × n block, and the arbitrarily high vertical Young tableau λy attached to

the bottom of the m× n block:

m

n

λx
λy

In this example the m× n block is bounded in red. If one deleted this block you would be

left with two Young tableaux one we call λx and the other λy. So the full Young tableau

is given in terms of λx and λy as

λ = [λx + n, λy] (3.27)

where by λx + n we simply mean add n to each row.

Typical representations are very simple and this is reflected in their Schur polynomials

which factorise:

λ typical ⇒ sλ(x|y) = sλx(x)sλTy (−y)×
∏

1≤i≤m, 1≤j≤n
(xi − yj). (3.28)

where sλTy (−y) is the ordinary bosonic SU(n) Schur polynomial in the variables −yi of the

conjugate representation to λy.

This can be easily verified from determinantal form of the super Schur polynomi-

al (3.22) since when k = m+ 1, k′ = n+ 1, the matrix splits into an m×m block and an

n×n block with a zero in the lower n×m block. Thus the determinant factorises into the

determinant of Xλ and Yλ.

Furthermore, if we consider this factorisation together with (3.19), this then implies

that if λx contains a full (m row) column then we can delete this column in favour of adding

a full (length n) row, up to multiplication by a factor:

sλ(x|y) =

∏m
i=1 xi∏n

j=1(−yj)
× sλ′(x|y) [λ] = [λx+n, λy], [λ′] = [λx−1+n, n, λy] . (3.29)

What is less obvious is that the sum of certain atypical representations with k = m, k′ =

n can sum to a factorised form. Specifically, let λx be an SL(m) (i.e. m − 1 row) Young
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tableau and similarly let λTy be a SL(n) (i.e. n− 1 row) Young tableau. Then consider the

three GL(m|n) Young tableaux λ, λ1, λ2 with λ the typical representation defined in (3.27)

and λ1, λ2 the two short Young tableaux

λ1 = [λx + (n−1), n−1, λy] (3.30)

λ2 = [λx + n, λy] (3.31)

λ = [λx + n, n, λy] . (3.32)

Then the sum of the appropriately weighted GL(m|n) Schur polynomials factorise: n∏
j=1

xj

× sλ1
(x|y) +

(
m∏
i=1

(−yi)

)
× sλ2

(x|y) = sλ(x|y) . (3.33)

In N = 4 SYM this phenomenon corresponds to long multiplets decomposing into

short multiplets at the unitary bound. We illustrate this in the following diagram

 n∏
j=1

xj

×
m

n

[λx]
[λy]

+

(
m∏
i=1

(−yi)

)
×

m

n

[λx]
[λy]

=

m

n

[λx]
[λy]

.

This equality can be proved from the determinantal formula for Schur polynomi-

als (3.22) and we just give a very brief sketch of how the proof goes here. The matrices

corresponding to the “nearly long” cases λ1, λ2 are “nearly block triangular” and thus the

determinant takes the form of a sum of products of minors multiplied by components of R,

1/(xi−yj). The minors being summed over are very similar in each case λ1 and λ2. The non-

trivial part of the sum on the l.h.s. of (3.33) reduces then to xi/(xi−yj)−yj/(xi−yj) = 1.

We then end up with a sum of products of minors and one can match that with the r.h.s.

via the standard formula for determinants.

We should also point out here that long (typical) supersymmetric representations can

have non-integer quantum numbers. This can be incorporated into this Young tableau

setting by introducing “quasi-tensors” as in [29].

3.4 Conformal partial waves

3.4.1 GL(m) conformal partial waves

The four-dimensional conformal partial waves are well known from [3]. In the Grassman-

nian GL(m|n) set up that we are considering here, they correspond to m = 2, n = 0 and
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are given by

Fαβγλ(x1, x2) =

xλ1+1
1 xλ2

2 2F1(λ1+α, λ1+β; 2λ1+γ;x1)2F1(λ2+α−1, λ2+β−1; 2λ2+γ−2;x2)− x1 ↔ x2

x1 − x2

(3.34)

where from (3.8)

α =
1

2
(γ − p12) β =

1

2
(γ + p34) . (3.35)

Note that here, and for GL(m) groups in general, there is a redundancy in this description,

since

Fαβγ[λ](x) = (x1 . . . xm)−δF (α−δ)(β−δ)(γ−2δ)[λ+δ](x) (3.36)

where [λ+δ] := [λ1 +δ, λ2 +δ, . . . ]. This can be seen from its definition (3.8), together with

the redundancy in the definition of the operators as discussed in (2.6). It can also be seen

directly to be the case for GL(2) from (3.34). This redundancy can be used for example

to set γ = 0. Nevertheless we keep it in here for easier comparison to the supersymmetric

case where it is not redundant (at least for short representations).

First note that (3.36) can be rewritten in the suggestive determinantal form

Fαβγλ(x1, x2) =
det
(
x
λj+2−j
i 2F1(λj+1−j+α, λj+1−j+β; 2λj+2−2j+γ;xi)

)
1≤i,j≤2

x1 − x2
.

(3.37)

This form has a close correspondence with the formula for Schur polynomials in (3.17).

Indeed it is manifestly a sum of Schur polynomials, as in (3.10) and, in particular one can

see very directly that the first term in the OPE expansion (obtained by setting all the

hypergeometric functions to one) is the corresponding Schur polynomial.

This form also then suggests to consider a simple generalisation to arbitrary GL(m)

groups, namely

Fαβγλ(x) =
det
(
x
λj+m−j
i 2F1(λj+1−j+α, λj+1−j+β; 2λj+2−2j+γ;xi)

)
1≤i,j≤m

det
(
xm−ji

)
1≤i,j≤m

.

(3.38)

Remarkably we find that this natural generalisation is indeed the correct answer as we

show in appendix A. Furthermore it allows us to derive the superconformal partial waves

in an arbitrary GL(m|n) theory.

First we expand out the GL(m) partial waves into Schur polynomials, expanding out

the hypergeometric functions:

x
λj+m−j
i 2F1(λj+1−j+α, λj+1−j+β; 2λj+2−2j+γ;xi) =

∞∑
µj=0

(λj+1−j+α)(µj−λj)(λj+1−j+β)(µj−λj)

(µj−λj)!(2λj+2−2j+γ)(µj−λj)
x
µj+m−j
i (3.39)
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where a(n) = a(a+1) . . . (a+n−1) is the rising factorial or Pochhammer symbol. Plugging

this expansion into the determinant (3.38) we obtain

Fαβγλ(x) =

∞∑
µ1=0

· · ·
∞∑

µm=0

rαβγλµ1...µm

det
(
x
µj+m−j
i

)
1≤i,j≤m

det
(
xm−ji

)
1≤i,j≤m

=
∑
[µ]

Rαβγλµ sµ(x), (3.40)

where

rαβγλµ1...µm =

m∏
j=1

(λj + 1− j + α)(µj−λj)(λj + 1− j + β)(µj−λj)

(µj − λj)!(2λj + 2− 2j + γ)(µj−λj)
,

Rαβγλµ =
∑
σ∈Sm

(−1)|σ| r
αβγλ
wσ(µ1,...,µm), (3.41)

and where

wσ(µ1, . . . , µm) = (µσ1 + 1− σ1, µσ2 + 2− σ2, . . . , µσm +m− σm), (3.42)

is an affine Weyl reflection. The first line of (3.40) is obtained by simply inserting the

expansion of the hypergeometric functions and factoring out the coefficients from the de-

terminant. In the second line we first recognise the ratio of determinants as a Schur polyno-

mial (3.17) and we reorder the sum so that it runs over ordered µj ’s, µ1 ≥ µ2 ≥ . . . ≥ µm.

We do this by performing an affine Weyl reflection whenever they are in the wrong order.

For the Schur polynomial this just corresponds to swapping columns of the matrix in the

numerator and hence brings a minus sign for each swap. As an example of this is the γ = 6

conformal partial wave, with α = β = 3. We need to consider S3 in which case there are 6

generators of the affine Weyl group.

F 336λ =
∑
σ∈S3

∑
µ≥λ

r
336λ
wσ(µ1,µ2,µ3)sµ(x)

=
∑
µ≥λ

[
r336λ
µ1,µ2,µ3

− r336λ
µ2−1,µ1+1,µ3

− r336λ
µ3−2,µ2,µ1+2 − r

336λ
µ1,µ3−1,µ2+1 + r

336λ
µ3−2,µ1+1,µ2+1

+r
336λ
µ2−1,µ3−1,µ1+2

]
sµ(x). (3.43)

Here the sum over µ ≥ λ is over all Young tableau µ which fully contain the Young tableau

λ. Notice that the factorial in the denominator of rαβγµ1...µm diverges as the argument of the

factorial becomes negative and thus we do not need to be too careful about the summation

boundary.

3.4.2 GL(m|n) conformal partial waves

The coefficients of the Schur polynomials in any GL(m|n) partial wave expansion are uni-

versal, which implies that they do not depend on the group but only on the representations
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(Young tableau). This means that having obtained the GL(m) partial waves for any m, we

can immediately write down the GL(m|n) partial waves as an explicit expansion over super

Schur polynomials! Namely, we have for any group GL(m|n) (including m = 0 or n = 0)

Fαβγλ(x|y) =
∑
[µ]

Rαβγλµ sµ(x|y), (3.44)

where Rαβγλµ are exactly the same numerical coefficients as defined in (3.41) and sµ(x|y)

are the GL(m|n) Schur polynomials defined in (3.22). Indeed in the practical computation

of OPE coefficients — as we will do for N = 4 SYM in section 4 — this form of the partial

wave is the most useful one. It turns out that we can expand the free theory correlator

in Schur polynomials, and equate with the above expansion of the partial wave in Schur

polynomials and simply equate the coefficient of each Schur polynomial on both sides.

However we also have in mind possible conformal bootstrap applications, and for these

we will need to sum up the expansion. It is the purpose of this section to seek a simple

formula summing up this GL(m|n) partial wave.

It turns out that such a simple formula can be obtained. Just as the summed up

GL(m) partial wave had a close relation with the corresponding Schur polynomial, the

summed up GL(m|n) Schur polynomial has a close relationship with an alternative form of

the GL(m|n) Schur polynomial derived in appendix C and defined in (C.2). In particular

we find

Fαβγλ(x|y) = (−1)
1
2

(2m+2p+n)(n−1)D−1 det

(
FXλ R

Kλ F Y

)
, (3.45)

where here we define

p = min {α, β} (3.46)

and D,R are just as defined previously for the super Schur polynomial, in (3.23), Kλ is

as defined for the alternative form of the Schur polynomials in (C.3) and FXλ and F Y are

matrices of hypergeometric functions

FXλ =
(

[x
λj+m−n−j
i 2F1(λj + 1− j + α, λj + 1− j + β; 2λj + 2− 2j + γ;xi)]

)
1≤i≤m
1≤j≤p

F Y =
(

(yj)
i−1

2F1(i+m− n− α, i+m− n− β; 2i+ 2(m− n)− γ; yj)
)

1≤i≤p+n−m
1≤j≤n

.

(3.47)

Here we again define the square brackets to mean “the regular part at x = 0” i.e. with

the principal part subtracted off. In the current context the function is a hypergeometric

function in x (which has a non-singular expansion around x = 0) multiplied by a power of

x which can be negative in which case

[x−`2F1(a, b; c;x)] := x−`2F1(a, b; c;x)−
`−1∑
k=0

a(k)b(k)

k! c(k)
xk−`

=

∞∑
k=0

a(k+`)b(k+`)

(k + `)! c(k+`)
xk . (3.48)
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Note that we have not been able to prove this formula, indeed as we shall see shortly,

even in the case m = 0 it relies on an infinite number of remarkable, non-trivial numerical

identities. Nevertheless we have checked it in sufficiently many cases to be confident of its

veracity.

