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STEVEN CHARLTON

Abstract. The cyclic insertion conjecture of Borwein, Bradley, Broadhurst
and Lisoněk states that inserting all cyclic shifts of some fixed blocks of 2’s
into the multiple zeta value ζ(1, 3, . . . , 1, 3) gives an explicit rational multiple
of a power of π. In this paper we use motivic multiple zeta values to establish
a non-explicit symmetric insertion result: inserting all possible permutations of
some fixed blocks of 2’s into ζ(1, 3, . . . , 1, 3) gives some rational multiple of a
power of π.

1. Introduction

In Equation 18 of [1, p. 4], Borwein, Bradley, and Broadhurst give a conjectural
evaluation of a two parameter family of multiple zeta values:

ζ({ {2}m, 1, {2}m, 3}n, {2}m) ?= 1
2n+ 1

πwt

(wt + 1)! , (1)

where I write ‘wt’ as shorthand for the weight of the multiple zeta value, which here
is equal to 4n+ 2m(2n+ 1).

Throughout this paper we will abbreviate multiple zeta value to MZV, and keep
with the convention that means ζ(1, 2) is a convergent MZV. We will make use of
the notation

{s1, s2, . . . , sk}` := s1, s2, . . . , sk, . . . , s1, s2, . . . , sk︸ ︷︷ ︸
` copies of s1, s2, . . . , sk

,

to write repeated arguments. Also, for integers b0, b1, . . . , b2n+1 ≥ 0, set

Z(b0, b1, . . . , b2n) := ζ
(
{2}b0 , 1, {2}b1 , 3, . . . , {2}b2n−2 , 1, {2}b2n−1 , 3, {2}b2n

)
,

which is obtained by inserting {2}bi after the i-th term of {1, 3}n.
Throughout [2], Borwein, Bradley, Broadhurst, and Lisoněk present numerical

evidence for a cyclic insertion conjecture, Conjecture 1 in [2, p. 9], which generalises
the above family. Their conjecture can be given as follows:

Conjecture 1.1 (Cyclic Insertion). For given integers a0, a1, . . . , a2n ≥ 0∑
r∈C2n+1

Z(ar(0), ar(1), . . . , ar(2n))
?= πwt

(wt + 1)! ,

where C2n+1 is the cyclic group of order 2n+1, acting naturally by cyclically shifting
the indices 0, 1, . . . , 2n of the ai’s. So all cyclic shifts of the fixed blocks {2}a0 , {2}a1 ,
. . . , {2}a2n are inserted into {1, 3}n.

In [3], Bowman and Bradley succeed in proving:
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2 STEVEN CHARLTON

Theorem 1.2 (Bowman-Bradley, [Theorem 5.1 in 3, p. 19]). For given integers
n,m ≥ 0 ∑

j0+j1+···+j2n=m
j0,j1,...,j2n≥0

Z(j0, j1, . . . , j2n) = 1
2n+ 1

(
m+ 2n
m

)
πwt

(wt + 1)! .

So all blocks {2}j0 , {2}j1 , . . . , {2}j2n corresponding to compositions1 ∑2n
k=0 jk = m

of m into 2n+ 1 parts are inserted into {1, 3}n.

Simpler and more refined proofs of this result have since been given by Zhao [9]
and Muneta [7].

This result is compatible with the cyclic insertion conjecture. Any composition∑2n
k=0 jk = m of m into 2n + 1 parts remains a composition of m into 2n + 1

parts when cyclically shifted. Hence the terms in the Bowman-Bradley sum can be
re-grouped into subsums, where each subsum is taken over a set of compositions
which differ by a cyclic shift. Conjecturally, each of these subsums is then a rational
multiple of πwt; explicitly it should be α

2n+1
πwt

(wt+1)! , where α is the number of
distinct compositions obtained by cyclically shifting a representative composition
appearing in this subsum. So on average each of the

(
m+2n
m

)
compositions contributes

1
2n+1

πwt

(wt+1)! , giving a total which agrees with the above.

In this paper we will use Brown’s motivic MZV framework [4, 5] to prove the
non-explicit version of a ‘symmetric insertion’ result:

Proposition 1.3 (Symmetric Insertion). For given integers a0, a1, . . . , a2n ≥ 0∑
σ∈S2n+1

Z(aσ(0), aσ(1), . . . , aσ(2n)) ∈ πwtQ ,

where S2n+1 is the symmetric group on the 2n+ 1 letters 0, 1, . . . , 2n. So all possible
permutations of the fixed blocks {2}ai are inserted into {1, 3}n.

