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1 Introduction

There has been a recent explosion in the number of dark energy [1] and modified gravity [2]
theories constructed in an attempt to describe the apparent observation of cosmic accelera-
tion [3, 4]. It is now standard practice to include some “dark contribution” into the material
content of the universe during the analysis of, e.g., observations of the temperature fluc-
tuations in the Cosmic Microwave Background (CMB) [5] and gravitational lensing of the
CMB [6, 7].

Observations of the CMB [6–10] and galaxy weak lensing [11, 12] are now mature enough
to be able to use the current data to constrain some of the allowed properties of the dark
sector (by which we mean dark energy and/or modified gravity, rather than dark matter).
Recent dark energy constraints have focused on constraining the constant equation of state
parameter w and “quintessence” sound speed c2

s . Since these types of dark energy models do
not cluster significantly, the constraints are rather weak [13–17]. There are a small number of
constraints on a particular parameterization of modified gravity since the data release from
Planck [18, 19]. Prospective CMB experiments such as the Polarized Radiation Imaging and
Spectroscopy Mission (PRISM) [20] and Cosmic Origins Explorer (CoRE) [21], as well as
future tomographic galaxy weak lensing experiments like the Dark Energy Survey (DES) [22],
Euclid [23], and Large Synoptic Survey Telescope (LSST) [24], will considerably improve the
constraining power. However, for any of these experiments to be used to their full potential,
some framework for the evolution of possible perturbations in the dark sector is vital.

A useful framework for the dark sector at the level of the background already exists,
and works very well: the dark contribution is modelled by the dark energy equation of state
parameter w = P/ρ (where P and ρ are the pressure and energy density of the dark fluid).

– 1 –
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However, as soon as observational data are used which are sensitive to the clustering prop-
erties of the dark sector, some new framework needs to be employed. Such observations
are those that are effected by the integrated Sachs-Wolfe effect and gravitational lensing.
There is an abundance of parameterizations for perturbations of the dark sector in the liter-
ature [25–33], but a clear problem is emerging. A parameterization may well be constructed
which covers the entire space of theories, but it will undoubtedly come with a huge number of
free functions which experimental data will be unable to meaningfully constrain. Similarly,
a very simple parameterization could be constructed which has a very small number of free
parameters, but it may be too restrictive and will not probe wide enough ranges of theory
space to yield theoretically meaningful results. And so: a balance which must be struck
between theoretical generality and observational feasibility.

In this paper we will review and constrain the freedom in our equations of state for
perturbations formalism. The parameterization contains all theories with a given field content
and symmetries, and comes with a very small number of free parameters. This paper is
complementary to [34], in which measurements of ISW and CMB lensing tomography are
used to constrain the equations of state for perturbations.

The layout of this paper is as follows. In section 2 we explain and review the equations
of state for perturbations formalism, as well as providing details of the models we consider. In
section 3 we give some analytic evidence for the difference in the lensing potentials for classes
of models with and without anisotropic stress: our fluids approach makes this particularly
transparent. In section 4 we review the observational spectra which are used to obtain the
data constraints presented in section 5. Section 6 describes the ability of future experiments
at constraining the freedom in the models, and concluding remarks are saved for section 7.

2 Review of the formalism

2.1 Basic ideas

At its heart, the equations of state for perturbations formalism was designed to allow mean-
ingful and model independent statements about the allowed properties of the dark sector
to be extracted from observations. We will briefly review the formalism introduced and
developed in [35–40].

The gravitational field equations for the class of theories we will study can be written as

Gµν = 8πG [Tµν + Uµν ] , (2.1)

where Tµν is the energy-momentum tensor of all known matter fields, and Uµν is the dark
energy-momentum tensor which contains all contributions to the gravitational field equations
due to the dark sector theory. This class of theories includes genuine dark energy models
and also modified gravity models where Uµν includes, for example, higher derivatives of the
metric. We will only study the minimally coupled dark sector here: this means that Tµν and
Uµν are separately conserved. This restriction can, in principle, be relaxed.

For a background which is homogeneous and isotropic, Uµν can be specified in terms of
two functions: the density, ρ = ρ(t), and pressure, P = P (t), of the dark sector fluid. The
evolution of ρ is constrained by the conservation equation∇µUµν = 0, giving ρ̇ = −3H(ρ+P )
and hence the specification of an equation of state parameter, w = P/ρ, defines the evolution
of the background.

– 2 –



J
C
A
P
0
4
(
2
0
1
5
)
0
4
8

The components of the perturbed dark energy-momentum tensor are parameterized as

δUµν = δρuµuν + 2(ρ+ P )v(µuν) + δPγµν + PΠµ
ν , (2.2)

where δρ, vµ, δP and Πµ
ν are the perturbed fluid variables of the dark sector theory; we use

round brackets to denote symmetrization of the enclosed indices, e.g., A(µBν) = 1
2 (AµBν

+AνBµ). uµ is a time-like vector and γµν = uµuν+gµν is the spatial metric, that is orthogonal
to the time-like vector: uµγµν = 0. The components of δUµν are constrained by the perturbed
fluid equations δ(∇µUµν) = 0, which, for scalar perturbations in the synchronous gauge, are

δ̇ = (1 + w)

(
k2θS − 1

2
ḣ

)
− 3HwΓ, (2.3a)

θ̇S = −H(1− 3w)θS − w

1 + w

(
δ + Γ− 2

3
ΠS

)
, (2.3b)

where the perturbed pressure δP has been packaged into the gauge invariant combination

wΓ ≡
(
δP

δρ
− w

)
δ. (2.4)

Here, δ, θS, δP and ΠS are the scalar parts of the perturbed dark sector fluid variables (note
that we take ẇ = 0 for simplicity). In principle, knowledge of two of these functions specified
the others through the equations of motion. In (2.3), Γ and ΠS are the gauge invariant
entropy and anisotropic stress perturbations respectively and this property means that it is
sensible to use these functions to specify the modified gravity/dark energy theory. The fluid
equations (2.3) close when the entropy and anisotropic stress contributions are written as

wΓ = A1δ +A2θ
S +A3ḣ+ · · · , (2.5a)

wΠS = B1δ +B2θ
S +B3η + · · · . (2.5b)

That is, when wΓ and ΠS are specified as linear functions of variables which are already
evolved (h and η are the metric perturbations in the synchronous gauge, as defined in [41]);
note that the {Ai, Bi} are chosen so that Γ and ΠS are gauge invariant. The entropy wΓ and
anisotropic stress wΠS written in the form of (2.5) are the equations of state for perturbations.