3.4.3 Long reps and multiplet shortening for the conformal partial waves

The superconformal partial waves for long (typical) operators factorise just as for the Schur

polynomials (3.28), and the superconformal partial waves also satisfy multiplet shortening

formulae analogous to (3.33). So for a long (or typical) representation we have that the

conformal partial wave for a long representation factorises into an x partial wave and a y

partial wave

λ = [λx + n, λy] (long GL(m|n) rep)

⇓

Fαβγλ(x|y) = F (α+n)(β+n)(γ+2n)λx(x|0)× F (α−m)(β−m)(γ−2m)λy(0|y)×
∏

1≤i≤m,
1≤j≤n

(xi − yj)

(3.49)

where λx, λy are defined in (3.27) and the figure above.

This further implies relations between the partial waves of long reps, when λx has a

full column, just as for the Schur polynomials (3.29):

Fαβγλ(x|y)=

∏m
i=1xi∏n

j=1(−yj)
×F (α+1)(β+1)(γ+2)λ′(x|y) λ=[λx+n, λy], λ′=[λx−1+n, n, λy] .

(3.50)

Similarly for reps of the form λ1, λ2, λ defined as in (3.30), we have analogous multiplet

shortening formulae to (3.33)(
m∏
i=1

xi

)
× Fαβγλ1(x|y) +

 n∏
j=1

(−yj)

× F (α−1)(β−1)(γ−2)λ2(x|y)

= F (α+n−1)(β+n−1)(γ+2n−2)λx(x)× F (α−m)(β−m)(γ−2m)λy(0| − y)×
∏

1≤i≤m,
1≤j≤n

(xi − yj) .

(3.51)

The proofs of these identities follow from considering the determinantal formula in

a similar way (albeit more involved) to that of the Schur polynomial case described be-

low (3.33).

We note here also that as is well known in N = 4 SYM, the long operators can gain

non-integer anomalous dimensions. The easiest way to incorporate this into the formalism

is to simply define the long superconformal partial wave via the factorised form (3.33) and

then continue the appropriate parameters to real values.
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3.4.4 GL(0|n) partial waves and remarkable numerical identities

The formula for the partial waves (3.45) is valid for all m,n. It was obtained from the

case n = 0, but should now also be valid for the other extreme case, when m = 0 where it

becomes

Fαβγλ(0|y) = (−1)
1
2

(γ+n)(n−1)D−1 det
(
Kλ F

Y
)
, (3.52)

where Kλ is a (p+n)×p matrix and F Y is a (p+n)×n matrix (recalling that p = min(α, β)).

However in this case the formula can be simplified: the p columns of Kλ together with the

unique corresponding row containing a non-zero entry can be deleted from the matrix

without changing the determinant and we are left with a formula for the GL(0|n) partial

waves:

Fαβγλ(0|y) =
det
(
y
λTi +n−i
j 2F1(λTi +1−i−α, λTi +1−i−β; 2λTi +2−2i−γ; yj)

)
1≤i,j≤n

det
(
yn−ij

)
1≤i,j≤m

.

(3.53)

As for the GL(m|0) case there is a redundancy in the description here. If the Young tableau

contains a complete (length n) row then we can delete it via

Fαβγ[n,λ](0|y) = (y1 . . . yn)F (α−1)(β−1)(γ−2)λ(0|y) . (3.54)

Recall that although this is an ordinary bosonic group, the Young tableau are the transpose

of the Young tableau discussed previously, i.e. they have length n and infinite height (rather

than the usual height n, infinite length).

Also recall that m = 0 corresponds to the group SU(n) (whereas n = 0 is SU(2, 2)) and

so this is giving us the contribution of a representation of SU(2n) in the tensor product of

two representations, to a four-point function of four representations.

Note the close similarity with the GL(m|0) case (3.38). Essentially the only difference

is the sign with which the parameters α, β, γ appear as arguments of the hypergeometric

function. This sign is crucial as it ensures that the arguments are all negative and so

the hypergeometric functions become finite polynomials. The case n = 2 corresponds

to the group SU(4) and was found previously in the N = 4 context by [5] in terms of

Legendre polynomials. The relation between the two forms arises through the identity

given in http://functions.wolfram.com/Polynomials/LegendreP/26/01/02/0003/.

But now recall that writing the partial waves as an expansion in Schur polynomials,

the coefficients are independent of the symmetry group. Expanding out the hypergeometric

functions in (3.53), we thus find an alternative formula for the coefficients, namely

Rαβγ,λµ =
∑
σ∈Sp

(−1)|σ| r̂
αβγλ

wσ(µT1 ,µ
T
2 ,... )

, (3.55)

where

r̂αβγ,λµ =

n∏
i=1

(
α− µTi + i− 1

)
µTi −λTi

(
β − µTi + i− 1

)
µTi −λTi(

µTi − λTi
)
!
(
γ − 2µTi + 2i− 2

)
µTi −λTi

, (3.56)
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and the Weyl transformation acts as in (3.42). Here xn is the falling Pochhammer symbol

xn := x(x− 1)(x− 2) . . . (x− n+ 1) . (3.57)

But now we seem to have two completely different expressions for the coefficients

R, (3.41) and (3.55):

Rαβγλµ =
∑
σ∈Sp

(−1)|σ| r̂
αβγ,λ

wσ(µT1 ,µ
T
2 ,... )

=
∑
σ∈Sq

(−1)|σ| r
αβγ,λ
wσ(µ1,µ2,... )

. (3.58)

(Where p is the number of rows of µ and q the number of columns.)

We consider a couple of simple examples of this identity. In both cases, let us fix as

before α = β = 1
2γ = 3. Let us consider in both cases λ = [0], and consider µ = [3, 3, 3]

so that here µT = µ. We perform the sums such that the terms are ordered according

to following generators of the affine Weyl group; (e), (12), (13), (23), (123) and (132) of S3.

Then we obtain the following two expressions∑
σ∈S3

(−1)|σ| r
336[0]
wσ(3,3,3) =

5

14
− 15

49
− 1

5
− 9

28
+

3

14
+

9

35
=

1

980
,

∑
σ∈S3

(−1)|σ| r̂
336[0]
wσ(3,3,3) =

1

84
− 1

140
− 1

588
− 3

392
+

1

392
+

3

980
=

1

980
. (3.59)

One notices that each term associated to a particular affine Weyl group generator are

rather different, yet remarkably all the terms of the entire sum all contributes to give the

same number. As a further example we may consider again λ = [0] with µ = [3, 1] and

µT = [2, 1, 1], we find ∑
σ∈S3

(−1)|σ| r
336[0]
wσ(3,1,0) =

25

14
− 5

7
=

15

14
,

∑
σ∈S3

(−1)|σ| r̂
336[1]
wσ(2,1,1) = 3− 5

7
− 4

3
+

5

42
=

15

14
, (3.60)

where in the first line only the generator (e) and (12) contribute all other terms being zero,

whilst in the second line the non-zero terms come from the generators (e), (12), (23) and

(132). It would be very interesting to prove and gain further insight into the identity (3.58).

3.5 Summary of the superconformal partial wave result

We here summarise the result in one place for easy access. We have found that the contri-

bution of an operator Oγλ to a four-point function 〈p1p2p3p4〉 is given by (3.8)

〈Op1(X1)Op2(X2)Op3(X3)Op4(X4)〉 =
∑
γ,λ

Ap1p2p3p4
γλ g

p1+p2
2

12 g
p3+p4

2
34

·
(
g24

g14

) 1
2
p21
(
g14

g13

) 1
2
p43
(
g13g24

g12g34

) 1
2
γ

Fαβγλ(Z),

α =
1

2
(γ − p12) β =

1

2
(γ + p34) , (3.61)
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where, in terms of OPE coefficients,

Ap1p2p3p4
γλ =

∑
Oγλ,Õγλ

COp1p2
CÕp3p4

COÕ . (3.62)

Here we have that (3.44), (3.41)

Fαβγλ(x|y) =
∑
[µ]

Rαβγλµ sµ(x|y),

Rαβγλµ =
∑
σ∈Sm

(−1)|σ| r
αβγλ
wσ(µ1,...,µm),

rαβγλµ1...µm =

m∏
j=1

(λj + 1− j + α)(µj−λj)(λj + 1− j + β)(µj−λj)

(µj − λj)!(2λj + 2− 2j + γ)(µj−λj)
, (3.63)

and sµ(x|y) are the super Schur polynomials. Since one can immediately write down the

free correlator as a sum of Schur polynomials, this form is enough to obtain free OPE

coefficients (even without knowing the explicit form of the Schur polynomials themselves)

as will do explicitly in the next section.

If one is interested in the summed up version of the conformal partial waves then

instead we have

Fαβγλ(x|y) = (−1)
1
2

(2m+2p+n)(n−1)D−1 det

(
FXλ R

Kλ F Y

)
, (3.64)

where

p = min{α, β}

FXλ =
(

[x
λj+m−n−j
i 2F1(λj + 1− j + α, λj + 1− j + β; 2λj + 2− 2j + γ;xi)]

)
1≤i≤m
1≤j≤p

F Y =
(

(yj)
i−1

2F1(i+m− n− α, i+m− n− β; 2i+ 2(m− n)− γ; yj)
)

1≤i≤p+n−m
1≤j≤n

Kλ =
(
− δi;−(λj+m−n−j)

)
1≤i≤p+n−m
1≤j≤p

R =

(
1

xi − yj

)
1≤i≤m, 1≤j≤n

D =

∏
1≤i<j≤m(xi − xj)

∏
1≤i<j≤n(yi − yj)∏

1≤i≤m, 1≤j≤n(xi − yj)
. (3.65)

Note all the above formulae are straightforward to implement in a computer algebra

programme.

3.5.1 Summary for N = 4

The above formula is for a general superconformal field theory with symmetry group

SU(m,m|2n). If one is interested in N = 4 SYM simply put m = n = 2 in the above
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formulae. Using simple properties of the determinant, the results can be rewritten in terms

of two functions, a one variable (in each of x and y) function, f(x, y), and a two-variable

function f(x1, x2, y1, y2). The full correlator is written in terms of these simply as

Fαβγλ(x|y) = δλ;0 +D−1

[(
f(x2, y2)

x1 − y1
− y1 ↔ y2

)
− x1 ↔ x2

]
+D−1f(x1, x2, y1, y2)

(3.66)

where here

D−1 =
(x1 − y1)(x1 − y2)(x2 − y1)(x2 − y2)

(x1 − x2)(y1 − y2)
. (3.67)

The functions are given explicitly as

λ2 > 1 (long) :

f(x, y) = 0

f(x1, x2, y1, y2) = (−1)λ
′
1+λ

′
2

(
Fαβγλ1

(x1)Fαβγλ2−1 (x2)− x1 ↔ x2

)(
Gαβγλ′1

(y1)Gαβγλ′2−1
(y2)− y1 ↔ y2

)
λ2 = 0,1 (semi-short / quarter BPS) :

f(x, y) = (−1)λ
′
1Fαβγλ1

(x)Gαβγλ′1
(y)

f(x1, x2, y1, y2) =

p∑
j=λ′1+1

(−1)λ
′
1

(
Fαβγ1−j (x2)Fαβγλ1

(x1)−(x1↔x2)
)(
Gαβγj (y2)Gαβγλ′1

(y1)−(y1↔y2)
)

+

λ′1∑
j=2

(−1)λ
′
1

(
Fαβγ2−j (x2)Fαβγλ1

(x1)−(x1↔x2)
)(
Gαβγj−1 (y2)Gαβγλ′1

(y1)−(y1↔y2)
)

λ = 0 (half BPS) :

f(x, y) = −
p∑
i=1

Fαβγ1−i (x)Gαβγi (y)

f(x1, x2, y1, y2) =
∑

1≤i<j≤p

(
Fαβγ1−i (x2)Fαβγ1−j (x1)− Fαβγ1−i (x1)Fαβγ1−j (x2)

)
·
(
Gαβγi (y1)Gαβγj (y2)−Gαβγi (y2)Gαβγj (y1)

)
(3.68)

where we have defined the functions

Fαβγλ (x) := [xλ−1
2F1(λ+ α, λ+ β; 2λ+ γ;x)]

Gαβγλ′ (y) := yλ
′−1

2F1(λ′ − α, λ′ − β; 2λ′ − γ; y) (3.69)

where we recall that the square brackets indicate we must take the regular part of the

function.

