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Atmospheric scintillation in astronomical photometry
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ABSTRACT
Scintillation noise due to the Earth’s turbulent atmosphere can be a dominant noise source in
high-precision astronomical photometry when observing bright targets from the ground. Here
we describe the phenomenon of scintillation from its physical origins to its effect on pho-
tometry. We show that Young’s scintillation-noise approximation used by many astronomers
tends to underestimate the median scintillation noise at several major observatories around
the world. We show that using median atmospheric optical turbulence profiles, which are
now available for most sites, provides a better estimate of the expected scintillation noise and
that real-time turbulence profiles can be used to precisely characterize the scintillation-noise
component of contemporaneous photometric measurements. This will enable a better under-
standing and calibration of photometric noise sources and the effectiveness of scintillation
correction techniques. We also provide new equations for calculating scintillation noise, in-
cluding for extremely large telescopes where the scintillation noise will actually be lower than
previously thought. These equations highlight the fact that scintillation noise and shot noise
have the same dependence on exposure time and so if an observation is scintillation limited, it
will be scintillation limited for all exposure times. The ratio of scintillation noise to shot noise
is also only weakly dependent on telescope diameter and so a bigger telescope may not yield
a reduction in fractional scintillation noise.

Key words: atmospheric effects – instrumentation: photometers – methods: observational –
site testing – techniques: photometric – planets and satellites: detection.

1 IN T RO D U C T I O N

High-precision photometry is key to several branches of astronom-
ical research, including (but not limited to) the study of extrasolar
planets, astroseismology and the detection of small Kuiper-belt ob-
jects within our Solar system. The difficulty with such observations
is that, although the targets are bright, the variations one needs to de-
tect are often small (typically ∼0.01 per cent to ∼0.1 per cent). This
is within the capabilities of modern detectors. However, when the
light from the star passes through the Earth’s atmosphere, regions
of turbulence cause intensity fluctuations (seen as twinkling by the
naked eye) called scintillation. This scintillation, which induces
photometric variations in the range of ∼0.1–1.0 per cent, limits the
detection capabilities of ground based telescopes (e.g. Brown &
Gilliland 1994; Heasley et al. 1996; Ryan & Sandler 1998).

Knowing the level of scintillation noise is important because it
will enable performance assessment, calibration and optimization
of photometric instrumentation. It will also help to explain and con-
strain model fits to photometric data (for example, extrasolar planet
transit/eclipse light curves; Föhring 2014), and to help develop
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scintillation correction concepts such as Conjugate-Plane Photom-
etry (Osborn et al. 2011), Tomographic wavefront reconstruction
(Osborn 2015) and active deformable mirror techniques (Viotto
et al. 2012). It would also enable passive techniques such as ‘lucky
photometry’ where only data taken during photometric conditions
(i.e. in times of low scintillation noise) are used in the reduction
process.

Young proposed an equation which can be used to estimate the
scintillation noise for an observation given the telescope’s altitude
and diameter, and the observation’s exposure time and airmass.
This equation is regularly used by many astronomers (for example
Southworth et al. 2009) to estimate the scintillation noise in their
measurements. Recent work by Kornilov et al. (2012) showed that
this equation tends to underestimate the median scintillation noise
by a mean factor of 1.5.

As well as presenting new results on scintillation, we hope this
paper will serve as a useful guide for astronomers to understand,
estimate the size of, and correct for scintillation. We show that us-
ing the theoretical scintillation noise calculated from the median
optical turbulence profile for a particular site is a better estimate
of the median scintillation noise. However, we also show that the
measured scintillation noise has large variability due to changes in
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1708 J. Osborn et al.

Figure 1. Example simulated pupil image for a 2.5 m telescope and a single
turbulent layer at 10 km (left) and an example of a real pupil image from
the 2.5 m Isaac Newton Telescope on La Palma (right).

the optical turbulence profile. Therefore, if one wishes to know the
scintillation noise during a particular observation, the contempora-
neous optical turbulence profile should be used if possible. With the
proliferation of adaptive optics (AO) systems, real-time turbulence
profilers are becoming more common place at major observatories
(see Section 3.2). As the scintillation noise is predominantly caused
by high-altitude turbulence, we can assume that a single profiler at
an observatory site can be used to precisely predict the scintillation
noise applicable to all of the local telescopes. This dominance of the
high-altitude turbulence also explains why it is possible to observe
highly photometric conditions during periods of bad seeing.

In Section 2, the physical origin of scintillation noise is described
and simulated light curves are shown. Section 3.1 reviews Young’s
scintillation approximation and in Section 3.2 we compare the scin-
tillation noise from Young’s approximation with scintillation-noise
measurements from atmospheric profiling instruments. In Section 4,
we look at the magnitude of the scintillation noise on astronomi-
cal photometric measurements. In Section 5, we present modified
equations for the case of extremely large telescopes, when the outer
scale of the turbulence becomes critical and, in Section 6, telescopes
with large secondary mirrors.

2 T H E O RY

Optical turbulence is caused by the mechanical mixing of layers
of air with different temperatures and hence density. The refractive
index of air depends on its density and so turbulence at a boundary
of airmasses with different temperatures creates a continuous screen
of spatially and temporally varying refractive indices.

The wavefront from an astronomical source can be considered flat
at the top of the Earth’s atmosphere. As it propagates to the ground
it becomes aberrated by the optical turbulence which forms a limit
to the precision of measurements from ground-based telescopes (for
example, see fig. 1 in Osborn et al. 2011).