This result sits at an intermediate level between the cyclic insertion conjecture
and the Bowman-Bradley theorem.

Any permutation of a composition of m into 2n+ 1 parts remains a composition
of m into 2n+ 1 parts, so the Bowman-Bradley sum breaks up into subsums, each
over the compositions which differ by a permutation. By symmetric insertion each
of these subsums is a rational multiple of πwt.

On the other hand, by choosing representatives of the cosets of S2n+1/〈(0 1 · · · 2n)〉,
the sum over S2n+1 breaks up into (2n)! sums over C2n+1 ∼= 〈(0 1 · · · 2n)〉. By the
cyclic insertion conjecture, each of these subsums is equal to πwt

(wt+1)! , giving the
total as (2n)! πwt

(wt+1)! ∈ π
wtQ, so this result is compatible with cyclic insertion.

As a corollary to symmetric insertion, by setting a0 = a1 = · · · = a2n = m, it
will follow that

ζ({ {2}m, 1, {2m}, 3}n, {2}m) ∈ πwtQ ,

that is, a ‘weak version’ of the conjectural evaluation in Equation 1 holds.
Acknowledgements. This work began to take shape thanks to Brown’s and Gangl’s
Multiple Zeta Values lecture series during the Grothendieck-Teichmüller Groups,
Deformation and Operads programme at the Isaac Newton Institute. I am grateful
to these lecturers and to the organisers of the GDO programme. I am also grateful
to the INI for providing financial support covering the cost of travel to the lectures.
This work was done with the support of Durham Doctoral Scholarship funding.

1Strictly speaking these are weak compositions since some of the terms may be 0, but for ease
of use I will just call them compositions.
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2. Motivic Multiple Zeta Values

In Section 2 of [6], Goncharov shows how the classical iterated integrals

I(a0; a1, . . . , an; an+1)

can be lifted to motivic iterated integrals

Im(a0; a1, . . . , an; an+1) ,

with new algebraic structure. This structure comes in the form of a coproduct ∆,
explicitly computed in Theorem 1.2 of [6, p. 3], making the motivic iterated integrals
into a Hopf algebra.

In Section 2 of [4], Brown further lifts Goncharov’s motivic iterated integrals,
in such a way that Im(0; 1, 0; 1) and the corresponding motivic MZV ζm(2) are
non-zero. More generally Definition 3.6 of [5, p. 8] defines a motivic MZV as

ζm(n1, n2, . . . , nr) := (−1)rIm(0; 1, 0, . . . , 0︸ ︷︷ ︸
n1 terms

, 1, 0, . . . , 0︸ ︷︷ ︸
n2 terms

, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
nr terms

; 1) ,

in analogy with the Kontsevich integral representation of an MZV, Section 9 in [8].
Brown’s motivic MZVs form a graded coalgebra, denoted H. The period map

per : H → R
Im(a0; a1, . . . , an; an+1) 7→ I(a0; a1, . . . , an; an+1) (2)

defines a ring homomorphism from the graded coalgebra H to R, see Equation 2.11
in [4, p. 4] and Equation 3.8 in [5, p. 7]. This means any identities between motivic
MZVs descend to the same identities between ordinary MZVs.

Theorem 2.4 of [4, p. 6] shows that Goncharov’s coproduct lifts to a coaction
∆: H → A⊗Q H on Brown’s motivic MZVs, where A := H/ζm(2)H kills ζm(2). In
Section 5 of [5], Brown describes an algorithm for decomposing motivic MZVs into
a chosen basis using an infinitesimal version of this coaction ∆: H → A⊗Q H.

The infinitesimal coaction factors through the operators

Dr : HN → Lr ⊗Q HN−r ,

where Lr is the degree r component of L := A>0/A>0A>0, the Lie coalgebra of
indecomposables, and HN is the degree N component of H. The action of Dr on
the motivic iterated integral Im(a0; a1, . . . , an; an+1) is given explicitly by

n−r∑
p=0

IL(ap; ap+1, . . . , ap+r; ap+r+1)⊗ Im(a0; a1, . . . , ap, ap+r+1, . . . , an; an+1) ,

according to Equation 3.4 of [4, p. 8].
The operators Dr have a pictorial interpretation similar to that of Goncharov’s

coproduct and the coaction above. One can view Dr as cutting segments of length
r out of a semicircular polygon whose vertices are decorated by a0, a1, . . . , an, an+1:

a0

a1

ap−1

ap

ap+1

ap+r
ap+r+1

ap+r+2

an

an+1

· · ·

· · ·
· ·
·
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Notice that the boundary terms ap and ap+r+1 appear in both the left and right
hand factors of Dr, they are part of both the main polygon and the cut-off segment
above.