The combination of short reps into long reps described for a general supergroup in sec-

tion 3.4.3 can here be seen from the vanishing of the sum of the corresponding one-variable

functions. A semi-short operator defined by λ1, λ
′
1, γ combines with another defined by
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quantum numbers λ1 − 1, λ′1 + 1, γ + 2. The corresponding one-variable functions cancel

via the identity

(−1)λ
′
1Fαβγλ1

(x)Gαβγ
λ′1

(y) + (−1)λ
′
1+1

(
x

y

)
F

(α+1)(β+1)(γ+2)
λ1−1 (x)G

(α+1)(β+1)(γ+1)
λ′1+1

(y) = 0 .

(3.70)

4 OPE coefficients in N = 4 SYM

For this section we specialise to N = 4 SYM. We thus take the partial waves of the

previous section and set (m,n) = (2, 2). We wish to perform a superconformal partial

wave expansion on free theory correlation functions in order to illustrate and confirm the

partial waves of the previous section, and obtain new results in this theory.

A general free theory correlation function of four arbitrary charge half-BPS operators

is given by a sum of products of propagators

gij = det (Xj −Xj)
−1 =

y2
ij

x2
ij

+O(ρρ̄) . (4.1)

Any free theory correlation function can be written, by observing that

sdet (1− Z) =

(
g14g23

g13g24

)−1

, (4.2)

in the general form:

〈p1p2p3p4〉=g
p1+p2

2
12 g

p3+p4
2

34

(
g24

g14

) 1
2
p21
(
g14

g13

) 1
2
p43 ∑

γ

(
g13g24

g12g34

) 1
2
γ

×
b 1

2
γc∑

i=0

aγi sdet (1− Z)−i

(4.3)

where pij = pi − pj and where aγ i are colour factors which can be computed using Wick

contractions. The restrictions on γ are the same as in (3.13).

On the other hand we wish to compare this with the conformal partial wave expan-

sion (3.8)

〈p1p2p3p4〉

=
∑
O,Õ

COp1p2
CÕp3p4

COÕ g
p1+p2

2
12 g

p3+p4
2

34

(
g24

g14

) 1
2
p21
(
g14

g13

) 1
2
p43
(
g13g24

g12g34

) 1
2
γ

Fαβγλ(Z).

(4.4)

The exercise is then to equate

b 1
2
γc∑

i=0

aγi sdet (1− Z)−i =
∑
[λ]

AγλF
αβγλ(Z) (4.5)

in order to find the OPE coefficients Aγλ = COp1p2
CÕp3p4

COÕ.
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The simplest way to do this is to use the Cauchy identity to rewrite the r.h.s. of (4.5) as

an infinite sum over the super Schur polynomials. This then allows for a direct comparison

with the superconformal partial wave (SCPW) expansion (which we also view as a sum over

Schur polynomials) and thus allows us to solve for the OPE coefficients. Remarkably, this

means we never in fact need to know the form of the Schur polynomials themselves, both

sides are given as expansions in Schur polynomials and since we know these are independent

this allows us to equate the coefficients of each Schur polynomial.

4.1 The Cauchy identity

The Cauchy identity provides a way to write functions of sdet(1 − Z)−q for some q a

an expansion in super Schur polynomials. Cauchy’s identity states that (see for example

appendix A of [38]):

1∏
i,j(1− xizj)

=
∑
λ

sλ(x)sλ(z), (4.6)

where λ is some Young tableau. If we set the zj ’s to 1 we gain the following formula

relevant to the bosonic case:

det(1− Z)−p =
1∏

i(1− xi)p
=
∑
λ

sλ(x)d
GL(p)
λ , (4.7)

where d
GL(p)
λ is the dimension of some Young tableau λ in GL(p). In particular this means

we can never see Young tableaux with more than p rows.

In the supersymmetric case, this formula generalises naturally to

∏
i

(
1− yi
1− xi

)p
=
∑
λ

sλ(x|y)d
GL(p)
λ . (4.8)

The standard Hook dimension formula gives

d
GL(p)
λ =

∏p
i=1(p− i+ 1)(λi)∏p

i=j

∏p
j=1(λj − λi + (i− j + 1))(λi−λi+1)

, (4.9)

where x(n) is the ascending Pochhammer symbol. Implicitly, this formula has a label for

p+ 1 which we must switch off, namely λp+1 = 0.

For example for p = 1, in N = 4 SYM, one finds that

sdet(1− Z)−1 =
(1− y1)(1− y2)

(1− x1)(1− x2)
=

∞∑
λ=0

s[λ,0,... ](x|y). (4.10)

whereas for p = 2, we get

sdet(1− Z)−2 =
(1− y1)2(1− y2)2

(1− x1)2(1− x2)2
=

∞∑
λ1≥λ2≥0

(λ1 − λ2 + 1)s[λ1,λ2,0,..](x|y) .
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Using the above results it is now straightforward to obtain the OPE coefficients in the

free theory. In the next section we give a number of low weight examples of this. Note that

at this stage we are not considering the fact that in the interacting theory certain short

multiplets can combine together to become long. We will consider this in the following

subsection.

Let us outline a basic example for precisely how this works. In the example of 〈1111〉
which we study in the next subsection, we will encounter the function f2(A,A) which we

want to compare with a linear combination of superconformal partial wave expansions of

the form F 112[λ] (corresponding to twist two operators). So using the Cauchy identity we

equate

f2(A,A) = A(1 + sdet(1− Z)−1) = 2As[0](x|y) +A
∑
i≥1

s[λ](x|y) =
∑
λ≥0

A2[λ]F
112[λ] .

(4.11)

We can expand the rightmost-side explicitly using (3.44) giving

2As[0](x|y) +A
∑
i≥1

s[λ](x|y) = A2[0]

(
s[0](x|y) +

1

2
s[1](x|y) +

1

3
s[2](x|y) + . . .

)
︸ ︷︷ ︸

F 112[0]

+A2[1]

(
s[1](x|y) +

1

2
s[2](x|y) +

9

10
s[3](x|y) + . . .

)
︸ ︷︷ ︸

F 112[1]

+A2[2]

(
s[2](x|y) +

3

2
s[3](x|y) +

12

7
s[4](x|y) + . . .

)
︸ ︷︷ ︸

F 112[2]

+ . . .

(4.12)

One can already see that A2[1] = 0. Comparing the coefficients of s[0](x|y) requires that

A2[0] = 2A. A consequence of this is that this automatically sets coefficient of s[1](x|y) to

A on the r.h.s. , which yields an overall equality if we set A2[1] = 0. We may continue to

the next order to find A2[2] and there onwards to find the rest of the coefficients. With

enough terms, one can spot a pattern and write a general formula. As we will see in

the next subsection, it turns out that the only non-zero OPE coefficients in this case are

λ ∈ Zeven, corresponding to even spin operators. All results are found in this way. Note

that as mentioned previously, one never even needs to know the explicit form of the Schur

polynomials for this.

4.2 Results: free theory OPE coefficients (before recombination)

The purpose of this section is to display the OPE coefficients before taking into account any

recombination in the interacting theory. We do this for the list of the correlation functions

〈1111〉, 〈1122〉, 〈2222〉, 〈2233〉, 〈3333〉, 〈2433〉 and 〈3544〉. Clearly the first two correlators

can only exist in the U(N) gauge theory (since tr(W 1) = 0 for SU(N)) whilst the others

may exist in either U(N) or SU(N).
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For notational convenience we have defined

fγ

(
aγ0, aγ1, . . . , aγb 1

2
γc
)

:=

b 1
2
γc∑

i=0

aγisdet (1− Z)−i (4.13)

where aγi are the associated colour factors.

We consider all half BPS operators, both single- and multi-trace at finite N . We denote

Aγ = tr(W γ) so the multi-trace operator tr(W 2)2 is denoted (A2)2 etc.

〈1111〉

This correlator many only exist in the U(N) gauge theory and is given by

〈1111〉 = A (g14g23 + g13g24 + g12g34) = g12g34

(
f0(A) +

(
g13g24

g12g34

)
f2(A,A)

)
.

The colour factor is given by

A = N2 . (4.14)

In comparing with the SCPW expansion, one finds that

〈1111〉 = g12g34

A+

(
g13g24

g12g34

)∑
λ≥0

A2[λ]F
112[λ]


with A2[λ] =

2A(λ!)2

(2λ)!
for λ ∈ Zeven and zero otherwise. (4.15)

〈1122〉

〈1122〉 = Ag12g
2
34 +B (g14g23g34 + g13g24g34) = g12g

2
34

(
f0(A) +

(
g13g24

g12g34

)
f2(B,B)

)
.

(4.16)

The colour factors for U(N) for the various types of correlators may be tabulated as

Correlator type A B

〈A1A1A2A2〉 2N3 4N〈
A1A1(A1)2A2

〉
2N2 4N2〈

A1A1(A1)2(A1)2
〉

2N3 4N3

(4.17)

Since p12 = p34 = 0 (which means we use the same set of SCPW’s), we see that this

result is structurally identical to the (4.15), but for the change

A2[λ] =
2B(λ!)2

(2λ)!
, (4.18)

which is simply a change in the colour factors.
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〈1133〉

〈1122〉 = Ag12g
3
34 +B

(
g14g23g

2
34 + g13g24g

2
34

)
= g12g

3
34

(
f0(A) +

(
g13g24

g12g34

)
f2(B,B)

)
The U(N) colour factors for the various types of correlators is given by

Correlator type A B

〈A1A1A3A3〉 3N2(1 +N2) 18N2

〈A1A1(A1A2)A3〉 6N3 6N(2 +N2)

〈A1A1(A1A2)(A1A2)〉 2N2(2 +N2) 2N2(8 +N2)〈
A1A1(A1A2)(A1)3

〉
6N3 18N3〈

A1A1(A1)3(A3)
〉

6N2 18N2〈
A1A1(A1)3(A1)3

〉
6N4 18N4

(4.19)

The result of the SCPW expansion is identical to the 〈1122〉 previously shown but for the

precise colour factors.

