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Abstract 

 

The study aimed to establish a function-based relationship between the physical and bulk 

properties of pre-blended mixtures of fine and coarse lactose grades with the in vitro performance 

of an adhesive active pharmaceutical ingredient (API). Different grades of micronised and milled 

lactose (Lactohale (LH) LH300, LH230, LH210 and Sorbolac 400) were pre-blended with coarse 

grades of lactose (LH100, LH206 and Respitose SV010) at concentrations of 2.5, 5, 10 and 20 

%w/w. The bulk and rheological properties and particle size distributions were characterised. The 

pre-blends were formulated with micronised budesonide and in vitro performance in a Cyclohaler 

device tested using a Next Generation Impactor (NGI) at 90 l/min. Correlations between the 

lactose properties and in vitro performance were established using linear regression and artificial 

neural network (ANN) analyses. The addition of milled and micronised lactose fines with the coarse 

lactose had a significant influence on physical and rheological properties of the bulk lactose. 

Formulations of the different pre-blends with budesonide directly influenced in vitro performance 

attributes including fine particle fraction, mass median aerodynamic diameter and pre-separator 

deposition. While linear regression suggested a number of physical and bulk properties may 

influence in vitro performance, ANN analysis suggested the critical parameters in describing in vitro 

deposition patterns were the relative concentrations of lactose fines %<4.5 µm and %<15 µm. 

These data suggest that, for an adhesive API, the proportion of fine particles below %<4.5 µm and  

and %<15 µm could be used as a critical material attributes in rational DPI formulation design.    

 

Keywords: Lactose, dry powder inhaler, quality-by-design, critical material attributes, cohesive-

adhesive balance. 



Introduction 

 

 

Carrier based dry powder inhaler (DPI) formulations are a common vehicle for the delivery of highly 

cohesive drug powders to the lungs, and use the patients’ inspiratory effort for fluidising a dose of 

powder mixture of lactose monohydrate and drug [1]. Ternary components, such as magnesium 

stearate or fine particle lactose [2], are typically added to the formulation to further optimise and 

control the detachment and deagglomeration efficiency of the drug particles from the large carrier 

particles [3].  

 

DPI drug products are an example of a complex dosage form, with many factors that influence 

drug product functionality and stability [4]. With the introduction of a quality-by-design (QbD) 

initiative by the US Food and Drug Administration (FDA), pharmaceutical companies have been 

encouraged to further understand their chemistry, manufacturing and controls (CMC) and their 

influence on product performance [5]. The current QbD paradigm focuses on the development of 

product and process design understanding to enable development of drug product that meet the 

target product profile [6]. In order to achieve this, the QbD approach warrants the development of 

mechanistic models that correlate critical material attributes (CMAs e.g. raw material 

physicochemical properties), critical process parameters (CPPs) and product functionality [6]. 

However, establishing a process and property function relationship for DPI formulation 

performance has proved to be a challenging task. This is most likely due to the lack of precise 

control of CPPs and incomplete investigation of CMAs that may directly influence the performance 

attributes of the product [7].  

 

In the case of DPIs, the excipient plays a critical role in the functionality of the drug product [8]. 

Indeed, a number of CMAs of lactose monohydrate have been identified that affect DPI drug 

product quality. For example, surface energy of the lactose measured by inverse gas 

chromatography [9], specific surface area [10], fine lactose particle content [11,12] and the energy 

required to fluidise the carrier [13]. These studies suggest, based on relatively small datasets, that 

a range of parameters adequately characterise the functional behaviour of the lactose and its 

relationship to drug product quality. However, there has been limited success in developing a 

mechanistic approach to define the CMAs of lactose monohydrate that influences drug product 

performance. 

 

Current approaches rely heavily on the use of design of experiments (DoE) and multivariate data 

analysis (MVA) to understand the relationship between drug and excipient CMAs on drug product 

performance [14]. These approaches depend on composite experimental design that is applied to 

define the design space for drug product performance for a range of formulation and process 



factors. Response variables are predicted quantitatively from the combination of these factors. 

Such approaches have been successfully utilised in the development of drug products and have 

become an integral part of pharmaceutical development risk management. With respect to DPI 

formulations, these approaches represent a systematic approach to developing theoretical 

relationships between complex factors and outputs. Podczeck recognised the need for more 

complex statistical analysis methods for understanding structure-function relationships in DPI 

formulations [15]. Zeng et al. established a two parameter model for the fine particle delivery from 

DPI formulations based on parameters describing the macroscopic shape of the carrier particles 

[16]. In both studies, multiple linear regression (MLR) was used for establishing the relationship 

between lactose properties and DPI formulation performance. The MLR approach is based on the 

assumption that the underlying relationships are linear and that the input parameters are not co-

linear. However, controlling input variables, especially in case of lactose carriers where the main 

aim during production is the control of the particle size distribution, so that co-linearity is avoided is 

difficult unless experimental design is applied [17]. These approaches do rely on multiple 

regression analysis to enable prediction of response variables on the basis of a second-order 

polynomial equation. Optimisation algorithms are then applied to define the design space. 

Prediction of pharmaceutical responses based on polynomial relationships is limited and result in 

poor estimation of drug product design space [18]. 

 

In order to overcome the shortcomings of the DoE and MVA approach, a multi-objective 

simultaneous optimisation approach incorporating artificial neural networks (ANN) are gaining 

popularity in pharmaceutical drug delivery applications. ANNs are a computational data analysis 

tool that attempt to incorporate the human brain’s capability of learning, adapting and tolerating 

faulty and noisy data to modern computers’ superior ability to perform numerical computation and 

symbol manipulation [19]. In practice, modelling data using ANNs is based on presenting the data 

to the network and training the network to recognise the underlying trends in the dataset [19]. 

Pharmaceutical examples include understanding how flow properties of excipients relate to the 

micromeritic properties of the materials [20], modelling drug dissolution [21], optimising 

formulations for controlled release tablets [22] and transdermal drug delivery products [23]. 

Hitherto, the use of artificial neural network analysis in inhalation research has been limited to 

modelling in vivo - in vitro correlations of inhalation formulations [24] and clinical effects of inhaled 

bronchodilators with the physiological parameters of individual patients [25].   

 

This study aims to further understand the function-based relationship between particle size, bulk 

property and powder rheological CMAs of lactose blends, prepared with different coarse carriers 

and milled and micronised lactose fines, and their influence on key performance attributes of an 

adhesive, micronised budesonide. Linear regression and artificial neural network (ANN) analysis 



was performed in an attempt to determine how these lactose CMAs influence DPI drug product 

performance.  

 

Materials and methods 

 

Materials 

 

Micronised budesonide was supplied and used as received from Sterling S.r.l (Perugia, Italy). 

