
J
H
E
P
0
6
(
2
0
1
3
)
0
2
3

Published for SISSA by Springer

Received: March 20, 2013

Accepted: May 14, 2013

Published: June 6, 2013

Rotating black hole hair

Ruth Gregory,a,b David Kubizňákb and Danielle Willsa

aCentre for Particle Theory,

South Road, Durham, DH1 3LE, U.K.
bPerimeter Institute,

31 Caroline Street North, Waterloo, ON, N2L 2Y5, Canada

E-mail: r.a.w.gregory@durham.ac.uk, dkubiznak@perimeterinstitute.ca,

d.e.wills@durham.ac.uk

Abstract: A Kerr black hole sporting cosmic string hair is studied in the context of the

abelian Higgs model vortex. It is shown that such a system displays much richer phe-

nomenology than its static Schwarzschild or Reissner-Nordstrom cousins, for example, the

rotation generates a near horizon ‘electric’ field. In the case of an extremal rotating black

hole, two phases of the Higgs hair are possible: large black holes exhibit standard hair,

with the vortex piercing the event horizon. Small black holes on the other hand, exhibit

a flux-expelled solution, with the gauge and scalar field remaining identically in their false

vacuum state on the event horizon. This solution however is extremely sensitive to con-

firm numerically, and we conjecture that it is unstable due to a supperradiant mechanism

similar to the Kerr-adS instability. Finally, we compute the gravitational back reaction of

the vortex, which turns out to be far more nuanced than a simple conical deficit. While

the string produces a conical effect, it is conical with respect to a local co-rotating frame,

not with respect to the static frame at infinity.
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1 Introduction

The “no hair” theorems of black holes physics are perhaps one of the best known examples

of a pseudo-theorem, [1, 2]. Although when first proved, the conditions placed on the fields

seemed reasonable and to cover all cases of physical interest, it now appears that they were

in fact overly restrictive and there are many cases of physical interest where black holes

can support nontrivial field configurations, and indeed are most stable doing so. Many

applications focus on the case where the black hole remains asymptotically flat, however,

there are two main examples (in 4D) of interesting non-asymptotically flat hair: the cosmic

string and the domain wall through the black hole [3, 4].

Cosmic strings and domain walls are examples of field theory topological defects, so-

lutions to a QFT with a nontrivial vacuum structure which are topologically stable, hence

quasi-classical, see, e.g., [5]. Each have significant gravitational impact, though not in the

sense of tidal forces: the cosmic string excises a conical singularity [6–10] and the domain

wall provides a ‘mirror’ to spacetime, effectively compactifying space [11, 12]. This fact,

plus the problem of having the fields essentially end on the event horizon led to the belief

that these objects simply could not enter a black hole or be gravitationally captured.

The first example of a nontrivial soliton piercing a black hole was given in [3, 13], in

which it was shown precisely how the fields could terminate on the event horizon, and how

the back reaction of the string would give a black hole with a conical deficit through its
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poles. Later works generalised this to a vortex ending on a black hole, [14–17], (a)dS black

holes, [18, 19], and to charged black holes, [20–24], where a flux expulsion phenomenon

was observed for extremal Reissner-Nordstrom (RN) black holes of order the string width.

However, at the time the Kerr black hole was not properly explored; not only was the con-

ventional field ansatz inconsistent in the presence of rotation, but also the putative conical

metric for the back-reacting Kerr+vortex system [25] seemed to lead to a singularity of the

vortex energy momentum away from the axis.

Given that most, if not all, of black holes in nature are probably rotating, this omission

is rather glaring! If there is some fundamental obstruction to a soliton being captured by a

black hole if it is rotating, then this would clearly impact on the properties of cosmic string

loops in a network for example — which would then have to avoid galaxies with their central

supermassive black holes completely. On the other hand, if the strings can thread the black

hole — then how do the core fields accommodate this rotation and its accompanying ‘elec-

tric’ field generation, and is there any analogue of the flux expulsion of the RN black holes?

In this paper, we show how to correctly thread a vortex through a black hole: the

first technical issue is easily dealt with — rotation mixes the time and azimuthal directions

near the black hole relative to infinity, thus the usual angular form of the gauge vector field

is coupled to the zeroth component, and the two cannot be considered independently.1

Indeed, trying to enforce having only an azimuthal component of the gauge field leads to

diverging energy momentum on the horizon due to a divergent gauge boson norm. We

show how the rotation generates a small electrical flux near the horizon, and how the fields

respond to increased rotation. We then study the extremal Kerr limit, exploring whether

there is a similar flux expulsion phenomenon as in the RN black hole. As with RN, we can

demonstrate analytically that there is indeed such a phase transition, however, a detailed

study indicates that unlike RN, this transition appears to be first order, and the sensitiv-

ity of the full numerical system leads us to suspect that the flux-expelled solution is not

dynamically stable, and probably has a superradiant instability analogous to the Kerr-adS

instability found recently [26, 27].

The second technical issue (of difficulties with the conical deficit “back-reacted” metric)

is more subtle, and only fully resolved by a complete and correct back-reaction calculation

for the vortex. Here, we find that the effect of the vortex is not to cut out a simple deficit

in the ϕ angle, but rather, to alter the length of the co-rotating azimuthal direction. In

essence, to cut out a local co-rotating deficit angle. Although at first surprising, given

the frame dragging effects of the Kerr metric, this is in fact the most natural outcome for

the string back-reaction. Nonetheless, this can lead to surprising and novel features: the

ergosphere of the black hole could be shifted, the innermost stable circular orbits (ISCO’s)

may be altered, and any orbit which samples the strong gravity region of the Kerr black

hole can also be affected. Overall, the Kerr black hole/cosmic string system displays a

more interesting and rich phenomenology than its Schwarzschild/RN cousins.

1The paper of Ghezelbash and Mann [24], in which charged and/or rotating black holes were considered,

assumed only an angular component of the gauge field and is thus not a valid ansatz for the rotating black

hole.
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2 Review of the vortex model

The key feature of a cosmic string is that it is a linear defect, with energy density equal to

tension along its length. Cosmic strings arise in a range of field theory models, and simply

require a nontrivial fundamental group of the vacuum manifold, [28]. Cosmic strings also

arise as a relic of brane-antibrane annihilation in brane inflation models of string theory.

