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Gut microbiota has been implicated as a pivotal contributing factor in diet-related obesity; however, its role in
development of disease phenotypes in human genetic obesity such as Prader–Willi syndrome (PWS) remains
elusive. In this hospitalized intervention trial with PWS (n = 17) and simple obesity (n = 21) children, a diet
rich in non-digestible carbohydrates induced significant weight loss and concomitant structural changes of the
gut microbiota together with reduction of serum antigen load and alleviation of inflammation. Co-abundance
network analysis of 161 prevalent bacterial draft genomes assembled directly from metagenomic datasets
showed relative increase of functional genome groups for acetate production from carbohydrates fermentation.
NMR-basedmetabolomic profiling of urine showed diet-induced overall changes of host metabotypes and iden-
tified significantly reduced trimethylamine N-oxide and indoxyl sulfate, host-bacteria co-metabolites known to
induce metabolic deteriorations. Specific bacterial genomes that were correlatedwith urine levels of these detri-
mental co-metaboliteswere found to encode enzyme genes for production of their precursors by fermentation of
choline or tryptophan in the gut. When transplanted into germ-free mice, the pre-intervention gut microbiota
induced higher inflammation and larger adipocytes compared with the post-intervention microbiota from the
same volunteer. Our multi-omics-based systems analysis indicates a significant etiological contribution of dysbiotic
gutmicrobiota to both genetic and simple obesity in children, implicating apotentially effective target for alleviation.
Research in context: Poorly managed diet and genetic mutations are the two primary driving forces behind the dev-
astating epidemic of obesity-related diseases. Lack of understanding of themolecular chain of causationbetween the
exists.
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driving forces and thedisease endpoints retards progress in prevention and treatment of the diseases.We found that
children genetically obesewith Prader–Willi syndrome shared a similar dysbiosis in their gutmicrobiotawith those
having diet-related obesity. A diet rich in non-digestible but fermentable carbohydrates significantly promoted ben-
eficial groups of bacteria and reduced toxin-producers, which contributes to the alleviation of metabolic deteriora-
tions in obesity regardless of the primary driving forces.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Prader–Willi syndrome (PWS) is the most common form of human
genetic obesity caused by mutations in the paternal genes on chromo-
some 15q11.2–q13 (Butler, 2011). Bodyweightmanagement of children
with PWS has proven to be extraordinarily difficult as they have a low
muscle tone that tends to result in less physical activity than normal, a
chronic and uncontrollable feeling of hunger, and a deficit of satiety
that drives their constant food-craving behavior. The molecular chain
of causation between these drivers and obesity development in PWS
children remains largely uncharacterized (Lacroix et al., 2014).

Accumulating evidence suggests that a dysbiotic gutmicrobiotamay
work as a contributing factor in diet-related obesity (Backhed et al.,
2004; Zhao, 2013). Germfree mice were shown to be resistant to high-
sugar, high-fat, “Western” diet-induced obesity (Backhed et al., 2007).
Transplantation of gutmicrobiota fromobesemice or humans increased
fat deposits in germfree mouse recipients (Turnbaugh et al., 2008;
Ridaura et al., 2013). Development of adiposity and insulin resistance
in mice could be significantly reduced by diminishing the gut microbio-
ta with broad-spectrum antibiotics (Cani et al., 2008). Transplantation
of gut microbiota from healthy donors improved insulin resistance in
the first six weeks in obese human volunteers (Vrieze et al., 2012). A
diet based on whole-grains, traditional Chinese medicinal foods and
prebiotics (WTP diet), has been shown to reduce endotoxin producers
and enrich beneficial bifidobacteria in the gut of obese adult human
volunteers, leading to decreased endotoxin in the bloodstream and
significant alleviation of inflammation, adiposity and insulin resistance
(Xiao et al., 2014; Fei and Zhao, 2013). Thus, compelling evidence
suggests that the gut microbiota serves as a pivotal contributing factor
in the development of diet-related obesity in both mice and humans.

Intriguingly, gut microbiota may even be involved in genetically
predisposed obesity in mice. Removal of most of the gut microbiota
with broad-spectrum antibiotics effectively reduced the development
of adiposity and insulin resistance in genetically obese mice including
leptin-deficient ob/ob mice and toll-like receptor 5 knockout mice
(Cani et al., 2008; Vijay-Kumar et al., 2010). Transplantation of gut mi-
crobiota from these two strains of genetically obese animals into germ
free wild type mice also conferred parts of the obesity phenotype on
the recipients (Vijay-Kumar et al., 2010; Turnbaugh et al., 2006).
However, the role of gut microbiota in genetically predisposed obesity
in humans has not been characterized so far. Whether modulation of
the gut microbiota can contribute to alleviation of metabolic deteriora-
tions in human genetic obesity becomes an interesting question.

To tackle this question, we recruited children morbidly obese with
PWS or diet-related simple obesity (SO) for a hospitalized intervention
with the WTP diet (Xiao et al., 2014). By using a top-down systems
strategy to combinemetagenomic characterization of the gutmicrobio-
ta, metabolomic profiling of co-metabolites between host and gut bac-
teria, and transplantation of human gut microbiota to germfree mice,
we showed a potentially significant contribution of dysbiotic gutmicro-
biota to the metabolic deteriorations associated with genetically
predisposed obesity, as with simple obesity. These results imply a gut
microbiota-mediated path towards obesity-related metabolic diseases,
common to diet-related and genetically predisposed obesity.
2. Materials and Methods

2.1. Clinical Investigation

The open-labeled and self-controlled study was performed under
the approval of the Ethics Committee of the School of Life Sciences
and Biotechnology, Shanghai Jiao Tong University (No. 2012-016). The
clinical trial was registered at Chinese Clinical Trial Registry (No.
ChiCTR-ONC-12002646). Written informed consents were obtained
from the guardians of all the participant children. The design and pro-
cess of clinical trial was shown in Fig. 1.

Obese children (3–16 years old), who were diagnosed with Prader–
Willi syndrome or simple obesity, were recruited into a hospitalized
dietary intervention for 30 days in Guangdong Women and Children
Hospital, Guangzhou, China (Table S1). Upon the request of parents,
all PWS patients continued the intervention for 60 more days. One
volunteer (GD02) stayed in the hospital for 285 days on this interven-
tion. The volunteers did not take any exercise program. Subjects were
excluded if they had gastrointestinal pathologies, gastrointestinal
surgery, chronic pathologies except overweight, antibiotics administra-
tion lasting more than 3 days in the previous 3 months or participation
in other weight-loss programs in the previous 3 months. General ques-
tionnaires were implemented to collect information on demographic
characteristics, health status, disease history, gastrointestinal condi-
tions, dietary habit, and physical activity. A meal-based food frequency
questionnaire and a 24-hour dietary record were used to calculate
baseline nutrient intake based on China Food Composition 2002 (Yang
et al., 2002). A hyperphagia questionnaire designed for Prader–Willi
syndrome was administered to the parents of the children with PWS
to assess hyperphagia before and after the intervention (Dykens et al.,
2007).

A diet based on whole grains, traditional Chinese medicinal foods,
and prebiotics (WTP diet) (Xiao et al., 2014) (The three ready-to-
consumepre-prepared foods, FormulaNo. 1, FormulaNo. 2 and Formula
No. 3 in the dietweremanufactured by PERFECT (CHINA) CO., LTD.)was
administered in combination with appropriate amounts of vegetables,
fruits and nuts according to dietician's advice. Subjects were allowed
to consume enough of Formula No. 1 to satisfy hunger pangs. The intake
of macronutrients was balanced according to their age standard nutri-
tional requirements provided by Chinese Dietary Reference Intakes
(DRIs) recommended by the Chinese Nutrition Society (CNS, 2012).
More specifically, Formula No. 1 was a pre-cooked mixture of 12 com-
ponent materials from whole grains and TCM food plants that are rich
in dietary fiber, including adlay (Coix lachrymal-jobi L.), oat, buckwheat,
white bean, yellow corn, red bean, soybean, yam, peanut, lotus seed, and
wolfberry, which was prepared in the form of canned gruel (370 g wet
weight per can) by a contract food manufacturer. Each can contained
100 g of ingredients (59 g carbohydrate, 15 g protein, 5 g fat, and 6 g
fiber) and 336 kcal (70% carbohydrate, 17% protein, 13% fat). Formula
No. 2 was a powder preparation for infusion (20 g per bag) containing
bitter melon (Momordica charantia) and oligosaccharides, including
fructo-oligosaccharides and oligoisomaltoses. Each volunteer had on
pack of Formula No. 2 a day. Formula No. 3 contained soluble prebiotics,
including Fibersol-2, fructo-oligosaccharides and oligoisomaltoses, and
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Not meeting inclusion criteria (n= 15 )
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Most bioclinical analysis (n= 17)
OGTT-related and some inflammation analysis (n= 16)
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One got bone fracture during intervention, 

and another one had to go back to school.