Three different coarse lactose carriers and four different grades of commercially available fine 

particle lactose were used in the study. Two of the coarse carriers were Lactohale (LH) products, 

namely LH100 (Sieved coarse grade) and LH206 (Lightly milled coarse grade), and the third 

coarse carrier was Respitose SV010 (Sieved coarse grade), all samples were kindly donated by 

DFE Pharma (Borculo, Netherlands). Three of the different fine particle lactose fractions were also 

Lactohale grades, namely LH300 (micronised fines), LH230 (finer milled fines) and LH210 (coarser 

milled fines), also from DFE Pharma. The fourth fine particle lactose grade used was Sorbolac 400 

from Meggle (Wasserburg am Inn, Germany). 

 

Water used during the studies was Milli-Q reverse osmosis purified (Merck Millipore, Darmstadt, 

Germany) and methanol and acetonitrile were of HPLC grade and purchased from Sigma 

(Gillingham, UK). 

 

Preparation of lactose pre-blends 

 

Carrier lactose pre-blends were prepared by adding different fractions of the fine lactose samples 

to the coarse carriers at 2.5, 5, 10 and 20 %w/w concentrations, as summarised in Table I. All 

lactose pre-blends were produced in 100g batches. The fine lactose grades were sandwiched 

between the coarse carrier in either two (2.5% blends) or three layers (5, 10 and 20% blends) in a 

stainless steel cylindrical vessel with an internal diameter of 100 mm and a height of 150 mm. The 

headspace in the vessel was approximately two thirds of the volume of the container, depending 

on the fines content of the pre-blend. The mixtures were blended with a Turbula mixer (Glen 

Creston, Middlesex, UK) at 46 rpm for 60 minutes. All pre-blends were stored at 44±1% relative 

humidity (RH) and 20±2°C for at least 7 days before any further work was carried out. 

 

Particle size measurements 

 

The particle sizing of the raw materials and pre-blends was conducted using a HELOS laser 

diffraction unit in conjunction with Windox 5 software, both from Sympatec GmbH (Clausthal-

Zellerfield, Germany). The high resolution Fraunhofer model (HRLD) provided by the Windox 



software was used for calculating the particle size distributions of all the materials from the raw 

scattering data. 

 

The particle size of lactose raw materials and pre-blends were measured using a validated 

methodology, utilising the R4 lens and the RODOS dry powder disperser in conjunction with the 

Vibri dry powder feeder. The feed rate was adjusted such that an optical concentration of between 

0.5% and 5% was achieved. No data was recorded until a threshold value of 0.5% for optical 

concentration was exceeded. A dispersion pressure of 2 bar was used for measuring the lactose 

samples. The background scattering was recorded for ten seconds with the vacuum on and five 

repeated measurements of two seconds duration were recorded for the lactose samples. 

 

The PSD of micronised budesonide was characterised using a R3 lens and a Cuvette wet 

dispersion system. An aliquot of the material was dispersed in cyclohexane that contained 0.1% 

lecithin to aid the dispersion. The stirring speed was set to 1500 rpm. Prior to PSD measurements, 

the background scattering was recorded for a period of 10 seconds. To achieve a measure of the 

primary particle size, the suspension was ultrasonicated at 50% intensity of the maximum with the 

internal probe of the disperser system for one minute. After ultrasonication, the final optical 

concentration was between 3 and 10%. Five repeated measurements of five seconds were 

recorded for the drug.  

  

Cohesive-adhesive balance (CAB) measurements of budesonide 

 

A random selection of particles from the micronised batch of budesonide were attached onto 

standard V-shaped tipless cantilevers with pre-defined spring constants (DNP-020, DI, CA, USA) 

using an epoxy resin glue (Araldite, Cambridge, UK), using a previously described method [26]. A 

minimum of five probes were prepared and all colloid probes were examined with an optical 

microscope (magnification 50x) to ensure the integrity of the attached particle, before and after 

colloid probe force measurements. 

 

The crystal face of a primary crystallised sample of budesonide was used for atomic force 

microscopy-cohesive adhesive balance (AFM-CAB) measurements as described previously [26]. 

To measure the force of adhesion (drug-excipient) a smooth surface of lactose was also 

crystallised, as described elsewhere [26]. The surface roughness as measured by the Ra and Rq of 

the surfaces of crystal particles of budesonide and lactose were <1 nm and therefore suitable for 

CAB measurements. 

    

Substrates were loaded on to the AFM scanner stage, which was enclosed in a custom-built 

environmental chamber, in which the ambient conditions were maintained at a constant 



temperature of 25 ± 1.5°C and relative humidity of 35 ± 3%. The interactive forces of the colloid 

probes with the lactose and budesonide substrates were measured by recording the deflection of 

the AFM cantilever as a function of the substrate displacement (z) by applying Hooke’s Law (F = -

kz). Individual force curves (n = 1024) were collected over a 10 µm x 10 µm area using the force 

volume mode at a scan rate of 4 Hz and a compressive load of 40 nN. Parameters were kept 

constant over the study. Quantification of the nominal spring constant of each cantilever was 

performed using a dynamic method of thermal noise analysis [27]. 

 

With the vast array of data generated during force volume measurements, custom-built software 

was used to extract data.  These collected force data were analysed to ensure normal distribution, 

indicating uniform contact between the drug probe and excipient substrate. Arithmetic mean and 

standard deviation were obtained from force data and used to produce the CAB plot. 

 

Powder bulk properties and flow and fluidisation characteristics  

 

Bulk and tapped densities (ρB and ρT, respectively) were measured using the FT4 powder 

rheometer (Freeman Technology, Tewkesbury, UK). For bulk density measurements, a 25 mm 

diameter, 20 ml volume split measurement vessel was placed on the measurement table of the 

instrument and the weight of the vessel tared. The vessel was then filled with the powder under 

investigation. A conditioning cycle was run to remove the influence of the filling procedure on 

powder packing. For measuring the bulk density, the measurement vessel was split and the split 

powder mass recorded. For tapped density measurements, the vessel was placed on a jolting 

volumeter (J. Engelsmann, Ludwigshafen, Germany) and 250 taps were applied. The vessel was 

then transferred back to the FT4 and the split powder mass recorded. All the measurements were 

performed in triplicate. The Hausner ratio (HR) that is a measure of the flow properties of powders 

with a value <1.25 indicating a free flowing powder and >1.25 indicating a poor flowing powder 

[28], was calculated according to Equation 1: 

 

   
  

  
           (1) 

 

The FT4 powder rheometer can be used for characterising flow properties of powders under 

different conditions to simulate the behaviour of powders while they are exposed to different 

environments during processing and usage. The normalised basic flow energy (BFENorm) is a 

general descriptor of powder flow properties and characterises the resistance of one gram of a 

chosen powder to flow under a constant speed with cohesive powders exhibiting low BFENorm [29]. 