〈2222〉

This is the first case where we have a correlator which may exist in either the U(N) or

SU(N) guage theory. The correlator is given by

〈2222〉 = A(g2
12g

2
34 + g2

13g
2
24 + g2

14g
2
23) +B(g12g23g34g41 + g13g32g21g14 + g13g34g42g21)

= g2
12g

2
34

(
f0(A) +

(
g13g24

g12g34

)
f2(B,B) +

(
g13g24

g12g34

)2

f4(A,B,A)

)
. (4.20)

For the SU(N) theory, there is only one possible colour structure where the operator is A2,

and we have

Correlator type SU(N) A B

〈A2A2A2A2〉 4(N2 − 1)2 16(N2 − 1)
(4.21)

On the other hand there are a few variations in the U(N) theory, which are given by

Correlator type U(N) A B

〈A2A2A2A2〉 4N4 16N2〈
(A1)2A2A2A2

〉
4N3 16N〈

(A1)2(A1)2A2A2

〉
4N4 16N2〈

(A1)2(A1)2(A1)2A2

〉
4N3 16N3〈

(A1)2(A1)2(A1)2(A1)2
〉

4N4 16N4〈
(A1)2A2(A1)2A2

〉
4N2 16N2

(4.22)
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Comparing to an SCPW expansion yields

〈2222〉=g2
12g

2
34

A+

(
g13g24

g12g34

)∑
λ≥0

A2[λ]F
112[λ] +

(
g13g24

g12g34

)2 ∑
λ1≥λ2≥0

A4[λ1,λ2]F
224[λ1,λ2]

 ,

(4.23)

where the coefficients are given by

A2[λ] =
2B(λ!)2

(2λ)!
for λ ∈ Zeven zero otherwise,

A4[λ1,λ2] =
λ1! (λ1 + 1)! (λ2!) 2

(
A (λ1 − λ2 + 1) (λ1 + λ2 + 2) +B(−1)λ2

)
(2λ2)! (2λ1 + 1)!

for λ1 − λ2 ∈ Zeven ≥ 0, λ2 ∈ Z ≥ 0 and zero otherwise.

(4.24)

〈2233〉

One may write the free theory correlator as

〈2233〉 = Ag2
12g

3
34 +B

(
g2

14g34g
2
23 + g2

13g
2
24g34

)
+ C

(
g12g14g23g

2
34 + g12g13g24g

2
34

)
+Dg13g14g23g24g34,

= g2
12g

3
34

(
f0(A) +

(
g13g24

g12g34

)
f2(C,C) +

(
g13g24

g12g34

)2

f4(B,D,B)

)
. (4.25)

The colour factors for SU(N) can only come from one correlator:

Correlator type SU(N) A B C D

〈A2A2A3A3〉 6(N2−1)2(N2−4)
N 0 36(N2−1)(N2−4)

N
72(N2−1)(N2−4)

N

(4.26)
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For the U(N) theory we have 18 possible ways of partitioning the pi’s into local oper-

ators:

Correlator type U(N) A B C D

〈A2A2A3A3〉 6N3(1 +N2) 36N3 36N(1 +N2) 72N(1 +N2)〈
(A1)2A2A3A3

〉
6N2(1 +N2) 36N2 72N2 72N(1 +N2)〈

(A1)2(A1)2A3A3

〉
6N3(1 +N2) 36N 72N3 144N

〈A2A2(A1A2)A3〉 12N4 12N2(2 +N2) 72N2 144N2

〈A2A2(A1A2)(A1A2)〉 4N3(2 +N) 4N(2 +N2)2 24N(2 +N2) 48N(2 +N2)〈
A2A2(A1)3A3

〉
12N3 36N3 72N 144N〈

A2A2(A1)3(A1)3
〉

12N5 36N3 72N3 144N3〈
A2A2(A1)3(A1A2)

〉
12N4 12N2(2 +N2) 72N2 144N2〈

(A1)2A2(A1)3A3

〉
12N2 36N2 72N2 144N2〈

(A1)2A2(A1A2)A3

〉
12N3 12N(2 +N2) 24N(2 +N2) 48N(2 +N2)〈

(A1)2A2(A1)3(A1A2)
〉

12N3 36N3 72N3 144N3〈
(A1)2A2(A1)3(A1)3

〉
12N4 36N4 72N4 144N4〈

(A1)2A2(A1A2)(A1A2)
〉

4N2(2 +N) 12N2(2 +N2) 8N2(8 +N2) 16N2(8 +N2)〈
(A1)2(A1)2(A1)3A3

〉
12N4 36N4 72N4 144N4〈

(A1)2(A1)2(A1A2)A3

〉
12N4 36N2 24N2(2 +N2) 144N2〈

(A1)2(A1)2(A1)3(A1A2)
〉

12N4 36N4 72N4 144N4〈
(A1)2(A1)2(A1A2)(A1A2)

〉
4N3(2 +N2) 36N3 8N3(8 +N2) 144N3〈

(A1)2(A1)2(A1)3(A1)3
〉

12N5 36N5 72N5 144N5

(4.27)

We see that this result here is structurally identical to the 〈2222〉 case, the only differ-

ence is as in previous cases the precise difference in the colour factors. Namely, the result

is identical to (4.23), but instead we have

A2[λ] =
2C(λ!)2

(2λ)!
for λ ∈ Zeven zero otherwise,

A4[λ1,λ2] =
λ1! (λ1 + 1)! (λ2!) 2

(
B (λ1 − λ2 + 1) (λ1 + λ2 + 2) +D(−1)λ2

)
(2λ2)! (2λ1 + 1)!

for λ1 − λ2 ∈ Zeven ≥ 0, λ2 ∈ Z ≥ 0 and zero otherwise.

(4.28)
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〈3333〉

The free theory correlator is given by

〈3333〉 = A
(
g314g

3
23 + g313g

3
24 + g312g

3
34

)
+B(g13g

2
14g24g

2
23 + g12g

2
14g34g

2
23

+ g213g14g
2
24g23 + g212g14g

2
34g23 + g212g13g24g

2
34 + g12g

2
13g

2
24g34) + Cg12g13g14g23g24g34,

= g312g
3
34

(
f0(A)+

(
g13g24
g12g34

)
f2(B,B)+

(
g13g24
g12g34

)2

f4(B,C,B)+

(
g13g24
g12g34

)3

f6(A,B,B,A)

)
.

(4.29)

There is only one SU(N) correlator which has colour factors

Correlator type A B C

〈A3A3A3A3〉 9(N2−4)2(N2−1)2

N2
81(N2−4)2(N2−1)

N2

162(N2−4)(N2−1)(N2−12)
N2

(4.30)

For the U(N) theory we have 17 possible ways of partitioning the pi’s into local oper-

ators:

Correlator type A B C

〈A3A3A3A3〉 9N2(1 +N2)2 81N2(3 +N2) 162N2(7 +N2)〈
(A1)3A3A3A3

〉
18N2(1 +N2) 108N2(2 +N) 1296N2〈

(A1)3(A1)3A3A3

〉
18N4(1 +N2) 324N2 1296N2〈

(A1)3(A1)3(A1)3A3

〉
36N4 324N4 1296N4〈

(A1)3A3(A1)3A3

〉
36N2 324N2 1296N2

〈(A1A2)A3A3A3〉 18N3(1 +N2) 108N(2 +N3) 1296N

〈(A1A2)(A1A2)A3A3〉 6N2(1 +N2)(2 +N2) 36N2(8 +N2) 72N2(17 +N2)

〈(A1A2)(A1A2)(A1A2)A3〉 12N3(2 +N2) 12N(12 + 14N2 +N4) 48N(1413N2)

〈(A1A2)A3(A1A2)A3〉 36N4 36N2(8 +N2) 72N2(17 +N2)〈
(A1)3(A1A2)(A1A2)(A1A2)

〉
12N3(2 +N2) 36N3(8 +N2) 48N3(26 +N2)〈

(A1)3(A1)3(A1A2)(A1A2)
〉

12N4(2 +N2) 324N4 1296N4〈
(A1)3(A1)3(A1)3(A1A2)

〉
36N5 324N5 1296N5〈

(A1)3(A1)3(A1)3(A1)3
〉

36N6 324N6 1296N6〈
(A1)3(A1A2)(A1)3(A1A2)

〉
36N4 324N4 1296N4〈

(A1)3(A1A2)A3(A1)3
〉

36N3 108N3(2 +N2) 1296N3〈
(A1)3(A1A2)A3(A1A2)

〉
36N4 108N2(2 +N2) 144N2(8 +N2)

〈(A1A2)(A1A2)(A1A2)(A1A2)〉 4N2(2 +N2)2 4N2(60 + 20N2 +N4) 48N2(22 + 5N2)

(4.31)
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Upon comparing to an SCPW expansion we get

〈3333〉 = g3
12g

3
34

(
A+

(
g13g24

g12g34

)∑
λ≥0

A2[λ]F
112[λ] +

(
g13g24

g12g34

)2 ∑
λ1≥λ2≥0

A4[λ1,λ2]F
224[λ1,λ2]

+
∑

λ1≥λ2≥λ3≥0

A6[λ1,λ2,λ3]F
336[λ1,λ2,λ3]

)
, (4.32)

Similarly to previous examples we see structures repeating again. Namely, the γ = 2 is

identical to (4.24) and γ = 4 sector is structurally identical to (4.24) but for the change of

colour factor A→ B and B → C. We also get a γ = 6 sector where the OPE coefficients are

A6[λ1,λ2] = mλ1,λ2

1

2

(
A (λ1 + 2) (λ1 + 3) (λ1 − λ2 + 1) (λ2 + 1) (λ2 + 2) (λ1 + λ2 + 4)

+ 4B
((

(−1)λ2 + 1
)
λ1 (λ1 + 5) + 8(−1)λ2 +

(
(−1)λ2 − 1

)
λ2 (λ2 + 3) + 4

))
for λ1 − λ2 ∈ Zeven ≥ 0, λ2 ≥ 0 and zero otherwise,

A6[λ1,λ2,1] = mλ1,λ2

1

4

(
A (λ1 + 1) (λ1 + 4) (λ1 − λ2 + 1)λ2 (λ2 + 3) (λ1 + λ2 + 4)

+ 4B
(

(−1)λ2 − 1
)

(λ1 − λ2 + 1) (λ1 + λ2 + 4)
)

for λ1 − λ2 ∈ Zodd ≥ 1, λ2 ≥ 1 and zero otherwise,

A6[λ1,λ2,2] = mλ1,λ2

1

12

(
Aλ1 (λ1 + 5) (λ1 − λ2 + 1) (λ2 − 1) (λ2 + 4) (λ1 + λ2 + 4)

+ 4B
((

(−1)λ2 + 1
)
λ1 (λ1 + 5) +

(
(−1)λ2 − 1

)
(λ2 − 1) (λ2 + 4)

))
for λ1 − λ2 ∈ Zeven ≥ 0, λ2 ≥ 2 and zero otherwise, (4.33)

where

mλ1,λ2 =
(λ1 + 2)!2 (λ2 + 1)!2

(2λ2 + 2)! (2λ1 + 4)!
. (4.34)

We give two further cases in appendix B, namely 〈4233〉 and 〈5344〉.

4.3 Consistency checks for the above OPE coefficients

It is possible to perform non-trivial consistency checks for the above results if we have some

information concerning the number of operators in each representation.

To see where these consistency checks come from, consider writing the OPE coefficients

as follows,

Ap1p2p3p4
γλ = 〈Cp1p2 , Cp3p4〉 :=

∑
Oγλ,Õγλ

COp1p2
CÕp3p4

COÕ . (4.35)

Namely, we can consider the inner product of the structure constants of the three-point

function with a metric defined by the two point function. Here we sum over all operators
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in the same representation (γλ) and we may regard Cpipj as being a vector with dimension

equal to the number of operators in this representation. If we choose a basis for the

operators where we have diagonalised the two-point functions, then we have simply COÕ ∼
δOÕ and this becomes the standard scalar product.