Fig. 1. The flow diagram of participants.
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was administered in the form of powder for infusion (30 g per bag).
Each volunteer had at least one pack of Formula No. 3 a day. The intake
of No. 3 may be increased to enhance bowl movement by producing
more gas. The detailed composition of formulas 1, 2 and 3 was shown
in Table 1. The dietary record of each subject was used to calculate
nutrient intakes based on China Food Composition 2002 (Yang et al.,
2002) (Tables S2 and S3).

Biological samples, anthropometric data and clinical laboratory
analysis were obtained at baseline and every 30 days during the in-
tervention. Blood samples were collected after overnight fasting and
centrifuged at 3000 rpm for 20 min after standing at room temper-
ature for 30 min to obtain serum. The feces and morning urine were
collected on the same day. Feces, morning urine and serum samples
were immediately frozen on dry ice upon collection and stored
at−80 °C until further analysis.

Serum glucose, CRP, total cholesterol, triglycerides, free fatty acids,
ALT and AST were analyzed with the automatic biochemical analyzer
(ADVIA® 1800 Clinical Chemistry System, Siemens A.G., Germany).
Insulin was measured by immunochemiluminometric assays (ADVIA
Centaur, Siemens A.G., German). Plasma HbAlc was measured by HPLC
(Bio-rad D-10, Bio-Rad Laboratories Co., Ltd., Germany). Blood routine
tests were performed on Swelab® Alfa Cell analyzer (Boule Diagnostics
AB, Sweden).

Enzyme-linked immunosorbent assays (ELISAs) were conducted
according to the manufacturer's instructions. The ELISA kit for Human
LBP was from Hycult Biotech Inc. (HK315-01, Plymouth Meeting, PA,
USA.). The kits for leptin, adiponectin, and high sensitivity IL-6 were
all purchased from R&D Systems, Inc. (DLP00, DRP300, HS600B, Minne-
apolis, MN, USA). The kits for AGP and SAA were from Assaypro Inc.
(EG5001-1, St. Charles, MO, USA) and Invitrogen Corporation (HS600B,
Camarillo, CA, USA.), respectively. The intra-assay and inter-assay coeffi-
cients of variation were b5% and b10%, respectively.

2.1.1. Statistics
Statistical analysis was carried out using the SPSS Statistics 17.0

Software Package (SPSS Inc.). Wilcoxon matched-pairs signed rank
test (two-tailed) was performed to analyze changes between various
time points in the same cohort, while Independent Mann–Whitney U
test (two-tailed) was performed to analyze the differences between
groups.

3. Molecular Diagnosis of Prader–Willi Syndrome

Genomic DNA was isolated from the peripheral blood specimens of
the volunteers using the DNA isolation mini kit (ZEESAN, Xiamen,
China) and Lab-Aid 820 nucleic acid extraction instrument (ZEESAN,
Xiamen, China) according to the manufacturer's instructions. DNA
samples were inspected on a Nanodrop 2000 (Thermo, US).

Genomic DNA was treated with sulfite using the CpGenome
Turbo Bisulfite Modification Kit (Millipore, CA, USA) according to the
manufacturer's instructions. Using methylation-specific primers in the
CpG island of the SNRPN gene (Kubota et al., 1997), different



Table 1
The components of the three ready-to-consume formula of WTP diet in the study.

Formula 1a Formula 2b Formula 3b

Ash content (g/100 g) 0.93 4.8 0.067
Water (g/100 g) – 3.62 4.2
Protein (g/100 g) 5.7 9.76 b0.1
Fat (g/100 g) 1.7 1.2 b0.1
Fiber (g/100 g) 3.0 18.9 24.5
Carbohydrate (g/100 g) 20.2 61.7 71.2
Soluble fiber (g/100 g) 0.14 5.6 24.5
Unsoluble fiber (g/100 g) 2.8 13.3 b0.1
Vitamin A (mg/kg) – – –
Vitamin D (mg/kg) – – –
Vitamin E (mg/kg) 0.54 15.2 –
Vitamin K1 (μg/100 g) 0.0036 26.8 –
Vitamin B1 (mg/100 g) 0.054 – –
Vitamin B2 (mg/100 g) 0.025 0.324 0.052
Vitamin B6 (μg/100 g) 0.051 – –
Vitamin B12 (μg/100 g) – 0.48 –
Vitamin C (mg/100 g) – b0.3 b0.3
Biotin (μg/100 g) – 2.67 –
Niacin (μg/100 g) 0.18 – –
Vitamin B5 (μg/100 g) – – –
Folate (μg/100 g) – 446 2.65
Sodium (mg/kg) 7.36 1.95 × 103 77
Potassium (mg/kg) 2.78 × 102 1.92 × 104 21
Copper (mg/kg) 0.21 4 –
Magnesium (mg/kg) 58.9 1.77 × 103 4
Ferrum (mg/kg) 1.6 74 2
Zinc (mg/kg) 0.89 14 2
Manganese (mg/kg) 0.89 12 –
Calcium (mg/kg) 16.3 264 4
Phosphorus (mg/100 g) 0.12 305 b2
Iodine (mg/kg) 0.021 0.06 0.05
Chlorine (mg/100 g) 31.4 226 b10
Selenium (mg/kg) 0.008 0.007 –
Chromium (mg/kg) – 1.4 –
Fluorine (mg/kg) – 4.92 b0.50
Inositol (mg/kg) 13.5 1.66 × 103 –
linoleic acid (g/100 g) – 0.03 –
α-Linolenic acid (g/100 g) – 0.03 –
Docosahexenoic acid (g/100 g) – – –
Eicosatetraenoic acid (g/100 g) – – –
Cytidine (mg/100 g) 0.014 6.37 –
Uridine (mg/100 g) 0.014 3.78 –
Carnine (mg/100 g) 0.014 2.2 –
Guanosine (mg/100 g) 0.014 4.1 –
Adenosine (mg/100 g) 0.014 1.54 –
Choline (mg/100 g) 30.3 92 9
L-Carnitine (mg/kg) – – –

Taurine (mg/100 g) – 336 –
Molybdenum (mg/kg) 0.33 – –
Cobalt (mg/kg) – – –
Aspartic acid (g/100 g) 0.38 0.59 –
Threonine (g/100 g) 0.1 0.29 –
Serine (g/100 g) 0.22 0.33 –
Glutamic acid (g/100 g) 0.68 0.95 –
Proline (g/100 g) 0.27 0.27 –
Glycine (g/100 g) 0.18 0.33 0.01
Alanine (g/100 g) 0.24 0.17 –
Valine (g/100 g) 0.09 0.39 –
Cystine (g/100 g) – 0.17 –
Methionine (g/100 g) 0.03 0.09 –
Isoleucine (g/100 g) 0.06 0.3 –
Leucine (g/100 g) 0.26 0.18 –
Tyrosine (g/100 g) 0.09 0.26 –
Phenylalanine (g/100 g) 0.16 0.34 –
Histidine (g/100 g) 0.07 0.19 –
Trytophan (g/100 g) 0.03 0.07 –
Lysine (g/100 g) 0.14 0.37 –
Arginine (g/100 g) 0.3 0.8 –
Total amino acid (g/100 g) 3.26 6.09 0.01

a Formula 1 is a pre-cooked, ready to eat food. The concentration of each nutrient is the
amount in each 100 g wet weight.

b Formulas 2 and3 are ready-to consumedry powder. The concentration of eachnutrient
is the amount in each 100 g dry weight.
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amplicons were obtained from paternal and maternal chromosomal
DNA in the core region associatedwith PWS. Two amplicons of different
sizes were amplified from paternal and maternal chromosome in
control samples. No amplification occurred in untreated samples.
Only the amplicon from the mother was detectable in the PWS patient
samples.