While each different symmetry breaking model or brane inflation model might lead to a

different detailed cosmic vortex, all will have in common this energy/tension balance, a

finite width core of condensate, and some sort of gauge flux threading through (since we

require local symmetry breaking for the string to be sharply localised). The abelian Higgs

model provides a simple and elegant framework in which to explore cosmic vortices, as it

contains the essential features of the vortex in the simplest possible context. We therefore

use this as our prototype cosmic string.

2.1 The Nielsen-Olesen vortex

The Nielsen-Olesen (NO) vortex, [6], is the topologically nontrivial solution of the abelian

Higgs model. Its core comprises a Higgs condensate threaded with magnetic flux. The

two cores (scalar and vector) in general have different widths, given by the inverse Higgs

and gauge boson masses, and the ratio determines whether the vortex is type I, II, or

supersymmetric (Bogomolnyi limit, [29]).

The abelian Higgs action is2

S =

∫

d4x
√−g

[

DµΦ
†DµΦ− 1

4
F̃µνF̃

µν − 1

4
λ(Φ†Φ− η2)2

]

, (2.1)

where Φ is the Higgs field, and Aµ the U(1) gauge boson with field strength F̃µν . As per

usual, we rewrite the field content as:

Φ(xα) = ηX(xα)eiχ(x
α) , (2.2)

Aµ(x
α) =

1

e

[

Pµ(x
α)−∇µχ(x

α)
]

. (2.3)

These fields extract the physical degrees of freedom of the broken symmetric phase, with

X being the residual massive Higgs field, and Pµ the massive vector boson. χ, as the gauge

degree of freedom is explicitly subtracted, although any non-integrable phase factors have

a physical interpretation as a vortex.

In terms of these new variables, the equations of motion are

∇µ∇µX − PµP
µX +

λη2

2
X(X2 − 1) = 0 , (2.4)

∇µF
µν +

X2P ν

β
= 0 , (2.5)

where β = λ/2e2 is the Bogomol’nyi parameter [29], and Fµν is the field strength of Pµ.

2We use units in which ~ = c = 1 and a mostly minus signature.
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Figure 1. Numerical solution of the Nielsen-Olesen vortex: X0 (blue) and P0 (red). Notice P0

falls off a little more slowly on this scale.

The Nielsen-Olesen vortex is a (flat space) solution to these equations expressed in

cylindrical polar coordinates as:

X = X0(R) , Pµ = P0(R)∂µφ , (2.6)

where R = r
√
λη, and X0 and P0 satisfy

−X ′′
0 − X ′

0

R
+
X0P

2
0

R2
+

1

2
X0(X

2
0 − 1) = 0 ,

−P ′′
0 +

P ′
0

R
+
X2

0P0

β
= 0 .

(2.7)

See figure 1 for a plot of X0 and P0 for β = 1.

For later convenience, we give a lightning (but useful) review of the gravitational effect

of this vortex. The idea here is to solve the Einstein equations,

Rµν −
1

2
Rgµν = 8πGTµν , (2.8)

simultaneously to the curved space abelian-Higgs vortex equations. The gravitational effect

of the vortex is determined by the dimensionless ratio

ǫ = 8πGη2 , (2.9)

which will typically be of order 10−7 − 10−12 for cosmic strings of cosmological relevance.

Thus, we can perform an expansion in ǫ, finding the background (flat space) Nielsen-Olesen

solution, and using its energy momentum to compute the leading order gravitational cor-

rection to flat space.

Looking for a static solution, we can choose a gauge in which the metric takes the form:

ds2 = e2λdt2 − e2(ν−λ)[dz2 + dR2]− α2e−2λdφ2 , (2.10)
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with curvature:

√
g(Rφ

φ +Rt
t) = α′′ , (2.11)

√
gRt

t = [αλ′]′ , (2.12)
√
gRz

z = [α(ν − λ)′]′ , (2.13)
√
gRR

R = α′′ + α(ν ′′ − λ′′)− α′(λ′ + ν ′) + 2αλ′2 , (2.14)

where α = R, λ = ν = 0 to leading order.

The energy-momentum tensor of the vortex can readily be computed to leading order

as:

T t
t = T z

z = E = X ′2 +
X2P 2

R2
+ β

P ′2

R2
+

1

4
(X2 − 1)2 ,

TR
R = −PR = −X ′2 +

X2P 2

R2
− β

P ′2

R2
+

1

4
(X2 − 1)2 ,

T φ
φ = −Pφ = X ′2 − X2P 2

R2
− β

P ′2

R2
+

1

4
(X2 − 1)2 ,

(2.15)

and a useful identity from the equations of motion (2.7) is

d

dR
[RPR] = Pφ . (2.16)

Solving the Einstein equations to leading order with this energy momentum tensor is then

straightforward, and gives

α =

[

1− ǫ

∫ R

0
R(E − PR)dR

]

R+ ǫ

∫ R

0
R2(E − PR)dR , (2.17)

2λ = ǫ

∫ R

0
RPRdR = ν . (2.18)

It is then easy to see the conical nature of this spacetime, as the exponential fall off of the

X and P fields mean that the integrals converge rapidly, and the asymptotic form of the

metric is

ds2 = dt̂2 − dẑ2 − dR̂2 − R̂2(1− ǫµ̂)2dφ2 , (2.19)

where the coordinates have been rescaled (t̂ = eǫλ∞t etc.) to those of an asymptotic

observer, and

µ̂ = 1− d

dR
α∞ + 2λ∞ =

∫ ∞

0
R EdR (2.20)

is the renormalised energy per unit length of the cosmic string.3 Note that the effect of

the transverse stresses of the string is to alter the details of the metric response, but that

these details cancel out to leave the headline result that the conical deficit depends only

on the energy per unit length of the string. For the Bogomolnyi limit β = 1 = µ̂, these

stresses vanish, and the string geometry is flat in the parallel (t, z) directions, and a smooth

snub-nosed cone in the transverse (R, φ) directions.