One could also see the operators Dr as cutting out strings of length r from the
sequence (a0; a1, . . . , an; an+1). Following Brown, Definition 4.4 in [5, p. 11], we call
sequence

(ap; ap+1, . . . , ap+r; ap+r+1)
appearing in the left factor of Dr the subsequence, and we call the sequence

(a0; a1, . . . , ap, ap+r+1, . . . , an; an+1)
appearing in the right factor of Dr the quotient sequence of the original sequence.
Again the boundary terms ap and ap+r+1 are part of both the subsequence and the
quotient sequence.

When decomposing a motivic MZV into a basis, the operator D2k+1 is used to
extract the coefficient of ζm(2k + 1) as a polynomial in this basis, see Section 5 of
[5]. The upshot of this comes from Theorem 3.3 of [4, p. 9]:

Theorem 2.1. The kernel of D<N :=
⊕

3≤2k+1<N D2k+1 is ζm(N)Q in weight N .

In other words, if the operators D2k+1, for k such that 3 ≤ 2k+ 1 < N , all vanish
on a given combination of motivic MZVs of weight N , then this combination is a
rational multiple of ζm(N). This will be the main tool in our proof of symmetric
insertion.

Before we continue we need to recall a few properties of motivic iterated integrals
which will be used in the proof, see Section 2.4 of [4] for a complete list of properties.
We need:

• Im(a0; a1, . . . , an; an+1) = 0 if n ≥ 1 and a0 = an+1, and
• Im(0; a1, . . . , an; 1) = (−1)nIm(1; an, . . . , a1; 0).

We will refer to these properties as the vanishing because the boundaries are equal,
and reversal of paths respectively.

3. Symmetric Insertion

Proposition 3.1 (Symmetric Insertion). For given integers a0, a1, . . . , a2n ≥ 0∑
σ∈S2n+1

Z(aσ(0), aσ(1), . . . , aσ(2n)) ∈ πwtQ ,

where S2n+1 is the symmetric group on the 2n+ 1 letters 0, 1, . . . , 2n. So all possible
permutations of the fixed blocks {2}ai are inserted into {1, 3}n.

Strategy of Proof. We will put

S :=
∑

σ∈S2n+1

Z(aσ(0), aσ(1), . . . , aσ(2n)) ,

and lift this to
Sm :=

∑
σ∈S2n+1

Zm(aσ(0), aσ(1), . . . , aσ(2n))

on the level of motivic MZVs. Here Zm is obvious motivic version of Z given by
replacing ζ with ζm in the definition. The strategy is then to show a corresponding
result on the motivic level first.

For each k, we will show that the terms in D2k+1S
m cancel pairwise, meaning

each D2k+1S
m is identically 0. From Theorem 2.1 on the kernel of D<N above, it

follows that Sm = qζm(wt), for some q ∈ Q. Applying the period map gives this on
the level of real numbers, and Euler’s evaluation of ζ(2k) shows S ∈ πwtQ.
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The proof of this proposition will proceed by a series of lemmas, the main work
is in showing D2k+1S

m = 0.

Lifting to motivic MZVs, we have by definition

Zm(b0, b1, . . . , b2n) = ζm({2}b0 , 1, {2}b1 , 3, . . . , 1, {2}b2n−1 , 3, {2}b2n)
= ±Im(0; (10)b0 1 (10)b1 100 · · · 1 (10)b2n−1 100 (10)b2n ; 1) ,

where the sign depends only on the depth of the MZV. This sign is the same under
any permutation of the bi, so we can safely ignore it. Ultimately it will pull through
D2k+1, since D2k+1 is linear.

Definition 3.2. The string

0 (10)b0 1 (10)b1 100 · · · 1 (10)b2n−1 100 (10)b2n 1

which (after ignoring all commas and semicolons) appears as the argument of Im
above is the binary word for the corresponding (motivic) MZV Zm(b0, b1, . . . , b2n).