The flow rate index (FRI) measurement on the other hand is a dimensionless parameter describing 

how different powders react to changes in the rate at which an impeller blade is traversed in a 

helical path. It has been shown that more cohesive powders appear to be more sensitive to such 



changes and therefore have higher FRI [29]. Specific energy (SE) is a parameter based on the 

force and torque measured in the rheometer during upward blade motion. The value of SE 

describes the flow properties of the powders in a stress free state at near zero consolidation due to 

the lack of a downward loading force by the blade [29]. The BFENorm, FRI and SE were measured 

during the same test procedure using a purpose-built measurement program. For these 

measurements, the powder was loaded in the 25mm bore diameter, 20 ml volume split vessel. At 

first, a downward conditioning cycle was run at a tip speed of -40 mm/s and a helical angle of 5° to 

remove the packing history of the powder. This was followed by an upward conditioning cycle at a 

tip speed of 40 mm/s and a helical angle of 5°. After conditioning, the measurement cell was split 

and the split mass recorded. Consecutive cycles of conditioning and BFE measurements were 

repeated seven times at a tip speed of -100 mm/s and helical angle of -5° to assess the stability of 

the powder under agitation. If the powder was observed to be stable, the BFE measured during the 

7th measurement cycle was divided by the split mass to calculate the BFENorm. SE was defined as 

the energy required to lift the blade out of the powder bed and was also measured during the 7th 

measurement cycle. To measure the FRI, four additional measurement cycles at tip speeds -100, -

70, -40 and -10 mm/s were run with an unaltered conditioning cycle between each of them. The 

FRI was calculated as the ratio of the flow energy measured at a tip speed of -10mm/s over the 

flow energy measured at a tip speed of -100 mm/s. 

 

The normalised fluidisation energy (FENorm) is defined as the energy required to keep the impeller 

blade moving through one gram of fluidised powder bed at a constant speed. The lower the value, 

the more easily the powder can be fluidised. Dynamic flow index (DFI) describes the reactivity of 

the powder to an air flow through the powder bed. The higher the value of DFI, the more the 

powder structure is affected by the fluidising gas flowing through the powder bulk. The FENorm and 

DFI were measured during the same measurement program. Powders were loaded into a 25mm 

bore diameter, 20ml volume split vessel. An initial conditioning cycle was repeated 8 times at a tip 

speed of -60 mm/s downward and 60 mm/s upward and helical angles of 5° and -5°, respectively, 

to remove the packing history of the powder. After the initial conditioning, the measurement cell 

was split. A cycle of conditioning and measuring was then repeated at different air velocities, 

controlled by an aeration control unit (ACU) of an FT4. The air velocity was adjusted such that, 

during the conditioning cycle, the air velocity was equal to the air velocity of the following 

measurement. The measurement cycles at the different air velocities were performed at a tip 

speed of -100 mm/s and a helical angle of -5° followed by an upward motion at a tip speed of 

60mm/s and a helical angle of 10°. The FENorm was calculated by dividing the fluidisation energy at 

the point where the powder became fully fluidised (no further decrease in flow energy upon 

increasing fluidising gas velocity) with the split mass of the powder bed. The DFI was calculated as 

the ratio between the flow energy at fluidising gas velocity of 0 mm/s by the flow energy at the 

minimum fluidisation velocity.   



Preparation and in vitro testing of budesonide DPI formulations  

 

Carrier based DPI formulations of micronised budesonide at 0.8 %w/w concentration with the 

different lactose pre-blends were prepared using a Turbula mixer at 46 rpm in 40 g quantities in the 

same blending vessel that was used for the preparation of the lactose pre-blends. Briefly, lactose 

blends were all passed through an 850µm aperture sieve to break any large agglomerates which 

may have formed during storage. A quarter of the mass of the lactose required was transferred to 

the blending vessel and the drug was sandwiched with another quarter the lactose pre-blend. This 

was blended for 10 minutes. The remaining half of the lactose was then added and blended for a 

further 45 minutes. After blending, formulations were passed through a 250 µm sieve and stored at 

20 ± 2°C and 44% RH for at least a week before the content uniformity of the blends was assayed.  

 

Content uniformity was analysed by taking ten random 12.5mg aliquots from each formulation. The 

drug content was assayed using high performance liquid chromatography (HPLC). The acceptance 

criteria for blend content uniformity were set according to USP<905> [30]. Formulations were 

subsequently hand-filled into size 3 Quali-V hydroxypropylmethylcellulose (HPMC) capsules 

(Qualicaps, Madrid, Spain) with a fill weight of 12.5 mg. 

 

In vitro performance of the formulations was assessed using a Next Generation Impactor (NGI) 

equipped with a pre-separator (Copley Scientific, Nottingham, UK). A Cyclohaler DPI device (Teva 

Pharmaceuticals, The Netherlands) was used at a flow rate of 90 litres per minute with 4L of air 

being drawn through the device. All impactor stage plates and the pre-separator were pre-coated 

with silicone oil and 15 ml of mobile phase was placed in the collection cup of the pre-separator 

before two capsules were aerosolised into the impactor. The drug deposited in the different stages 

of the impactor was assessed by dissolving the particles collected in mobile phase and analysing 

the drug content by HPLC. The fine particle fraction of emitted dose (FPFED) and mean mass 

aerodynamic diameter (MMAD) were determined by interpolation based on the mass of particles 

finer than 5 µm collected in the impactor, determined by regression analysis. The proportion of 

drug deposited in the pre-separator (PS of RD) was used as an indicator of the efficiency of drug 

detachment from the large lactose crystals [31]. 

 

High performance liquid chromatography (HPLC) drug analysis 

 

The samples were dissolved in a mobile phase that consisted of 20% water, 35% acetonitrile and 

45% methanol. The mobile phase was pumped through the HPLC system at a flow rate of 1.5 

ml/min using a PU-980 pump (Jasco, Tokyo, Japan). 100 µl of the samples were injected into the 

system using an AS-950 autosampler (Jasco, Tokyo, Japan). The 250 mm long Hypersil-ODS 

column with an inner diameter of 4.6mm and packing material particle size of 5 µm (Thermo 



Scientific, Loughborough, UK) was held at 40°C using a CO-965 column oven (Jasco, Tokyo, 

Japan). The eluted drug was detected using a UV-975 detector (Jasco, Tokyo, Japan) at a 

wavelength of 244 nm for budesonide. The retention time for budesonide was 3.75 min. 