3The actual energy per unit length is η2µ̂.
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2.2 Cosmic string and Schwarzschild black hole

The basic idea of putting the vortex on the black hole is to first find an approximate so-

lution assuming the string is much thinner than the horizon. There are (strictly speaking)

three length scales, the two string core widths as already mentioned, and the black hole

scale, however, by fixing the Bogomolnyi parameter and setting our scale to the string

width, only one dimensionless parameter remains relevant: the black hole horizon radius,

r+, in units of string width (or 2GM
√
λη).

One then writes the vortex equations in the background of the Schwarzschild black hole:

−
(

1− r+
r

)

X,rr −
2r−r+
r2

X,r −
X,θθ

r2
− cot θX,θ

r2
+
1

2
X(X2−1) +

XP 2
φ

r2 sin2θ
= 0 , (2.21)

(

1− r+
r

)

∂r∂rPφ +
1

r2
∂θ∂θPφ +

r+
r2
∂rPφ − cot θ

r2
∂θPφ − X2Pφ

β
= 0 , (2.22)

and solves numerically. As noted in [3], for large r+, these equations have a very good

approximate solution of the form4

X ≃ X0(r sin θ) , Pφ ≃ P0(r sin θ) . (2.23)

Both this approximate solution, and the numerical integration, show that the vortex core

is surprisingly undisturbed by the black hole, and the flux lines appear to simply “go

through” the black hole (see figure 2).

2.3 Flux expulsion: extremal RN black hole

When a small electric charge is added to the black hole the metric becomes the Reissner-

Nordstrom (RN) solution, and there is no qualitative difference in how the string pierces the

black hole, with ansatz (2.23) remaining a very good approximation to the exact solution

for large RN black holes. However, when the black hole becomes extremal a new interesting

phenomenon occurs: whereas for large extremal RN black holes the string still threads the

horizon, below a certain critical mass, or black hole radius rc, both the Higgs and the U(1)

fields are expelled from the black hole.5 The reason for this behavior is that in the extremal

case, the horizon equations actually decouple from the exterior geometry [23] and admit

a flux expulsion solution. In fact, the authors of [23] were able to place analytic bounds

and demonstrate that for r+ < 0.7 the expulsion must occur whereas for r+ > 2.9 the

penetration is inevitable. Numerical work actually places this threshold at about rc ≈ 1.9.

Since the discussion of this interesting behaviour is in some sense analogous to what

we shall see in the extremal Kerr case let us recapitulate some of the features of this

calculation. The vortex field equations in the RN background read

− 1

r2
∂r(∆X,r)−

1

r2 sin θ
∂θ(sin θX,θ) +

XP 2
φ

r2 sin2θ
− 1

2
X(1−X2) = 0 , (2.24)

4In fact, the solution is valid as long as
r+

r
sin2θ ≪ 1. Therefore, even for small r+ it is valid close to

the poles, or sufficiently far away from the black hole.
5The “Meissner effect” for test electromagnetic fields in extremal black hole spacetimes was first observed

in [30].
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Schwarzschild: X

GM=5

Schwarzschild: P

GM=5

Figure 2. The equipotentials of the NO vortex in the Schwarzschild background. The Higgs

contours are in blue, and the Pφ contours are in red. In each case contours are shown for

X,Pφ = 0.1, 0.3, 0.5, 0.7, 0.9.

∂r

(

∆

r2
∂rPφ

)

+
sin θ

r2
∂θ

(

∂θPφ

sin θ

)

− X2Pφ

β
= 0 , (2.25)

where ∆ = r2 − 2GMr +GQ2 = r2gtt. Expanding near the horizon in the extremal case,

when the metric function ∆ has a double root ∆ = (r − r+)
2,

X = ξ0(θ) + (r − r+)ξ1(θ) + . . . , Pφ = π0(θ) + (r − r+)π1(θ) + . . . , (2.26)

the horizon equations decouple from the exterior geometry, giving6

ξ′′0 + cot θξ′0 −
ξ0π

2
0

sin2θ
+
r2+
2
ξ0(1− ξ20) = 0 ,

π′′0 − cot θπ′0 −
r2+
β
ξ20π0 = 0 ,

(2.27)

where ξ0 and π0 must be symmetric around θ = π/2, and obey ξ0 = 0, π0 = 1 at θ = 0, π.

Obviously, such equations admit the flux expulsion solution ξ0 = 0, π0 = 1 everywhere.

However, such a solution must extend to the bulk, which, as we shall see, is possible only

for r+ < rc.

6The existence of a double root of function ∆ is crucial for such a decoupling.
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To see this, suppose that expulsion occurs, i.e. on the horizon X ≡ 0, Pφ ≡ 1, with X

increasing and Pφ decreasing towards their asymptotic values away from the horizon. Now

consider a region close to the horizon in which ∂r(∆X,r) > 0 and X2 ≪ 1, then from (2.24)

X > XP 2
φ > sin θ∂θ(sin θX,θ) +

1

2
r2+ sin2θX . (2.28)

Since sin θX,θ = 0 at θ = 0, π/2, and is positive for small θ, its derivative must have at least

one zero on (0, π/2), so define θ0 < π/2 as the first value of θ at which ∂θ(sin θX,θ) = 0.

From (2.28), 1
2r

2
+ sin2θ0 < 1, which is manifestly true for r+ <

√
2 so let us consider a larger

black hole with r+ >
√
2, and define α > θ0 by r2+ sin2α = 2. Then, integrating (2.28) on

the range (θ, π/2), for θ > α gives

X,θ >
1

sin θ

∫ π/2

θ
dθ′X(θ′)

(

r2+
2

sin θ − 1

sin θ

)

>
X(θ)

sin θ

∫ π/2

θ
dθ′

(

r2+
2

sin θ − 1

sin θ

)

,

i.e.,

X,θ(θ) > X(θ)

[

r2+
2

cot θ +
ln tan(θ/2)

sin θ

]

. (2.29)

Due to the fact that X,θθ < 0 on [θ0, π/2] and X,θ(θ) <
X(θ)−X(α)

θ−α < X(θ)
θ−α , for consistency

we must have

1 > (θ − α)

[

cot θ

sin2α
+

ln tan(θ/2)

sin θ

]

(2.30)

over the range θ ∈ (α, π/2). One finds this is violated for r2+ > 8.5. Hence for r+ ≥
√
8.5 ≈

2.92 the vortex must pierce the horizon.