The methylation-specific and non-methylation primers are as
follows (Askree et al., 2011): MF 5′-TAAATAAGTACGTTTGCGCGGTC-3′
and MR 5′-AACCTTACCCGCTCCATCGCG-3′ were used to generate the
174 bp methylation product. Primers, PF 5′-GTAGGTTGGTGTGTATGT
TTAGGT-3′ and PR 5′-ACATCAAACATCTCCAACAACCA-3′ were used to
amplify 100 bp of the non-methylated allele.

The PCR reactionmixture was prepared as follows: Taq-HS (TaKaRa,
Tokyo, Japan) 12.5 μL, primer forward 0.8 nmol, primer reverse
0.8 nmol, template DNA 60 ng, ddH2O to a total volume of 25 μL. The
PCR program was 95 °C for 5 min, 95 °C for 30 s, 61 °C for 30 s, 72 °C
for 30 s, cycled 40 times, 72 °C for 7 min. Electrophoresis was
performed using a 3% agarose gel (Fig. S1).

4. Metabolomic Analysis

The fecal metabolite extraction (Wu et al., 2010), and the urine
sample preparation (Jiang et al., 2012; Xiao et al., 2009)were performed
as described previously.

All one-dimensional (1D) 1H NMR spectra of fecal water and urine
samples were acquired on a Bruker AVIII 600 MHz NMR spectrometer
equipped with a cryogenic probe (Bruker Biospin, Germany). The first
increment of NOESY pulse sequence was employed with continuous-
wave irradiation on water peak during recycle delay and mixing time
for water suppression. The 90° pulse was adjusted to about 10 μs, and
64 scans were collected into 32 k data points for each spectrum with
the spectral width of 20 ppm. To assist metabolite assignments, two-
dimensional (2D) NMR spectra were acquired including 1H–1H COSY,
1H–1H TOCSY, 1H J-resolved, 1H–13C HSQC and 1H–13C HMBC for typical
samples.

Fourier transformation of the free induction decays was performed
after multiplying by an exponential function with a line-width factor
of 1 Hz. The phase- and baseline-corrections were achieved manually,
and chemical shift was calibrated to the TSP signal at δ0.00 with
software TOPSPIN (v3.0, Bruker Biospin).

For the spectra of fecal water, the spectral region δ0.5–9.5 was
integrated into bins with the width of 0.004 ppm using the AMIX
package (v3.8, Bruker Biospin), and the region δ 4.75–4.93 for water
peaks was removed. Each bin area was normalized to the dry weight
of feces used for the extraction.

For the urine spectra, the spectral region δ0.5–9.35 was integrated
into bins with the width of 0.004 ppm. The regions for water
(δ4.71–5.10) and urea (δ5.43–6.20) peaks were removed, and each
bin area was normalized to the total area of the respective spectrum.
Some regions, including δ7.00–7.25, δ7.86–8.00 and δ8.05–8.20,
were discarded after the normalization because of imperfect peak
alignment.

4.1. Statistics

Orthogonal projection to latent structure-discriminant analysis
(OPLS-DA) was performed with the software SIMCA-P+ (v12.0,
Umetrics, Sweden) with unit variance (UV) scaling and a 7-fold cross
validation method. The qualities of all OPLS-DA models were assessed
with R2X, the total variation being explained by the model, and Q2,
denoting the predictability of themodel. The significance of the models
were further validated by variance analysis of the cross-validated
residuals (CV-ANOVA) (P b 0.05) (Eriksson et al., 2008). The loadings
generated from the models were plotted with color-coded OPLS-DA
coefficients in MATLAB 7.1 using an in-house script after back-
transformation (Cloarec et al., 2005). The color code means the
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absolute value of Pearson correlation coefficients (|r|), which indicate
the weight of each variable contributing to the inter-group differentia-
tion. The changed metabolites discovered by OPLS-DA were also con-
firmed by univariate analysis. Signal areas for specific metabolites
were integrated with deconvolution using MestReNova (v8.0.0,
Mestrelab Research S. L., Spain) and analyzed by t-test or Mann–
Whitney U test using SPSS 13.0 as appropriate.

5. Gut Microbiota Profiling

5.1. 454 Pyrosequencing

DNA extraction from fecal samples was conducted as previously
described (Godon et al., 1997) and purified by QIAamp DNA mini kit
(51304, QIAGEN, Germany). The primers 5′-CGTATCGCCTCCCTCGCG
CCATCAGACGAGTGCGTAGAGTTTGATYMTGGCTCAG-3′ and 5′-CTATGC
GCCTTGCCAGCCCGCTCAGNNNNNNNNNNATTACCGCGGCTGCTGG-3′,
with a sample-unique DNA barcode of ten-mer sequences represented
as N, were used to amplify the V1–V3 region of each fecal sample by
PCR as previously described (Zhang et al., 2012). PCR products were
mixed at equal ratio for pyrosequencing using the GS FLX platform
(Roche, Branford, CT, USA). The details of sequencing data analysis
were shown in Supplementary Materials.

5.2. Metagenomic Sequencing

110 samples (For PWS, n = 17 at Day 0, 30, 60, and 90; For SO,
n = 21 at Day 0 and 30) were sequenced using Illumina Hiseq 2000
platform at Shanghai Biotechnology Co., Ltd. DNA library preparation
followed Illumina's instructions. Cluster generation, template hybridi-
zation, isothermal amplification, linearization, blocking, and denaturing
and hybridization of the sequencing primers were performed according
to the workflow indicated by the provider.

Libraries were constructed with an insert size of approximately
300 bp, followed by high-throughput sequencing to obtain paired-end
reads with 100 bp in the forward and reverse directions. The library
construction for the Day 30 sample of GD10 failed after repeated
attempts and yielded no sequencing results. For the 109 successfully
sequenced samples, an average of 80.8 ± 20.0 million (mean ± s.d.)
reads were obtained for each sample.

5.3. Data Quality Control

Flexbar (Dodt et al., 2012) was used to trim the adapter from the
reads; Prinseq (Le Chatelier et al., 2013) was employed a) to trim the
reads from the 3′ end until reaching the first nucleotide with a quality
threshold of 20; b) to remove read pairs if either read was shorter
than 60 bp or contained ‘N’ bases, and c) to de-duplicate the reads.
Reads that could be aligned to the human genome (H. sapiens, UCSC
hg19) were removed (aligned with Bowtie2 (Langmead and Salzberg,
2012), using — reorder–no-hd–no-contain–dovetail). On average, 76.0
million ± 18.0 million (mean ± s.d.) reads for each sample were
retained and used for further analysis.

5.4. De Novo Assembly and Non-Redundant Metagenomic Gene
Catalogue Construction

High-quality reads were used for de novo assembly with IDBA-UD
(Peng et al., 2012) (an iterative De Bruijn Graph De Novo Assembler)
into contigs of at least 500 bp. Reads from all samples from the same
volunteer were assembled. Genes were predicted usingMetaGeneMark
(Zhu et al., 2010). A non-redundant gene catalogue of 2,077,766 was
constructed with CD-HIT (Li and Godzik, 2006) using the parameters
“−c 0.95−aS 0.9”.
5.5. Abundance Profile of Gene Catalogue

High quality reads were mapped to the gene catalogue with
SOAPaligner (R. Li et al., 2009) (−M 4 − l 50 −r 1 −v 5). To adjust
for sequencing depth,we sampled the alignment results and downsized
the number of mapped reads to 28 million for each sample and then
used soap.covearge.script (http://soap.genomics.org.cn/down/soap.
coverage.tar.gz) to calculate gene-length normalized base counts. The
samplingprocedurewas repeated 30 times and themeanvalue of abun-
dance was used for further analysis.

5.6. Co-Abundance Gene Groups (CAGs)

All the genes were clustered into CAGs based on their abundance
data using the Canopy-based algorithm with default parameters. CAGs
with more than 700 genes were regarded as bacterial CAGs for further
analysis. CAG abundance profiles were calculated as the sample-wise
median gene abundance (Nielsen et al., 2014). The PCoA of bacteria
CAGs based on different distance and MANOVA was performed
using QIIME. Procrustes superimposition was then performed from
the PCoA of CAGs and principal component analysis (PCA) of bioclinical
data.