The effect of optical turbulence is twofold. The first effect is to
deform the wavefront by retarding the sections passing through re-
gions of higher refractive index. This limits the angular resolution
of ground-based telescopes and is a first order effect as it depends
on the first derivative (i.e. local tilt) of the wavefront. The second
effect of the turbulence is to locally focus and defocus the wave-
front, which results in spatial intensity fluctuations, or speckles, in
the pupil plane of a telescope (Fig. 1). This is known as scintillation.
Scintillation is a second-order effect as it is caused by the second
derivative or curvature of the wavefront. It is the propagation of
this curvature that leads to the intensity speckles; therefore, it is
the higher altitude turbulence that is primarily responsible for this
effect. This is different to the phase aberrations causing images to

Figure 2. Example section of a simulated scintillation light curve. The
intensity variations here are due entirely to atmospheric scintillation. In this
case the telescope has a diameter of 8 m and the atmospheric turbulence is
given by the mean profile for Paranal.

blur, which is dominated by the strongest turbulent layer, often near
the ground (Osborn et al. 2010). Therefore, atmospheric seeing (a
measure of image quality) and photometric quality can be indepen-
dent. It is possible to observe conditions which have bad seeing but
good photometric quality.

The characteristic size of the scintillation speckles is given by the
radius of the first Fresnel zone, rF = √

zλ, where z is the propagation
distance from the turbulent layer and λ is the wavelength of the light.
As a wavefront propagates away from a turbulent layer, increasing
z and hence rF, the spatial intensity fluctuations become larger in
terms of spatial extent. This is not dependent on the strength of the
layer, which only affects the magnitude of the intensity fluctuations
and not their spatial properties; for example, a turbulent layer at
10 km observed at 500 nm results in speckles of size ∼0.07 m,
irrespective of the strength of the turbulence.

The intensity speckles traverse the pupil with a velocity deter-
mined by the wind velocity of the turbulent layer. We assume that
the speckle evolution time-scale is longer than the wind crossing
time. Speckles from different layers move independently and super-
impose in the pupil plane. As the regions of higher intensity enter
and exit the pupil the integrated total intensity also varies. The faster
the wind speed the quicker the intensity will vary, demonstrating the
importance of the wind speed in estimating the scintillation noise. It
is these variations which lead to scintillation noise, which can limit
the precision of photometric measurements.

The amount of scintillation is referred to as the scintillation index,
σ 2

I , and is expressed as the variance of the normalized intensity from
the astronomical target. Assuming no other noise sources,

σ 2
I =

〈
I 2

〉 − 〈I 〉2

〈I 〉2 , (1)

where I is the measured intensity from the object as a function of
time and 〈〉 denotes an ensemble average. The scintillation noise is
therefore defined as

√
σ 2

I , and is the normalized scintillation noise.
Monte Carlo computer simulations allow us to study the structure

and effect of atmospheric scintillation independently of any other
phenomena. Fig. 2 shows a 5 s section of a simulated scintillation
light curve from an 8 m telescope. In this light curve, we see noise
covering a wide range of temporal frequencies, f. Fig. 3 shows the
power spectrum of the scintillation light curve. The power spectrum,
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Scintillation in astronomical photometry 1709

Figure 3. Scintillation power spectrum of the light curve shown in Fig. 2.
The power spectrum shows significant scintillation power over a wide range
of frequencies.

�χ (f), shows that scintillation noise can be split into two regimes.
Above a certain frequency, the power spectrum shows a power-law
dependence of −11/3. Below this frequency the spectrum is flat.
This turning point is determined by the amount of spatial averaging
of the scintillation and is dependent on the telescope diameter and
the wind velocity.

3 ESTIMATING SCINTILLATION NOISE

3.1 Estimating scintillation noise with Young’s approximation

A standard and often implemented equation for calculating the ex-
pected scintillation variance at any particular site is Young’s approx-
imation. This approximation, first suggested by Young (1967), is
intended as an approximation and not a precise prediction. Young’s
approximation is given by

σ 2
Y = 10 × 10−6D−4/3t−1(cos γ )−3 exp (−2hobs/H ), (2)

where D is the diameter of the telescope, t is the exposure time of the
observation, γ is the zenith distance, hobs is the altitude of the obser-
vatory and H the scaleheight of the atmospheric turbulence, which
is generally accepted to be approximately 8000 m. All parameters
are in standard SI units.

3.2 Estimating scintillation noise with atmospheric
turbulence profiles

Young’s equation is an empirical approximation based on observa-
tions and is not intended to provide a precise prediction. Therefore,
a more precise option is to use concurrent measurements of the
atmospheric turbulence to estimate the scintillation noise.

As the scintillation noise is caused by the intensity speckles en-
tering and leaving the telescope pupil, there are three regimes of
scintillation noise.

(i) For short exposures the intensity speckles appear frozen in the
pupil and no temporal averaging occurs.

(ii) For longer exposures the speckles traverse the pupil during
an exposure and the scintillation noise will be reduced by temporal
averaging. The amount by which the scintillation noise is reduced
is dependent on the wind speed.

(iii) For small telescopes of approximately the same size as the
speckles and smaller, there will be a significant wavelength depen-
dence. This is because the size of the speckles, rF, is wavelength
dependent.

The scintillation index for short exposures is given by Kenyon
et al. (2006) (see Appendix A for details),

σ 2
I ,se = 17.34D−7/3 (cos γ )−3

∫ ∞

0
h2C2

n (h) dh, (3)

and for long exposures,

σ 2
I ,le = 10.66D−4/3t−1 (cos γ )α

∫ ∞

0

h2C2
n (h)

V⊥(h)
dh, (4)

where C2
n(h) is the profile of the refractive index structure parameter,

a measure of the optical turbulence strength, h is the altitude of
the turbulent layer, with h = z cos (γ ), V⊥(h) is the wind velocity
profile and α is exponent of the airmass and is usually taken to
be −3.5. Note that α will depend on the wind direction and vary
between (cos γ )−3 for the case when the wind is transverse to the
azimuthal angle of the star, and (cos γ )−4 in the case of a longitudinal
wind direction. This difference comes from geometry; if the wind
direction is parallel to the azimuth of the star, the projected pupil
on to a horizontal layer is stretched by a factor of 1/cos γ .