A lower bound for rc can be obtained by considering the horizon equations (2.27).

Namely, let a piercing solution of these equations exist. The second equation implies that

π0 monotonically decreases and reaches its first minimum πm ≥ 0 at θ = π/2. Let us

further assume that ξ0 monotonically increases and reaches its first maximum ξM ≤ 1 at

θ = π/2.7 Then one can derive, [23], that r5c/(
√
2−rc)2 ≥ β2/

√
2, giving rc ≃ 0.7 for β = 1.

Numerical work shows that (taking β = 1) a transition between the penetration and

expulsion actually occurs for rc ≈ 1.9, in which case πm ≈ 1 and ξM ≈ 0. Such a transition

is therefore continuous from the point of view of the fields on the horizon. The RN flux

expulsion phase transition is indicated in figure 5, where it is compared to the Kerr case. It

is worth remarking on the response of this phase transition to the Bogomolnyi parameter,

β. As β drops, the gauge core becomes more confined, and thus we see a drop in the critical

mass before the black hole becomes small enough to sit inside the magnetic flux core. On

the other hand, for β ≥ O(1), the gauge core is more diffuse, leading to a behaviour in

the Higgs field more analogous to a global vortex. The order parameter (the value of the

Higgs field at θ = π/2) drops more smoothly, before finally the flux expulsion kicks in

when the black hole finally comes within the Higgs core, at roughly the same critical mass

as for a β = 1 vortex. We shall see that all these features (continuity, β-dependence) are

substantially different for the extremal Kerr black hole.

7This assumption seems plausible based on energetic considerations: if the scalar field produced some

“wobbles”, having for example a first maximum for θ < π/2 and then went to a minimum at π/2, we

expect this to be less energetically favorable.
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3 Higgs hair for the Kerr black hole

3.1 Approximate solution

The Kerr geometry [in (+,−,−,−) signature] reads

ds2 =
∆−a2 sin2θ

Σ
dt2 +

4GMar sin2θ

Σ
dtdϕ−Σdθ2 − Γ

Σ
sin2θ dϕ2− Σ

∆
dr2 , (3.1)

where a = J/M and

Σ = r2 + a2 cos2θ , ∆ = r2 − 2GMr + a2 Γ = (r2 + a2)2 −∆a2 sin2 θ . (3.2)

Due to the rotation, we expect a mixing between the t and φ degrees of freedom, so we

consider both a nonzero Pφ and Pt:

X2

β
Pφ =

∆

Σ
∂r∂rPφ +

1

Σ
∂θ∂θPφ +

2GMρ2

Σ3
(r2 − a2 cos2θ)∂rPφ

−cot θ

Σ3
(Σ2 + 4GMra2 sin2θ)∂θPφ − 4a3GMr

Σ3
cos θ sin3θ∂θPt (3.3)

+
2GMa sin2θ

Σ3

[

2r2Σ+ ρ2(r2 − a2 cos2θ)
]

∂rPt ,

X2

β
Pt =

△
Σ
∂r∂rPt +

1

Σ
∂θ∂θPt +

4GMra

Σ3
cot θ

(

∂θPφ + a sin2θ∂θPt

)

+
cot θ

Σ
∂θPt

+
2GMa

Σ3
(Σ− 2r2)∂rPφ − 1

Σ3

[

2GM(2r2ρ2 − a2 sin2θΣ)− 2rΣ2
]

∂rPt , (3.4)

0 =
∆

Σ
X,rr +

2(r −GM)

Σ
X,r +

X,θθ

Σ
+

cot θX,θ

Σ
+

1

2
X(1−X2) +XP 2

µ , (3.5)

where ρ2 = r2 + a2 has been introduced for visual clarity, and

P 2
µ =

(ρ2Pt + aPφ)
2

Σ∆
− (Pφ + a sin2θPt)

2

Σsin2θ
. (3.6)

We now see explicitly why we needed to introduce the Pt field (indeed, this was first noted

by Wald [31] who found an expression for constant probe magnetic flux field through a Kerr

black hole). Clearly (3.4) does not allow Pt = 0 unless a = 0. Indeed, a little investigation

shows that the approximate analytic solution (2.23) can be generalized in the Kerr case to

X ≃ X0(R) , Pφ ≃ P0(R) , Pt ≃ −2GMar

ρ4
P0(R) , R ≡ ρ sin θ. (3.7)

Figure 3 illustrates how good an approximation to the full numerical solution this expres-

sion is.

3.2 Numerical solution

In order to demonstrate conclusively that the abelian Higgs vortex is compatible with the

rotating black hole, we need to numerically integrate the equations of motion. Since this

– 9 –
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Figure 3. A comparison of the approximate and exact numerical solutions for an extremal GM =

a = 3 Kerr black hole. In spite of the low value of black hole mass, (3.7) is still an extremely good ap-

proximation to the actual result. Here, the Higgs contours are in blue, the Pϕ contours in red, the Pt

contours in grey, and all the corresponding approximate solution contours in dashed black. Contours

are shown for X,Pϕ = 0.1, 0.3, 0.5, 0.7, 0.9, and for Pt = −0.099,−0.077,−0.055,−0.033,−0.011.

is an elliptic problem we used a gradient flow method on a polar grid, updating the event

horizon as per the method of [3] with the constraint that on the horizon

Pt = − aPφ

r2+ + a2
. (3.8)

For the Kerr black hole however, there is also an additional subtlety: the vortex boundary

conditions (X = 0, Pϕ = 1) placed on axis only restrict the X and Pϕ fields, and not Pt.

This is not surprising and represents the fact that there is a dyonic degree of freedom the

black hole introduces to the solution. (This also exists in the Schwarzschild set-up, but was

not noticed as the electric and magnetic degrees of freedom of the gauge boson decouple

there.) Since we do not wish to pick up a spurious charge of the black hole, we allow the

Pt field to relax freely, and update it along the axis by continuity, thus ensuring that Pt is

only as big as it needs to be to counter the magnetic part of the vortex. Figure 4 shows

some sample solutions for a large-ish black hole both at, and away from, extremality.