5.7. Genome Interaction Groups (GIGs)

Bacterial CAGs shared by more 20% of the samples were regarded as
prevalent species. Associations between these prevalent bacterial CAGs
were determined by bootstrapped Spearman correlation coefficient
based on their abundance profiles. The correlations were converted to
a correlation distance (1-correlation coefficient) and then clustered
using the Ward clustering algorithm. From the top of the clustering
tree, we used Permutational MANOVA (9999 permutations, P b 0.001)
to sequentially determine whether the two clades were significantly
different to cluster the prevalent bacterial CAGs into GIGs. The boots-
trapped Spearman correlation coefficient between GIGs and bioclinical
parameters was calculated to identify the relationship between gut
microbiota and host phenotype. Species within the same GIG decreased
or increased their abundance together during the dietary intervention.
Therefore we added their individual abundance together to calculate
group-level abundance changes during the trial. Spearman correlation
coefficient and ward clustering were performed using MATLAB®.
Permutational MANOVA was done in the vegan package in R. The
networks were then visualized in Cytoscape v3.1.1. The abundance of
each GIGwas calculated as the sum of the abundance of all the bacterial
CAGs in the GIG. Wilcoxon matched-pairs signed rank test (two-tailed)
was performed to analyze changes of each GIG between various time
points in the same cohort. The PCoA of GIGs based on Bray–Curtis
distancewas performed using the vegan package in R. Procrustes super-
imposition was then performed from the PCoA of GIGs and principal
component analysis (PCA) of bioclinical data.

5.8. Assembly of Bacterial CAGs

For each of the 161prevalent bacterial CAGs,we performed a de novo
bacterial CAG-augmented and sample-augmented assembly (Nielsen
et al., 2014). For a given sample, the reads were aligned to the bacterial
CAG-specific contigs with Bowtie2, the mapped reads, including un-
mapped mates, were extracted. These reads were then de novo assem-
bled with Velvet (Zerbino and Birney, 2008) using kmer from 45 to 75
with parameters ‘−cov_cutoff auto’ and ‘−exp_cov auto’. As each bac-
terial CAG had several assemblies derived from several samples inde-
pendently, the assembly with highest N50 was selected. The minimum
lengths of contigs and scaffoldswere filtered to 100- and 500-bp respec-
tively. And the gaps in the scaffolds were filled by using SOAPdenovo
GapCloser (1.12).

http://soap.genomics.org.cn/down/soap.coverage.tar.gz
http://soap.genomics.org.cn/down/soap.coverage.tar.gz
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5.9. Assembly Statistics

To assess the quality of the assemblies, the six high-quality draft
genome assembly criteria from the Human Microbiome Project (HMP)
were adopted. The criteria are (i) 90% of the genome assembly must
be included in contigs N500 bp, (ii) 90% of the assembled bases must
be at N5× read coverage, (iii) The contig N50 must be N5 kb, (iv)
scaffold N50 must be N20 kb, (v) average contig length must be N5 kb
and (vi) N90% of the core genes must be present in the assembly. The
general assembly statistics were calculated with an in-house Perl script
based on BioPerl. The coverage was obtained by aligning reads to the
contigs with Bowtie2 and calculating with BEDtools (Quinlan and Hall,
2010). The core gene ratios were determined with HMP standard oper-
ating procedures.
5.10. Comparison of Assemblies and Reference Genomes

118 high quality assemblies passing 5 or 6 HMP criteria for reference
genomes were compared to 352 draft reference genomes from the
human gastrointestinal tract HMP DACC database and 2645 complete
reference genomes from the NCBI database (downloaded on May 6,
2014). The comparison was performed with MUMmer3.0 (Kurtz et al.,
2004). The contigs were aligned to the reference genomes with numcer
(default parameters). Delta-filter (parameters: − i 95−o 80) was used
to filter the low identity matches. Finally, the comparison of the assem-
blies and the reference genomes and the estimation of mean identity
and coverage were performed with dnadiff.
5.11. Phylogeny of the Bacterial CAG Assemblies

We used CVtree3.0 web server (Xu and Hao, 2009), which applies a
composition vector to perform phylogenetic analysis, to construct a
phylogenetic tree of the 118 bacterial CAGswith high quality assemblies,
352 reference gastrointestinal tract genomes from the HMP DACC data-
base, and the server's inbuilt database, to identify the phylogenetic posi-
tion of the bacterial CAGs. We also applied SpecI (Mende et al., 2013),
which is a method to group organisms into species clusters based
on 40 universal and single-copy phylogeneticmarker genes, to delineate
the bacterial CAGs. 64 bacterial CAGs could be delineated by SpecI,
and only 5 of the 64 showed disagreement with CVtree (CAG00178
Streptococcus gallolyticus (SpecI), Streptococcus pasteurianus (CVtree);
CAG00047 Ruminococcus gnavus (SpecI), Lachnospiraceae bacterium 2 1
58FAA (CVtree); CAG00120Ruminococcus gnavus (SpecI), Lachnospiraceae
bacterium (CVtree); CAG00226 Parasutterella excrementihominis (SpecI),
Burkholderiales bacterium 1_1 _47 (CVtree); CAG00020 Bacteroides uni-
formis (SpecI), Bacteroides sp. D20 (CVtree)).
5.12. Comparison of Strains of the Same Species

Within the same species, strains were compared pair-wise using
MUMer3.0 based on their high-quality draft genomes. For strains of
the same species,Mann–Whitney testwas used to compare the identity
of strains in the same GIG with that in different GIGs.
5.13. Metagenomic CAZy Profiling

A local-version database was downloaded from the dbCAN website
(http://csbl.bmb.uga.edu/dbCAN/annotate.php, version: 11 May, 2013).
Genes in the non-redundant gene catalogue were aligned to the data-
base with HMMscan (Finn et al., 2011). The alignment result was parsed
by the hmmscan-parser.sh, which was provided by dbCAN, and the
best-hit alignment was retained. The CAZy family profile was calculated
by summing the relative abundance of genes aligned to it.
6. Global Structural Analysis of Gut Microbiota

6.1. Gene Richness Analysis

Gene richness was compared between subjects at the baseline using
the same number of mapped reads based on the downsizing results
mentioned above. The distribution of gene count was calculated in
MATLAB® using histfit (kernel).

6.2. Enterotypes Analysis

Enterotypes were determined using the abundance of genus, OTUs
and CAGs separately using the methods suggested in http://enterotype.
embl.de/. The package ade4 in R was used in this analysis.

7. Functional Annotation

7.1. Global Level Based on All High-Quality Reads and Non-Redundant
Gene Catalogue

Metagenomic data were metabolically profiled by using HUMAnN.
All high quality reads were aligned with Bowtie2 to the KEGG database
(Kanehisa et al., 2012) (Release: February, 24, 2014), from which
sequences of eukaryotes had been excluded. The alignments were
transformed into bam format with SAMtools (H. Li et al., 2009) and
input into HUMAnN to obtain the abundance of KOs and pathways.
The linear discriminant analysis (LDA) effect size (LEfSe) (Segata et al.,
2011) was used to identify enzymatic pathways that were significantly
different between pre- and post-intervention.

The protein sequences of formate-tetrahydrofolate ligase
(GI|293416147|), Propionyl-CoA:succinate-CoA transferase
(GI|218353245), propionate CoA-transferase (GI|7242549|), and
butyryl-CoA transferase (GI|71081820|) (Claesson et al., 2012)
were downloaded from NCBI database. The non-redundant gene cata-
logue was aligned to these sequences by using BLASTP (best-hit with
E-value b1E−5, identity N30% and coverage N70%).

7.2. GIGs Level

To analyze the function of each GIG, the reads from the sample
group that contained the highest abundance of the GIG and aligned to
the GIG-specific genes were gathered. As described before, these reads
were aligned to KEGG database and the alignments were parsed with
HUMAnN, thus obtaining the relative abundance of pathways in each
GIG.

7.3. Bacterial CAGs Level

For each of the 118 bacterial CAGs, the open reading frames (ORFs)
were identified using myRAST (Overbeek et al., 2014). The reference
protein sequences of tryptophanase (K01667) were collected from the
KEGG database. Sequences of choline TMA-lyase (GI|219868924|) and
choline TMA-lyase-activating enzyme (GI|219868925|) (Craciun and
Balskus, 2012) were downloaded from the NCBI database. The potential
tryptophanase, choline TMA-lyase and choline TMA-lyase-activating
enzyme in bacterial CAGs were identified by aligning the ORF protein
sequences against the references with BLASTP (best-hit with E-value
b1E-5, identity N30% and coverage N70%). Additionally, for identifica-
tion of choline TMA-lyase and choline TMA-lyase-activating enzyme,
we required that they co-exist as components in a cluster.