We can re-arrange and solve equations (3) and (4) for exposure
time to find an expression for tknee, the exposure time at which the
scintillation noise moves from the short-exposure to long-exposure
regime,

tknee = 0.62D(cos γ )α+3
∫ ∞

0

1

V⊥(h)
dh, (5)

where −1 ≤ α + 3 ≤ 0 depending on the wind direction being paral-
lel or perpendicular to the azimuthal angle of the target, respectively.
This change from the short-exposure regime to the long-exposure
regime can be seen in the scintillation power spectrum shown in
Fig. 3. For atmospheric scintillation the change of regime occurs at
an exposure time of approximately a few hundredths to a few tenths
of a second.

It is interesting to note that in both the short-exposure and long-
exposure regimes, scintillation noise is independent of wavelength.
Therefore, in situations where the observations are scintillation
dominated and one is observing with a multiband instrument, e.g.
ULTRACAM (Dhillon et al. 2007), correcting one wavelength chan-
nel by another can reduce the scintillation noise, assuming that the
variability that one wishes to measure is restricted to one band. How-
ever, although the scintillation noise is independent of wavelength,
as observations move away from zenith the scintillation signals be-
come temporally separated due to the chromatic dispersion in the
atmosphere (Dravins et al. 1997). This effect is exacerbated when
the wind velocity is aligned with the azimuthal angle of the target.
In addition, if the observation is not scintillation dominated this
action can be detrimental to the total photometric noise as the other
noise sources will add in quadrature.

For small apertures, where the aperture size is smaller than the
spatial scale of the intensity fluctuations (D < rF, i.e. D is smaller
than a few tens of centimetres) the scintillation index can be ap-
proximated using the equation given by Dravins et al. (1998),

σ 2
I = 19.2λ−7/6 (cos γ )−11/6

∫ ∞

0
h5/6C2

n (h) dh. (6)

Several atmospheric optical turbulence profiling instruments are
now in regular use at many of the world’s premier observing sites.
It is therefore possible to estimate the scintillation noise using
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1710 J. Osborn et al.

Figure 4. Atmospheric optical turbulence profiles for the night of 2014-10-09 from stereo-SCIDAR on the INT. The upper plot shows the turbulence strength
profile and the lower plot shows the wind velocity profile. The colour-scale indicates the strength of the optical turbulence and the arrow length and direction
indicate the turbulence speed and direction at a given time and altitude.

techniques such as MASS (Multi Aperture Scintillation System;
Tokovinin & Kornilov 2007), SCIDAR (SCIntillation Detection
And Ranging; Vernin & Roddier 1973) and SLODAR (SLOpe De-
tection And Ranging; Wilson 2002). However, only the SLODAR
and SCIDAR methods can also measure the profile of the wind
velocity as a function of altitude, as required by equation (4).

Here we use stereo-SCIDAR (Osborn et al. 2013; Shepherd et al.
2013), a new high-resolution SCIDAR instrument, which can au-
tomatically obtain concurrent turbulence velocity and turbulence
strength profiles. Stereo-SCIDAR was installed on the 2.5 m Isaac
Newton Telescope (INT), La Palma, for three two-week campaigns
in 2014 and on the 1 m Jacobus Kapteyn Telescope (JKT) for three
two-week campaigns in 2013. An example atmospheric optical tur-
bulence profile for a whole INT night is shown in Fig. 4.

3.3 Comparing measured scintillation noise with Young’s
approximation

Fig. 5 demonstrates the difference between the long-exposure scin-
tillation noise as estimated by Young’s approximation (equation 2)
and that calculated from observed SCIDAR profiles (equation 4).
The scatter in Young’s approximation of the scintillation noise is
purely due to varying airmass during the observations. The scatter
in the SCIDAR scintillation noise is due to the varying airmass, the

contribution of the wind direction component in the exponent of the
airmass, and the inherent atmospheric variability; such variability
is not included in Young’s approximation.

Fig. 6 shows the distribution of the scintillation noise predicted
from the SCIDAR profiles using equation (4). The assumed tele-
scope size was 1 m and the exposure time was 1 s. The normalized
scintillation noise has a lognormal distribution with median 0.0036
and first and third quartiles of 0.0028 and 0.0048, respectively. For
comparison, the scintillation noise at zenith as estimated by Young’s
equation is 0.0026. Clearly, there is a large variability in observed
scintillation noise which is not reflected in Young’s single-value
approximation (equation 2).

In Fig. 7, we compare measured scintillation statistics from sev-
eral major observatories around the world (Kornilov et al. 2012)
including the values we have determined for La Palma in Fig. 6. We
show the median, first and third quartile scintillation noise and the
calculated Young’s estimate for each site. From this plot we see that
all of the observatories in this study show similar scintillation statis-
tics. However, La Palma and Mauna Kea have the lowest median
scintillation noise. San Pedro de Mártir (Mexico), Armazones and
Paranal have the highest median scintillation noise. Mauna Kea has
the smallest interquartile range suggesting stable low-scintillation
conditions, whilst San Pedro de Mártir has the largest interquar-
tile range, demonstrating that the conditions can be more variable
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Scintillation in astronomical photometry 1711

Figure 5. Scintillation noise comparison between Young’s approximation
(equation 2) and estimated scintillation noise from real SCIDAR profiles
(equation 4). We see that Young’s approximation tends to underestimate
the scintillation noise as measured by SCIDAR. We also see that SCIDAR
measures a much greater range of scintillation-noise values. This is due to
the variability of the atmospheric turbulence profile. The solid line represents
σY = σ I, le, and is where the points should lie if equations (2) and (4) agree.