Various results follow from this. Firstly, notice that

cos2(θ) =
〈Cp1p2 , Cp3p4〉

2

〈Cp1p2 , Cp1p2〉 〈Cp3p4 , Cp3p4〉
, (4.36)

where θ is the angle between the two vectors COp1p2
and COp3p4

, and so it follows that

0 ≤ (Ap1p2p3p4)2

Ap1p2p1p2Ap3p4p3p4
≤ 1 (4.37)

for all OPE coefficients.6

Furthermore, if there is only one operator O in the representation in question, then

the vector space has dimension 1 and we must get 1.

Indeed if we know how many operators there are in a particular representation, b, (so

we know the dimension of the relevant inner product space) then we know that any Gram

determinant of dimension b+ 1 must vanish. So

det (Apipjpkpl)(pi,pj)∈S
(pk,pl)∈S

, (4.38)

where S is any set of pairs (pi, pj) such that |S| = b+ 1.

So for the previously mentioned case where the number of operators is one we let

S = {(p1, p2), (p3, p4)} and then

Gram = det

(
Ap1p2p1p2 Ap1p2p3p4

Ap1p2p3p4 Ap3p4p3p4

)
= Ap1p2p1p2Ap3p4p3p4 − (Ap1p2p3p4)2 = 0, (4.39)

which is equivalent to equation (4.37) being equal to one. For the case where we have two

operators we have

Gram = det

Ap1p2p1p2 Ap1p2p3p4 Ap1p2p5p6

Ap1p2p3p4 Ap3p4p3p4 Ap3p4p5p6

Ap1p2p5p6 Ap3p4p5p6 Ap5p6p5p6

 = 0 . (4.40)

Let us check these conditions in a few cases. Firstly, consider the case with only one

operator. This is the case for all twist two operators O2[λ] in the SU(N) theory. Looking

back at the results above one can straightforwardly check that indeed

A2222
2[λ] A

3333
2[λ] −(A2233

2[λ] )2 =

(
2(λ!)2

(2λ)!

)2
[

16(N2−1)× 81(N2−4)2(N2−1)

N2
−
(

36(N2−1)(N2−4)

N

)2
]

=0 .

(4.41)

6For long operators, this need only be true after taking into account the equivalence relation (2.6).
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Similarly in the U(N) case there are two twist 2 operators O2[λ] for each spin λ (a

single-trace and a double-trace one). Thus the following 3 × 3 Gram determinant should

vanish

det


A1111

2[λ] A1122
2[λ] A1133

2[λ]

A1122
2[λ] A2222

2[λ] A2233
2[λ]

A1133
2[λ] A2222

2[λ] A3333
2[λ]

 = 0 (4.42)

which can be readily seen to be the case using the results above.

As can be seen there will are many such consistency checks which can be performed.

They require knowing the number of operators of each representation which can be read

off from [39]. Furthermore in the next section we will show how similar considerations give

information about the disentangling of protected and unprotected operators. Indeed we

can use this to completely disentangle the protected and unprotected sectors in the 〈3333〉
correlator.

5 Physical OPE coefficients: recombination in SU(N)

It is well known that free theory supermultiplets in N = 4 SYM combine together to form

long supermultiplets, which are then free to develop an anomalous dimension. In order to

separate out the OPE coefficients into free and interacting pieces, it is useful to be able to

disentangle the genuine short multiplets from those which become part of long multiplets.

This is also a crucial element of the conformal bootstrap programme, since there one needs

to know the contribution to the free correlator of all protected operators [24].

It is impossible to uniquely disentangle this information from the free theory alone,

one requires some information from the interacting theory. At least in some situations

however, knowledge of mixed charge correlators, together with simply the knowledge of

the number of long/short operators (the precise form of them is however not required)

allows us to uniquely disentangle the protected and unprotected sectors. The number of

short and long operators can be obtained by an examination of the classical interacting

theory [39, 40]. We will give an example of this in the current section, and we will obtain

the precise separation of the free SU(N) correlator 〈3333〉 into protected and unprotected

sectors by making use of the 〈2233〉 and 〈2222〉 correlators.

In order to gain the correct answer, we make repetitive use of the reducibility equation

at the unitary bound (3.51) which in N = 4 SYM reads

F
αβγ[λ+1,1ν+1]
long :=limρ→1F

αβγ[λ+ρ,ρ,1ν ] =

(
g13g24

g12g34

)−1

Fα−1 β−1 γ−2[λ+2,1ν ] + Fαβγ[λ+1,1ν+1],

(5.1)

where the l.h.s. is understood for arbitrary real ρ via an analytic continuation of the results

for the long representations ρ = 2, 3, 4, . . . . It is thus convenient to introduce the notation

F
αβγ[λ+1,1ν+1]
long to take care of this situation.
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There then remains the question as to how to decide which operators become long

without doing explicit computations.

In this subsection we present the physical OPE coefficients of gauge group SU(N), in

particular for 〈2222〉, 〈2233〉 and 〈3333〉. Let us begin with the 〈2222〉 case.

〈2222〉

Stating the result again, we had

〈2222〉=g2
12g

2
34

A+

(
g13g24

g12g34

)∑
λ≥0

A2[λ]F
112[λ] +

(
g13g24

g12g34

)2 ∑
λ1≥λ2≥0

A4[λ1,λ2]F
224[λ1,λ2]

 ,

(5.2)

where the coefficients are given by (4.24), but for convenience we repeat them

A2[λ] =
2B(λ!)2

(2λ)!
for λ ∈ Zeven zero otherwise,

A4[λ1,λ2] =
λ1! (λ1 + 1)! (λ2!) 2

(
A (λ1 − λ2 + 1) (λ1 + λ2 + 2) +B(−1)λ2

)
(2λ2)! (2λ1 + 1)!

for λ1 − λ2 ∈ Zeven ≥ 0, λ2 ∈ Z ≥ 0 and zero otherwise,

(5.3)

with

Correlator type SU(N) A B

〈A2A2A2A2〉 4(N2 − 1)2 16(N2 − 1)
(5.4)

We recognise the term F 112[2] as being the Konishi operator. Famously, the Konishi

operator gains an anomalous dimension in the interacting theory, hence it should be long

whilst as it stands it is short. By looking at the structure of the Wick contractions, one

also observes that the semi-short operators that follow, namely F 112[λ≥4] are all long in the

interacting theory and have the form tr(WAB(∂)λW̄AB) [40]. The operator corresponding

to F 112[0], on the other hand, corresponds to the stress-tensor multiplet, and is the only

γ = 2 protected operator. It will remain short in the interacting theory.

In order to manifest these points one may make use of the reducibility equation

F 112[λ] =

(
g13g24

g12g34

)(
F

224[λ−1,1]
long − F 224[λ−1,1]

)
. (5.5)

In which we get

〈2222〉=g2
12g

2
34

(
A+

(
g13g24

g12g34

)
2BF 112[0]+

(
g13g24

g12g34

)2
( ∞∑
λ≥0

A4[λ]F
224[λ]+

∞∑
λ≥1

A′4[λ,1]F
224[λ,1]

+
∞∑

λ1≥λ2≥2

A4[λ1,λ2]F
224[λ1,λ2] +

∞∑
λ≥1

A2[λ+1]F
224[λ,1]
long

))
, (5.6)
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where

A′4[λ,1] = A4[λ,1] −A2[λ+1]. (5.7)

Here the second line consists of unprotected operators, whereas the first line corre-

sponds to genuine short operators.

So we have used qualitative knowledge (essentially that all twist two operators be-

come long) to disentangle the protected and unprotected sectors. This result is consistent

with [4].

〈2233〉

As we discussed above, the structural form of 〈2233〉 is the same as that of 〈2222〉. The

reason for this is that we are computing the overlap of the 22 OPE with the 33 OPE, which

in fact contains all the sectors of the 22 OPE. With coefficients given by For convenience

we repeat them

A2[λ] =
2C(λ!)2

(2λ)!
for λ ∈ Zeven zero otherwise,

A4[λ1,λ2] =
λ1! (λ1 + 1)! (λ2!) 2

(
B (λ1 − λ2 + 1) (λ1 + λ2 + 2) +D(−1)λ2

)
(2λ2)! (2λ1 + 1)!

for λ1 − λ2 ∈ Zeven ≥ 0, λ2 ∈ Z ≥ 0 and zero otherwise.

(5.8)

with (4.26)

Correlator type SU(N) A B C D

〈A2A2A3A3〉 6(N2−1)2(N2−4)
N 0 36(N2−1)(N2−4)

N
72(N2−1)(N2−4)

N

(5.9)

The multiplet recombination is then identical to the 〈2222〉 case: essentially remove

all F 112[λ] except for the half BPS case F 112[0] in favour of long operators.

The result of performing this is:

〈2233〉=g2
12g

3
34

(
A+

(
g13g24

g12g34

)
2CF 112[0]+

(
g13g24

g12g34

)2
( ∞∑
λ≥0

A4[λ]F
224[λ]+

∞∑
λ≥1

A′4[λ,1]F
224[λ,1]

+
∞∑

λ1≥λ2≥2

A4[λ1,λ2]F
224[λ1,λ2] +

∞∑
λ≥1

A2[λ+1]F
224[λ,1]
long

))
, (5.10)

where

A′4[λ,1] = A4[λ,1] −A2[λ+1], (5.11)

and again the first line consists of protected operators and the second line unprotected ops.

Interestingly, the coefficient A′4[1,1] of F 224[1,1], namely 1
6(4B−2C−D) is subleading in

the planar limit, whereas for the 〈2222〉 case it is not. This can be understood as follows.
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The coefficient A′4[1,1] is related to the OPE coefficient of the genuine twist four quarter BPS

operator. In the large N limit this is a double trace operator (see [40, 41]). As described in

section 3.2 the twist four operators arising from the O2O2 OPE are double trace operators

whereas the twist four operators arising from the O3O3 OPE on the other hand involve a

Wick contraction, which in the large N limit reduces to a single trace operator.

Also note that the presence of non-zero coefficients A4[λ] and A′4[λ,1] imply that the

OPE coefficient CO
twist 4

33 where Otwist 4 are the protected twist four operators, can not be

zero. This in turn has some unexpected implications for the twist four part of the protected

sector of the 〈3333〉 correlator as we shall see.

〈3333〉

Now we come to a more non-trivial case, the 〈3333〉 correlator which contains operators

up to twist 6.

Firstly we restate the result before recombination from the previous section. The OPE

coefficients here are as in (4.24) and (4.33) where for the A4[λ] coefficient of the former, we

must do the change A→ B and B → C.

〈3333〉 = g3
12g

3
34

(
A+

(
g13g24

g12g34

)∑
λ≥0

A2[λ]F
112[λ] +

(
g13g24

g12g34

)2 ∑
λ1≥λ2≥0

A4[λ1,λ2]F
224[λ1,λ2]

+

(
g13g24

g12g34

)3 ∑
λ1≥λ2≥λ3≥0

A6[λ1,λ2,λ3]F
336[λ1,λ2,λ3]

)
, (5.12)

with coefficients

A2[λ] =
2B(λ!)2

(2λ)!
for λ ∈ Zeven zero otherwise,

A4[λ1,λ2] =
λ1! (λ1 + 1)! (λ2!) 2

(
B (λ1 − λ2 + 1) (λ1 + λ2 + 2) + C(−1)λ2

)
(2λ2)! (2λ1 + 1)!

for λ1 − λ2 ∈ Zeven ≥ 0, λ2 ∈ Z ≥ 0 and zero otherwise.

(5.13)

and exactly as is given in (4.33), with colour factors

Correlator type A B C

〈A3A3A3A3〉 9(N2−4)2(N2−1)2

N2
81(N2−4)2(N2−1)

N2

162(N2−4)(N2−1)(N2−12)
N2

(5.14)

Here, the first manoeuver is to use the reducibility equation (5.5) to replace the short

Konishi and the succession of γ = 2 semi-short operators by long operators as in the

previous two cases.