7.4. Association Between Microbiota and Urine Metabolome

To aid interpretation of the relationship between the bacterial CAG-
level microbiota and metabolomics datasets, we integrated them using
a multivariate method known as co-inertia analysis (CIA) (Fagan et al.,

http://csbl.bmb.uga.edu/dbCAN/annotate.php
http://enterotype.embl.de/
http://enterotype.embl.de/
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2007). PCA was applied to each of the individual datasets as inputs for
the CIA. Ordinations of the two datasets that are maximally co-variant
were identified to find the shared biological trends within the two
datasets. CIA was performed by ade4 package in R. The bootstrapped
Spearman correlation coefficients between bacterial CAGs and indoxyl
sulfate or TMAO based on their abundance in all the samples were
calculated.

7.5. Accession Numbers

The raw pyrosequencing and Illumina read data for all samples has
been deposited in the Sequence Read Archive (SRA) under the accession
number SRP045211.

8. Gut Microbiota Transplantation

8.1. Animal Trial

Fecal samples were collected from a Prader–Willi syndrome patient
(GD58) before (Day 0) and after (Day 90) the intervention as described
above. The samples were preserved nearly one year at −80 °C. 500 μg
of fecal sample was diluted in 25 mL of sterile Ringer working buffer
(containing 9 g of sodium chloride, 0.4 g of potassium chloride, 0.25 g
of calcium chloride dihydrate and 0.05% L-cysteine-HCl in 1 L buffer)
in an anaerobic chamber (whitely DG500; Don Whitley Scientific;
atmosphere composed of 80% N2/10% CO2/10% H2). The fecal material
was suspended by thorough vortexing (5 min) and settled by gravity
for 5 min. The clarified supernatant was transferred to new tubes and
an equal volume of 20% skim milk (LP0031, Oxoid, UK) was added.
The fresh inoculum was used on the day of preparation, and the rest
was preserved at−80 °C until the second inoculation.

All experimental procedures and protocols were approved by the
Institutional Animal Care and Use Committee of SLAC Inc. Nineteen
weaned, germ-free (GF) male C57BL/6J mice were maintained in
flexible-film plastic isolators under a regular 12-h light cycle (lights on
at 06:00 h) in SLAC Inc. (Shanghai, China). Mice were fed with a sterile
normal chow diet (D12450B, Research Diets, Inc., New Brunswick, NJ)
ad libitum. Surveillance for bacterial contamination was performed by
periodic bacteriologic examination of feces, food and padding.

When they reached 8 weeks of age, the GF animals were ran-
domly divided into 2 groups. For the Day 0 group, mice were inocu-
lated by oral gavage with 100 μL of fecal suspension collected from
patient GD58 before the dietary intervention (n = 10), and for the
Day 90 group, mice were inoculated with 100 μL of fecal suspension
collected from patient GD58 after 90 days of intervention (n=9). A re-
peat inoculation was conducted the next day to reinforce the microbiota
transplantation. The body weight of each mouse was measured twice a
week.

8.2. Tissue Sample Collection

At the end of the 2nd and 4thweeks, half of themicewere sacrificed,
and blood and tissues samples were collected. After exsanguination,
white adipose tissues (epididymal, mesenteric, subcutaneous inguinal
and retroperitoneal), liver, total gut and muscle were collected, sec-
tioned, weighed and stored in liquid nitrogen.

8.3. RT-qPCR

Total RNA from liver, ileum and colon tissue was isolated using an
RNeasy lipid tissue mini kit (75842, QIAGEN, Germany) according to
the manufacturer's protocol. 2 μg of each total RNA sample was treated
with RNase-free Dnase (18068-015, Invitrogen, USA). First-strand cDNA
was synthesized using random hexamers and Superscript II reverse
transcriptase (18080-051, Invitrogen, USA). PCRs were performed
using the Eppendorf Realplex thermocycler. Primer sequences for the
targeted mouse genes were as follows:

Tnfα,
F: 5′ACGGCATGGATCTCAAAGAC3′, R: 5′AGATAGCAAATCGGCT

GACG3′;
Il6,

F: 5′-GTTCTCTGGGAAATCGTGGA-3′, R: 5′-TGTACTCCAGGTAG
CTA-3′;
Tlr4,

F: 5′ATGGCATGGCTTACACCACC3′, R: 5′GAGGCCAATTTTGTCTCC
ACA3′;
Gapdh

F: 5′GTGTTCCTACCCCCAATGTGT3′,
R: 5′ATTGTCATACCAGGAAATGAGCTT3′.

Cycle threshold (Ct) values were converted to quantification values
based on the standard curves.

8.4. H&E Staining of Fat Tissue and Histopathologic Analysis

Fresh epididymal fat pads were fixed with 4% formaldehyde for 48 h
and dehydrated through a series of graded ethanol baths to displace the
water before being embedded in paraffin. Samples were sectioned at
5 μm and stained by hematoxylin and eosin. Digital images of sections
were acquired with a Leica DMRBE microscope. Adipocyte size (cross-
sectional area) was counted by Image Pro Plus 6.0. For each mouse,
adipocytes areas were determined in at least three histologic sections
and 300 total adipocytes.

8.5. Statistics

Statistical analysis was carried out using the SPSS Statistics 17.0
Software Package (SPSS Inc.). Student t-test or Mann–Whitney test
was used for detecting variation between gnotobiotic mice receiving
the fecal microbiota from Day 0 compared to Day 90 samples, depend-
ing on data distribution.

9. Results

9.1. Dietary Alleviation of Genetic and Simple Obesity

The WTP diet was used for this hospitalized intervention study
performed onmorbidly obese childrenwith PWS or SO. The two cohorts
(PWS, n=17, average age 9.26 yrs, range 5–16 yrs; SO, n=21, average
age 10.52 yrs, range 3–16 yrs) showed no significant difference in age
range (Table S1). Both cohorts received the hospitalized intervention
for 30 days. At their parents' request, the PWS cohort continued for
another 60 days. One PWS volunteer (GD02) stayed in the hospital for
285 days. During the dietary intervention, both cohorts of children
had their total calorie intake cut by about 30% compared to their pre-
intervention diets. Protein intake remained at 13–14% of total kcal
consumed. Carbohydrate intake increased from 52% to 62% of total
calories in PWS and from 57% to 62% in SO. The form of carbohydrates
changed from primarily white rice and wheat flour to whole grains.
Fat intake decreased from 34% to 20% of total calories in PWS and
from30% to 20% in SO. Themost substantial changewas the total dietary
fiber intake, which increased from 6 g to 49 g per day in PWS and from
9 g to 51 g per day in SO (Tables S2 and S3). Anthropometric measure-
ments and metabolic panel blood testing were used to track changes.

Almost all relevant bioclinical parameters indicate a significant
alleviation of themetabolic deteriorations in children with both genetic
and simple obesity after 30 days of the dietary intervention (Fig. 2).
With one-month intervention, the SO cohort lost 9.5 ± 0.4% (mean ±
s.e.m.) of their initial bodyweight, and the PWS cohort 7.6 ± 0.6%