The main idea behind our approach is to specify two ingredients: (i) the field content of
the dark sector, and (ii) ask for a particular set of symmetries or principles to be respected
and not to specify the actual Lagrangian. After these two ingredients are laid down, we
are able to obtain all the freedom at the level of linearized perturbations, since these two
ingredients are sufficient information for obtaining a precise form of the coefficients {Ai, Bi}
in the equations of state for perturbations (with prescribed scale dependence), and there will
be nothing else left to specify to characterize the perturbations. In the next section we will
provide the explicit examples we will be constraining in this paper.

Clearly, what we could do is to write down the largest field content and the smallest set of
symmetries imaginable, but the problem is that this would create more free parameters than
current (and near-future) cosmological data sets are able to constrain. This generalization is
not of practical interest, at least for the foreseeable future.

– 3 –
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2.2 Survey of models

Here we will describe what classes of models each of our equations of state for perturbations
describes, and the number of associated free parameters. Our models have actions given by

S =

∫
d4x
√−g

[
R

16πG
− 2L(X)

]
+ Sm[gµν ; Ψi]. (2.6)

As described above, each model is just a statement of the field content “X” in the dark
sector Lagrangian L and a set of symmetries (typically, but not exclusively, taken to be
reparameterization invariance). We do not need to specify the functional form of the dark
sector Lagrangian.

2.2.1 Generalized scalar field models

For all models with field content

L = L(φ, ∂µφ, ∂µ∂νφ, gµν , ∂αgµν), (2.7)

which are reparameterization invariant, have second order field equations, and are linear in
∂αgµν , the equation of state for perturbations is [38]

wΓ = (α− w)

[
δ − 3β1H(1 + w)θS − 3β2H(1 + w)

2k2 − 6(Ḣ − H2)
ḣ+

3(1− β2 − β1)H(1 + w)

6Ḧ − 18HḢ+ 6H3 + 2k2H
ḧ

]
,

(2.8)
and ΠS = 0. We call this class of theories the generalized scalar field (GSF) theories. There
are just three free dimensionless functions, F ≡ {α, β1, β2}. α and β2 only depend on time,

but in general β1 will have scale dependence given by β1 = β
(0)
1 (t) + β

(2)
1 (t)k2 as explained

in [38]. In models where β
(2)
1 6= 0 such theories will diverge as k → ∞ and, hence, we set

β
(2)
1 ≡ 0, and we are left with three free dimensionless functions of time.

It is important to realize that every theory in this class is covered by these three func-
tions. In particular, the kinetic gravity braiding [42, 43] theories are included, as are all cubic
galileon theories [44].

As a subset of these theories, consider the dark sector Lagrangian with field content

L = L(φ, ∂µφ, gµν), (2.9)

which are also reparameterization invariant. The gauge invariant equations of state for
perturbations are [13, 45]

wΓ = (α− w)
[
δ − 3H(1 + w)θS

]
, ΠS = 0. (2.10)

There is a single parameter, α, which can be interpreted as a sound speed for sub-horizon
modes. It is clear that this simple scalar field model (2.10) is recovered from the general
case (2.8) when β1 = 1, β2 = 0. The equation of state for perturbations (2.10) contains all
minimally coupled k-essence theories whose Lagrangian is L = L(φ,X ), where X ≡ −1

2(∂φ)2;
the important point to realise is that by dialing the value of α, one dials through all possible
L = L(φ,X ) theories.

If a functional form of the Lagrangian is known, then α = (1 + 2XL,XX /L,X )−1. When
α = 1, (2.10) describes perturbations of minimally coupled quintessence, and when α = w
the adiabatic perturbations of shift-symmetric k-essence.

– 4 –
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The theory whose Lagrangian is given by

L(φ,X ) =

(
−X +

X 2

M4

)
V (φ), (2.11)

where M is a mass scale and V an arbitrary function of φ, has α related to w via

α =
1 + w

5− 3w
. (2.12)

2.2.2 Time diffeomorphism invariant L(g) theories

This class of models is rather distinct from the other classes of models we will discuss. These
are constructed from a dark sector theory whose field content is

L = L(gµν), (2.13)

and is constrained to be invariant under time diffeomorphisms, but not space diffeomor-
phisms. This leaves a residual vector degree of freedom and a massive graviton. We call this
class of theories the time diffeomorphism invariant (TDI) L(g) theories. These TDI L(g)
theories have been studied in the literature, under the name of elastic dark energy [46–48];
the theory is equivalent to a particular brand of Lorentz violating massive gravities [37].

The equations of state for perturbations of the TDI L(g) models are

wΓ = 0, wΠS =
3

2
(w − c2

s )
[
δ − 3(1 + w)η

]
, (2.14)

where η is the synchronous gauge metric perturbation. There is a single parameter, c2
s ,

which is the sound speed of the medium. Notice that the medium is adiabatic (i.e., the
entropy perturbation vanishes), but has an anisotropic stress. We should note that this
theory represents one of the simplest possible ways to modify General Relativity.

2.3 Summary

Once the perturbed fluid equations (2.3) are furnished with one of the equations of state for
perturbations, i.e., (2.8) or (2.14), the system of perturbation equations closes. In figure 1
we summarize the field contents, symmetries, and the associated number of free functions.

In the rest of the paper we observationally constrain allowed values of the free param-
eters: c2

s in the TDI L(gµν) models, and {α, β1, β2} in the GSF models. In this paper we
restrict these parameters, and w, to be constant. We are simply being realistic about the
constraining power of the available data.