Lemma 3.3. The binary word for Zm(b0, b1, . . . , b2n) can be decomposed into blocks
and written more symmetrically as

(01)b0+1 | (10)b1+1 | (01)b2+1 | (10)b3+1 | · · · | (01)b2n+1 .

Proof. We insert breaks, written |, into the binary word above. Insert a break
directly after the 1 in the binary word 1 which encodes the argument 1 between
{2}bi and {2}bi+1 . Also insert a break after the 10 in the binary word 100 which
encodes the argument 3 between {2}bi+1 and {2}bi+2 .

Between arguments 1 and 3 inclusive, the word looks like

· · · 1 (10)bi 100 · · · .

Inserting these breaks gives

· · · 1 | (10)bi 10 | 0 · · · ,

and the block in the middle is (10)bi+1.
Between arguments 3 and 1 inclusive, the word looks like

· · · 100 (10)bj 1 · · · .

Inserting the breaks gives

· · · 10 | 0 (10)bj 1 | · · · ,

and the middle block is (01)bj+1.
This pattern holds at the start of the word since

0 (10)b0 1 · · · becomes 0 (10)b0 1 | · · · ,

and it holds at the end of the word since

· · · 100 (10)b2n 1 becomes · · · 10 | 0 (10)b2n 1 .

Thus the entire word may be written

(01)b0+1 | (10)b1+1 | (01)b2+1 | (10)b3+1 | · · · | (01)b2n+1

as claimed. �

Notation 3.4. We will identify a word of the form (01)b0+1 (10)b1+1 · · · (01)b2n+1

by giving the vector b = [b0, b1, . . . , b2n] which determines the sizes of the blocks.
We will refer to this vector itself as the word, and write Im(b) for the corresponding
motivic iterated integral.
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Our goal is to compute D2k+1S
m for each k such that 3 ≤ 2k+ 1 < wt, and show

it is identically 0. We compute D2k+1 by marking out subsequences of length 2k+ 3
on each iterated integral in the sum Sm. (Remember the subsequence also includes
the boundary terms.)

We are going to give a more algebraic way of encoding the subsequences, so we
can be sure the terms in D2k+1S

m all cancel.

Notation 3.5. Encode each odd length subsequence by giving:
• the word b = [b0, b1, . . . , b2n] it is taken from,
• the block number s it starts in (counting from 0),
• the number of symbols ` in block s before the beginning of the subsequence,
• the block number t it finishes in, and
• the number of symbols m in block t after the end of the sequence.

For example, the subsequence

0101 | 10 101010 | 01 | 1010101010 | 010
subsequence

101

is taken from the word b = [1, 3, 0, 4, 2]. It starts in block s = 1, with ` = 2 symbols
before the subsequence begins. It finishes in block t = 4, and there are m = 3
symbols after the subsequence ends. We encode it as ([1, 3, 0, 4, 2]; 1, 2; 4, 3).

In this encoding we obviously have s ≤ t, as a sequence cannot finish before it
starts. We also have ` < 2(bs + 1) and m < 2(bt + 1). These conditions come from
the fact that there are strictly fewer symbols before the start of a subsequence than
there are symbols in the block, and similarly for the end. In the case s = t, we
should also have a condition like `+m < 2bs, as the subsequence has length > 0,
but for us this possibility does not arise.

Definition 3.6. If the boundary symbols (the start and end symbols) of a sub-
sequence are the same, we will call the subsequence trivial, because the tensor of
motivic iterated integrals it corresponds to in D2k+1 is automatically 0.

Some facts about non-trivial odd length subsequences and their encodings:

Lemma 3.7. A subsequence has odd length if and only if ` and m have different
parity in the encoding.

Proof. The length of the subsequence encoded as (b; s, `; t,m) is given by 2(bs +
1) + 2(bs+1 + 1) + · · ·+ 2(bt + 1)− `−m. This is odd if and only if ` and m have
different parity. �

Lemma 3.8. An odd length subsequence is trivial if and only if s and t have the
same parity in the encoding.

Proof. Since the number of symbols in each block is even, we may ignore any
intervening blocks. Since s ≤ t we can assume t = s if they have the same parity, or
t = s+ 1 if they have opposite parity.