Fig. 2. Improved bioclinical parameters and inflammatory conditions after the intervention. (a) Anthropometric markers. (b) Hepatic function markers. (c) Plasma glucose homeostasis.
(d) Plasma lipid homeostasis. (e) Inflammation related markers. Data are shown as mean ± s.e.m. Wilcoxon matched-pairs signed rank test (two-tailed) was used to analyze variation
between each two-time points in PWSor SO children. *P b 0.05, **P b 0.01. Formost of the bioclinical variables, PWS n=17and SOn=21; For OGTTGlycaemia AUC andOGTT Insulinemia
AUC, PWS n = 16 and SO n = 20; For CRP, W.B.C., SAA, AGP, Adiponectin and IL-6, PWS n = 16 and SO n = 19. BMI: body mass index; ALT: Alanine aminotransferase; AST: Aspartate
aminotransferase; OGTT: Oral glucose tolerance test; LDL: low-density lipoprotein; CRP: C reactive protein; W.B.C.: White blood cell count; SAA: serum amyloid A protein; AGP: α-acid
glycoprotein; LBP: Lipopolysaccharide binding protein.
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(Fig. 2a). Both PWS and SO children showed significant improvement in
markers of metabolic health (Tables S4 and S5). Aspartate aminotrans-
ferase (AST) and alanine aminotransferase (ALT) levels in the blood
were reduced, indicating improved liver condition (Fig. 2b). Glucose ho-
meostasis was significantly improved (Fig. 2c). Blood levels of total cho-
lesterol, triglycerides, and low-density lipoprotein (LDL) were
decreased (Fig. 2d). The PWS cohortwas followed for twomoremonths
on the WTP diet. They lost a total of 18.3 ± 1.0% of their initial
bodyweight and showed continued improvement in several metabolic
parameters (Fig. 2a–d). In addition, the PWS cohort showed a modest
improvement in their overall hyperphagia behavior (Table S6). GD02
reduced his bodyweight from 140.1 kg to 83.6 kg after 285 days in the
hospital. He then continued this intervention at home and reduced to
73.2 kg after 430 days on this diet. All his metabolic parameters came
to normal range (Table S7). This extended dietary intervention can
thus significantly alleviate the metabolic deteriorations in human ge-
netic obesity, in which the diet-induced weight loss can be comparable
to that achievable by gastric bypass surgery (Papavramidis et al., 2006).

Several markers of systemic inflammation were also improved in
PWS and SO cohorts after 30 days of dietary intervention, including
C-reactive protein (CRP), serum amyloid A protein (SAA), α-acid glyco-
protein (AGP) and white blood cell count (WBC) (Fig. 2e). The level of
adiponectin, an anti-inflammatory adipokine, was increased, and leptin
was decreased, indicating an alleviation of the “at-risk” phenotype
(Labruna et al., 2011). Lipopolysaccharide binding protein (LBP), a
surrogate marker for bacterial antigen load in the blood (Zweigner
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et al., 2006), was decreased (Fig. 2e). This suggests that the gut micro-
biota of both cohorts may have changed after the intervention (Xiao
et al., 2014; Fei and Zhao, 2013).

9.2. Structural Modulation of the Gut Microbiota

To determine how the overall structure of the gut microbiota was
modulated during the dietary intervention, we performed Illumina-
based shotgunmetagenomic sequencing on 110 fecal samples collected
from 21 SO (Day 0 and 30) and 17 PWS (Day 0, 30, 60, and 90) subjects.
On average, 76.0 ± 18.0 million (mean ± s.d.) high-quality paired-end
reads from each sample were used for de novo assembly and for
predicting genes (Table S8), from which a non-redundant gene cata-
logue of 2,077,766 microbial genes was constructed. These two million
genes were binned into 28,072 co-abundance gene (CAG) groups
using the canopy-based algorithmwith a strict cutoff for correlation co-
efficients (N0.9) tomaximize chances that genes of a CAGwere from the
same genome (Nielsen et al., 2014). 376 CAGs each with N700 genes
were considered to represent distinct bacterial genomes, which
accounted for 36.4% (775,515) of the recognized genes. Of the 376
CAGs, we focused our subsequent analyses on 161 that were shared
by at least 20% of the samples. The 161 prevalent CAGs were assembled
into draft genomes, and 118 of the genome assemblies met at least five
of the six quality criteria of the Human Microbiome Project (HMP) for
standard reference genomes (Table S9). 50 of the assemblies were
closely related to known reference genomes with coverage over 80%
and identity over 95% (Table S10). 10 species were represented by
more than one draft genome assembled, e.g. Faecalibacterium prausnitzii
having 9 assembled genomes, and Eubacterium eligens having 5, sug-
gesting that multiple strains within these species were present in the
samples that were sequenced.

The composition of the gut microbiota showed a significant shift
after 30 days of the intervention in both cohorts as indicated by principal
coordinates analysis (PCoA,multivariate analysis of variance (MANOVA)
test, P=2.17e−6) based on Bray–Curtis dissimilarity of the 376 bacte-
rial CAGs (Fig. 3a and b). There was no significant difference in gut
microbiota between PWS and SO either before (P = 0.99) or after the
intervention (P = 0.8), suggesting that the PWS and SO gut microbiota
were similarly dysbiotic prior to the intervention and that the interven-
tion had the same effect on both (Fig. 3b). Analyses based on other
β-diversity metrics and on pyrosequencing of the V1–V3 region of 16S
rRNA genes confirmed these findings (Figs. S2 and S3). For both cohorts
the gene richness and diversity of the gut microbiota significantly
decreased after the intervention (Figs. S4 and S5). Delineation of low
gene count/high gene count groups among our volunteers before the in-
tervention was not evident (Fig. S6). Genus-level data from 16S rRNA
gene sequencing gave two enterotypes represented by Bacteroides and
Prevotella (Fig. S7). OTU-level data yielded three enterotypes, represent-
ed by: Bacteroides spp. uclustout#1111, Prevotella spp. uclustotu#3124
and Streptococcus spp. uclustotu#2404 (Fig. S8). CAG-based meta-
genomic data also differentiate the samples into three enterotypes
represented by Bacteroides, Prevotella and Bifidobacterium respectively
(Fig. S9). Some individuals changed their enterotypes after one month,
indicating that changing enterotypes via long-term dietary intervention
is possible (Tables S11–S13). Enterotypes and their changes responding
to dietary intervention showed no correlation with any of the bio-
clinical parameters.

More importantly, procrustes analysis combining PCoA of the 376
bacterial CAGs (Fig. 3a) with PCA of the bioclinical variables (Fig. S10)
showed that the structural shifting of the gut microbiota based on the
abundance of the bacterial CAGs was significantly associated with the
changes of the bioclinical parameters of both PWS and SO cohorts,
suggesting that the overall structural changes deep at individual bacte-
rial genome level were significantly associated with the improvements
in host metabolic health (Fig. S11, P b 0.0001, 999 times Monte-Carlo
simulations).
9.3. Genome Interaction Network Analysis

To identify bacterial genomes in the gut ecosystem that responded
as functional groups (guilds) to the dietary intervention (David et al.,
2014), we constructed a co-abundance network across all individuals
and time points based on the 161 prevalent bacterial CAGs. Ward clus-
tering algorithm and Permutational MANOVA (9999 permutations,
P b 0.001) based on bootstrapped Spearman correlation coefficients
clustered these bacterial CAGs into 18 genome interaction groups
(GIGs) (Figs. 3c, S12). Note that different CAGs of the same species
such as the 9 Faecalibacterium prausnitzii genomes were clustered into
different GIGs, suggesting that different strains of the same species
might occupy different metabolic niches in the gut ecosystem. Strains
of the same species in the sameGIGweremore similar in their genomic
sequences to each other than strains of the same species clustered into
different GIGs, indicating that strains of the same species in different
GIGs may be functionally different (Fig. S13). Procrustes analysis
showed that separations based on either group-level abundance of
GIGs or host bioclinical variables before and after the intervention
co-segregated along the first axis in both PWS and SO data sets, suggest-
ing that the changes in the abundance of the various GIGs were signifi-
cantly associated with the improvements in host metabolic health
(Fig. 3d, P b 0.0001, 999 times Monte-Carlo simulations). The agree-
ment between genome-level and GIG-level procrustes analysis with
host bioclinical variables suggests that this strategy of organizing
prevalent genomes of human gut microbiota into genome interaction
groups provides a potentially useful framework for understanding
their functional interactions with each other and with the hosts.

Group level abundance analysis showed that 6 GIGs, including
GIG13 containing the most predominant species Prevotella copri, did
not change their abundance after the intervention (Fig. S14). GIG1, 3
and 4 significantly increased their abundance after the intervention,
while GIG7, 8, 11, 12, 14, 15, 16, 17 and 18 decreased (Fig. 3e). GIG3
had a negative correlation with GIG8, 15, 16, and 18 (r N 0.45,
FDR b 0.01) (Fig. 3c). GIG3 became the most promoted group after the
dietary intervention. Notably, the major genomes in GIG3 were in the
genus Bifidobacterium. The assembly for CAG00184, themost promoted
genome after the intervention, covered 81.2% of the reference genome
for Bifidobacterium pseudocatenulatum DSM 20438 with 98.6% identity
(Fig. S15 and Table S10). The CAG00184 genome contained pathways
for fermentation of monosaccharides, disaccharides, oligosaccharides
and polysaccharides to produce acetate and lactate (Fig. S16).