This constraint of constancy calls into question what portion of the GSF theories are
actually covered by taking {α, β1, β2} as constant. However, if we are able to observationally
constrain the characteristic size of these parameters, particularly if one of them has to be
small, then we have in-fact used data to learn something about the allowed properties of the
dark sector theory. By measuring the constant values of these parameters we are measuring
something which is characteristic to the evolution of perturbations of theories of a given class.

3 Evolution of the density contrast

We have cast our parameterization in terms of hydrodynamic quantities, and this can be used
to obtain a simple, physically intuitive understanding of the role of the parameters in the

– 5 –



J
C
A
P
0
4
(
2
0
1
5
)
0
4
8

L = L (φ, ∂µφ, ∂µ∂νφ, gµν , ∂αgµν) L = L (φ, ∂µφ, gµν) L = L (gµν)

{α, β1, β2} {α}
{
c2

s

}

restrict restrict

diff.inv diff.inv TDI

β1 = 1, β2 = 0

figure 1. Schematic depiction of how the field content and symmetries of the models we study are
related. The field content on the far left (2.7) is imposed with reparameterization invariance (and sec-
ond order field equations, as well as being linear in ∂αgµν for simplicity) to yield the three parameters
{α, β1, β2} in the equation of state for perturbations (2.8). Restricting the field content to (2.9) and
then imposing reparameterization invariance leaves a single parameter, α, in the equation of state for
perturbations (2.10). Further restriction of the field content to (2.13) and then imposing time diffeo-
morphism invariance leaves a single parameter, c2s in the equations of state for perturbations (2.14).

equations of state for perturbations, and why they take on certain values could potentially
yield an observable effect. In this section we will have a brief look at the evolution equations
of the density contrast of the dark energy fluid, paying special attention to the qualitative
difference in the evolution equation and lensing potential for a fluid with non-zero entropy
and anisotropic stress.

Combining the fluid equations (2.3) yields a second order evolution equation for the
dark energy density contrast,

δ̈ +H(1− 3w)δ̇ + k2wδ

= −
[
k2 + 3H2(1− 3w) + 3Ḣ

]
wΓ− 3HẇΓ +

2

3
k2wΠ− 1

2
(1 + w)

[
ḧ+H(1− 3w)ḣ

]
.

(3.1)

On a Minkowski background (obtained by setting a=1), the evolution equation (3.1) becomes

δ̈ + k2wδ = −k2

(
wΓ− 2

3
wΠ

)
− 1

2
(1 + w)ḧ. (3.2)

We are interested in models with w < −1/3, so that the fluid accelerates the universe, but
without problematic gravitational instability which would be present for an adiabatic perfect
fluid: if wΓ = wΠ = 0, the density contrast only has exponential solutions when w < 0,
indicating the undesirable gravitational instability. However, in the GSF (2.8) and TDI
L(g) (2.14) models, (3.2) becomes

δ̈ + αk2δ = −1

2
(1 + w)ḧ, (3.3a)

δ̈ + c2
sk

2δ = −1

2
(1 + w)

[
ḧ+ 6k2(w − c2

s )η
]
, (3.3b)

respectively. Although both of these models are stable for w < 0, the physical origin is sub-
tly different. In (3.3a) perturbations are supported against exponential growth by the sound
speed α of a fluid with entropy (non-adiabatic pressure) perturbations, whilst in (3.3b) per-
turbations are supported due to the medium’s anisotropic stress. It is clear that perturbations
in both cases are subluminal and stable when 0 ≤ α ≤ 1 and 0 ≤ c2

s ≤ 1.

– 6 –
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As we pointed out above, the physical origin of the protection against instability is
different in the two cases: one was due to entropy, the other due to anisotropic stress. We
can further elucidate this distinction by using the perturbed gravitational field equations to
replace the metric fluctuations on the right-hand-sides of (3.3). In the synchronous gauge,
with a = 1, the perturbed gravitational field equations are given by

−2k2η = 8πG
∑

i

ρiδi, (3.4a)

η̇ = −4πG
∑

i

(ρi + Pi)θi, (3.4b)

ḧ− 2k2η = −24πG
∑

i

δP i, (3.4c)

ḧ+ 6η̈ − 2k2η = −16πG
∑

i

PiΠi, (3.4d)

where the index “i” runs over all gravitating components: radiation, matter, and dark en-
ergy. After using (3.4) to replace all metric fluctuations in the combined perturbed fluid
equations, one obtains the following second order evolution equation for the density contrast
of component “i”:

δ̈i + wik
2δi = −k2

(
wiΓi −

2

3
wiΠi

)
+ 4πG(1 + wi)

∑
j

ρj [3wjΓj + (1 + 3wj)δj] . (3.5)

Suppose that there are two components: “dark energy” and matter, i ∈ {m,de}. The equa-
tions of state for perturbations for both the GSF and TDI L(g) models yields the following
sets of coupled evolution equations

• GSF

δ̈m − 4πGρmδm = 4πG(1 + 3α)ρdeδde, (3.6a)

δ̈de +
[
k2α− 4πGρde(1 + w)(1 + 3α)

]
δde = 4πGρm(1 + w)δm. (3.6b)

• TDI L(g)

δ̈m − 4πGρmδm = 4πG(1 + 3w)ρdeδde, (3.7a)

δ̈de +
[
c2

sk
2 − 4πGρde(1 + w)

(
1 + 6w − 3c2

s

)]
δde = 4πGρm(1 + w)

[
1 + 3(w − c2

s )
]
δm.

(3.7b)

Here we see that the evolution equations of the matter and dark energy density contrasts are
qualitatively different in the two cases. To begin, notice that the source terms of the matter
evolution equations (3.6a) and (3.7a) are different: the GSF case is multiplied by (1 + 3α),
but the TDI L(g) case is multiplied by (1 + 3w). Secondly, both the mass and source terms
of the dark energy evolution equations (3.6b) and (3.7b) are qualitatively different.