However, now we need some additional information to help us with the twist four

(γ = 4) sector. In particular we need to know how many genuine short twist four operators

there are in the theory (we already know from the 〈2233〉 correlator that it can not be
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zero). This can be answered by appealing to the classical interacting theory [40]. In

analytic superspace the short twist four operators O4[λ] and O4[λ−1,1] must be double trace

operators of the form A2∂
λA2 whereas those which combine to become long operators

are single trace operators. Just as for the twist two operators, there is precisely one such

operator for all even λ. The first few cases can also be checked with table 6 in the appendix

of [39].

Armed with this knowledge that there is only one protected twist four operator for

each case, we can then use the considerations of section 4.3 to predict the OPE coefficients,

Ã3333
4λ , after multiplet recombination, using the corresponding coefficients from 〈2222〉 and

〈2233〉 via (4.39).

Namely we predict that

Ã4[λ] =

(
A2233

4[λ]

)2

A2222
4[λ]

=
1296

(
N2 − 4

)2 (
N2 − 1

)
λ!(λ+ 1)!

N2(2λ+ 1)! (−λ(λ+ 3) + (λ+ 1)(λ+ 2)N2 + 2)
, (5.15)

Ã4[λ,1] =

(
A
′2233
4[λ,1]

)2

A
′2222
4[λ,1]

=
5184

(
N2 − 4

)2 (
N2 − 1

)
((λ+ 1)!)2

N2(2λ+ 2)! (λ(λ+ 3) (N2 − 1)− 12)
, (5.16)

where we may explicitly put in the colour factors.

We therefore deduce that we must use the reducibility equations to send part of the

γ = 4 superconformal partial waves to the γ = 6 sectors, leaving the above coefficients.

Moreover we find another consistency check in the fact that Ã4[1,1] = A′4[1,1] corresponding

to a protected quarter BPS operator which can not be combined with any higher weight

operators to become long.

Altogether, this requires the use of the three reducibility equations, and the final

equation comes from the redundancy of the Dynkin labels

F 112[λ] =

(
g13g24

g12g34

)(
F

224[λ−1,1]
long − F 224[λ−1,1]

)
,

F 224[λ] =

(
g13g24

g12g34

)(
F

336[λ−1,1]
long − F 336[λ−1,1]

)
,

F 224[λ,1] =

(
g13g24

g12g34

)(
F

336[λ−1,1,1]
long − F 336[λ−1,1,1]

)
,

F 224[λ1,λ2] =

(
g13g24

g12g34

)(
F 336[λ1−1,λ2−1,2]

)
. (5.17)

We thus obtain

〈3333〉
g312g

3
34

= (5.18)

A+
(
g13g24
g12g34

)
2BF 112[0]

+
(
g13g24
g12g34

)2 [
(2B + C)F 224[0] +

∑
λ≥2 Ã4[λ]F

224[λ] +
∑
λ≥1 Ã4[λ,1]F

224[λ,1]
]

+
(
g13g24
g12g34

)3 [∑
λ≥0A6[λ]F

336[λ] + 1
10 (18A− 14B − C)F 336[1,1]

+
∑
λ≥3A

′
6[λ,1]F

336[λ,1] +
∑
λ≥2A

′
6[λ,1,1]F

336[λ,1,1]
]


protected
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+
(
g13g24
g12g34

)2 [∑
λ≥2A2[λ,2]F

224[λ,2] +
∑
λ≥1A2[λ+1]F

224[λ,1]
long

]
+
(
g13g24
g12g34

)3 [∑
λ1≥λ2≥2A6[λ1,λ2]F

336[λ1,λ2] +
∑
λ1≥λ2≥2A6[λ1,λ2,1]F

336[λ1,λ2,1]

+
∑
λ1≥λ2≥2A

′
6[λ1,λ2,2]

F 336[λ1,λ2,2] +
∑
λ≥2A

′′
6[λ,1,1]F

336[λ,1,1]
long

+
∑
λ≥1A

′′′
6[λ+1]F

336[λ,1]
long

]


unprotected,

(5.19)

where

A′6[λ,1] = A6[λ,1] −A4[λ+1] + Ã4[λ+1],

A′6[λ,1,1] = A6[λ,1,1] −A4[λ+1,1] +A2[λ+2] + Ã4[λ+1,1],

A′6[λ1,λ2,2] = A6[λ1,λ2,2] +A4[λ1+1,λ2+1],

A′′6[λ,1,1] = A4[λ+1,1] −A2[λ+2] − Ã4[λ+1,1],

A′′′6[λ,1,1] = A4[λ+1] − Ã4[λ+1] . (5.20)

We have written (5.19) so that the first four lines correspond to the protected part whereas

lines five to seven correspond to the unprotected piece.

The existence of a non-trivial protected twist four sector, Ã, differs from the assumption

made in [42] that these should be absent and absorbed further into long operators using

the third line of (5.17). This question corresponds to the rather subtle point, made in [39],

that short operators which might combine to form long multiplets due to group theoretic

considerations may in fact be protected dynamically.

Note that both the results here and the results of [42] are consistent with positivity

of the OPE coefficients (we have checked and indeed all these coefficients remain non-

negative). Furthermore these results agree with [42] in the large N limit, since the coeffi-

cients Ã are subleading.

6 Conclusion

In this paper we have provided the superconformal partial waves relevant for four-point

functions of scalar operators in what we have called a super Grassmannian space

Gr(m|n, 2m|2n). These are interesting mathematical objects in their own right, however

they gain physical relevance for some selected values of the (m,n) parameters, which yields

N = 4, N = 2 and bosonic (super)conformal partial waves in four dimensions together with

purely internal conformal partial waves. Critically, this all comes from the very same coeffi-

cient function Rαβγλµ which does not depend on any particular group, but rather the Young

tableaux (λ, µ) only. The precise group only comes in via the (super) Schur polynomials.

Further to this, we have re-summed the infinite expansion into a function. In particular,

we made use of a determinant form of the super Schur polynomials to produce an analogous

determinant like form for the superconformal partial wave in a re-summed form. Again,

this is for completely arbitrary (m,n) values. We expect that in the physically relevant

cases, these forms will be useful for bootstrap applications.
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We then considered (m,n) = (2, 2) which givesN = 4 analytic superspace and initiated

a detailed analysis of mixed charge half BPS four-point functions in the free theory. We

analysed the free theory OPE coefficients — in both the SU(N) and the U(N) gauge theory

— of a number of correlators including the like-charge correlators 〈1111〉, 〈2222〉 and 〈3333〉,
along with the mixed charge cases 〈1122〉, 〈2233〉, 〈4233〉 and finally 〈5344〉, with the final

two left for the appendix. We finally considered the multiplet rearrangement due to the

recombination of short operators into long operators for the SU(N) theory. In particular

the form of the 〈2233〉 correlator in the SU(N) gauge theory implies that there must be non-

trivial twist four sector appearing in the 〈3333〉 correlator which remains protected. Using

the non-trivial information that can be extracted from 〈2233〉 together with knowledge of

the number of such protected operators only we are able to solve this degeneracy in this

case. Thus we are able to fully determine the free-theory OPE coefficients of the 〈3333〉
correlator in the interacting SU(N) theory.

Looking forward, there are a number of directions to take. Computationally, in the

N = 4 SYM case there is much data — anomalous dimensions and structure constants

— to be extracted, which can then be compared to those computed via integrability.

Moreover, by understanding what the dimensionality of the vectors COp1p2
are and using

its inner product we could go ahead and work out the precise OPE coefficients for further

correlators, in particular those which we have not studied all the way here.

On the bootstrap side it would be interesting to revisit and continue the work of [22, 24]

analysing the superconformal bootstrap in N = 4 SYM for higher charge correlators.

Other supercofnromal theories not covered by the Grassmanian theories here the mys-

terious six-dimensional (2, 0) theory. A superconformal partial wave analysis of the energy-

momentum correlator in the (2, 0) theory was performed in [43] and superconformal par-

tial waves were also considered in [20]. On the bootstrap side there has been recent work

analysing the restrictions on anomalous dimensions for this theory in [44]. It would also be

interesting to see if the method presented here can be modified to this and related theories.
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A Proof of conformal partial wave for GL(m)

In this section we present a proof for the form of the conformal partial wave presented

in (3.40) and in particular the coefficients in (3.41). The proof follows a similar procedure
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to that of [5] for the conformal 4d case (m = 2, n = 0). For conformal partial waves in

GL(m), the space-time coordinate xαα̇ is an m-dimensional matrix, where

x2
ij := det(xij) =

1

m!

(
xα1
ijα̇1

. . . xαmijα̇m

)
εα̇1...α̇mεα1...αm . (A.1)

We may then consider some scalar operators Φ∆(x) which take representation in SL(m).

The four-point function of these operators is given by

〈Φ∆1(x1)Φ∆2(x2)Φ∆3(x3)Φ∆4(x4)〉 =
1

(x2
12)

∆1+∆2
2 (x2

34)
∆3+∆4

2

(
x2

14

x2
24

) 1
2

∆21
(
x2

13

x2
14

) 1
2

∆43

F (x).

(A.2)

Where as in the main text, F (x) is a function of the mmany eigenvalues of z=x12x
−1
24 x43x

−1
31

labeled xi. We consider inverse variables in the first instance as it will be easier to apply

the Casimir operator in this way, we call ω = z−1. In fact, since we will be taking Schur

polynomials of this matrix, we can diagonalise ω to be diag(1/x1, 1/x2, . . . , 1/xm), and we

call wi := 1/xi.

We are considering the Grassmannian Gr(m, 2m) which can be viewed as the space

of 2m × m matrices given by uAα . This is where the small Greek indices refer to the

isotropy group whilst the big Latin indices refer to the global group. Explicitly, one can

put coordinates on this by using the section

uAα =
(
δβα, x

β̇
α

)
, ūα̇A =

(
−xα̇α
δα̇
β̇

)
, (A.3)

So that we have uAiαū
α̇
jA = xα̇ijα. In the m = 2 case, we may view uAα as being a pair of

twistors, as was used in a similar context in [6]. The benefit of this is that the generators

of GL(m) are given by

DA
B = uαA

∂

∂uαB
, (A.4)

which satisfies the algebra: [
DA
B, D

C
D

]
= δCBD

A
D − δADDC

B . (A.5)

The conformal partial waves are eigenfunctions of the quadratic Casimir operator which

will act on the four-point function (A.2) at points 1 and 2. This is given by

1

2
D2

12 =
1

2
(DA

1B +DA
1B)(DB

1A +DB
1A). (A.6)

In order to find the coefficients r
αβγλ
µ1,...,µm , in an expansion in Schur polynomials we will

proceed by doing two things. Firstly we will reexpress (A.6) in terms of the eigenvalues of

ω; namely wi, by considering its action on GL(m) Schur polynomials of ω. We can then

trivially invert the eigenvalues, and then apply it to the correlation function (A.2). This

will lead to an action upon the conformal partial wave F λ(x) =
∑

µ≥λ t
λ
µ1,...,µmsµ(x), which

in turn leads to a recursion relation on t
λ
µ1,...,µm . The derivation then concludes by finding

that for the superconformal partial wave associated to this work a form of these coefficients

is given by r
αβγλ
µ1,...,µm given in (3.41).
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A.1 Eigenvalue basis

Now let us consider the entire correlator function in (A.2), in which we take the function

F (w) to a be linear combination of Schur polynomials, a direct application of the Casimir

gives

1

2
D2

12 〈Φ(x1)Φ(x2)Φ(x3)Φ(x4)〉 =

1

(x2
12)

∆1+∆2
2 (x2

34)
∆3+∆4

2

(
x2

14

x2
24

) 1
2

∆21
(
x2

13

x2
14

) 1
2

∆43

×

[(
1

2
(∆34 −∆12)

∂

∂ tr(ω)
− 1

4
∆34∆12

m∑
i=1

1

wi

)
F (w) +

1

2
D2

12F (w)

]
. (A.7)

Since F (ω) is a linear combination of Schur polynomials it is useful to consider the

action of the Casimir upon these first. We note that since DA
12Bu

α
iC = uαiBδ

A
C and DB

12Aū
C
iδ̇

=

−δCA ūBiδ̇ for i = 1 or 2, it follows that

D2
12ω

α
β = 2(2mωαβ −mδαβ ),

DI
12Jω

α
βD

J
12Iω

γ
ρ = 2ωαρω

γ
β − ω

α
ρ δ

γ
β − δ

γ
βω

α
ρ . (A.8)

The GL(m) Schur polynomial admits the following form in terms of the matrix ω

sλ(w) =
1

m!