 

 

Statistical analysis 

 

Linear correlations between the physical properties of the lactose carriers and the DPI 

performance of the formulations were established using Minitab v.15 statistical analysis package 

(Minitab Ltd, Coventry, UK). The strength of the linear correlation between the lactose properties 

and the DPI performance attributes was evaluated by the value of r (-1<r<1), with perfect 

correlation producing a value of 1 and the sign denoting the direction of the correlation. 

 

Artificial neural network analysis of the dataset 

 

The hierarchy, design and theoretical basis of ANNs can be found elsewhere [32]. The general 

structure of ANN has one input layer, many hidden layers and one output layer. Each layer 

incorporates many units corresponding to “neurons”, which are fully interconnected with links 

corresponding to synapses [32]. The strength of connections between two units are called 

“weights”. In each hidden layer and output layer the processing unit sums the input from the 

previous layer and then applies a sigmoidal function to compute its output to the following layer 

according to the following equations: 

 

   ∑                (2) 

 

 (  )    {            }          (3) 

 

where     is the weight of the connection between unit q in the current layer to unit p in the 

previous layer, and    is the output value from the previous layer [33]. The  (  ) is conducted to 

the following layer as an output value. Alpha is a parameter relating to the shape of the sigmoidal 

function, which is strengthened with an increase in alpha [18]. ANN learns an approximate non-

linear relationship by a procedure called “training”, which involves varying weight values. Training 

is defined as a search process for the optimised set of weight values, which can minimise the 

squared error between the estimation and experimental data of units in the output layer [18]. 

Training is an iterative process that may lead to under and over-estimation of the predicted output. 

This however, is avoided through the application of a backpropagation algorithm in combination 

with either the backsweep or recursive algorithms. The backpropagation algorithm consists of a 



forward propagation through a neural network, a backward propagation, and a weight update for 

each training step [33]. This processing helps to reduce the number of iterations and improves 

prediction from the neural design. Optimisation and validity of the study is not necessarily 

determined by the number of samples, but by the plurality of the study design that incorporates 

many units in each layer of the neural network. 

 

ANN analysis of data was performed using Alyuda Neurointelligence software (Alyuda 

Neurointelligence, California, USA). The input data were pre-processed so that the range of input 

values were within the range of [-1…1] and output values within the range of [0…1]. The dataset 

was partitioned to training, test and validation sets, with 27 records (70%) being used for the 

training set and 6 (15%) for both the validation and test sets. A batch back-propagation training 

algorithm was used for the network training. The network architecture was selected manually as 

12-4-1 for fine particle fraction of the emitted dose and 12-5-1 for mean mass aerodynamic 

diameter and pre-separator deposition. The logistic transfer function [32] and sum of squares error 

function [34] were used for determining the firing intensity of a neuron and the error between the 

actual and predicted output, respectively. For all the networks, a momentum of 0.9 was used. The 

learning rate was set to 0.1 for the ANN modelling of the fine particle fraction of the emitted dose 

and pre-separator deposition, and 0.25 for the ANN network modelling of the mean mass 

aerodynamic diameter. In all cases, network training was stopped by error change when the mean 

square error of the network or the dataset error over 10 training cycles changed by less than 

0.0000001.  

 

 

 

  



Results and Discussion 

 

Physicochemical characterisation of the raw materials 

 

The particle size distribution (PSD) of the micronised budesonide is shown in Figure 1. The d10, d50 

and d90 of the budesonide batch were 0.80, 2.08 and 4.4µm, respectively. The mean force of 

cohesion (drug probe interaction with drug crystal) of five probes of the micronised budesonide 

were plotted against the corresponding mean force of adhesion (drug probe interaction with lactose 

crystal) to form the CAB plot, as shown by Figure 2. Linear regression analysis through the origin 

of the CAB data showed a linear fit with a regression coefficient of 99.8%. The gradient of each 

plot was equated to determine the CAB ratio of the micronised budesonide. The CAB value of the 

micronised budesonide 0.62 ± 0.02 was similar to previously reported CAB measurements of 

commercially supplied micronised budesonide with lactose monohydrate [35,36]. These data 

suggest that for an equivalent force of cohesion the adhesion of the micronised budesonide to 

lactose is approximately 1.61 times greater than its drug-drug interaction and is therefore a highly 

suitable candidate molecule for investigating the role of fines for an adhesive drug.  

 

The particle size distributions of the coarse lactose (LH100, LH206 and SV010), micronised 

lactose fines (LH300) and milled fine lactose grades (LH230, LH210 and Sorbolac 400) are shown 

in Figure 3 and their characteristic properties summarised in Table II. The rank order of the level of 

intrinsic lactose fines (%≤4.5µm) of the coarse carriers are LH206 > SV010 > LH100. The 

corresponding order for the fine lactose fractions is LH300 > LH230 > LH210 ~ Sorbolac 400.  

Despite LH210 and Sorbolac 400 having similar proportions of %<4.5 µm, in terms of d10, d50 and 

d90 and particle size distributions (Figure 3) LH230 and Sorbolac 400 are similar to each other. 

 

Physical and bulk powder characterisation of lactose pre-blends 

 

The fine lactose particle content of the pre-blends from particle size measurements are 

summarised in Table III. These data indicate that the proportion of lactose fines below 4.5 µm 

ranged between 1.3% and 23% and the proportion of particles finer than 15 µm and 30 µm ranged 

from 2.5 to 40% and 3.8 to 43%, respectively. These differences in the fines content within the pre-

blends were also reflected by variability in the d10 values of the carrier blends, which ranged 

between 1.7 and 50 µm. 

 

The corresponding bulk and tapped densities and powder flow and fluidisation properties of the 

carrier pre-blends are summarised in Table IV. The Hausner ratio for the pre-blends varied 

between 1.14 and 1.54. Carriers that exhibited the lowest Hausner ratios corresponded to the pre-



blends that contained no added lactose fines. The addition of lactose fines significantly increased 

the Hausner ratio and thereby reduced the flowability of the pre-blends. 