Using the standard relations between the synchronous and conformal Newtonian
gauges [41] we can obtain an expression for the lensing potential for this mixture of matter
and dark energy

K2(φ+ ψ) = −2 (δm +R [δde + wdeΠde]) , (3.8)

– 7 –
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where R ≡ ρde/ρm and K ≡ (4πGρm)−1/2k. It is now clear that the anisotropic stress of dark
energy has a non-trivial effect on the (observable) lensing potential. In order to elucidate the
distinction in the lensing potential for models with and without anisotropic stress, we will
compute the normal modes of the equations of motion (3.5) and express the lensing potential
in terms of the growing and oscillating modes.

In the GSF and TDI L(g) cases the equations of motion can be written as x′′ + Ax =
0, where x =

(
δm
δde

)
and the primes denote derivative with respect to rescaled time, T ≡

(4πGρm)1/2t. The matrix A for each of the equations of motion (3.6) and (3.7) is given by

AGSF =

(
−1 −R(1 + 3α)
−ε K2α−R(1 + 3α)ε

)
, (3.9)

ATDI =

(
−1 −R(1 + 3w)

− (1 + 3Q) ε c2
sK

2 −R(1 + 3[w +Q])ε

)
, (3.10)

respectively, where ε = 1 + w and Q = w − c2
s . The signs of the eigenvalues of the matrix

A determines what type of solutions the matter and dark energy density contrasts posess: if
λ > 0, then solutions are oscillatory, and if λ < 0 they are exponential and correspond to
growing modes. We will construct the modes η ≡ δm + µδde that satisfy η′′ + λη = 0.

One can verify that when α = 0 the GSF models have a zero eigenvalue for any value
of w. For GSF models with α = 0 we form the combinations which correspond respectively
to the growing and zero eigenmodes,

η(GSF)
grow = δm +Rδde, (3.11a)

η(GSF)
zero = δm −

δde

ε
. (3.11b)

The existence of a zero mode is not shared by TDI models with c2
s = 0, and as such it isn’t

possible to get such aesthetically pleasing forms of the modes in the TDI model for general
w. However, expanding for small ε reveals that there are growing and oscillatory modes,
which are given by

η(TDI)
grow = δm −

[
2R− 3R(1 + 6R)ε+O(ε)2

]
δde, (3.12a)

η(TDI)
osc = δm +

[
1

2ε
+

3

4
(1 + 6R) +

9

8

(
1− 2R− 16R2

)
ε+O(ε)2

]
δde. (3.12b)

Substituting the GSF modes (3.11) into the lensing potential (3.8) reveals that

K2(φ+ ψ) = −2η(GSF)
grow , (3.13)

and putting the TDI modes (3.12) into the lensing potential (3.8) yields

K2(φ+ ψ) =

[
− 2 + 3R

(
4 + 3K−2

)
ε+O(ε)2

]
η(TDI)

grow +

[
− 12Rε+O(ε)2

]
η(TDI)

osc .

(3.14)

There are some important properties and distinctions between these expressions for the lens-
ing potential. We first remind that both are given at a = 1 and for α = c2

s = 0. The
GSF lensing potential (3.13) is valid for any value of w, and only depends on one mode (the

– 8 –
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growing mode) without any prefactors of the (rescaled) wavenumber K2. The TDI lensing
potential (3.14) includes both the growing and oscillating mode: the former also comes with
a K−2-dependence at O(ε), and the latter only appears at O(ε).

We now generalize to the case where α 6= 0 and cs 6= 0. All expressions are sufficiently
complicated that we exclusively expand to first order in ε. The eigenvalues of A are

λ(GSF)
grow = −

[
1 +R

1 + 3α

1 +K2α
ε+O(ε)2

]
, (3.15a)

λ(GSF)
osc = K2α

[
1−R 1 + 3α

1 +K2α
ε+O(ε)2

]
; (3.15b)

λ(TDI)
grow = −

[
1 + 2R

2 + 3c2
s

1 +K2c2
s

ε+O(ε)2

]
, (3.16a)

λ(TDI)
osc = K2c2

s +
R

1 +K2c2
s

[
9
(
1 + c2

s

)
+ (5 + 3c2

s )K2c2
s

]
ε+O(ε)2. (3.16b)

The lensing potential in the GSF case is given by

K2(φ+ ψ)

=

[
−2 + 2Rα

3−K2

(1 +K2α)2 ε+O(ε)2

]
η(GSF)

grow +

[
−2Rα

3−K2

(1 +K2α)2 ε+O(ε)2

]
η(GSF)

osc ,

(3.17)

and in the TDI case by

K2(φ+ ψ)

=

[
− 2 +

R

(1 +K2c2
s ) 2

×
(

9
(
1 + c2

s

)
K−2 + 6

(
2 + 9c2

s

)
+ c2

s

(
4 + 15c2

s + 9c3
s

)
K2

)
ε+O(ε)2

]
η(TDI)

grow

+

[
−2R

(
2 + 3c2

s

) (
3 +K2c2

s

)
(1 +K2c2

s ) 2
ε+O(ε)2

]
η(TDI)

osc . (3.18)

These are written in terms of the modes {ηgrow, ηosc} which are easily computed, but we omit
for brevity.

The manipulations (with a = 1) we have presented highlights the qualitative difference
in the evolution equations of the density contrasts in the two cases where the dark energy
fluid has entropy and anisotropic stress. One of the important distinctions we draw out from
this analysis is the manner in which each mode influences the lensing potential, and the
different scale dependences of the coefficients of the modes involved. This distinction will be
fully vindicated when we evolve the equations of motion in the next section.

4 Observational quantities

Let us, first, briefly review the observational probes we intend to use to constrain the equa-
tions of state for dark sector perturbations. We use a modified version of CAMB [49] to evolve
the gravitational field equations with a dark sector fluid whose perturbations are parameter-
ized via equations of state. This provides the gravitational potentials which can be used to
compute all observational quantities we will discuss.
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We stress that the modification to CAMB is minimal (of the order 10 lines of code): the
equations of state involve quantities which are already evolved (or are trivially computable).
This is in stark contrast to, e.g., the modifications to CAMB that are required for the slip and
effective gravitational coupling parameterizations in MGCAMB [50].