Spearman correlation analysis between GIGs and host bioclinical
parameters showed that a few GIGs were positively associated with
disease phenotypes including GIG8, 11, 14, 15, 16,17 and 18, while a
few others negatively associated including GIG1, 3 and 4 (Fig. S17).
Such associations between group-level abundance of GIGs and host
phenotypes suggest that some of the GIGs may impact host health as a
functional group.
9.4. Functional Modulation of the Gut Microbiota

To see how the altered community structure of the gut microbiota
affected its metabolic potential, we profiled the metagenomic data
usingHUMAnN to identify and quantify geneswithin biochemical path-
ways (Abubucker et al., 2012). In total, 5234 KEGG orthology groups
(KOs) were recognized and quantified. The PCA score plot of all the
KOs showed a significant shift after the intervention (MANOVA test,
P = 2.00e−7, Fig. 4a and b), indicating a modulation of the metabolic
capacity of the gut microbiota concomitant with its diet-induced struc-
tural changes. There was no significant difference between the PWS
and SO cohorts either before or after the intervention (MANOVA test
P = 0.712 and P = 0.291, Fig. 4b). Thus, gut microbiota between PWS
and SO children shared similar structural and functional features both
before and after the intervention.



Fig. 3.Concordance of structural shifts of gutmicrobiota and the improvement of the hostmetabolic health. (a) PCoA based on Bray–Curtis distance of all the 376 bacterial CAGs during the
dietary intervention. (b) Clustering of gut microbiota based on distances between different groups calculated with MANOVA test of first 23 PCs (accounting for 80% of total variations) of
PCoA based on Bray–Curtis distance of all bacterial CAGs. (c) Genome interaction groups interaction network. Network plot highlights correlation relationships between 18 GIGs of 161
prevalent bacterial CAGs at all time points from the two cohorts. Node size indicates the average abundance of the species/strains. Lines between nodes represent correlations between
the nodes they connect, with linewidth indicating the correlationmagnitude, and red and blue colors indicating positive and negative correlations, respectively. For clarity, only lines cor-
responding to correlations whose magnitude is greater than 0.5 are drawn, and unconnected nodes are omitted. (d) Procrustes analysis combining PCoA of GIGs (end of lines with solid
symbols) with PCA of bioclinical variables presented in Fig. 1 (end of lines without solid symbols). For PWS, n= 17 at Day 0, 30, 60, and 90; For SO, n= 21 at Day 0 and n= 20 at Day 30.
(e) Group level abundance shifts of GIGs that changed significantly during dietary intervention. Data aremean± s.e.m.Wilcoxonmatched-pairs signed rank test (two-tailed)was used to
analyze variation between each two-time points in PWS or SO children. *P b 0.05, **P b 0.01.
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Using the linear discriminant analysis (LDA) effect size (LEfSe)
method (Segata et al., 2011), 67 KEGG database biochemical pathways
(P b 0.05) were identified as significantly responding to the dietary
intervention (Fig. 4c). 41 of these pathways were significantly de-
creased and 26 were enriched after the intervention. Notable among
the enriched pathways were those for carbohydrate catabolism, includ-
ing starch and sucrose metabolism (ko00500), and amino sugar and
nucleotide sugar metabolism (ko00520). Notable among the decreased
pathways were those for fat and protein metabolism, including fatty
acid biosynthesis (ko00061), phenylalanine metabolism (ko00360),
and tryptophan metabolism (ko00380). In addition, lipopolysaccharide
biosynthesis (ko00540), peptidoglycan biosynthesis (ko00550) and
flagellar assembly (ko02040) pathways were decreased, suggesting
reduced bacterial antigen synthesis after the intervention. Pathways
for xenobiotics biodegradation (ko00627, ko00633 and ko00930), and
DNA repair-related pathways (ko03410, ko03430 and ko03440) were
also decreased, perhaps reflecting reduced toxin load and mutagenic
stress in the gut microbiota environment after the intervention.

9.5. Carbohydrate-Induced Metabolic Shifts in the Gut

The interventional diet contained dramatically increased levels of
non-digestible carbohydrates, whichmay enter the colon to potentially
shift the fermentation metabolism of the gut microbiota (Tables S2 and
S3). Score plots of PCA and orthogonal projection to latent structure-
discriminant analysis (OPLS-DA) of NMR-based metabolite profiling



Fig. 4. Functional shifts of the gut microbiome during the dietary intervention. (a) The PCA score plot of the KO Groups recognized with HUMAnN showing a significant shift of the KO
profiles after the intervention (log-transformed). (b) Clustering of KO profiles based on distances between different groups calculated with MANOVA test of the first five PCs of PCA of
KO. (c) Key pathways of gut microbiota responding to dietary intervention. The left histogram shows the LDA scores computed for features (on the pathway level) differentially abundant
between all samples before and after the intervention. The heatmap shows the abundance of the key pathways. The stacked bar chart shows relative contribution of GIGs to each pathway.
For PWS, n = 17 at Day 0, 30, 60, and 90; For SO, n = 21 at Day 0 and n = 20 at Day 30. In (c) day 0 and day 30 data of PWS and SO combined together for this analysis.

978 C. Zhang et al. / EBioMedicine 2 (2015) 968–984
data of fecal water samples from the SO (Day 0 and 30) and the PWS co-
horts (Day 0, 30, 60 and 90) showed a significant shift of metabolite
composition after the intervention (Figs. S18 and S19). OPLS-DA coeffi-
cient plots showed dramatic increase of non-digestible carbohydrates
after the intervention (Fig. S20 and Table S14). The relative abundance
of 19 fecal metabolites in the SO cohort and 18 in the PWS cohort
were found to be significantly reduced by the intervention (Figs. S21
and S22). Among these significantly reduced metabolites were many
bacterial products. The significant decrease of these bacterial metabo-
lites in the gut was concomitant with a significant reduction in the
fecal bacterial content as determined by qPCR (Fig. S23), but fecal mat-
ter production of these children significantly increased (Table S15).
Despite the decrease of bacterial metabolites, the relative concentration
of acetate was increased among short chain fatty acids (SCFAs) while
those of isobutyrate and isovalerate were decreased, indicating a shift
of protein fermentation to carbohydrates fermentation after
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intervention (Fig. S24). Trimethylamine (TMA), a toxic metabolite pro-
duced by bacterial fermentation of dietary fat-derived choline, was de-
creased in fecal water after the intervention (Figs. S21 and S22). The
cytotoxicity of fecal water samples to cultured human Caco-2 cells
was significantly reduced in SO and slightly in PWS cohorts after the in-
tervention, indicating that the post-intervention microbiota may have
produced less toxic metabolites in the gut (Fig. S25).

To more closely examine how the dietary intervention changed the
carbohydrate metabolism of the gut microbiota, we searched all the
2,077,766 non-redundant gut genes from our study against the dbCAN
database to identify genes coding for carbohydrate-active enzymes
(CAZy) (Cantarel et al., 2012; Scott et al., 2013). 84,549 genes
were assigned to 299 CAZy families, which significantly differ in
the pre- and post-intervention samples, indicating a shift in the genes
for carbohydrate metabolism in the gut microbiome (Fig. S26). Genes
for degradation of starch, inulin and cellulose were significantly en-
riched, while genes for degradation of glycosylated compounds of
animal origin such as mucin were significantly depleted in the micro-
biome after the intervention (Fig. S27) (Cantarel et al., 2012). Genes
for formate-tetrahydrofolate ligase participating in acetate production
(Turnbaugh et al., 2006; Claesson et al., 2012) were significantly
increased after the intervention, consistent with the increased relative
concentration of acetate among the fecal SCFAs (Fig. S28). These shifts
reflect the increased availability of plant carbohydrates in the colon,
favoring proliferation of bacteria such as bifidobacteria that contain
carbohydrate-fermenting genes and produce beneficial metabolites
such as acetate (Flint et al., 2012).