 

These findings were confirmed by powder rheological measurements of the lactose pre-blends, 

tabulated in Table IV. A range of rheological properties were analysed including the basic flow 

energy (BFEnorm) and fluidisation energy (FEnorm), which were both normalised to the powder mass 

tested, the dynamic flow index (DFI), flow rate index (FRI) and specific energy (SE). In general, as 

powders became more cohesive the FENorm and FRI increase while the BFEnorm and DFI values 

decrease [29]. Therefore, the flow and fluidisation parameters measured for the carriers suggested 

that increasing the amount of lactose fines reduced the flowability and increased the energy 

required to fluidise the pre-blends. Unlike the Hausner ratio measurements, which were relatively 

insensitive to the type of fines (micronised vs. milled) present in the pre-blend, powder rheological 

data suggested that at high concentration micronised lactose fines had the most significant effect 

on reducing flow and increasing the cohesive properties of the pre-blends. In summary, the 

parameters describing the flow and fluidisation properties of the lactose pre-blends indicated that 

increasing fines content increased the cohesive strength of the lactose pre-blend. This is in an 

agreement with reported studies of Shur et al., who suggested that upon addition of lactose fines 

an increase in the cohesive strength is observed, which in turn may lead to greater 

deagglomeration efficiency of the micronised drug and thereby improving performance [37]. 

 

In vitro aerodynamic particle size distribution (APSD) testing of budesonide DPI 

formulations 

 

The results of the in vitro aerodynamic particle size distribution (APSD) measurements of the 

budesonide formulations prepared with all 39 different pre-blends, aerosolised from a Cyclohaler at 

90 l/min, are summarised in Table V. The results were recorded as fine particle fraction of emitted 

dose (FPFED), mean mass aerodynamic diameter (MMAD) and the proportion of drug recovered 

from the pre-separator (PS of RD).  

 

The fine particle delivery (FPFED) of budesonide (Table V) was significantly affected by the type 

and level of lactose fines added to the three different coarse grades of lactose (LH100, LH206 and 

SV010, see Table I), and ranged between 20.8% and 46.9%.  For the capsule-based Cyclohaler 

device, the addition of the micronised LH300 fines to the coarse carriers had the most significant 

influence on increasing the fine particle fraction, and concomitantly reduced the amount of drug 

retained on the coarse lactose recovered from the pre-separator.  However, despite increasing the 

cohesive strength of the lactose carrier pre-blends, the addition of the milled fines (LH230, LH210 

and Sorbolac 400) did not lead to as significant an improvement in the DPI performance as the 

addition of micronised LH300 lactose fines. These data suggest that the increasing the cohesive 



strength of the formulation may not be the dominant attribute in improving performance upon the 

addition of Geldart group C fines [38].  

 

For all formulations, the MMAD of the drug increased with increasing levels of milled and 

micronised fines, ranging from 2.58 µm to 3.51 µm. These data suggest that agglomeration and 

co-deposition of the API with lactose fines on the impactor stages may have occurred.  

 

Linear correlations between the physical properties of the carrier and the in vitro 

performance of the formulations 

 

Linear correlations have been previously observed between different parameters relating to lactose 

properties and DPI performance on relatively small datasets [9,11,39]. Thus, the initial approach 

utilised in understanding the critical attributes of lactose fines and how they may influence the bulk 

powder properties and govern deagglomeration and drug detachment efficiency of DPI 

formulations, was to conduct statistical analysis for linear correlations for the current dataset. 

 

The correlation coefficients (r) from these analyses are summarised in Table VI and shown in 

Figure 4. These data (Table VI and Figure 4A) indicate that in predicting the fine particle fraction of 

emitted dose (FPFED), the percentage of fine particle lactose %≤4.5 µm in the carrier produced the 

best linear correlation with an r = 0.861. These data are in good agreement with studies published 

by various other researchers where the proportion of lactose fines was shown to correlate directly 

with DPI performance [11,12,14]. It is also notable that in the current study the r value between 

different particle size parameters decreased from 0.861 to 0.740 and 0.638 when the fines fraction 

percentages were measured as %≤4.5 µm, %≤15 µm and %≤30 µm, respectively. These data are 

also in an agreement with a previous study where the finer fractions of lactose were seen to 

produce a better correlation with DPI performance [40].   

 

One of the theories for explaining the improvement in DPI performance with fines is that the 

fluidisation properties of the bulk powder change due to an increase in cohesive strength upon the 

addition of Geldart type C [38] fine powders [37]. To test this theory, the correlation coefficients for 

linear correlations between the cohesive properties of the carriers (Table IV) and FPFED are shown 

in Table VI. The FPFED had positive correlations of 0.748, 0.649 and 0.578 against FENorm, Hausner 

ratio and FRI, respectively. The relationship between the BFENorm and FPFED was characterised by 

a negative correlation of -0.664. These results suggest that, indeed, the more cohesive the carrier 

blend, the higher the DPI formulation performance. However, because the r values are relatively 

low, the linear models based on flow and fluidisation properties of the carrier appeared not to be 

able to differentiate variations in the different grades of lactose fines with the FPFED. 



Figure 4A and Table VI indicate that linear correlation analysis of the MMAD as a function of the 

carrier properties produced the highest degree of correlation for the proportion of fines %≤15 µm 

and %≤30 µm with an r = 0.907 and r = 0.924, respectively. These data further indicate the 

complex nature of these formulations, where the interaction of the drug with coarser fines leads to 

a significant increase in aerodynamic diameter of the aerosolised drug, while having a minimal 

influence on increasing fine particle delivery. It has been previously suggested that these fines may 

be of sufficient size to act as secondary carriers [40].  

 

The strongest correlation between the physical properties of the lactose blends and the pre-

separator deposition was with FENorm with an r = -0.891, together with %<15 µm and %<4.5 µm 

with a coefficient of determination of -0.885 and 0.882, respectively (Figure 4C and Table VI). 

These data indicate that the fluidisation properties of the lactose carrier alongside the fine particle 

content may be important in determining the extent of drug detachment from the surface of the 

large carrier crystals. 

 

It is noteworthy, as highlighted in Figure 4, that linear correlation analysis of the comparatively 

large dataset appeared to produce relatively high correlation coefficients for all the different 

parameters utilised for describing the properties of the lactose pre-blends. It is, therefore, not 

surprising that when smaller datasets are investigated, good linear correlations are frequently 

reported between carrier properties and DPI performance.     

 

Artificial neural network analysis of the datasets 

 

In the current study, the ANN was used as a tool for predictively understanding the complex 

behaviour of how lactose fines govern DPI performance of an adhesive drug in a Cyclohaler. By 

inspecting the relative importance of the different input parameters of the lactose powders in the 

trained networks, the importance of each of the parameters could be measured against the 

different performance indicating attributes associated with DPI performance. These data are 

summarised in Table VII.  

 

The relative importance of the different input parameters in the network modelling FPFED, listed in 

Table VII, is shown in Figure 5A. The proportion of fines below %<4.5 µm was the most important 

parameter, with over 57% of the connection weights derived from this parameter. This is in an 

agreement with the outcome of linear statistical model based on the highest r values. The 

rheological FRI measurement was also shown to correlate with the FPFED, but to a considerably 

lower degree of importance.  