∑
σ∈Sm

χλ(σ)ω
ασ(1)
α1 ω

ασ(2)
α2 . . . ω

ασ(m)
αm =

1

m!

∑
ai

χλ({ai})C({ai})
m∏
i=1

tr(ωi)ai ,

(A.9)

where
∑

i λi = m, and χλ is the character of the corresponding Sm representation in the

first equality. In the second equality the set {ai} is the number of i-cycles (subject to the

constraint
∑

i ai = m), whilst C({ai}) is the number of terms in a given conjugacy class of

Sm. By using this form of the Schur polynomial together with (A.8), we find

1

2
D2

12sλ(w) =
(
2mωαβ −mδαβ

) ∂sλ(w)

∂ωαβ
+ ωαρ

(
ωγβ − δ

γ
β

) ∂2sλ(w)

∂ωγρ∂ωαβ
. (A.10)

In order to retrieve the usual form in terms of m variables wi, one simply diagonalises the

ω matrices.

The first two terms of (A.10) are linear in differential operators and are therefore

trivial to diagonalise. The corresponding eigenvalue result will also be in terms of linear

differential operators. The results are

2mωαβ
∂sλ(w)

∂ωαβ
= 2m

[
n∑
i=1

wi
∂

∂wi

]
sλ(w) = 2m

m∑
i=1

λisλ(w),

mδαβ
∂sλ(w)

∂ωαβ
= m

∂sλ(w)

∂ tr(ω)
=m

[
m∑
i=1

∂

∂wi

]
sλ(w)=m

m∑
i=1

(λi − i+m)s(λ1,λ2,...,λi−1,...,λm)(w).

(A.11)

A proof of the r.h.s. of the second expression can be found in appendix A of [45].
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The last two terms of (A.10) are slightly more non-trivial than the previous cases,

since these are quadratic in differentials, however in the eigenvalue basis it may include

quadratic as well as linear differentials. Instead, we can apply the matrix action of quadratic

differential terms upon
∏m
i=1 tr(ωi)ai , and consider as many different values of m in which

in it takes to find a consistent differential operator in terms of wi. It is good enough to

consider
∏m
i=1 tr(ωi)ai since this produces symmetric polynomials upon diagonalisation.

We begin by defining the Vandermonde determinant:

vdet(m)(w) = (−1)

(
m

2

)
detij(w

j−1
i ) = detij(w

m−j
i ) =

∏
1≤i<j≤m

(wi − wj), (A.12)

one then finds that

ωαρ ω
γ
β

∂2

∂ωγρ∂ωαβ

m∏
i=1

tr(ωi)ai

=

− n∑
j=1

j2aj tr
(
ω2j
)

tr (ωj)
2 +

m∑
j=1

j−2∑
k=0

jaj tr
(
ωk+1

)
tr
(
ωj−k−1

)
tr (ωj)

+

m∑
k=1

m∑
j=1

jkajak tr
(
ωj+k

)
tr (ωj) tr (ωk)

 m∏
i=1

tr(ωi)ai ,

(A.13)

by putting in various examples for m, we find that the following operator always gives the

correct result

ωαρω
γ
β

∂2

∂ωγρ∂ωαβ
=

1

vdet(m)(wi)

n∑
i=1

w2
i

∂

∂w2
i

vdet(m)(wi)−2(m−1)

m∑
i=1

wi
∂

∂wi
−m

3
(m−1)(m−2).

(A.14)

Similarly we find

ωαρ δ
γ
β

∂2

∂ωγρ∂ωαβ

m∏
i=1

tr(ωi)ai

− m∑
j=1

j2aj tr
(
ω2j−1)

tr (ωj)
2 +

m∑
j=1

j−2∑
k=0

jaj tr
(
ωk
)

tr
(
ωj−k−1

)
tr (ωj)

+

m∑
k=1

m∑
j=1

jkajak tr
(
ωj+k−1

)
tr (ωj) tr (ωk)

 m∏
i=1

tr(ωi)ai ,

(A.15)

in which with various different values of m, always agrees with the operator:

ωαρ δ
γ
β

∂2

∂ωγρ∂ωαβ
=

1

vdet(m)(w)

m∑
i=1

∂

∂wi
wi

∂

∂wi
vdet(m)(w)−m

m∑
i=1

wi
∂

∂wi
. (A.16)

Putting this together with (A.7), inverting the coordinates so that the Casimir is in

terms of xi where xi = 1
wi

, namely with D(m) := 1
2D

2
12|wi→ 1

xi

, we find that

D(m) =
1

vdet(m)(x)

[
m∑
i=1

[
xi

(
−xi

(
1

2
(∆34−∆12)−2m+3

)
−2m+2

)
∂

∂xi
+(1−xi)x2

i

∂2

∂x2
i

−
(

1

2
∆21 −m+ 1

)(
1

2
∆34 −m+ 1

)
xi

]
+
m

3
(m− 1)(2m− 1)

]
vdet(m)(x).
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A.2 Recursion relation

The action of the Casimir operator corresponding to the contribution of an operator in the

OPE yields the eigenvalue equation on the four-point function

D(m) 〈Φ(x1)Φ(x2)Φ(x3)Φ(x4)〉 =
m∑
i=1

λi(λi − (2i− 1)) 〈Φ(x1)Φ(x2)Φ(x3)Φ(x4)〉 . (A.17)

This eigenvalue is simply the value of the Casimir for the corresponding representation of

SL(2m) (rather than the induced SL(m) representation).

We define the GL(m) conformal partial wave in (A.2) to have the form of an expansion

in Schur polynomials

F (x) =
∑

λi+1≥λi

F λ(x) where F λ =
∑
µ≥λ

tλµ1,...,µmsµ(x) . (A.18)

By noting the action of the Casimir upon the Schur polynomial

D(m)sµ(x) =(
m∑
i=1

µi(µi−(2i−1))

)
sµ(x)−

(
m∑
i=1

(µi−(i−1)−1

2
∆12)(µi−(i−1)+

1

2
∆34)s(...,µi+1,... )(x)

)
,

(A.19)

and following (A.17), it follows that the action of the quadratic Casimir operator upon the

four point function yields the recursion relation on t
λ
µ1,...,µm

p∑
i=1

(
(µi−λi)(λi+µi−(2i−1))tλµ1,...,µm−

(
µi−i−

1

2
∆12

)(
µi−i+

1

2
∆34

)
t
λ
µ1,...,µi−1,...,µm

)
=0

(A.20)

which is solved by:

tλµ1...µm =

m∏
i=1

(
λi + 1− i+ 1

2∆21

)µi−λi (λi + 1− i+ 1
2∆34

)µi−λi
(µi − λi)! (2λi − 2i+ 2)µi−λi

(A.21)

where (x)y is the raising Pochhammer symbol. In taking m = 2, we find agreement with [5].

However, in the supersymmetric case the conformal partial wave is accompanied with the

super-cross ratio (
g13g24

g12g34

) 1
2
γ

Fαβγλ(Z) = sdet(Z)
1
2
γFαβγλ(Z). (A.22)

In view of this we instead consider a shifted conformal partial wave

F λ+m =
∑
µ≥0

tλ+m
µ1,...,µmsµ+m(x), (A.23)
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where λ + m = [λ1 + m,λ2 + m, . . . , λm + m]. Noting that sλ+m = (
∏m
i=1 xi)

m sλ =

det(z)msλ, we find that

F λ+m =

(
m∏
i=1

xi

)m∑
µ≥λ

tλ+m
µ1,...,µmsµ(x) (A.24)

where now we may now define the resulting coefficients by r
αβγλ
µ1,...,µm

rαβγλµ1,...,µm := tλ+m
µ1,...,µm =

m∏
i=1

(λi + 1− i+ α)µi−λi (λi + 1− i+ β)µi−λi

µi! (2λi + 2− 2i+ γ)µi−λi
. (A.25)

Where here, α = 1
2 (2m−∆12), β = 1

2 (2m+ ∆34) and γ = 2m.

B Further results for the free theory

In this section, we give the free theory OPE coefficients of correlation functions 〈4233〉 and

〈5344〉. These cases distinguish themselves from the cases studied in the main text. Firstly,

we now have p12 = 2 6= 0. Secondly, for the first time there can be more than one type

of half BPS operator, even in the SU(N) gauge theory (e.g. at charge four tr(W 4) as well

as tr(W 2)2.)

〈4233〉

The correlator is written as

〈4233〉 = A
(
g14g

2
24g

3
13 + g3

14g
2
23g13

)
+Bg2

13g23g24g
2
14 + Cg2

12g13g
2
34g14

+D
(
g12g14g24g34g

2
13 + g12g

2
14g23g34g13

)
= g3

12g
3
34

g14

g24

((
g13g24

g12g34

)
f2(C, 0)+

(
g13g24

g12g34

)2

f4(D,D, 0)+

(
g13g24

g12g34

)3

f6(A,B,A, 0)

)
.

(B.1)

We can tabulate the SU(N) colour factors

Correlator type A B C D

〈A4A2A3A3〉 0 72(N2−1)(N2−4)(N2−6)
N2

72(N2−1)(N2−4)(2N2−3)
N2

144(N2−1)(N2−4)(N2−6)
N2

〈(A2A2)A2A3A3〉 0 144(N2−1)(N2−4)
N

72(N2−1)(N2−4)(1+N2)
N

288(N2−1)(N2−4)
N

(B.2)
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There are many potential trace structures appropriate to the U(N) theory, we tabulate

some of the possible partitions

Correlator type A B C D

〈A4A2A3A3〉 216N2(1 +N2) 72N2(5 +N2) 144N2(2 +N2) 144N2(5 +N2)

〈(A2A2)A2A3A3〉 432N3 144N(1 + 2N2) 72N(2 +N)(1 +N2) 288N(1 + 2N2)

〈(A1A3)A2A3A3〉 54N3(7 +N2) 216N(1 +N2) 108N(1 + 3N2) 432N(1 +N2)〈
(A2

1A2)A2A3A3

〉
216N2(1 +N2) 432N2 36N2(9 + 2N +N2) 864N2〈

A4(A1)2(A1A2)(A1A2)
〉

432N3 16N(12 + 13N2 + 2N4) 48N(6 +N + 2N2) 96N(4 + 5N2)〈
(A1)4(A1)2(A1)3(A1)3

〉
432N6 432N6 432N6 864N6〈

(A2
1A2)(A1)2(A1A2)A3

〉
72N2(5 +N) 24N2(14 +N + 3N2) 48N2(5 + 4N2) 48N2(15 +N + 2N2)〈

(A2A2)(A1)2(A1A2)A3

〉
144N(2 +N) 48N(4 + 4N2 +N3) 48N(4 + 5N2) 96N(6 +N + 2N2)

(B.3)

In comparing with the appropriate SCPW expansion one finds the result

〈4233〉 = g3
12g

3
34

g14

g24

(g13g24

g12g34

)∑
λ≥0

A2[λ]F
012[λ] +

(
g13g24

g12g34

2 ∑
λ1≥λ2≥0

A4[λ1,λ2]F
124[λ1,λ2]

+

(
g13g24

g12g34

)3 ∑
λ1≥λ2≥λ3≥0

A6[λ1,λ2,λ3]F
236[λ1,λ2,λ3]

)
, (B.4)

with the following coefficients

A2[0] = C all else 0,

A4[λ1] =
Dλ1!(λ1 + 2)!