Figure 6. Probability density function (PDF) of scintillation noise as es-
timated from real SCIDAR profiles (equation 4) for a 1 m telescope and
1 s exposure times. The solid and dashed red lines indicate the median and
first and third quartiles, respectively. The solid black line indicates the value
given by Young’s approximation (equation 2) at the zenith.

there. However, it should be noted that the data shown here are
for a limited set of data and as we have shown scintillation noise
can be extremely variable. In addition, we are only examining the
variance of the intensity fluctuations and have not included other
parameters such as the characteristic time-scale, which will have a
strong dependence on the typical wind velocity profile and may be
important for high-speed photometry.

Fig. 7 confirms that Young’s approximation underestimates the
measured scintillation noise at all sites, typically by a factor of
1.5. During any one night the scintillation noise will usually not
be equal to the median value and a large variation in scintillation
noise can be observed, even at the best locations. Fig. 7 also shows
that the best astronomical sites for seeing are not necessarily the
best for scintillation. For example, Mauna Kea and Paranal have

Figure 7. Expected and measured scintillation noise for major observatories
around the world. The bottom and top of the boxes indicate the first and third
quartiles and the dashed line shows the median measured scintillation noise.
The solid line external to the box indicates the expected value given by
Young’s approximation (equation 2). The data for La Palma is calculated
from recent results from stereo-SCIDAR on the INT, and the others are
extracted from Kornilov et al. (2012).

similar seeing statistics (for example Sarazin et al. 2008; Chun
et al. 2009) but the former is better than the latter for scintillation
noise according to the data shown in Fig. 7. One explanation for
this could be that the high-altitude turbulence is weaker and more
stable at Mauna Kea.

It is possible to add a coefficient to Young’s approximation to
make it match the measured median scintillation. The modified
Young’s approximation becomes

σ 2
Y = 10 × 10−6C2

YD−4/3t−1(cos γ )−3 exp (−2hobs/H ), (7)

where CY is the empirical coefficient listed in Table 1 for several
major observatories (with a mean value of 1.5). The coefficients for
the first and third quartiles are also listed to enable the variability
of the expected scintillation noise at each location to be estimated.

We recommend that astronomers use our modified form of
Young’s approximation (equation 7) with the CY values listed in
Table 1 to give more reliable estimates of the scintillation noise. For
even more precise estimates, or if the observing site is not listed
in Table 1, it is best to use median atmospheric turbulence profiles
(which exist for most observatories) in equation (4).

3.4 Real-time scintillation estimation

Real profiles from stereo-SCIDAR show that the optical turbu-
lence profile (both turbulence strength and velocity) can evolve
rapidly. We have seen periods of strong, high layers which survive
for several hours and we have also seen small bursts of activity
lasting only a few minutes (Avila, Vernin & Cuevas 1998; Shep-
herd et al. 2013). The altitude and strength of these layers varies
with time, having significant impact on the scintillation noise during
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Table 1. Values of the empirical coefficient,
CY, in our modified Young’s approximation
(equation 7) at a selection of observatories for
the median (Cmedian), first quartile (CQ1) and
third quartile (CQ3) of measured scintillation
noise.

Observatory Cmedian CQ1 CQ3

Armazones 1.61 1.30 2.00
La Palma 1.30 1.02 1.62
Mauna Kea 1.63 1.34 2.02
Paranal 1.56 1.27 1.90
San Pedro de Mártir 1.67 1.32 2.14
Tololo 1.42 1.17 1.74

Figure 8. Comparison of measured noise, σmeasured, with estimated noise,
σ estimated for photometric data, including scintillation, shot and detector
noise. The measured noise values were obtained from light curves observed
with the 4.2 m WHT (points) and a 0.5 m telescope on the same site (crosses),
using exposure times between 5 and 10 s. The estimated noise values were
obtained from SCIDAR profiles. The correlation coefficient is 0.96.

observations. This variability in measured scintillation noise can be
seen in Figs 4–7.

Access to concurrent turbulence profiles allows the real-time es-
timation of scintillation noise using equations (3), (4) and (6). As
the scintillation noise is dominated by high-altitude turbulence it is
likely to be isotropic and consistent over the entire site. This can be
validated by the fact that we see the same high-altitude turbulence
profile before and after we change target with the profiler, with one
target setting in the west as the other rises in the east. This is not
true with low-altitude turbulence which is dependent on the local
topography, including the telescope dome and structure.

Fig. 8 shows a comparison of the noise measured from light
curves with the noise estimated from SCIDAR profiles obtained
at the same site and time, including the effects of shot and detec-
tors noise. In most cases scintillation was seen to be a significant
source on noise. See Föhring (2014) for details. The large correla-
tion coefficient of 0.96 implies that concurrent atmospheric optical
turbulence profiles from an external profiler can be used to precisely
model the noise in a photometric light curve. This enables the scin-
tillation noise of an observation to be estimated, which can then be
used for instrument characterization, data validation and theoretical
model fitting.

Figure 9. Theoretical long-exposure scintillation noise as a function of
exposure time and telescope diameter. The scintillation noise was calcu-
lated for median atmospheric conditions on La Palma and varies between
1 per cent for small telescopes and short-exposure times, and 0.01 per cent
for larger telescopes and longer exposure times.

4 SC I N T I L L AT I O N N O I S E IN PH OTO M E T R I C
MEASUREMENTS

Fig. 9 shows the expected long-exposure scintillation noise for vary-
ing exposure times and telescope diameters. The scintillation noise
was calculated for median atmospheric conditions on La Palma from
equation (4) and varies between 1 per cent for small telescopes and
short-exposure times, and 0.01 per cent for larger telescopes and
longer exposure times.