 



In modelling the MMAD, the proportion of fines %<15 µm was by far the most important parameter 

with 76% of the connection weights in the ANN being derived from the single parameter. These 

data are shown in Table VII and illustrated in Figure 5B. This indicates, that although the proportion 

of fines %<4.5 µm was the most important parameter in determining the DPI performance as 

defined by FPFED, coarser fines may play a role in determining the extent of deagglomeration of 

the drug.  

 

As shown in Table VII and Figure 5C, the proportion of lactose fine particles %<4.5 µm was the 

most important parameter in relation to drug deposition in the pre-separator with a 46% connection 

weight. These data suggested that an increased percentage in the proportion of fine particle 

lactose particles %<4.5 µm with respect to the coarser size fractions of the fines led to the 

decrease in the drug deposition in the pre-separator. This is supported by the fact that the second 

most important parameter was the 10th percentile of the particle size distribution (d10).  

 

From the ANN data (Figure 5 and Table VII), a number of different physical and bulk powder 

parameters characterised for the lactose pre-blends appeared to have a relatively small influence 

on DPI performance attributes. These were mainly the flow related measurements of specific 

energy, tapped density and Hausner ratio.  

 

The results also suggested that there might be a direct correlation between efficiency of drug 

detachment from the carrier and fine particle fraction delivery. The deagglomeration efficiency of 

the drug from the carrier, as measured by the proportion of drug collected in the pre-separator as a 

function of the recovered dose, was mainly affected by the proportion of the finer (%<4.5 µm) 

lactose fines, as was also the FPFED. These findings suggest that a significant reduction in pre-

separator deposition is achieved with greater concentrations of finer (%<4.5 µm) lactose. An 

increasing concentration of %<15 µm lactose fines with respect to the concentration of fines 

(%<4.5 µm) may lead to a greater drug retention of the drug on the lactose at the pre-separator, 

which supports the theory that the coarser fraction of milled lactose fines may be acting as 

secondary carriers [40]. 

 

The addition of these coarser fines was also shown to affect the aerodynamic particle size 

distribution of the API, as measured by the MMAD. For the ANN model, the proportion of fines 

%<15 µm appeared to influence the MMAD of the budesonide. These models suggest that an 

increase in the relative amount of the lactose fines between 4.5 µm and 15 µm and possibly up to 

30µm leads to the shift in the aerodynamic diameter of the measurements of the API, with greater 

deposition of the drug on the upper stage of the impactor.  

 



These data suggest that for a population of data, the ANN methodology may help in identifying key 

CMAs of lactose that affect drug product quality. In the context of QbD, this may allow greater 

understanding of material properties that may affect drug product behaviour and can therefore be 

utilised to control and continually improve the drug product.  

  

Conclusions 

 

The performance of DPI formulations appears to be governed by a multitude of excipient properties 

that often cannot be changed in a controlled manner or independently from one another. In this 

study, ANN analysis of the structure-function data was used together with linear regression to 

obtain a more complete understanding of the cause and effect relationship of the influence of fine 

lactose on the DPI performance of an adhesive drug in a capsule-based inhaler device. Linear 

regression of the datasets suggested a number of physical and bulk related properties might 

influence the key in vitro performance parameters. ANN analysis suggested that the only critical 

parameters required in describing the in vitro deposition patterns were the relative measurements 

of the concentration of lactose fines %<4.5 µm and %<15 µm. For the ANN model, the 

deagglomeration efficiency as measured by fine particle delivery performance was pre-dominantly 

governed by the proportion of fine lactose particles %<4.5 µm and the proportion of fine lactose 

particles %<15 µm appeared to govern the increase in the MMAD of the drug. ANN analysis 

suggested that the most dominant property in decreasing the amount of drug retained in the pre-

separator was the percentage of fines below %<4.5 µm. 
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Table I Summary of the coarse and fine lactose components used for preparing the carrier pre-

blends for the current study and the process history and the weight-to-weight % (wt-%) 

concentrations of the fines present in the different pre-blends 

Carrier ID 
Coarse 
fraction 

Type of 
Fines 

Fines 
Wt-% 
fines 

1 LH100 - - 0 

2 LH100 Micronised LH300 2.5 
3 LH100 Micronised LH300 5 
4 LH100 Micronised LH300 10 
5 LH100 Micronised LH300 20 

6 LH100 Milled LH230 2.5 
7 LH100 Milled LH230 5 
8 LH100 Milled LH230 10 
9 LH100 Milled LH230 20 

10 LH100 Milled LH210 2.5 
11 LH100 Milled LH210 5 
12 LH100 Milled LH210 10 
13 LH100 Milled LH210 20 

14 LH100 Milled Sorbolac 400 2.5 
15 LH100 Milled Sorbolac 400 5 
16 LH100 Milled Sorbolac 400 10 
17 LH100 Milled Sorbolac 400 20 

18 LH206 - - 0 

19 LH206 Micronised LH300 2.5 
20 LH206 Micronised LH300 5 
21 LH206 Micronised LH300 10 
22 LH206 Micronised LH300 20 

23 LH206 Milled LH230 2.5 
24 LH206 Milled LH230 5 
25 LH206 Milled LH230 10 
26 LH206 Milled LH230 20 

27 LH206 Milled LH210 2.5 
28 LH206 Milled LH210 5 
29 LH206 Milled LH210 10 
30 LH206 Milled LH210 20 

31 SV010 - - 0 

32 SV010 Micronised LH300 2.5 
33 SV010 Micronised LH300 5 
34 SV010 Micronised LH300 10 
35 SV010 Micronised LH300 20 

36 SV010 Milled LH210 2.5 
37 SV010 Milled LH210 5 
38 SV010 Milled LH210 10 
39 SV010 Milled LH210 20 

 

 

 

 

 

 



Table II 10th, 50th and 90th percentiles (d10, d50 and d90 respectively) of particle size distributions 

coarse lactose carriers (LH100, LH206 and SV010) and the lactose fines (LH300, LH230, LH210 

and Sorbolac 400) used in the study dispersed dry at 2 bar disperser pressure. The results are an 

average from five repeated measurements. 

 

 
d10 
(µm) 

d50 
(µm) 

d90 
(µm) 

%<4.5 

LH100 44.3 103.37 159.62 1.29 
LH206 49.78 93.05 142.21 2.44 

SV010 49.61 108.78 166.78 1.55 

LH300 0.84 2.41 7.76 77.13 

LH230 1.31 8.05 21.97 35.68 

LH210 1.64 14.3 39.45 23.84 

Sorbolac 400 1.79 9.28 22.12 23.85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table III Summary of particle size of the carrier pre-blends in terms of proportion of fines below 4.5, 

15 and 30 µm and the 10th percentile of density distribution (d10) measured dispersed dry at 3 bar 

disperser pressure. The values shown are averages from five repeated measurements. 