We compute the usual CMB observables: the CMB temperature and polarization an-
gular power spectra, as well as the CMB lensing power spectrum, Cφφ` . We also compute the
galaxy lensing convergence power spectrum, P κij(`), which in the absence of anisotropic stress
can be written in terms of the matter power spectrum, P (k, z). However, since our models
include anisotropic stress, we use the more general form of the convergence power spectrum

P κij(`) ≈ 2π2`

∫
dχ

χ
gi (χ) gj (χ)PΨ (`/χ, χ) , (4.1)

where we have made use of the Limber approximation in flat space, χ is the comoving distance,
and PΨ is the power spectrum of the Weyl potential, defined in terms of the Newtonian
potentials φ and ψ by Ψ = (ψ + φ) /2. The lensing efficiency is given by

gi(χ) =

∫ ∞
χ

dχ′ni
(
χ′
) χ′ − χ

χ′
, (4.2)

where ni (χ) is the radial distribution of source galaxies in bin i. In the case of no anisotropic
stress, the convergence power spectrum can be written in the usual form

P κij(`) =
9

4
Ω2

mH
4
0

∫ ∞
0

gi(χ)gj(χ)

a2(χ)
P (`/χ, χ)dχ . (4.3)

The convergence can also be written in terms of the correlation functions ξ± via

ξ±i,j(θ) =
1

2π

∫
d` ` P κij(`)J0,4(`θ), (4.4)

where J0,4 are Bessel functions of the zeroth and fourth order respectively.

In figure 2 we plot the predictions for Cφφ` spectrum and galaxy correlation function
ξ+, for the TDI L(g) and GSF models (for simplicity we take α, β1 to be constants and
β2 = 1−β1, which removes the ḧ-term). For galaxy lensing, we use a single redshift bin with
ξ± ≡ ξ±1,1 distribution of source galaxies from the Canada-France-Hawaii Telescope Lensing
Survey (CFHTLenS) [12]. For illustration we have applied corrections from the Halofit

fitting formulae [51, 52] to the lensing potential PΨ. However, since we do not have a full
understanding of dark energy perturbations on non-linear scales, we do not include those
scales where this correction is significant to obtain constraints on the equations of state in
the next section. We compare these predictions to CMB lensing data from Planck [7] and the
South Pole Telescope (SPT) [6], and also plot the single-bin observations from CFHTLenS.

It is clear that there will be ranges of parameter space which yield observational spec-
tra which are compatible with the present data and therefore will not be distinguishable at
present. It is most interesting to note that some of the spectra for CMB lensing are com-
patible with the data, but are incompatible with the galaxy weak lensing observations: the
CFHTLenS galaxy weak lensing data alone could rule out a range of parameter space.

In figure 3 we plot the fractional differences in observational spectra for GSF models
with a range of values of α, β1 and β2, relative to a fiducial quintessence scenario with
α = 1, β1 = 1 and β2 = 0. For all of the models shown, the differences in the CTT` spectra
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(a) TDI L(g) models

100 10210−8

10−6

10−4

θ [arcmin]

ξ
+

0 500 1000
0

5

10

ℓ

1
0
7
ℓ4
C

φ
φ

ℓ

 

 
`1 = 1

`1 = 1.5

(b) GSF models with α = 0, β2 = 1− β1

figure 2. Sample lensing spectra in the TDI L(g) and GSF models with w = −0.8. On the left
we plot the predictions of the weak lensing correlation ξ+ spectra, as well as the data taken from
CFHTLenS. On the right we plot the lensing spectra of the CMB, Cφφ` , with observational data
from Planck (red/circles) and SPT (black/diamonds). Here we see that decreasing the sound speed
decreases the large-scale clustering of the dark energy.

are negligible for angular scales ` > 50, that is, in the noise dominated regime. However,
the differences for the CMB lensing Cφφ` spectra remain roughly constant for all scales and,
markedly, differences in the ξ+ spectra increase with angular size. It is clear that models with
an increased power in the spectrum of galaxy weak lensing, ξ+, also have an increased power
in the spectrum of CMB lensing, Cφφ` . This plot nicely illustrates how useful lensing data is,
compared to the CMB temperature data where the differences between the spectra are only
significant in the cosmic variance limited regime. The fundamental reason for this is that the
lensing data is very sensitive to the evolution of perturbations of the dark sector theory.

It is important to have a handle on which probes are sensitive to which types of theories,
and so it is useful to evaluate other probes of dark sector theories which are rather prolific
in the literature. We use our modified version of CAMB to compute the sum and difference of
the gravitational potentials, φ and ψ, the effective gravitational coupling µ, defined via

k2ψ = −4πGµa2 (ρk∆k + 3(ρk + Pk)σk) , (4.5)

in which ∆ is the comoving density perturbation and a subscript “k” denotes a known non-
dark-sector component, and the growth function [53, 54] γ,

γ ≡ 1

ln Ωm
ln

(
d ln δm

d ln a

)
. (4.6)
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figure 3. The fractional differences in observable spectra for GSF models with various values of
(β1, β2), relative to a quintessence scenario. w = −0.8 and α = 0 are used throughout. Notice that
the fractional shifts in spectra become suppressed for ` > 50 in the CMB temperature spectrum CTT` ,

remain roughly constant in the lensing of the CMB spectrum, Cφφ` and grow as a function of θ for
the galaxy weak lensing correlation function ξ+.

In figure 4 we plot these quantities as a function of scale and redshift, for (a) GSF models
and (b) TDI L(g) models. In the GSF models, the growth function γ and effective gravita-
tional coupling µ are close to being scale independent. In contrast, both µ and γ have clear
scale dependence for the TDI L(g) models. This serves to show that a scale-independent pa-
rameterization of the gravitational coupling µ and growth function γ would have completely
missed the potential observable effects of (in this instance) TDI L(g) models, which is a large
class of models to be insensitive to.