The fractional shot noise (
√

S/S, where S is the signal) can be
estimated using

σs = 1/
√

Atηδλφ, (8)

where A is the collecting area of the telescope, η is the throughput
(including optics and CCD quantum efficiency), δλ is the bandwidth
and φ is the flux of photons incident on the telescope.

When observing bright targets the sky background and readout
noise can be considered negligible in comparison with the shot noise
and scintillation noise. Therefore, we only consider the latter two
noise terms. The scintillation noise is given by, σI =

√
σ 2

T − σ 2
s ,

where σ T is the total photometric noise. The fractional shot noise
is given by σs = 1/

√〈S〉, where 〈S〉 is the time-averaged signal,
where the scintillation noise is expected to approach zero.

Fig. 10 shows the estimated shot and scintillation noise in the
short- and long-exposure regimes from on-sky data obtained with
the 1 m JKT on La Palma. As the exposure time is increased, the
scintillation noise remains constant until we reach tknee ∼ 0.05 s; at
this point the scintillation changes from the short-exposure regime
(with no temporal averaging), described by equation (3), to the long-
exposure regime (equation 4). For exposures longer than tknee the
scintillation noise reduces with a 1/

√
t dependence. It is interesting

to note that in the long-exposure regime, the fractional shot noise
has the same time dependence as scintillation noise. Therefore,
the ratio of scintillation noise to shot noise is conserved for all
exposure times. The significance of this is that although longer
exposure times will reduce the total noise, the ratio of the shot noise
to the scintillation noise will remain fixed.

Fig. 11 shows a 2D plot of the theoretical parameter space for the
ratio of the scintillation noise to the shot noise for varying telescope

MNRAS 452, 1707–1716 (2015)

 at U
niversity of D

urham
 on Septem

ber 4, 2015
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


Scintillation in astronomical photometry 1713

Figure 10. Photometric noise as a function of exposure time on the JKT,
for a magnitude 8 star observed on 2013-07-21. The points indicate the
estimated scintillation noise, σ I, and the crosses are the estimated fractional
shot noise, σ s. The lines are the theoretical counterparts to each segment
given by equations (3) (short exposure; dot–dashed line), (4) (long exposure;
dashed line) and (8) (fractional shot noise; dotted line).

diameters and object magnitudes. We see that when observing bright
objects the scintillation noise dominates over the shot noise, and
hence dominates the total photometric noise.

By combining equation (8) with equation (3) or (4), we see that
the ratio of scintillation noise to photon noise scales with telescope
diameter as σ I, se/σ s ∝ D−1/6 and σ I, le/σ s ∝ D1/3 for short and long
exposures, respectively. This is a weak dependence and so we can
say that for median conditions and regardless of telescope diameter,
scintillation will be greater than shot noise for (V band) magnitudes
less than ∼13 for long exposures and ∼8 for short exposures. It
will dominate at magnitudes greater than ∼12 for long exposures
and 6.5 for short exposures. These results are for instruments with
100 per cent throughput and at a zenith distance of 30◦; for other
values, the results must be scaled accordingly.

5 SC I N T I L L AT I O N O N L A R G E A N D
E X T R E M E LY L A R G E T E L E S C O P E S

Kolmogorov’s model of turbulence used for the preceding equations
assumes that energy is injected into the turbulent medium at large
spatial scales (the outer scale, L0) and forms eddies. These then
break down into smaller eddies in a self-similar cascade until the
eddies become small enough that the energy is dissipated by the vis-
cous properties of the medium. This will occur at the inner scale, l0.
In the inertial range between the inner and outer scales Kolmogorov
predicted a turbulent phase power spectrum with distribution, f−11/3.

As scintillation is an effect of the curvature of the wavefront it has
power on all spatial scales up to the outer scale of the turbulence.
On smaller telescopes the effect of the outer scale is negligible as
we can assume the outer scale to be considerably larger than the
telescope diameter. However, as telescope sizes approach that of
the outer scale (of the order of 10–100 m) it should be included in
theoretical calculations. The inner scale is generally neglected as it
is accepted to be a few millimetres in the atmospheric case and too
small to have any significant impact.

All of the equations above (2, 3, 4, 6 and 7) assume infinite
outer scale, i.e. Kolmogorov statistics. The next generation of ex-
tremely large telescopes of the scale 20–40 m are currently under
construction. These telescopes will be of the same spatial scale,
and potentially even larger, than the outer scale of the turbulence.
If we want to examine the dynamics of systems with spatial scales
approaching the outer scale then we need to modify the equations
that we use.

The scintillation index for extremely large telescopes is expressed
as (see Appendix A for derivation)

σ 2
I ,le = 12.24D−4/3t−1 (cos γ )α

∫
C2

n(h)h2

V⊥(h)

×
∫ (

q2 + (D/L0(h)2)
)−11/6

q2(J1(πq))2dqdh, (9)

where q = Df, and can be solved numerically for the particular
telescope and the prevailing atmospheric turbulence conditions.