4 Extremal Kerr black holes

Having shown that the vortex can sit through a black hole, at the price of some induced

electric field, it is interesting to look at the extremal limit of the Kerr black hole in more

detail. As we have seen in section 2.3, for the RN black hole, a phenomenon of flux expul-

sion was observed for small enough black holes; essentially the event horizon is an infinite

proper distance away, and provided the overall radius of the black hole sits roughly in
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Figure 4. Numerical solution for a Kerr black hole with the values of GM and a indicated.

On the left, the X = 0.1, 0.3, 0.5, 0.7, 0.9 contours are plotted in blue. On the right, the

Pϕ = 0.1, 0.3, 0.5, 0.7, 0.9 contours are in red, and the Pt = −0.045,−0.035,−0.025,−0.015,−0.005

contours are in dashed black. The horizon is shown in black, and the edge of the ergosphere in grey.

the core of the string, it is easier for the magnetic flux lines of the massless vector field

in the core to avoid the black hole than pierce it — it is only once the boson becomes

massive outside the string core that the energy scales tip the other way. Thus, do we get

the same phenomenon here? There is reason to believe we should. In an elegant construc-
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tion, Wald, [31], showed how Killing fields generate probe electromagnetic fields on Ricci

flat backgrounds, and presented a particular solution which represents a constant axial

magnetic field threading the black hole. The gauge potential has the form

Aµ ∝ (2a∂t + ∂ϕ)
µ , (4.1)

which generates a uniform magnetic field Bz far from the black hole, and has zero nett

charge on the black hole. The electric field is not however vanishing, and instead sweeps

down the axes and out along the equator. While the flux lines of the Wald solution cross

the horizon for nonextremal black holes, for all extremal black holes, the flux is expelled.

Clearly the Wald solution only works for a massless vector field, however, one could

argue that for small black holes which are well below the scale of the string, the black

hole will be sitting in the string core, and should therefore see the gauge field as effectively

massless and hence repel it giving rise to flux expulsion. To some extent this interpretation

is correct, however, the situation is a great deal more complex. In the Wald solution, the

photon is massless throughout the whole of spacetime, whereas for the string, the gauge

field is only approximately massless inside the string core. Thus the Wald electric flux,

which sweeps down from the poles and out at the equator, now cannot correspond to an

electrically neutral black hole inside the string core. We therefore cannot simply use the

Wald expression as an approximate core solution. Nonetheless, we find a similar expulsion

phenomenon occurs, although the numerical sensitivity of the low mass black hole system

leads us to suspect that there is a dynamical instability in the small extremal black hole,

analogous to the Kerr-adS instability [27]. It is interesting that extremal Kerr is so different

from extremal RN, however, perhaps not surprising due to the rather different structure

of the near horizon spacetime.

4.1 Near horizon expansion

To study the near horizon limit, it is useful to rewrite the vector field in terms of the

alternative variables P and Q:

P = Pϕ + a sin2θPt ,

Q = ρ2Pt + aPϕ ,
(4.2)

giving

[

P 2

Σsin2θ
− Q2

Σ∆

]

X =
∆

Σ
X,rr +

2(r −GM)

Σ
X,r +

X,θθ

Σ
+

cot θX,θ

Σ
+

1

2
X(1−X2) , (4.3)

X2P

β
=

∆

Σ
P,rr +

P,θθ

Σ
− cot θP,θ

Σ

(

1− 2a2 sin2θ

Σ

)

+
2P,r

Σ2

[

Σ(r −GM)− r∆
]

+
2a sin2θ

Σ2

(

rQ,r − cot θQ,θ + aP −Q
)

, (4.4)

X2Q

β
=

∆

Σ
Q,rr +

Q,θθ

Σ
− cot θQ,θ

Σ

(

1− 4GMr

Σ

)

+
2∆

Σ2

[

cot θ(Q,θ − aP,θ)− r(Q,r − aP,r) +Q− aP
]

. (4.5)
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In particular, for the extremal Kerr black hole ∆ = (r − r+)
2 and so, similar to the RN

case, we expand near the horizon

X = ξ0(θ) + (r − r+)ξ1(θ) + . . . ,

P = π0(θ) + (r − r+)π1(θ) + . . . , (4.6)

Q = ψ0(θ) + (r − r+)ψ1(θ) + . . . .

Eq. (4.3) (or finiteness of energy on horizon) then implies that ψ0 = 0, and the leading

order pieces of each equation read

ξ′′0 + cot θξ′0 +
r2+
2
(1 + cos2θ)ξ0(1− ξ20)−

[ π20
sin2θ

− ψ2
1

]

ξ0 = 0 , (4.7)

π′′0 − cot θ
3 cos2θ − 1

1 + cos2θ
π′0 +

2 sin2θ

1 + cos2θ
(ψ1 + π0)−

r2+
β
ξ20π0(1 + cos2θ) = 0 , (4.8)

ψ′′
1 + cot θ

3− cos2θ

1 + cos2θ
ψ′
1 −

r2+
β
ξ20ψ1(1 + cos2θ) = 0 . (4.9)

Note that although the expansion does not in general decouple from the bulk (because of the

appearance of ψ1) it does form a closed system in this extremal case. The constraints on the

solutions are that they must be symmetric around θ = π/2, and ξ0 = 0, π0 = 1 at θ = 0, π.

4.2 Flux penetration and expulsion

Let us first show that for large black holes a string will always penetrate the black hole

horizon. Similar to the extremal RN case, we proceed by contradiction. Returning to the

full bulk equation (4.3), let us assume that flux expulsion occurs, i.e. at r+ = a = GM

we have X = 0 and Pϕ = 1 (with Pt = −1/2r+) leading to P = (1 + cos2 θ)/2, and hence

Q′(r+) = −1 from (4.8). Therefore near r+ both ∂r(∆∂rX) > 0, and (Q2/∆Σ−X2/2) > 0.