In figure 5 we plot the lensing potential in the TDI L(g) models, for various values of the
sound speed, c2

s . These plots illustrate that the lensing potential has late-time enhancements
at different scales depending on the value of c2

s . For large values of c2
s the lensing potential

is enhanced on large scales, and for small values of c2
s it is enhanced on small scales. This

becomes interesting when one realises that CMB lensing and galaxy weak lensing probe the
lensing potential on large and small scales, respectively. Hence, data from these two types
of experiments can probe different regimes. In the next section we will show our parameter
constraints from using current CMB lensing and weak galaxy lensing which corroborates
this point. We have performed a similar analysis when varying the α parameter in the GSF
models: for 0 ≤ α ≤ 1 we find no qualitative difference in the lensing potential from that
we presented in figure 4(a) — there certainly aren’t any features which pop up on small and
large scales as there are in the TDI L(g) models. The qualitative difference of the behavior
of the lensing potential in the TDI L(g) and GSF models appears to be a consequence of the
theoretical understanding developed in section 3.
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figure 4. Common observational “diagnostics”, as functions of scale k/h and redshift z, for two
different models with w = −0.8. On the top row we plot the lensing potential ψ+φ and stress φ−ψ,
and on the bottom row we plot the effective gravitational coupling µ, and growth function γ.
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figure 5. Lensing potential 1
2 (φ + ψ) as a function of scale k/h and redshift z, in the L(g) TDI

models for various values of the sound speed c2s (all have w = −0.8). The enhacement in lensing at
large scales in (a) can be picked up by observations of CMB lensing; this enhancement vanishes in
(b). A new enhancement appears at small scales in (c), and has grown in (d); whilst CMB lensing is
insensitive to these scales, galaxy weak lensing becomes sensitive.

5 Present data constraints

In order to place constraints on the dark sector equations of state, we use observations
of temperature anisotropies in the Cosmic Microwave Background (CMB) from the Planck
satellite [9] and polarisation measurements from the Wilkinson Microwave Anisotropy Probe
(WMAP) [8]. Since the acoustic scale of the CMB is degenerate with the background equation
of state w and the Hubble parameter H0 = 100h km sec−1 Mpc−1, we use observations of
Baryonic Acoustic Oscillations (BAO’s) from 6dF [55], SDSS (corrected for galaxy peculiar
velocities) [56] and BOSS [57] to constrain the expansion history and exclude models with w
far from −1 as done in the Planck analysis [5].

The dark sector perturbations are constrained by the large angle Integrated Sach Wolfe
(ISW) component of the primary CMB, and gravitational lensing along the line of sight.
We use CMB lensing as detected by Planck [7], SPT [6], and also from weak galaxy lensing
detected by CFHTLenS [11, 12] to constrain the latter.

The base cosmology we consider is a 7 parameter p = {Ωbh
2,Ωch

2, θMC, AS, nS, τ, w}
model. Here Ωb and Ωc are the baryonic and cold dark matter densities relative to the critical
density, θMC is the acoustic scale of the CMB, AS and nS are the amplitude and spectral
index of initial fluctuations respectively, and τ the optical depth to reionization. We consider
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Parameter Prior range

w [-1.5, -0.5]

log10 c
2
s [-4, 0]

log10 α [-5, 0]

β1 [0, 1.9]

β2 [0, 15]

Table 1. Prior ranges on the dark energy equations of state.

both the TDI L(g) model, which is has one additional parameter c2
s , and the GSF model

with additional parameters {α, β1, β2}.
We make use of the Planck likelihood [10] and follow the same procedure as the Planck

cosmology analysis [5], that includes a number of nuisance parameters describing the con-
tamination from our own galaxy, extragalactic sources and the SZ effect. We consider three
data combinations,

I Planck CMB+WP+BAO+CMB lensing,

II Planck CMB+WP+BAO+CFHTLenS, and

III Planck+WP+BAO+CFHTLenS+CMB lensing.

For CFHTLenS we use the shear correlation functions and covariance matrix as de-
scribed in [12]. However, we make a conservative choice of angular scales to include in the
analysis. Since we do not have a full understanding of how the dark energy models consid-
ered here may cluster on non-linear scales, we do not include those scales which contribute
significantly to the shear correlation in the likelihood. In practice, we exclude the entire ξ−

data, and only include ξ+ for θ > 12 arcminutes. This exclusion regime was obtained by
switching non-linear corrections on and off, to find the range of θ for which the ξ+ spectrum
is unaffected. This eliminates the need to apply any non-linear corrections, such as Halofit.
For SPT lensing data we follow the same procedure as in [6], rescaling the diagonals elements
of the covariance matrix according to sample variance, and adding an additional calibration-
induced uncertainty to the covariance. The non-linear correction to the CMB lensing is small
enough to safely ignore it.

Parameter constraints were obtained from Markov Chain Monte Carlo (MCMC) chains
produced using the COSMOMC code [58]. Prior ranges on parameters were chosen to sufficiently
contain the relevant posterior distributions. For the dark energy equations of state, these
are given in table 1. We note that, formally, the equations of state that we have used are
not defined for w < −1, but solving the equations of motion appears to give stable solutions
and hence we include them as a “continuation” of physical models. Convergence of the
MCMC chains was ensured by terminating the runs when the Gelman and Rubin R-1 value,
characterising the variance between chains, was < 0.05.