If s and t have the same parity, we are marking out an odd length subsequence
on alternating 0s and 1s. Such a subsequence necessarily starts and ends with the
same symbol.

If s and t have different parity, part way through the subsequence the pattern
01 changes to 10. So in the latter part of the subsequence 0 and 1 have been
interchanged, meaning the start and end symbols are now different. �
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A subsequence and its encoding can be read off from each other, so they uniquely
determine each other. Thus the non-trivial odd length subsequences on the word b
correspond bijectively to the encodings where s ≤ t and they have different parity
(this prevents s = t, so in fact we may take s < t), where ` and m have different
parity, and where ` < 2(bs + 1) and m < 2(bt + 1).

Definition 3.9. We will call such an encoding above an odd encoding of the (non-
trivial) subsequence. If the subsequence it encodes has length L, we will call it an
odd encoding of length L.

We are now going to define a map on these which will be used to pairwise cancel
the terms of D2k+1.

Definition 3.10. Define the following map on odd encodings

φ : (b; s, `; t,m) 7→ (c; s,m; t, `) ,

where b = [b0, b1, . . . , b2n] and c is defined explicitly as follows:

ci =
{
bi if i < s or i > t

bs+(t−i) if s ≤ i ≤ t

So c = [b0, b1, . . . , bs−1, bt, bt−1, . . . , bs+1, bs, bt+1, . . . , b2n] is obtained by reversing
the sequence from position s to position t inclusive in the vector b.

Notice that c is simply a permutation of b. We can interpret this map on the
binary words as reflecting the sequence of blocks s through t inclusive which contain
the given subsequence. This will produce a new subsequence on another word.

Lemma 3.11. The image of an odd encoding under φ is again an odd encoding,
moreover the length of the encoded sequence does not change.

Proof. The map does not change s or t, so they are fine. After swapping `,m to
m, `, they still have different parity. Lastly we have m < 2(bt + 1) = 2(cs + 1) and
` < 2(bs + 1) = 2(ct + 1).

The new length is given by

2(cs + 1) + 2(cs+1 + 1) + · · ·+ 2(ct + 1)−m− `
= 2(bt + 1) + 2(bt−1 + 1) + · · ·+ 2(bs + 1)− `−m,

which is exactly the old length. �

Lemma 3.12. The map φ is an involution, φ2 = id.

Proof. Given a odd encoding (b; s, `; t,m), we have

φ2(b; s, `; t,m) = φ(c; s,m; t, `) = (d; s, `; t,m)

for some vector d = [di].
By definition, we have

di =
{
ci = bi for i < s or i > t

cs+(t−i) = bs+(t−{s+(t−i)}) = bi for s ≤ i ≤ t,

as we are just reversing the sequence from position s to position t a second time.
So d = b, and φ2 = id. �

Lemma 3.13. The subsequence given by an odd encoding α, and the subsequence
given by φ(α), are the reverse of each other.
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Proof. If the odd encoding is (b; s, `; t,m), its image under φ is (c; s,m; t, `), where
c = [b0, b1, . . . , bs−1, bt, bt−1, . . . , bs+1, bs, bt+1, . . . , b2n] is obtained by reversing b
from position s to position t.

By symmetry we can assume the pattern in block s is 01, otherwise interchange
0 and 1 below. Since s and t have different parity, the pattern in block t is 10. We
get the given by α by taking the binary string

(01)bs+1(10)bs+1+1 · · · (01)bt−1+1(10)bt+1 ,

of blocks s through t inclusive of b, then removing the first ` symbols and the last
m symbols. This gives the subsequence of α as

(· · · 01︸ ︷︷ ︸
2(bs+1)−`

)(10)bs+1+1 · · · (01)bt−1+1(10 · · ·︸ ︷︷ ︸
2(bt+1)−m

) .

Correspondingly we get the subsequence given by φ(α) by taking the binary
string (01)cs+1(10)cs+1+1 · · · (01)ct−1+1(10)ct+1 of blocks s through t inclusive of c,
and removing the first m symbols and last ` symbols. Recall that ci = bs+(t−i) for
s ≤ i ≤ t, which is given by reversing b from position s through t inclusive. So
cs = bt, cs+1 = bt−1, and so on. This gives the subsequence of φ(α) as

(· · · 01︸ ︷︷ ︸
2(cs+1)−m

)(10)cs+1+1 · · · (01)ct−1+1(10 · · ·︸ ︷︷ ︸
2(ct+1)−`

)

= (· · · 01︸ ︷︷ ︸
2(bt+1)−m

)(10)bt−1+1 · · · (01)bs+1+1(10 · · ·︸ ︷︷ ︸
2(bs+1)−`

) .