Hence eq. (4.3) implies

1

2
r2+ sin2θX + sin θ∂θ(sin θ∂θX)

≤ 1

2
r2+(1 + cos2θ) sin2θX + sin θ∂θ(sin θ∂θX) < XP 2 < X . (4.10)

However, this is the same equation (2.28) as discussed in section 2.3 and the discussion

therein therefore applies. Hence we conclude that for any r+ >
√
8.5 ≈ 2.92 the vortex

must pierce the extremal Kerr black hole.

Let us now look more closely at what happens on the horizon. A simple inspection

of (4.9) shows that if ξ0 6= 0, then ψ1 = 0. Eqs. (4.7) and (4.8) now read

ξ′′0 + cot θξ′0 +
r2+
2
(1 + cos2θ)ξ0(1− ξ20)−

π20ξ0

sin2θ
= 0 ,

π′′0 − cot θ
3 cos2θ − 1

1 + cos2θ
π′0 +

2 sin2θ

1 + cos2θ
π0 −

r2+
β
ξ20π0(1 + cos2θ) = 0 ,

(4.11)

and form a pair of equations purely representing data on the horizon, decoupled from the

bulk. A general analytic discussion of these equations is rather involved. However, let
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us assume, based on energetic considerations — similar to the extremal RN case, that

the fields ξ0 and π0 have only one turning point on the horizon (a fact confirmed to a

certain extent by a numerical analysis). Then the field ξ0 starts from zero at θ = 0 and

monotonically increases to reach its first maximum at θ = π/2, ξM = ξ0(π/2) < 1, while

the value of π0 monotonically decreases to reach its first minimum πm = π0(π/2) < 1. Since

π′′0(π/2) > 0, the second equation at θ = π/2 implies that r2+ξ
2
M − 2β > 0, i.e., r2+ > 2β.

Thus, for r+ <
√
2β the penetrating solution cannot exist and expulsion must occur.

To show that the flux expulsion is indeed a solution of our near horizon equations (4.7)–

(4.9) we now consider the case when ξ0 ≡ 0. Then ψ1 = const., and (4.8) has the general

solution π0 = λ sin2θ + γ cos θ − ψ1. Applying the boundary conditions, and symmetry

around π/2, then yields γ = 0, ψ1 = −1. Moreover, the requirement that the field strength

invariant FµνF
µν remains finite at θ = 0 implies λ = −1/2. Therefore the solution reads

π0 = −1
2 sin

2θ + 1 and ψ0 = 0. In the original variables this corresponds to

Pφ = 1 , Pt = − 1

2r+
, (4.12)

on the horizon and hence represents a flux-expelled solution. Let us remark that if there is

a phase transition between the flux penetration and expulsion, the value of ψ1 on the hori-

zon necessarily suffers from a discontinuity: ψ1 = 0 for flux penetration whereas ψ1 = −1

in the case of expulsion.

Our analytic arguments suggest that similar to the RN case there exists a critical ra-

dius rc, 1.41 < rc < 2.92 for β = 1, below which the flux is necessarily expelled. Numerical

investigations actually indicate rc ≈ 1.912. The situation seems, however, slightly different

to the RN case. Whereas we have seen that for the extremal RN black holes the tran-

sition was continuous (the fields on the horizon vary smoothly between the penetrating

and the expelling phase), in the case of the extremal Kerr black hole we find a very sharp

transition. For example, for β = 1, we find that for r+ = 1.911855 a piercing solution

of eqs. (4.11) exists with πm ≈ 0.57515 and ξM ≈ 0.76166 whereas there is no piercing

solution for r+ = 1.9118525. The phase transition would appear to be discontinuous. This

is backed up by the fact that the first derivative of the Q-field, ψ1, is discontinuous between

expulsion and penetration.

Figure 5 shows a comparison of the Kerr and RN phase transitions for several values

of β. The order parameter plotted is the maximum value of the Higgs field, Xm = ξ0(π/2),

attained on the equator. Interestingly, not only is the nature of the Kerr phase transition

different from that of RN, but also the response to varying β is quite different. While

both exhibit a lowering of critical radius as β drops (because of the gauge core becoming

thinner), in contrast to the RN case the Kerr black hole has higher critical radius as β

increases. While in both instances for smaller β the gauge core becomes more diffuse, the

nature of the equations governing the gauge fields is different. For Kerr, it is the combi-

nation of Pϕ and Pt, π0, that is determined on the horizon, and this has two contributions

to its effective local mass in (4.11): one geometric, and one coming from the Higgs field,

which must dominate if π0 is not to expel. Once the flux expels, we require ψ1 = −1, and

hence ξ0 = 0. Since the term involving the Higgs field has a factor r2+/β, it is clear that
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Figure 5. Phase plots for the RN and Kerr extremal black holes. The maximum value of the

Higgs field, Xm = ξ0(π/2), is plotted against the horizon radius r+. The transition is shown for

different values of the Bogomolnyi parameter: β = 10 in dotted black, β = 1 in solid blue, and

β = 0.1 in dashed red.

increasing β will increase the critical expulsion radius. We believe that this interesting

behavior deserves more attention in the future.

5 Backreaction of the vortex on the black hole

In the literature, it has been assumed (see e.g. [25, 32]) that the geometry of a cosmic string

threading a Kerr black hole will simply be given by the Kerr solution with the ϕ−angle

having a reduced range corresponding to the angular deficit. However, here we will show

that this is not in fact the case. The situation is more subtle, and far more interesting.

In brief, what we show is that the string does indeed induce a conical deficit, but a deficit

from the perspective of an azimuthal coordinate co-rotating with the black hole, so that the

event horizon of the black hole is a 2-sphere with a wedge removed. Because the horizon

is rotating relative to an asymptotic observer, this is not equivalent to a simple angular

deficit in the full spacetime, but rather, there is a more complex response in the region of

the black hole, with the asymptotic deficit angle behaviour recovered only at large r.

Our approach is to use the perturbative technique of [3, 13], in which we solve the full

Einstein-abelian Higgs system order by order in ǫ = 8πGη2. Strictly, as we wish to present

simple ‘analytic’ expressions, we also solve for a “thin” string, in which
√
ληr+ ≫ 1. For

small ǫ, we can use the probe vortex solution to compute the leading order gravitational

backreaction, and for large black holes, we have demonstrated that our ‘analytic’ approxi-

mation (3.7) is an excellent expression which closely mimics the full numerical solution. In

particular, it is a reliable expression both within the core of the string, and on the horizon

of the black hole.