2D posterior likelihoods are shown in figures 6 and 7 for the two dark energy param-
eterizations we have considered. Constraints on the background equation of state w are
consistent with previous studies combining CMB + BAO data that use a different prescrip-
tion for dealing with the perturbations [59–61]. However, one of the encouraging points of
this paper is that current observations can also constrain the parameters of the perturbative
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figure 6. Constraints on the (background) equation of state parameter w and the squared sound
speed c2s for the TDI L(g) model for three different data combinations. Data used in the analysis
are Planck CMB temperature and WMAP polarization, BAO, together with either CMB lensing
from Planck and SPT (top left panel, I), galaxy lensing from CFHTLenS (top right panel, II), and
a combination of CMB lensing from Planck and galaxy lensing from CFHTLenS (bottom panel, III).
CFHTLenS data is truncated to the linear regime, as discussed in the text.

equations of state. In the TDI L(g) model, shown in figure 6, a low sound speed results
in clustering of the dark energy fluid on scales probed by observations. However, since in
the limit of w → −1 the fluid behaves like Λ, which is smooth with no perturbations, one
observes a narrow valley around w = −1 in which c2

s cannot be constrained.

Similar behaviour is also observed in the generalised scalar field model, shown in figure 7.
In this case α, which acts as the sound speed in quintessence models, does not result as strong
clustering even when α→ 0 as in the case of TDI L(g), implying that it cannot be constrained
by current observations. However, varying β1 and β2 can lead to observable effects as shown
in figure 2 and hence be constrained, as long as w is sufficiently far from w = −1.

There are two interesting models which are included within our GSF class of models.
The first are all models whose Lagrangian is L = L(φ,X ): as remarked above, these models
have β1 = 1, β2 = 0, and α (which in general is a function of time) is the only free function
which controls the evolution of perturbations. In figure 8 we present constraints on w and α
for these models (both are assumed to be constant). It is apparent that constraints on α are
almost independent of α. One should compare these constraints with the top panel of figure 7,
which are for the full GSF model parameters: those show some non-trivial constraints on low
values of α. The differences are non-trivial impact of the constraints on β1 and β2.
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figure 7. Constraints on w and α, β1, β2 for the generalised scalar field model. Labelling is the
same as in figure 6.
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figure 8. Constraints on w and α for the generalised scalar field model with β1 = 1, β2 = 0:
this correspond to models of k-essence type. Note that the constraint on w appears to be almost
independent of α.
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figure 9. Constraints on the equation of state parameter, w, for k-essence models with the condition
that α = (1 + w)/(5− 3w), that is, for the model presented in (2.11) and (2.12). Note that it is not
possible for w to be < −1 in this models. This is a 1D section through the 2D likelihood presented
in figure 8.

The second interesting subset of models are those with α = (1 + w)/(5 − 3w), β1 =
1, β2 = 0 which were explained at the end of section 2.2.1; constraints on w are presented
in figure 9.

5.1 Constraints with prejudices and priors on w

The parameters in the equations of state for perturbations become difficult to constrain when
w ≈ −1. However, it is apparent from the constraints shown in figures 6 and 7 that there are
some preferred values of the parameters when w 6= −1. It is conceivable that an observation
of background cosmology alone will constrain w. If the central value of this constraint lies
away from w = −1 then observations of the perturbed Universe can be used to place more
stringent bounds on the parameters in the equations of state for perturbations than if w is
“totally free”, as it has been in the previous section.

First, suppose that the data preferred some value of w; for concreteness we will pick
w = −0.95 ± 0.01. Then the constraints on the GSF parameters are: β1 < 1.3 for all
data combinations, and β2 < 13 and β2 < 11 for the Planck+WP+BAO+CFHTLenS and
Planck+WP+BAO+CMB lensing data combinations respectively. In the TDI L(g) case only
the former data combination yields a useful constraint, and we find log10 c

2
s < −4 is ruled out.

Secondly, by applying the prior |1 + w| > 0.05 we can remove the region of parameter
space in which there is little clustering. In figure 10 we show the constraints on c2

s in the TDI
L(g) models and in figure 11 the constraints on α, β1, β2 in the GSF models. After inspecting
figure 11, our result for the GSF model is that the following ranges of parameter space are
ruled out:

β1 > 1.47− 0.03(log10 α)2, (5.1a)

β2 > 33.5 + 11.5 log10 α+ 1.1(log10 α)2, (5.1b)

β2 > 15(1.6− β1). (5.1c)

In future work we will compute {α, β1, β2} for specific models.

– 18 –



J
C
A
P
0
4
(
2
0
1
5
)
0
4
8

−5 −4 −3 −2 −1 0
log10 c2

s

0.0

0.2

0.4

0.6

0.8

1.0

P
/P

m
ax

Planck+WP+CMB Lensing+BAO

Planck+WP+CFHTLenS+BAO

Planck+WP+CMB Lensing+CFHTLenS+BAO

figure 10. Marginalized 1D likelihoods for the sound speed parameter, c2s , for the TDI L(g) model.
The solid lines have no prior on w (other than that in table 1), and the dashed lines have the prior
|1 + w| > 0.05.

6 Future constraints

The aim in this section is to determine how well upcoming experiments, such as Euclid [62],
PRISM [20], and CoRE [21], might be able to distinguish different values of the parameters
in the equations of state for perturbations. This will provide an opportunity to compare
the effectiveness of CMB experiments against galaxy weak lensing experiments, and how
improvements in the understanding of non-linear physics could strengthen constraints.

In order to do this, we will compare the observational spectra from two different models:
one of these will be our fiducial model, which we take to be quintessence. The other model will
be either a TDI L(g) model with a given value of c2

s , or a GSF model with a given combination
of the parameter values {α, β1, β2}. We will compute the χ2 between the spectra of the two
models. This will be done for CMB-type experiments, where the data included are the
temperature, polarization, and CMB lensing spectra, and tomographic galaxy weak lensing
experiments, where the data included is the convergence power spectra correlated across
different redshift bins. The χ2 will indicate the potential discriminatory power; below we
explain how χ2 is computed for the CMB and tomographic galaxy weak lensing experiments.