Fig. 12 shows the expected scintillation noise for median condi-
tions on La Palma for telescope sizes between 1 and 40 m in the

Figure 11. Theoretical parameter space plots for the ratio of the scintillation to shot noise in the short-exposure regime (left) and the long-exposure regime
(right), for varying telescope diameter and target stellar magnitude (V band). The short-exposure time is set to 2 ms. The long-exposure time is irrelevant as both
noise sources have the same exposure time dependence, making the ratio independent of exposure time. The black dotted line shows where the scintillation
noise equals the shot noise. For any telescope diameter/target magnitude combinations below this line, the scintillation noise is greater than the shot noise and
vice versa. The red line composed of circles indicates a ratio of 2, i.e. when the scintillation noise is twice the shot noise. The blue line composed of triangles
indicates the point where the scintillation noise is an order of magnitude larger than the shot noise.
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Figure 12. Theoretical scintillation noise for telescope diameters between
1 and 40 m for the median atmospheric turbulence profile on La Palma in
the long-exposure regime (t = 1 s). The dashed line is the theoretical value
calculated assuming an infinite outer scale (i.e. Kolmogorov turbulence;
equation 4). The solid lines indicate finite outer scales with values of 100,
50, 20, 10 and 5 m. An outer scale of 10 m results in the scintillation noise
being up to an order of magnitude less than the value given by equation (4)
for a 39 m telescope, such as the European Extremely Large Telescope.

long-exposure regime. The expected scintillation noise is always
lower than that predicted for infinite outer scale, i.e. Kolmogorov
turbulence (equation 4), and this difference increases with increas-
ing diameter. The factor by which equation (4) overestimates the
scintillation noise is dependent on L0. The outer scale of turbu-
lence is currently poorly understood and estimates of its value are
uncertain and varied. Therefore, the effect of outer scale on the scin-
tillation noise on large telescopes is difficult to estimate, but it can
be seen that, even for existing large telescopes of 8–10 m diameter,
the outer scale will reduce the expected scintillation noise. The next
generation of extremely large telescopes will all have segmented
pupils which will complicate the situation as the gaps between the
segments will increase the high-frequency scintillation components
in a non-trivial way (Dravins et al. 1998). In order to estimate this
effect the aperture filter function, A(f), will need to be defined for
each case and implemented into the equations above. The aperture
filter function of an arbitrary pupil function, p(x, y) defined in a
Cartesian coordinate system of x and y basis, is

A(f ) =| F (P (x, y)) |2 . (10)

Scintillation-noise estimation on segmented or non-circular tele-
scopes will therefore need to be examined on a case by case basis
and can be done by replacing the bespoke aperture filter function
into the derivation in Appendix A. Scintillation noise on large tele-
scope could be overestimated by an order of magnitude (Kornilov
2012a). This suggests that extremely large telescopes will be even
more of a valuable facility for high-precision photometry than pre-
viously thought.

6 SC I N T I L L AT I O N N O I S E W I T H C E N T R A L
O B S C U R AT I O N S

It is also important to study the impact of the central obscuration of
the telescope on scintillation noise. Larger secondary mirrors lead
to more scintillation noise due to the smaller collecting area over
which the scintillation speckles are spatially averaged.

The scintillation index as a function of the telescope cen-
tral obscuration in the short-exposure regime is given by (see
Appendix A)

σ 2
I ,se = 38.44D−7/3 (cos γ )−3

∫
C2

n(h)h2

×
∫ (

q2 + (D/L0(h)2)
)−11/6

q3

× (J1(πq) − εJ1(πεq))2/(1 − ε2)2dqdh, (11)

and in the long-exposure regime is given by

σ 2
I ,le = 12.24D−4/3t−1 (cos γ )α

∫
C2

n(h)h2

V⊥(h)

×
∫ (

q2 + (D/L0(h)2)
)−11/6

q2

× (J1(πq) − εJ1(πεq))2/(1 − ε2)2dqdh, (12)

where ε is the ratio of the diameter of the central obscuration to the
diameter of the primary mirror.

Using the above equations it is possible to calculate the scin-
tillation noise for any telescope diameter and in any atmospheric
conditions. However, for telescopes smaller than approximately 5 m
the outer scale of the turbulence can be ignored and equations (3),
(4) and (6) can be safely used. Most modern telescopes have a cen-
tral obscuration of approximately 30 per cent in terms of diameter,
or 10 per cent in area. In the long-exposure regime this makes neg-
ligible difference to the scintillation noise. In the short-exposure
regime, we would expect the scintillation noise to be increased by
a factor of approximately 1.2.

In the case of a large telescope, this increase in the scintillation
noise due to the central obscuration needs to be compared to the
expected reduction in scintillation noise due to outer scale effects
(as discussed in Section 5) (Kornilov 2012b).

7 D I SCUSSI ON

Below we summarize the key points about scintillation noise that
astronomers should remember when performing astronomical pho-
tometry.

(i) Scintillation is dominated by high-altitude turbulence, with
very little scintillation being caused by low-altitude turbulence.
This is different to atmospheric seeing which blurs astronomical
images. Seeing is dominated by the strongest layers of atmospheric
turbulence, irrespective of altitude. In fact it is the surface layer
which often dominates the seeing (Osborn et al. 2010). Therefore,
it is possible for the seeing to be bad whilst the scintillation noise
is low and vice versa.

(ii) The ratio of scintillation noise to shot noise is only weakly de-
pendent on telescope diameter (D−1/6 in the short-exposure regime
and D1/3 in the long-exposure regime) and independent of exposure
time. Therefore, increasing the telescope diameter and exposure
time makes little difference to the ratio of shot noise to scintillation
noise.

(iii) Young’s approximation (equation 2) is often used by as-
tronomers to estimate the scintillation noise in their light curves.
This equation, which includes the telescope diameter, airmass, ex-
posure time and altitude above sea level, is only an approximation
to the median scintillation noise and is not intended to be a pre-
cise estimate. From recent stereo-SCIDAR atmospheric profiles on
La Palma and published data from Kornilov et al. (2012) we have
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found that Young’s approximation consistently underestimates the
fraction of scintillation noise by a mean value of 1.5 at a range of
astronomical sites.

(iv) We have presented a modified form of Young’s approxima-
tion (equation 7) that uses empirical correction coefficients listed in
Table 1 to give more reliable estimates of the scintillation noise at
a range of astronomical sites.