(2λ1 + 1)!
for λ1 ∈ Zeven and all else 0,

A6[λ1,λ2] =
4(−1)λ2 (λ1 + 2) (λ1 + 3) (λ2 + 2) ((λ1 + 2)!) 2 ((λ2 + 1)!) 2

(2(−1)λ2λ1 + 5(−1)λ1 − (−1)λ2) (2λ1 + 4)! (2λ2 + 2)!

×
(

1

24
A (12 (λ1 − 3)λ1 + (96λ1 − 12λ2 (λ2 + 3) + 25) + 23) + B(−1)λ2

)
for λ1 − λ2 ∈ Zeven ≥ 0, λ2 ≥ 0. (B.5)

All other coefficients are vanishing.

As a non-trivial check we can compute the OPE coefficients for the correlator 〈3342〉.
We find the the explicit ingredient of the SCPW expansion change, namely one uses F 122[λ],

F 234[λ] and F 346[λ] instead of the SCPW’s used in (B.4). However, critically the result for

the OPE coefficients give identically the same result as in (B.4). Furthermore we also note

that the results for A6[λ1,λ2] agree perfectly in the large N limit with those obtained from

free 3-point functions in [46] (see the first row of table 5).
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〈5344〉

The correlator is given by

〈5344〉 = A(g14g
3
24g

4
13 + g4

14g
3
23g13) +B(g2

14g23g
2
24g

3
13 + g3

14g
2
23g24g

2
13)

+ C(g12g14g
2
24g34g

3
13 + g12g

3
14g

2
23g34g13) +D(g12g

2
13g

2
14g23g24g34)

+ E(g2
12g13g

2
14g23g

2
34 + g2

12g
2
13g14g24g

2
34) + F (g3

12g13g14g
3
34)

= g4
12g

4
34

g14

g24

((
g13g24

g12g34

)
f2(F, 0)+

(
g13g24

g12g34

)2

f4(E,E, 0)+

(
g13g24

g12g34

)3

f6(C,D,C, 0)

+

(
g13g24

g12g34

)4

f8(A,B,B,A, 0)

)
. (B.6)

We have given some of the colour factors in table 1 and 2. The SCPW expansion is given by

〈5344〉 = g3
12g

3
34

g14

g24

(g13g24

g12g34

)∑
λ≥0

A2[λ]F
012[λ] +

(
g13g24

g12g34

2 ∑
λ1≥λ2≥0

A4[λ1,λ2]F
124[λ1,λ2]

+

(
g13g24

g12g34

)3 ∑
λ1≥λ2≥λ3≥0

A6[λ1,λ2,λ3]F
236[λ1,λ2,λ3]

+

(
g13g24

g12g34

)4 ∑
λ1≥λ2≥λ3≥λ4≥0

A8[λ1,λ2,λ3,λ4]F
348[λ1,λ2,λ3,λ4]

)
, (B.7)

whereby the result is structurally identical to (B.5) for the γ = 2, 4 and 6 but for changes

in the precise colour factors:

A2[0] = F all else 0,

A4[λ1] =
Eλ1!(λ1 + 2)!

(2λ1 + 1)!
for λ1 ∈ Zeven and all else 0,

A6[λ1,λ2] =
4(−1)λ2 (λ1 + 2) (λ1 + 3) (λ2 + 2) ((λ1 + 2)!) 2 ((λ2 + 1)!) 2

(2(−1)λ2λ1 + 5(−1)λ1 − (−1)λ2) (2λ1 + 4)! (2λ2 + 2)!

×
(

1

24
C (12 (λ1 − 3)λ1 + (96λ1 − 12λ2 (λ2 + 3) + 25) + 23) +D(−1)λ2

)
for λ1 − λ2 ∈ Zeven ≥ 0, λ2 ≥ 0 and all else zero. (B.8)

For the γ = 8 sector we get:

A8[λ1,λ2] =nλ1,λ2

1

6
(λ1+4) (2λ2+5)

(
A (λ1+2) (λ1+5) (λ1−λ2+1) (λ2+1) (λ2+4) (λ1+λ2+6)

+ 12B
((

(−1)λ2 + 1
)

(λ1 + 2) (λ1 + 5) +
(
(−1)λ2 − 1

)
(λ2 + 1) (λ2 + 4)

) )
for λ1 − λ2 ∈ Zeven ≥ 0, λ2 ≥ 0 and zero otherwise,
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A8[λ1,λ2,1] =nλ1,λ2

1

12
(λ1 + 4) (λ1 − λ2 + 1) (λ1 + λ2 + 6) (2λ2 + 5)

(
A (λ1 + 1) (λ1 + 6)λ2 (λ2 + 5)

+ 12B
(
(−1)λ2 − 1

) )
for λ1 − λ2 ∈ Zodd ≥ 1, λ2 ≥ 1 and zero otherwise,

A8[λ1,λ2,2] =nλ1,λ2

1

30
(λ1 + 4) (2λ2 + 5)

(
Aλ1 (λ1 + 7) (λ1 − λ2 + 1) (λ2 − 1) (λ2 + 6) (λ1 + λ2 + 6)

+ 12B
((

(−1)λ2 + 1
)
λ21 + 7

(
(−1)λ2 + 1

)
λ1 +

(
(−1)λ2 − 1

)
(λ2 − 1) (λ2 + 6)

) )
for λ1 − λ2 ∈ Zeven ≥ 0, λ2 ≥ 2 and zero otherwise, (B.9)

where

nλ1,λ2 =
((λ1 + 3)!) 2 ((λ2 + 3)!) 2

(2λ1 + 6)! (2λ2 + 6)!
. (B.10)

C Alternative form for GL(m|n) characters

In order to have a more direct link between the determinantal formula for the conformal

partial waves in (3.45), it will be useful to derive an alternative determinantal form for the

super Schur polynomial. It has a similar form to (3.22) but does not involve the conjugate

Young tableau and has a different dimension. The matrix (whose determinant we take)

has dimension n+ p where p ≥ 0 can be any integer such that

p ≥ m− n and p ≥ λT1 . (C.1)

Recall that λT1 is the number of columns in the conjugate Young tableau, i.e. the height of

the Young tableau λ.

The new formula is then given as

sλ(x|y) = (−1)
1
2

(2m+2p+n)(n−1)D−1 det

(
X̃λ R

Kλ Y

)
, (C.2)

where D,R are just as defined in (3.23), and X̃λ is also very similar to Xλ, just with a

different range. However the Y matrix has no dependence on the representation and instead

we introduce a representation dependent matrix Kλ which only has zero’s and minus one’s

X̃λ =
(

[x
λj+m−n−j
i ]

)
1≤i≤m
1≤j≤p

Kλ =
(
− δi;−(λj+m−n−j)

)
1≤i≤p+n−m
1≤j≤p

Y =
(
yi−1
j

)
1≤i≤p+n−m
1≤j≤n

. (C.3)

Here we define

[xai ] :=

{
xai a ≥ 0

0 a < 0 ,
(C.4)

where the square brackets define the regular part, giving zero if the power is negative.
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Let us see this new form in the above example (3.26) with GL(2|3) and λ = (3, 2, 2, 1).

We need p ≥ 4 so we choose p = 4, then this alternative formula (C.2) gives

sλ(x|y) = −D−1 det



x1 0 0 0 1
x1−y1

1
x1−y2

1
x1−y3

x2 0 0 0 1
x2−y1

1
x2−y2

1
x2−y3

0 −1 0 0 1 1 1

0 0 −1 0 y1 y2 y3

0 0 0 0 y2
1 y2

2 y2
3

0 0 0 −1 y3
1 y3

2 y3
3

0 0 0 0 y4
1 y4

2 y4
3



. (C.5)

One can quickly see that (3.26) and (C.5) are equal. Indeed in (C.5) one can delete columns

2, 3, 4 (since they have only one non-zero entry in) and the corresponding rows 3, 4, 6 to

arrive at the 4× 4 matrix of (3.26) (up to a row swap).

The example illustrates the general proof that (3.22) and (C.2) are equal in general.

Starting with (C.2), we first note that all non-zero entries of K correspond to rows and

columns that can be trivially deleted to give the reduced matrix. The Kλ matrix has a non-

zero entry in row j if and only if i = −(λj +m− n− j). This requires λj − j − n+m < 0

and so the corresponding entries in column j of Xλ vanish (since we take the regular

part (C.4)). We conclude that any non-zero entry in the Kλ matrix is the unique non-zero

entry in its column. We can therefore delete this column and the corresponding row i

without changing the determinant (up to a minus sign which we account for separately).

On deleting the columns X̃λ reduces to Xλ of (3.22) and the matrix Kλ reduces to the zero

matrix of (3.22). We then just need to show that after all the corresponding rows have

been deleted, Y reduces to Yλ. The matrix Y has powers yi−1
j for all i = 1 . . . p + n −m.

We delete (via Kλ) rows i = −(λj +m−n− j) for j = k . . . p. We wish to show that we are

left with y
λTi +n−m−i
j for i = 1 . . . k′ − 1. In other words we need to show that the disjoint

union of the two sets

S1 =
{
λTi + n−m− i : 1 ≤ i ≤ k′ − 1

}
, S2 =

{
− (λj +m− n− j + 1) : k ≤ j ≤ p

}
(C.6)

form a partition of the set of integers from 0 to p+n−m−1:

S1 + S2 =
{

0, 1, 2, . . . , p+n−m−1
}
. (C.7)

This is again most easily seen diagrammatically. The set S1 is represented by the

number of boxes below the shaded diagonal down to the bottom of the Young tableau.

The set S2 is the number of boxes between the Young tableau on the left and the shaded

boxes on the right. Together these sets count all numbers from 0 to p+n−m−1 precisely
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once as we see in the example below. Here we choose p = 9 although one can easily check

that it works for any p ≥ 9. Recall that m = 7, n = 10 in this example.

1467911

2

3

5

8

10

In this example the set {λTi +n−m−i} : i = 1 . . . k′−1} = {0, 1, 4, 6, 7, 9, 11} corresponding

to the vertical arrows, whereas the set {−(λj +m−n−j) : k ≤ j ≤ p} = {2, 3, 5, 8, 10}, the

horizontal arrows. Together they make the full set of numbers from 0 to 11 = p−m+n−1.

To prove this in general, first convince oneself that a number cannot be in both S1 and S2

for a properly shape Young tableau, so the two sets are disjoint. Then note that there are

(k′ − 1) + (p − k + 1) = p − m + n elements in the two sets. Finally, since all numbers

are positive (or zero) and the highest value7 is p −m + n − 1 then they must correspond

precisely to all numbers from 0 to p−m+ n.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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