At each multipole `-mode we compute the n × n covariance matrix Pij(`) for a given
type of observation (e.g. CMB or galaxy weak lensing). The covariance matrices for two
models, P̂ij(`) and P ij(`) say, are modified to include experimental noise:

Pij(`) −→ Pij(`) +Nij(`). (6.1)

The properties of the noise, Nij(`), are experiment and survey dependent, but we assume
they are known and diagonal. Computing the χ2 ≡ −2 lnL between the two models yields

χ2 =

`max∑
`=2

fsky(2`+ 1)∆`

[
P̂−1
ij P

ij
+ ln

∣∣∣∣∣ |P̂ ||P |
∣∣∣∣∣− n

]
, (6.2)

where fsky is the fraction of the sky covered by a given survey, ∆` is the width of the

multipole bin, P̂−1
ij P

ij ≡ ∑n
i,j=1 P̂

−1
ij P

ij
, |P | denotes the determinant of P , and n is the

dimension of the covariance matrix. For the weak galaxy lensing experiments, we consider
a range of upper-limits `max in (6.2) to represent our understanding (or lack-of) of the dark
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figure 11. Constraints on α, β1, β2 for the GSF model, using a prior of |1 +w| > 0.05. Constraints
are qualitatively similar without using this prior.

sector on non-linear scales. These are `max = 102, for which non-linear effects are negligible,
and `max = 103, for which non-linear effects come into play, but we might hope that there
exists some understanding (in practice, we use Halofit).

For CMB experiments, the covariance matrix is constructed from the temperature T ,
curl-free polarization E, and deflection d correlation functions CXY` according to

PCMB
ij (`) =

CTT` CTE` CTd`
CTE` CEE` 0

CTd` 0 Cdd`

 . (6.3)

This construction is identical to that given in [63]. For galaxy weak lensing observations, the
covariance matrix is computed via (4.3), and describes the correlations of the convergence
spectra between N redshift bins.

For the CMB, we assume noise excepted for CoRE [21], PRISM [20], Planck [64] and a
hypothetical cosmic variance limited experiment. For tomographic galaxy weak lensing, we
use the Euclid RedBook1 noise values [65], which are given in table. 2. Here the noise term is

Nij = δij
〈
γ2

int

〉
n−1
j , (6.4)

where γint is the rms intrinsic shear, ni is the number of galaxies per steradians in the ith-bin,
given by

ni = 3600 d (180/π)2n̂i , (6.5)

where d is the number of galaxies per square arcminute, and n̂i is the fraction of sources in
the ith-bin. We assume a radial distribution of sources to a maximum redshift zmax, given by

d(z) = z2 exp
[
−(z/z0)1.5

]
, (6.6)

1Also see the Euclid website, http://www.euclid-ec.org.
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Parameter Value

〈γint〉1/2 0.22

d 33

N 10

zmax 2.5

z0 1.0

Table 2. Euclid survey parameters.

constructed in such a way that there are an equal number of galaxies for each of the N
redshift bins. For Euclid, this means a constant 1.17 × 10−10N is added to the diagonal
elements of the covariance matrix.

In figure 12 we plot the χ2 values for the L(g) TDI models for CMB and tomographic
weak lensing experiments. It is perhaps interesting to note that the tomographic weak lensing
surveys alone will allow us to probe very low values of the sound speed parameter. The level
of the constraining power clearly increases as `max is increased.

In figure 13 we plot the χ2 values for various GSF models — in the plots we fixed
the value α = 10−5, and varied β1 and β2. We can see that the constraining power of
PRISM compared to the “ultimate limit” of cosmic variance limited CMB experiments are
very similar. There will always be a degeneracy in measuring β1 for low values of β2. In the
tomographic weak lensing case, increasing `max from 102 to 103 breaks this degeneracy in β1

for low values of β2.

7 Conclusions

In this paper we presented constraints from current data on the equations of state for pertur-
bations in two distinct classes of models: the GSF and TDI L(g) models. In addition we have
explored how well future experiments will be able to constrain the parameters and how fur-
ther understanding non-linearities will help break observational degeneracies. We presented
analytic arguments explaining how the lensing potential should be expected to look rather
different in models with and without anisotropic stress.

Our constraints using the Planck+WP+ BAO+CFHTLenS data in the TDI L(g) model
appears to suggest that c2

s > 10−4 which implies that the Jeans length of the effective dark
sector fluid is > 30h−1 Mpc. This can also constitute a constraint on the masses of gravitons
in the corresponding Lorentz violating massive gravity scenario [37]. There the graviton
masses m2

i are given in terms of w, c2
s

m2
0 = −M2, (7.1a)

m2
1 = −1

4
wM2, (7.1b)

m2
2 = −1

2

[
w +

3

4
(1 + w)(c2

s − w)

]
M2, (7.1c)

m2
3 =

1

4

[
w2 − 1

2

(
c2

s − w
)

(1 + w)

]
M2, (7.1d)

m2
4 = −1

2
wM2, (7.1e)
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figure 12. Comparing the discriminatory power of CMB and galaxy weak lensing experiments forthe
sound speed parameter c2s in the TDI L(g) models. We plot χ2 for CMB experiments with cosmic
variance, PRISM, CoRE, and Planck noises, and tomographic galaxy weak lensing measurements
using Euclid survey parameters with `max = 102, 103 respectively. We have used a fiducial cosmological
model with w = −0.8.
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figure 13. Potential discriminatory power of the GSF models; here we have fixed α = 10−5 and
varied β1 and β2 as shown in the axes. In (a) and (b) we use CMB experiments — with PRISM and
cosmic variance limited noises, and in (c) and (d) we use tomographic weak lensing experiments —
with Euclid noises and with a maximum multipole `max = 102 and `max = 103 respectively.
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and a mass scale M2 defined by Ωde = M2/(3H2
0 ). Hence, the constraints on w and c2

s we
gave in figure 6 can be used to constrain the m2

i .

The results outlined in this paper are encouraging since we are able to constrain param-
eterizations of dark energy and modified gravity using current linear data. In some sense this
success is due to our parameterization being phrased at the level of effective fluid equations
which directly govern the evolution of observable quantities, rather than at the level of the
action or gravitational field equations — although there is a correspondance between these
approaches.
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