(v) If even greater precision is required than provided by our
modified form of Young’s approximation, it is possible to use the
median atmospheric profile for an observatory in conjunction with
equations (3) and (4). Of course the instantaneous turbulent profile
is unlikely to match the median atmospheric turbulence profile, and
hence for the ultimate in precision it is necessary to use contempo-
raneous atmospheric turbulence profiles with these equations.

(vi) The vertical profile of optical turbulence is very variable,
even at the World’s premier observing locations. Fig. 4 demonstrates
this for one night at the Observatorio del Roque de los Muchachos,
La Palma. Therefore, the median profile cannot give a precise rep-
resentation of the scintillation noise at any particular time. Here we
propose to use atmospheric turbulence profiling instrumentation to
provide a better estimate of the scintillation noise in high-precision
photometric observations. Although atmospheric turbulence profil-
ers remain uncommon, with the proliferation of AO systems they
will become more widely available. Indeed it is possible to derive
the required information from the AO system itself (Cortés et al.
2012).

(vii) A more precise knowledge of scintillation noise is important
to enable performance assessment, calibration and optimization of
photometric instrumentation. It is also useful when fitting models
to photometric data (for example, extrasolar planet eclipse light
curves; Föhring 2014), and to help develop scintillation correction
concepts.

(viii) As telescope diameters approach the outer scale of the
optical turbulence, the measured scintillation noise will be lower
than that predicted for infinite outer scale by Kolmogorov equa-
tions (2), (3), (4), (6) and 7. This means that very large and
extremely large telescopes (∼8–40 m) are favourable facilities
for high-precision photometry. We present modified equations
(11 and 12) which should be used to calculate the scintillation
noise with large telescopes or telescopes with a large secondary
obscuration.

(ix) There are several proposed scintillation mitigation tech-
niques at varying stages of development, such as Conjugate-Plane
Photometry (Osborn et al. 2011), Tomographic wavefront recon-
struction (Osborn 2015) and active deformable mirror techniques
(Viotto et al. 2012). There are also passive techniques such as ‘lucky
photometry’, where only data taken during times of low scintilla-
tion noise is used, or wavelength correction (where one wavelength
channel can be used to correct another; Kornilov 2011). However,
although the scintillation noise is independent of wavelength as
observations move away from zenith the scintillation signals be-
come temporally separated due to the chromatic dispersion in the
atmosphere (Dravins et al. 1997). This effect is exacerbated when
the wind velocity is aligned with the azimuthal angle of the tar-
get. In addition, wavelength correction will only work in situations
where the scintillation noise definitely dominates. Otherwise the
noise will be made worse by the correction process as independent
noise sources (i.e. shot noise) will add in quadrature. It will also
only work in the large telescope (D ≥ ∼0.1 m) regime when the
scintillation noise is almost independent of wavelength and it will
not work if the variability that one wants to measure is present at
both wavelengths.
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Föhring D., 2014, PhD thesis, Durham University
Heasley J. N., Janes K., LaBonte B., Guenther D., Mickey D., Demarque P.,

1996, PASP, 108, 385
Kenyon S. L., Lawrence J. S., Ashley M. C. B. V. S. J. W., Tokovinin A.,

Fossat E., 2006, PASP, 118, 924
Kornilov V., 2011, MNRAS, 417, 1105
Kornilov V., 2012a, MNRAS, 425, 1549
Kornilov V., 2012b, MNRAS, 426, 647
Kornilov V., Sarazin M., Tokovinin A., Travouillon T., Voziakova O., 2012,

A&A, 546, A41
Osborn J., 2015, MNRAS, 446, 1305
Osborn J., Wilson R. W., Butterley T., Shepherd H., Sarazin M., 2010,

MNRAS, 406, 1405
Osborn J., Wilson R. W., Dhillon V., Avila R., Love G. D., 2011, MNRAS,

411, 1223
Osborn J., Wilson R. W., Shepherd H., Butterley T., Dhillon V. S., Avila

R., 2013, in Esposito S., Fini L., eds, Proc. 3rd Adaptive Optics for
Extremely Large Telescopes, Stereo SCIDAR: Profiling Atmospheric
Optical Turbulence with Improved Altitude Resolution. INAF - Osser-
vatorio Astrofisico di Arcetri, Firenze, Italy, p. 13302

Roddier F., 1981, Prog. Opt., 19, 281
Ryan P., Sandler D., 1998, PASP, 110, 1235
Sarazin M., Melnick J., Navarrete J., Lombardi G., 2008, The Messenger,

132, 11
Shepherd H., Osborn J., Wilson R. W., Butterley T., Avila R., Dhillon V.,

Morris T. J., 2013, MNRAS, 437, 3568
Southworth J. et al., 2009, MNRAS, 396, 1023
Tokovinin A., 2002, Appl. Opt., 41, 957
Tokovinin A., Kornilov V., 2007, MNRAS, 381, 1179
Vernin J., Roddier F., 1973, J. Opt. Soc. Am., 63, 270
Viotto V. et al., 2012, Proc. SPIE, 8447, 84476X
Wilson R. W., 2002, MNRAS, 337, 103
Young A. T., 1967, AJ, 72, 747
Young A. T., 1969, Appl. Opt., 8, 869

APPENDI X A : D ERI VATI ON O F
S C I N T I L L AT I O N E QUAT I O N S

We can derive the theoretical scintillation index as the integral of
the scintillation power spectrum (Roddier 1981),

σ 2
I =

∫ ∞

0
W (f )df , (A1)

MNRAS 452, 1707–1716 (2015)

 at U
niversity of D

urham
 on Septem

ber 4, 2015
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


1716 J. Osborn et al.

where W(f) is the irradiance power spectrum, given by (Tokovinin
2002)

W (f ) = 9.7 × 10−3 × 4 × (2π)3
∫ ∞

0
C2

n(z)φ(f )S(z, f )A(f )f dz.