This is exactly the reverse of the subsequence of α, given above. �

Recall, from Definition 4.4 in [5, p. 11] introduced earlier, that a subsequence on
a word gives rise to a quotient sequence by deleting the symbols of the word strictly
between the boundary symbols of the subsequence, this is the quotient sequene given
by an odd encoding. I now want to show how the quotient sequences given by α,
and the qoutient sequence given by φ(α) are related.

An explicit example first will make the abstract idea more understandable. Con-
sider the odd encoding α = ([1, 2, 3, 1, 2]; 2, 2; 3, 5), so φ(α) = ([1, 3, 2, 1, 2]; 2, 5; 3, 2).
The subsequences they give are

α→ 0101 | 10 1010 | 010 10101 | 1010 | 010101

φ(α)→ 0101 | 10101 010 | 0101 01 | 1010 | 010101 ,

and we can see both quotient sequences equal 0101 | 101010101 | 1010 | 010101. But
why is this the case?

Notice that both quotient sequences necessarily agree before block s = 2, and
after block t = 3 because the words match here. What is the contribution from
blocks 2 and 3 in each case? For α, the contribution from block 2 is an alternating
sequence of 0’s and 1’s of length 3, and the contribution from block 3 is an alternating
sequence of 0’s and 1’s of length 6. The boundary symbols of the subsequence are
different, so when we join these two contributions together we get an alternating
sequence of 0’s and 1’s of length 3 + 6 = 9, starting with a 1.

But exactly the same analysis holds for φ(α). The contribution from blocks 2
and 3 in φ(α) is an alternating sequence of 0’s and 1’s of length 9, starting with a 1,
giving the quotient sequence above.

Lemma 3.14. The quotient sequence given by an odd encoding α, and the quotient
sequence given by φ(α), are equal.
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Proof. Following on from the previous lemma, since bi = ci, for i < s and i > t,
the quotient sequence agree in these blocks. Here they are both:

(01)b0+1(10)b1+1 · · · (xy)bs−1+1 and (yx)bt+1+1 · · · (10)b2n−1+1(01)b2n+1 ,

where xy is some pattern 01 or 10 as appropriate. There is no contribution from
blocks s < i < t as these are deleted, so we only need to consider the contribution
from blocks s and t which join the two sections above.

For α, the contribution from block s is an alternating sequence of 0’s and 1’s of
length `+ 1, and the contribution from block t is an alternating sequence of 0’s and
1’s of length m+ 1. The two boundary terms of the subsequence are different, so
when we join these contributions together we get an alternating sequence of 0’s and
1’s of length `+m+ 2.

The same analysis for φ(α) shows the contribution from blocks s and t here is an
alternating sequence of 0’s and 1’s of length m+ `+ 2. These two sequences agree
as they have the same length and they begin with the symbol y, the first symbol in
block s.

So both quotient sequences equal:

(01)b0+1(10)b1+1 · · · (xy)bs−1+1(yxyx · · · y︸ ︷︷ ︸
`+m+2

)(yx)bt+1+1 · · · (10)b2n−1+1(01)b2n+1 ,

and are equal as claimed. �

Since φ2 = id, we get a group G = {id, φ} which can act on the odd encodings:

Lemma 3.15. Let C be a set of words of the form x = [x0, x1, . . . , x2n], such that
any permutation x′ = [xσ(0), xσ(1), . . . , xσ(2n)] of a word in C also lies in C. Then
for any fixed L, the group G acts on the odd encodings subsequences of length L on
these words.

Proof. If an odd encoding α of length L is taken from the word b, then φ(α) is an
odd encoding of length L taken from the word c, where c is a permutation of b, by
Definition 3.10 and Lemma 3.11. So we map into the set of odd encodings of length
L on the words of C. Function composition gives a group action on this set. �

Look at the orbits of such a set under G. A priori the orbits have size 1 or 2,
the divisors of the order of G.

Lemma 3.16. All the orbits of odd encodings under G have size 2.

Proof. If an orbit has size 1, its unique element is fixed under φ. This means ` = m,
but this cannot be as they have opposite parity by Lemma 3.7. �

Lemma 3.17. The two elements of a fixed orbit give terms which cancel in D2k+1.