Carrier  
ID 

Fines 
<4.5 µm 

(%) 
<15 µm 

(%) 
<30 µm 

(%) 
d10 
(µm) 

1 0% 1.29 3.02 6.24 44.3 

2 2.5% Micronised 4.88 8.25 11.48 23.44 
3 5% Micronised 9.34 13.94 17.03 5.22 
4 10% Micronised 17.43 24.52 26.97 2.08 
5 20% Micronised 23.04 40.24 42.75 1.73 

6 2.5% Milled 2.76 6.70 10.95 26.41 
7 5% Milled 4.32 10.15 15.13 14.7 
8 10% Milled 7.23 16.78 23.23 7.33 
9 20% Milled 12.47 28.93 38.15 3.26 

10 2.5% Milled 1.98 5.14 9.56 31.53 
11 5% Milled 2.62 6.78 12.27 23.63 
12 10% Milled 4.08 10.44 17.89 14.25 
13 20% Milled 6.02 15.91 26.79 8.72 

14 2.5% Milled 2.37 6.23 10.05 29.77 
15 5% Milled 3.32 9.20 13.81 17.01 
16 10% Milled 5.88 15.60 21.72 8.68 
17 20% Milled 10.20 27.62 36.7 4.39 

18 0% 2.44 2.54 3.81 49.78 

19 2.5% Micronised 6.13 8.11 9.27 34.3 
20 5% Micronised 10.42 13.76 14.8 4.11 
21 10% Micronised 18.16 24.42 25.24 1.95 
22 20% Micronised 22.43 39.53 40.6 1.8 

23 2.5% Milled 3.69 6.49 8.69 36.76 
24 5% Milled 5.29 9.99 13.01 15.08 
25 10% Milled 8.04 16.30 20.79 6.74 
26 20% Milled 12.40 27.77 35.18 3.28 

27 2.5% Milled 3.45 5.50 7.91 38.48 
28 5% Milled 3.66 6.74 10.21 29.09 
29 10% Milled 5.05 10.51 16.23 13.97 
30 20% Milled 7.01 16.79 26.57 7.67 

31 0% 1.55 3.03 5.19 49.61 

32 2.5% Micronised 3.17 6.23 8.07 40.48 
33 5% Micronised 6.51 11.75 13.57 9.18 
34 10% Micronised 12.08 21.08 22.61 3.49 
35 20% Micronised 22.47 38.05 39.33 1.74 

36 2.5% Milled 2.01 4.41 7.46 40.97 
37 5% Milled 2.57 6.03 10.16 29.42 
38 10% Milled 3.63 9.29 15.53 16.54 
39 20% Milled 6.53 16.38 26.27 8.13 

 

  



Table IV Flow and fluidisation properties of the carrier pre-blends in terms of bulk and tapped 

densities, Hausner ratio, Basic flow energy (BFENorm), dynamic flow index (DFI), flow rate index 

(FRI), normalised fluidisation energy (FENorm) and specific energy (SE). The values shown are 

averages from three repeated measurements 

 

Carrier 
ID 

Fines 
Bulk 

density 
(g/ml) 

Tapped 
density 
(g/ml) 

Hausner 
ratio 

BFENorm
 

(mJ/g) 
DFI FRI 

FENorm
 

(mJ/g) 
SE 

(mJ/g) 

1 0% 0.747 0.855 1.159 25.12 37.37 1.02 0.70 6.02 

2 2.5% Micronised 0.727 0.854 1.224 22.06 27.90 1.10 0.84 5.84 

3 5% Micronised 0.699 0.847 1.250 20.34 16.61 1.19 1.23 6.06 

4 10% Micronised 0.667 0.860 1.380 15.68 10.87 1.52 1.44 6.25 

5 20% Micronised 0.681 0.869 1.464 9.93 5.69 2.41 1.75 6.27 

6 2.5% Milled 0.709 0.865 1.216 21.65 24.07 1.06 0.95 6.14 

7 5% Milled 0.676 0.866 1.252 19.37 18.49 1.09 1.12 6.12 

8 10% Milled 0.645 0.880 1.358 16.07 10.74 1.29 1.54 6.10 
9 20% Milled 0.560 0.867 1.474 10.52 6.15 1.81 1.93 5.66 

10 2.5% Milled 0.731 0.863 1.183 23.48 31.39 1.03 0.78 5.96 
11 5% Milled 0.711 0.872 1.221 21.11 21.14 1.06 1.00 6.00 
12 10% Milled 0.699 0.881 1.264 19.54 19.56 1.14 1.04 6.08 
13 20% Milled 0.621 0.882 1.369 13.24 9.21 1.41 1.60 5.85 

14 2.5% Milled 0.703 0.859 1.223 21.26 24.92 1.08 1.01 5.87 
15 5% Milled 0.695 0.871 1.254 20.23 18.91 1.13 1.17 6.13 
16 10% Milled 0.669 0.883 1.319 16.95 13.68 1.25 1.33 6.26 
17 20% Milled 0.625 0.893 1.428 11.81 8.52 1.88 1.44 6.26 

18 0% 0.744 0.861 1.135 22.67 30.23 1.08 0.82 5.58 

19 2.5% Micronised 0.708 0.854 1.206 19.85 17.55 1.10 1.14 5.94 
20 5% Micronised 0.668 0.857 1.284 17.60 11.74 1.16 1.53 6.09 
21 10% Micronised 0.613 0.856 1.396 15.65 8.02 1.42 1.93 6.29 
22 20% Micronised 0.604 0.875 1.449 9.96 4.96 2.27 1.88 6.21 

23 2.5% Milled 0.725 0.881 1.214 21.00 23.78 1.08 0.93 6.20 
24 5% Milled 0.692 0.874 1.264 19.71 15.90 1.09 1.41 6.59 
25 10% Milled 0.663 0.877 1.324 15.75 10.55 1.27 1.56 6.29 
26 20% Milled 0.575 0.883 1.537 11.48 6.06 1.66 1.89 5.96 

27 2.5% Milled 0.733 0.869 1.186 21.47 28.66 1.05 0.81 5.68 
28 5% Milled 0.720 0.873 1.212 19.68 21.50 1.09 1.00 5.70 
29 10% Milled 0.683 0.879 1.288 17.36 15.27 1.15 1.22 5.99 
30 20% Milled 0.635 0.885 1.395 13.34 9.70 1.39 1.49 6.01 