(A2)

S(z, f) is the Fresnel filter function to account for the wavefront
propagation and is given by sin 2(πλz f 2)/λ2 (Roddier 1981). It is
this function that gives the intensity fluctuations an intrinsic spatial
scale of rF = √

λz. A(f) is the aperture filter function and is defined
by

A(f ) =| F (P (x, y)) |2, (A3)

where p(r, θ ) is an arbitrary pupil function defined in Cartesian
coordinate system, x and y. For a circular aperture, equal to one
for x2 + y2 < D2/4 and zero elsewhere, A(f) = (2J1(πDf)/(πDf))2

(Tokovinin 2002). φ is the frequency component of the refractive
index power spectrum, for example, for Kolmogorov turbulence
φ = f−11/3.

If the aperture cut-off frequency, fc ∝ 1/D, is small (i.e. telescopes
with D larger than a few tens of centimetres, D  rF), such that
πλzf 2

c � 1, we can invoke the small angle approximation and S(z,
f) can be written as (πλz f 2)2/λ2. Introducing the dimensionless
frequency q = Df, equation (A1) can be expressed by (Kornilov
2012a)

σ 2
se = 38.44D−7/3

∫
C2

n(z)z2dz

∫
φ(q)q3(J1(πq))2dq. (A4)

For exposure times longer than the speckle crossing time,
tc = D/V⊥, where V⊥ is the projected windspeed perpendicular
to the optical axis, high-frequency intensity variations are averaged
out (i.e. the scintillation temporal power spectrum is filtered so that
only low-frequency components, f < πD/V⊥ affect the scintilla-
tion power). The scintillation weighting function with an exposure
time, t, larger than the crossing time of the speckles is then multi-
plied by the corresponding wind shear filter function As = D/πtV⊥q
(Kornilov 2012a), and,

σ 2
le = 12.24D−4/3

∫
C2

n(z)z2

V⊥(z)
dz

∫
φ(q)q2(J1(πq))2dq. (A5)

The integrals over q in the previous two equations are found by
numerical integration to converge to 0.45 and 0.87, respectively.
The scintillation index for short exposures becomes

σ 2
I ,se = 17.34D−7/3 (cos γ )−3

∫ ∞

0
h2C2

n (h) dh, (A6)

and for long exposures,

σ 2
I ,le = 10.66D−4/3t−1 (cos γ )α

∫ ∞

0

h2C2
n (h)

V⊥(h)
dh, (A7)

where h is the altitude of the turbulent layer, with h = zcos (γ ), γ

being the zenith angle of the observation, V⊥(h) is the wind velocity
profile and α is the exponent of the airmass. Note that the value
of the airmass exponent, α, will depend on the wind direction and
vary between (cos γ )−3 for the case when the wind is transverse
to the azimuthal angle of the star, up to (cos γ )−4 in the case of a
longitudinal wind direction. This difference comes from geometry,
in the case where the wind direction is parallel to the azimuthal angle
of the star the projected pupil on to a horizontal layer is stretched
by a factor of 1/cos γ .

For small apertures, where the aperture size is smaller than the
spatial scale of the intensity fluctuations (D < rF), there is not

enough spatial averaging to remove the dependence on the wave-
length (the small angle approximation on the Fresnel filter function
is no longer valid, sin 2(πλz f 2)/λ2 �= (πλz f 2)2/λ2) and the scintil-
lation index can be approximated by (Dravins et al. 1998)

σ 2
I = 19.2λ−7/6 (cos γ )−11/6

∫ ∞

0
h5/6C2

n (h) dh. (A8)

If we replace the Kolmogorov power spectrum (φ = f−11/3) in
equation (A2) with a Von Karmen spectrum, modified to include a
defined outer scale, L0, of the form

φ(f ) = (
f 2 + L0(h)−2

)−11/6
. (A9)

The integral in equations (A4) and (A5) now have to be evaluated
for the correct outer scale and become more complicated if the outer
scale varies with altitude.

The scintillation index is now be expressed as

σ 2
le = 12.24D−4/3t−1 (cos γ )α

∫
C2

n(h)h2

V⊥(h)

×
∫ (

q2 + (D/L0(h)2)
)−11/6

q2(J1(πq))2dqdh, (A10)

and can be solved numerically for the particular telescope and at-
mospheric parameter set in question.

With a central obscuration the aperture filter function can be
expressed as (Young 1969)

A(f ) = 4

π

[(
J1(πDf )

πDf

)
− ε2

(
J1(πεDf )

πεDf

)
/(1 − ε2)

]2

,

(A11)

where ε is the ratio of the diameter of the secondary obscuration to
the diameter of the primary mirror.

Equation (A11) can be implemented in to the generalized scintil-
lation index equation by replacing the (J1(πq))2 in equation (A10)
with

(J1(πq) − εJ1(πεq))2/(1 − ε2)2. (A12)

The final, generalized for outer scale and central obscuration,
long-exposure scintillation index is then given by

σ 2
le = 12.24D−4/3t−1 (cos γ )α

∫
C2

n(h)h2

V⊥(h)

×
∫ (

q2 + (D/L0(h)2)
)−11/6

q2

× (J1(πq) − εJ1(πεq))2/(1 − ε2)2dqdh, (A13)

and the generalized short-exposure scintillation equation is

σ 2
se = 38.44D−7/3 (cos γ )−3

∫
C2

n(h)h2

×
∫ (

q2 + (D/L0(h)2)
)−11/6

q3

× (J1(πq) − εJ1(πεq))2/(1 − ε2)2dqdh. (A14)
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