Proof. The two elements are of the form α and φ(α). From Lemma 3.13, they
give subsequences X and Y respectively, and these are reverses of each other. From
Lemma 3.14, they give the same quotient sequence Q. Hence in D2k+1 we get the
terms Im(X)⊗ IL(Q) and IL(Y )⊗ Im(Q). By reversal of paths IL(X) = −IL(Y ),
since the subsequence has odd length, so they cancel. �

Now we can put all the pieces together and show each D2k+1S
m is identically

zero.

Lemma 3.18. For each k such that 3 ≤ 2k + 1 < wt, we have D2k+1S
m = 0.
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Proof. The sum Sm = ±
∑
σ∈S2n+1

Im([aσ(0), aσ(1), . . . , aσ(2n)]) runs over all per-
mutations in S2n+1, so all possible permutations of the word a = [a0, a1, . . . , a2n]
appear. The sign ± is determined by the depth of the corresponding MZVs in S.

In this sum each word a′ = [a′0, a′1, . . . , a′2n] is repeated with the same multiplicity
λ. One can see this by counting explicitly. The multiplicity is just the number of
ways of permuting each set of repeated values of the ai’s. Or view S2n+1 as acting
on these words, there is one orbit, so each stabilizer has the same size.

Let C be the set {[aσ(0), aσ(1), . . . , aσ(2n)] | σ ∈ S2n+1} of all permutations of the
word a. Then

Sm = ±λ
∑
w∈C

Im(w) .

Fixing k such that 3 ≤ 2k + 1 < wt, we find

D2k+1S
m = ±λD2k+1

∑
w∈C

Im(w) ,

since D2k+1 is linear. The non-zero terms of this sum are exactly the odd encodings
of length 2k+ 3 on the words w ∈ C. Since C contains any permutations of its words,
Lemma 3.15 shows the group G acts on these encodings, and Lemma 3.16 shows
they break up into orbits of size 2. By Lemma 3.17 the two elements in each orbit
cancel in D2k+1. Hence all terms cancel, so:

D2k+1S
m = ±λD2k+1

∑
w∈C

Im(w) = 0 ,

as claimed. �

The rest of the proof strategy we outlined after Proposition 3.1 goes through
without a problem:

Proof of Proposition. We have lifted

S :=
∑

σ∈S2n+1

Z(aσ(0), aσ(1), . . . , aσ(2n))

to
Sm :=

∑
σ∈S2n+1

Zm(aσ(0), aσ(1), . . . , aσ(2n))

on the motivic MZV level. By Lemma 3.18, D<wtS
m = 0, so Theorem 2.1 on the

kernel of D<N tells us that Sm = qζm(wt), for some q ∈ Q.
Apply the period map in Equation 2 to this, and we get

S = perSm = per qζm(wt) = qζ(wt) .

The weight of each MZV in the sum is even, explicitly it is wt = 4n + 2
∑2n
i=0 ai.

Euler’s evaluation of ζ(2k) says

ζ(2k) = (−1)k+1B2n(2π)2n

2(2n)! ,

where B2n is a Bernoulli number and in particular rational. This shows that
ζ(wt) ∈ πwtQ. Hence S = qζ(wt) ∈ πwtQ, as claimed. �

As a corollary to this we have:

Corollary 3.19. For given integers m,n ≥ 0, the MZV

ζ({ {2}m, 1, {2}m, 3}n, {2}m)

is a rational multiple of π4n+2m(2n+1).
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Proof. Put B := ζ({ {2}m, 1, {2}m, 3}n, {2}m). Now set a0 = a1 = · · · = a2n = m
in the above result. For any permutation σ ∈ S2n+1, we have:

Z(aσ(0), aσ(1), . . . , aσ(2n)) = Z(m,m, . . . ,m) = B

Summing over all permutations we get:

(2n+ 1)!B =
∑

σ∈S2n+1

Z(aσ(0), aσ(1), . . . , aσ(2n)) ∈ πwtQ

by symmetric insertion. Dividing by (2n+ 1)! shows B ∈ πwtQ.
In this case the weight of B is wt = 4n+ 2

∑2n
i=0 m = 4n+ 2m(2n+ 1), so B is a

rational multiple of π4n+2m(2n+1) as claimed. �
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