31 0% 0.729 0.845 1.158 26.03 51.02 1.11 0.57 5.74 

32 2.5% Micronised 0.729 0.858 1.177 23.60 41.61 1.10 0.57 5.72 
33 5% Micronised 0.703 0.849 1.209 20.74 17.52 1.15 1.14 5.99 
34 10% Micronised 0.636 0.855 1.344 9.55 9.55 1.32 1.91 6.17 
35 20% Micronised 0.599 0.861 1.438 10.18 6.39 2.45 1.57 6.19 

36 2.5% Milled 0.741 0.858 1.158 25.79 34.31 1.09 0.80 5.80 
37 5% Milled 0.725 0.865 1.193 22.83 31.65 1.10 0.78 5.76 
38 10% Milled 0.687 0.862 1.255 18.95 24.34 1.15 1.03 5.90 
39 20% Milled 0.645 0.887 1.375 15.35 10.63 1.43 1.52 6.21 

 

  



Table V Summary of in vitro performance of the formulations prepared with the lactose pre-blends 

as the carrier in terms of fine particle fraction of emitted dose (FPFED), mean mass aerodynamic 

diameter (MMAD) and the proportion of total recovered budesonide that was deposited in the pre-

separator (PS of RD). The results shown are averages from three repeated in vitro assessments. 

 

Carrier 
ID 

Fines 
FPF of ED 

(%) 
MMAD 
(µm) 

PS of RD 
(%) 

1 0% 24.10 2.58 38.23 

2 2.5% Micronised 26.56 2.94 31.00 
3 5% Micronised 35.78 3.04 21.17 
4 10% Micronised 46.94 3.09 13.37 
5 20% Micronised 39.74 3.36 12.74 

6 2.5% Milled 23.85 2.78 35.15 
7 5% Milled 25.32 3.00 31.68 
8 10% Milled 28.21 3.26 21.63 
9 20% Milled 35.95 3.25 15.42 

10 2.5% Milled 23.13 2.75 37.09 
11 5% Milled 24.14 2.85 33.94 
12 10% Milled 27.38 3.00 25.87 
13 20% Milled 26.63 3.14 23.97 

14 2.5% Milled 21.03 2.86 42.90 
15 5% Milled 22.08 2.92 37.80 
16 10% Milled 27.19 3.04 28.27 
17 20% Milled 26.90 3.51 20.47 

18 0% 24.56 2.62 39.31 

19 2.5% Micronised 32.49 2.81 27.04 
20 5% Micronised 36.09 2.92 21.73 
21 10% Micronised 44.71 3.19 13.63 
22 20% Micronised 36.73 3.48 14.53 

23 2.5% Milled 25.50 2.78 32.30 
24 5% Milled 26.75 2.89 28.46 
25 10% Milled 28.69 3.15 23.31 
26 20% Milled 32.89 3.34 18.56 

27 2.5% Milled 23.28 2.70 38.94 
28 5% Milled 25.11 2.79 34.34 
29 10% Milled 24.33 2.88 30.23 
30 20% Milled 30.41 3.01 22.93 

31 0% 20.82 2.65 44.25 

32 2.5% Micronised 23.28 2.96 34.95 
33 5% Micronised 30.63 3.04 27.09 
34 10% Micronised 39.65 3.12 17.12 
35 20% Micronised 35.15 3.40 13.84 

36 2.5% Milled 22.26 2.77 41.25 
37 5% Milled 23.05 2.91 40.17 
38 10% Milled 24.42 3.02 36.12 
39 20% Milled 25.52 3.01 23.49 

 

 

 

 

 



Table VI Coefficient of correlation (r) for linear relationships between the different DPI performance 

measures and the properties of the lactose pre-blends used as the carriers in the formulations. The 

correlations are based on the average values reported in Tables IV, V and VI. 

 Correlation coefficient (r) 
 FPFED

1 MMAD2  PS of RD3 

<4.5 µm 0.861 0.793 -0.882 
<15 µm 0.740 0.907 -0.885 
<30 µm 0.638 0.924 -0.862 

d10 -0.687 -0.839 0.867 
Bulk density  -0.589 -0.839 0.805 

Tapped density  -0.147 0.368 -0.226 
Hausner ratio 0.649 0.889 -0.866 

BFENorm -0.664 -0.864 0.872 
DFI -0.673 -0.784 0.870 
FRI 0.578 0.825 -0.741 

FENorm  0.748 0.800 -0.891 
SE  0.413 0.431 -0.533 

1 Fine particle fraction of emitted dose (FPFED) 

2 Mean mass aerodynamic diameter (MMAD) 

3 Proportion of budesonide recovered from the pre-separator (PS of RD) 

 

Table VII The connection weights for the different input parameters in the neural networks 

describing DPI performance. The networks were based on the average values reported in Tables 

IV, V and VI. 

 Connection weights (%) 

 FPFED
1 MMAD2 PS of RD3 

%<4.5 56.94 2.50 45.76 

%<15 0.09 75.56 1.05 

%<30 1.24 0.45 5.27 

d10 3.64 4.82 19.17 

BFENorm 0.57 0.08 9.05 

Bulk density 6.78 1.99 7.78 

Tapped density 3.75 1.56 3.45 

Hausner ratio 4.91 4.45 0.43 

DFI 7.90 0.37 4.21 

FENorm 0.13 7.15 2.88 

FRI 13.65 0.18 0.03 

SE 0.41 0.88 0.92 

 

1 Fine particle fraction of emitted dose (FPFED) 

2 Mean mass aerodynamic diameter (MMAD) 

3 Proportion of budesonide recovered from the pre-separator (PS of RD) 

 

 

 



Legend to figures 

 

Figure 1. Particle size distribution of budesonide measured dispersed wet. The data represented is 

an average from five repeated measurements. 

 

Figure 2. Cohesive-adhesive balance (CAB) plot for the batch of budesonide. The dotted line 

represents Fcoh=Fadh and corresponds to CAB value of 1. 

 

Figure 3. Particle size distributions of lactoses measured dry dispersed at 2 bar disperser pressure. 

Black lines represent the coarse carriers (LH100, LH206 and SV010), light grey micronised lactose 

(LH300) and dark grey milled lactose grades (LH230, LH210 and Sorbolac 400). The data 

represents an average of five repeated measurements. 

 

Figure 4. Coefficients of correlation (r) for linear correlations between different parameters 

describing the properties of the lactose carriers and A) fine particle fraction of emitted dose B) 

mean mass aerodynamic diameter and C) pre-separator deposition of budesonide.  

 

Figure 5. The relative importance of the different input parameters (connection weights) in the 

neural network modelling the relationship between the parameters describing the properties of the 

lactose carrier and A) fine particle fraction of emitted dose B) mean mass aerodynamic diameter 

and C) pre-separator deposition of budesonide 
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