In order to proceed, we need to express the metric in a useful set of coordinates which

reflect the axial symmetry of the Kerr-cosmic string set-up. For this purpose we shall use

the Weyl form of the metric (see e.g. [33])

ds2 = e2λdt2 − α2e−2λ
[

dϕ+Bdt
]2 − e2(ν−λ)(dx2 + dy2) , (5.1)
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where the functions α,B, ν and λ are functions of the x and y coordinates only. Note the

similarity with (2.10), only there the functions depended only on one coordinate. The Ricci

tensor of this metric is given by:

Rϕ
ϕ +Rt

t = e2(λ−ν)∇2α

α
, (5.2)

Rt
ϕ =

α

2
e−2(λ+ν)

[

−3∇α · ∇B + 4α∇B · ∇λ− α∇2B
]

, (5.3)

Rϕϕ = −α
2
e−2ν

[

α3e−4λ(∇B)2 + 2∇2α− 2∇α · ∇λ− 2α∇2λ
]

, (5.4)

Rx
x +Ry

y =
e2(λ−ν)

2α

[

2∇2α− α3e−4λ(∇B)2 + 4eλ∇ ·
(

α∇e−λ
)

+ 4α∇2ν
]

, (5.5)

Rxy =
1

2α

[

α3e−4λBxBy − 4αλxλy + 2(αxνy + αyνx)− 2αxy

]

, (5.6)

Ry
y =

e2(λ−ν)

2α

[

−α3e−4λB2
y + 2α∇2(ν − λ)− 2(αyνy − αxνx)

−2∇α · ∇λ+ 4αλ2y + 2αyy

]

, (5.7)

where we have introduced the two-dimensional gradient operator∇ = (∂x, ∂y) as well as the

corresponding dot product, expressing for example the Laplace operator as ∇2 = ∇ · ∇ =

∂2x + ∂2y .

In particular, defining8

x =

∫

dr√
∆
, y = θ , (5.8)

the background (Kerr) solution can be written as

α0 =
√
∆sin θ , B0 = −2aGMr

Γ
, e2ν0 =

∆Σ2

Γ
, e2λ0 =

∆Σ

Γ
. (5.9)

The procedure for finding the back-reacted vortex solution is to use the analytic approx-

imation (3.7) to find the energy momentum of the vortex solution, which will be a good

approximation to the true energy momentum, and to use this to find the leading order

correction to the metric by expanding the Einstein equations,

Rµν = ǫ
(

Tµν −
1

2
Tgµν

)

, ǫ ≡ 8πGNη
2 , (5.10)

around the background Kerr solution using the Weyl expressions (5.9).

8Note this is not the usual Weyl gauge, in which the α variable is typically equal to one of x or y,

however, this choice proves easier to analyse, and is closer to the standard Boyer Lindquist Kerr gauge.
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In this limit, the energy momentum tensor is found to leading order9 to be

T t
t ≈ T x

x ≈ X ′2
0 +

X2
0P

2
0

R2
+ β

P ′
0
2

R2
+

1

4
(X2

0 − 1)2 ≡ E ,

T y
y ≈ −X ′2

0 +
X2

0P
2
0

R2
− β

P ′2
0

R2
+

1

4
(X2

0 − 1)2 ≡ −PR ,

Tϕ
ϕ ≈ X ′2

0 − X2
0P

2
0

R2
− β

P ′2
0

R2
+

1

4
(X2

0 − 1)2 ≡ −Pφ ,

Txy ≈
√
∆r

ρ
R(E + PR) ,

T t
ϕ ≈ −4GMra

ρ8
[

(ρ2 − 4r2)RPP ′ − a2R2(X2P 2 + P ′2)
]

≈ 0 ,

(5.11)

where E etc. denote the energy-momentum components of the Nielsen-Olesen vortex, de-

fined in (2.15), which are simply functions of R = ρ sin θ. Because these components are

functions of the R variable only, this leads to a modification of the Kerr geometry which

is also dependent on R.

In order to motivate the form of the perturbed metric, we first note that at large

“r cos θ”, the metric should approach the form of the isolated gravitating vortex, given

in (2.17), (2.18). Thus we expect that δα = ǫα0α1(R), δλ = δν/2 = ǫλ1(R). Of course we

must confirm that the equations of motion indeed lead to perturbations of this form.

First, consider the Einstein equation (5.2),

δ(Rt
t +Rϕ

ϕ) =
e2(λ−ν)

α
∇2δα =

∇2δα√
∆ρR

= −ǫ (E − PR) , (5.12)

which is solved to leading order by a perturbation of the form

α = α0

(

1 + ǫα1(R) +O(ǫ2)
)

. (5.13)

where α1 satisfies

α′′
1 + 2

α′
1

R
= −(E − PR) ⇒ α1 = −

∫ R

0
R(E − PR)dR+

1

R

∫ R

0
R2(E − PR)dR , (5.14)

which is in fact identical in form to the self-gravitating correction (2.17).

Next, noting that B and its derivatives are subdominant, we obtain for the next Ein-

stein equations (5.4), (5.5) and (5.7)

δRϕϕ = −ǫR
[

Rα′′
1 + 2α′

1 −Rλ′′1 − λ′1
]

= R2

[

E +
1

2
(Pφ − PR)

]

, (5.15)

δ(Rx
x +Ry

y) = ǫ

[

α′′
1 +

α′
1

R
+ 2ν ′′1 − 2λ′′1 − 2

λ′1
R

]

= −ǫ [E − Pφ] , (5.16)

δRy
y = ǫ

[

α′′
1 +

α′
1

R
+ ν ′′1 − λ′′1 −

ν ′1
R

− λ′1
R

]

= −ǫ
[

E − 1

2
(Pφ − PR)

]

, (5.17)

9To derive these forms, we have computed the components of Tµν using the analytic approximation,

and have expanded the metric coefficients to leading order near the string core, so that for example Σ =

r2 + a2 cos2 θ = ρ2 − a2R2/ρ2 = ρ2(1 +O(r−2

+ )).
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the first of which gives

λ1 =
1

2

∫ R

0
RPRdR , (5.18)

and consistency with the next two implies ν1 = 2λ1, also as in the self-gravitating case.

Now we can examine the variation δB, which cannot be deduced from an asymp-

totic analysis, since the background function B = O(r−3) is subdominant. Instead, we

must examine the near horizon behaviour of (5.6), in which the only term not explicitly

convergent is

α2
0e

−4λ0B0,xδB,y ∼ −2GMa

ρ2
√
∆

(

1− 4r2

ρ2

)

R2δB,y . (5.19)

Given the r.h.s. of this equation from (5.11), we quickly see that we cannot find a form of

δB which has the requisite functional dependence on the background coordinates, as well

as on the variable R. In particular, it is transparent that if we set δB = ǫB0α
−1
1 , which

is what would be required for a pure ϕ-angular conical deficit, then this would lead to a

divergence in δRxy at the horizon, and would not solve the Einstein equations. Indeed, ex-

amining (5.6) for the extremal Kerr black hole shows that even moving beyond the leading

order analytic approximate solution, all terms are regular except for this δB term, hence,

unless we impose very different on axis boundary conditions, we must take δB = 0 on the

horizon. This simple result can have significant consequences as we will see.

We can now check the remaining equations:

δRxy = −ǫ
√
∆
r

ρ

[

Rα′′
1 + 2α′

1 − 4λ′1
]

= ǫ
√
∆
r

ρ
[E + PR] , (5.20)

δRt
ϕ = ǫ

GMra

ρ8
(

ρ2 − 4r2 + 2a2
)

R3
[

3α′
1 − 4λ′1

]

(5.21)

= −ǫ4GMra

ρ8
[

(ρ2 − 4r2)RPP ′ − a2R2(X2P 2 + P ′2)
]

= O(r2+/r
5) .

Pulling all the details together, and looking outside the core of the vortex, we see the

asymptotic form of the Kerr-vortex to leading order is

ds2 =

(

1− 2GMr

Σ
+

8(GMar sin θ)2

ΓΣ
ǫµ̂

)

dt2 −Σdθ2 − Σ

∆
dr2

− Γ

Σ
(1− 2ǫµ̂) sin2θ dϕ2+

4GMar sin2θ

Σ
(1− 2ǫµ̂)dtdϕ ,

(5.22)

where µ̂ is the renormalised energy per unit length of the string defined in (2.20). Note

that this metric is only a leading order expression, and does not solve the vacuum Einstein

equations to all orders in (
√
ληGM)−2, however, as there are sub-dominant corrections

to the analytic approximation, a full numerical investigation is required to determine the

precise fall off from this asymptotic form. It is clear that while there is an angular deficit in

this spacetime, which does approach the standard conical deficit at large distances, in the

vicinity of the black hole, as far as these Boyer-Lindquist coordinates are concerned, the

deficit is felt not only by the ‘angular’ ϕ-coordinate, but also by the time component of the

metric. While this seems a little strange and worrying, if we instead transform to a frame
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co-rotating with the black hole, ϕH = ϕ−ΩHt = ϕ−B(r+), then the effect of the cosmic

string is indeed to remove a deficit angle — from the perspective of the black hole. Note this

is not in contradiction with the Schwarzschild result, it is simply that in Schwarzschild there

is no difference between the spatial angular variable on the horizon and that at infinity.

6 Discussion

To sum up: we have shown how to correctly thread a rotating black hole with vortex hair.

A consequence of rotation is that the angular and time components of not only the metric,

but also the vortex fields are interconnected. This leads to an electric field in the polar

regions of the black hole. That this is a genuine electric flux, and not some frame dragging

transformation effect is easily verified by computing

|F ∧ F | ∼ E ·B ∼ 8GMaP0(R)P
′
0(R)(3r

2 − a2)

Rρ6
(6.1)

for the approximate solution — clearly a nonvanishing quantity. (We have also checked

E · B for the numerical solution, but as can be anticipated from the excellent agreement

between numerical and approximate solutions, this gives roughly the same result.) Thus,

as with the Wald solution, there is clearly an induced electric field in all frames.

We also explored the flux expulsion transition for the Kerr black hole, and while we

observed flux expulsion, the gradient flow method became extremely sensitive, particularly

around the phase transition, and took several orders of magnitude longer in ‘time’ to con-

verge, as well as requiring several orders of magnitude smaller ‘time’ steps in the program.

This is in contrast to the extremal RN solution, which, while being a little more sensitive

to find numerically, is more or less in the same ball park of convergence and sensitivity

as the Schwarzschild case. We conjecture that this is due to a super-radiant instability of

the rotating black hole within the vortex core. Kerr-adS black holes exhibit an instabil-

ity, [27], due to the confining nature of the adS spacetime. Here, we do not have a negative

cosmological constant, however, we do have confinement: exterior to the vortex core the

scalar and gauge fields are massive, so any perturbation will primarily propagate up and

down the string, as a massless zero mode. Modes transverse to the string will be reflected

back. Thus, we can envisage a range of modes which get reflected back from the vortex

edge back to the rotating Kerr black hole, picking up more angular momentum, getting

reflected back and so on. It would be interesting to explore this suspicion.

Perhaps the most important result from our study however is the discovery that the

conical nature of the spacetime is not in the form of a simple deficit angle at infinity. All

previous studies have assumed that the string will simply redefine the nature of the ϕ-angle,

but we find this is not the case. Instead, the fields have a more complex adjustment be-

tween a “frame-dragged” conical deficit in the vicinity of the black hole, and the standard

conical deficit at infinity. This new physical phenomenon could lead to distinct features of

the Kerr+vortex black hole. For example, the ergosphere can be shifted (see figure 6) and
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Figure 6. Shifting of the ergosphere — depicted here for an extremal Kerr black hole with ǫ = 0.2.

orbits around the black hole will be affected.10 However, the minute value of the cosmic

string tension will most likely render this effect outside the range of observational precision.

All in all, the vortex-Kerr system has proved to be surprisingly different and much

more interesting that the standard Schwarzschild black hole hair.
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