9.6. Metabolic Interactions Between the Gut Microbiota and Human Host

We used an NMR-based metabonomics approach in the current
study to obtain unbiased profiles of urine metabolites before and after
the intervention to identify those that were significantly changed by
the intervention. Score plots of PCA and OPLS-DA of NMR-based meta-
bolite profiling data of urine samples collected from the SO (Days 0
Fig. 5. Altered profiles of urinary metabolites during the dietary intervention. (a) PCA score p
intervention (left) and the metabolic trajectories generated from the PCA score plot. (b) Valid
caused by the 30-day intervention. The plot related to the discrimination between 1H NMR s
Plot related to the discrimination between 1H NMR spectra of urine from Day 0 and Day 30 of th
key. (c) Heatmap showing significantly changedmetabolites after the 30-day intervention in th
90-day interventions in the PWS cohort. The significance of each statistical comparison is show
and 30) and the PWS cohorts (Day 0, 30, 60 and 90) showed significant
metabolic shifts after the intervention in both cohorts (Fig. 5a). Among
all the metabolites detected by NMR, only thirteen varied significantly
between pre- and post-intervention samples in SO and in PWS cohorts,
using OPLS-DA (Figs. 5b–d, S29–S31 and Table S14). Interestingly, 4
of the 13 significantly changed metabolites are co-metabolites be-
tween gut bacteria and host, which were all decreased after the inter-
vention. They are trimethylamine N-oxide (TMAO), indoxyl sulfate,
phenylacetylglutamine (PAG) and hippurate. TMAO is generated when
TMA enters the bloodstream and is metabolized by the human liver
(Wang et al., 2011). The precursors of the other three metabolites
are produced by bacterial fermentation of aromatic amino acids in the
gut, e.g. indole is produced by bacterial fermentation of tryptophan
(Russell et al., 2011). TMAO, an independent marker for predicting
clinical vascular events, has beenmechanistically linkedwith the devel-
opment of atherosclerosis in humans andmice (Wang et al., 2011, 2014).
Likewise, indoxyl sulfate has been linked with hypertension and cardio-
vascular disease in chronic kidney disease patients (Barreto et al.,
2009). Importantly, the decrease in urine TMAO after the intervention
was accompanied by a corresponding increase in urinary dimethyl-
glycine (DMG) (Fig. 5c and d), an intermediate in human metabolism
of dietary choline. This suggests that proportionally more of the fat-
derived choline in the interventional diet was absorbed andmetabolized
by the humanhost instead of undergoing fermentation to TMA by bacte-
ria in the gut (Dumas et al., 2006).

Co-inertia analysis between the 376 bacterial CAGs and the
urine metabolome revealed a significant co-variation between them
(R = 0.52, P b 0.01, Figs. 6a and S32). Bootstrapped Spearman correla-
tion analysis identified all bacterial CAGs (|r| N 0.4 and FDR b 0.01)
that were either positively or negatively associated with the key meta-
bolites significantly modulated by the dietary intervention (Fig. 6b).
Among the bacterial CAGs positively correlated with the potentially
toxic metabolite indoxyl sulfate, nine from GIG7 and 18 (most of them
are Bacteroides spp. and Alistipes spp.) contained the gene for try-
ptophanase (Fig. 6c), which transforms tryptophan to indole (Deeley
lot of urinary metabolite profiles obtained from SO and PWS groups during the dietary
ated OPLS-DA coefficient plots showing the alterations of metabolic profiles in the urine
pectra of urine from Day 0 and Day 30 of SO (top) groups (n = 17, r N 0.468, P b 0.05).
e PWS groups (n=17, r N 0.468, P b 0.05). See Table S14 for the metabolite identification
e SO cohort. (d) Heatmap showing the significantly changedmetabolites after 30-, 60- and
n in Fig. S31.



Fig. 6. Changes of co-metabolism between host and gut microbiota. (a) Co-inertia analysis (CIA) of relationships between the metabolomics PCA (end of lines with empty symbol) and
microbiota CAGs PCA (end of lines with solid symbol). (b) Bacterial CAGs significantly associated with the key metabolites modulated by the intervention. The bootstrapped Spearman
correlation coefficient between the 161 prevalent bacterial CAGs and the key metabolites was more than 0.4 and FDR b 0.001. Lines between nodes represent correlations between the
nodes they connect, with line width indicating the correlation magnitude, and red and blue colors indicating positive and negative correlations, respectively. (c) Species interaction
network of the bacterial CAGs significantly associated with indoxyl sulfate. Only the bacterial CAGs with high quality draft genomes are shown here. Lines between nodes represent
correlations between the nodes they connect, with line width indicating the correlation magnitude, and red colors indicating positive correlations. The triangle represents the presence
of the tryptophanase gene. (d) Species interaction network of the bacterial CAGs significantly associated with TMAO. Only the bacterial CAGs with high quality draft genomes are
shown here. Lines between nodes represent correlations between the nodes they connect, with line width indicating the correlation magnitude, and red colors indicating positive corre-
lations. The triangle represents the presence of the gene cluster encoding choline TMA-lyase and choline TMA-lyase-activating enzyme.
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and Yanofsky, 1982). Among those positively correlated with metabol-
ically toxic TMAO, 13 bacterial CAGs from GIG7, 8, 14, 15, 16, and 18
(mostly in Ruminococcus spp., Parabacteroides spp. and Bacteroides
spp.) had the gene cluster encoding choline TMA-lyase and choline
TMA-lyase-activating enzyme (Fig. 6d), which are key for anaerobic
choline degradation (Craciun and Balskus, 2012). The respective strains
are the likely candidates for producing indole and TMA in the gut. They
all belong to GIGs, which were reduced after the intervention (Fig. 3e).
Their reductionmay have contributed to the alleviation of themetabolic
deteriorations in both genetic and diet-induced obesity.

9.7. Gut Microbiota Transplantation

To compare the capacity of gut microbiota to induce metabolic
deteriorations before and after the intervention, we transplanted
the gut microbiota from the same PWS volunteer (GD58) before and
after the intervention, into germ-free wild-type C57BL/6J mice. Mice
that received the pre-intervention human fecal microbiota showed
significantly decreased bodyweight during the first two weeks after
transplantation, and then regained the lost weight in the following
two weeks. Mice that received the post-intervention human fecal
microbiota lost no bodyweight. Rather, they maintained weight for
4 days after transplantation and then returned to normal growth
(Fig. 7a). By the end of the trial, pre-intervention microbiota recipients
showed significantly greater fat mass as a percentage of body weight
(Fig. 7b). Histological examination of epididymal fat pads revealed
that the size of adipocytes in pre-intervention microbiota recipients
was smaller than in post-intervention recipients at 2 weeks after the
transplantation, consistent with toxicity of the microbiota, but then
significantly bigger at 4 weeks. Adipocytes from the post-intervention



Fig. 7. Impaired metabolism of gnotobiotic mice transplanted with pre-intervention gut microbiota from a PWS patient. (a) Body weight curves of gnotobiotic mice receiving the fecal
microbiota from GD58 before (Day 0, red) and after (Day 90, green) the intervention. For mice receiving pre-intervention microbiota, 1 to 14 days after transplantation, n = 10, and
15 to 28 days, n = 5; For mice receiving post-intervention microbiota, 1 to 14 days after transplantation, n = 9, and 15 to 28 days, n = 4. (b) Adiposity index (%Fat mass/body weight)
of gnotobiotic mice at 2 and 4 weeks after fecal transplantation. (c) Hematoxylin- and eosin-stained sections of epididymal fat pads (100× magnification). Cell area of adipocyte in
epididymal fat pad is shown as mean ± s.e.m. (d) RT-qPCR analysis of expression of Tnfα, Tlr4 and Il6 in the liver, ileum and colon. All mRNA quantification data were normalized to
the housekeeping gene Glyceraldehyde-3-phosphate dehydrogenase (Gapdh). Gene expression levels are normalized to that of mice 2 weeks after inoculation with pre-intervention
microbiota. The median of the data in each group is shown. Student t-test (two-tailed, in (a), (b) and (c)) or Mann–Whitney U test (two-tailed, in (d),) was used to analyze variation
between gnotobiotic mice receiving pre- and post-intervention microbiota. *P b 0.05, **P b 0.01. In (b) to (d), for mice receiving pre-intervention microbiota, n = 5; for mice receiving
post-intervention microbiota, n = 4.
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microbiota recipients did not change over time (Fig. 7c). The initial
weight loss was associated with appreciably higher inflammatory
responses in pre-intervention transplant recipients, as measured by
RT-qPCR of TNFα, IL6 and TLR4 gene expression in liver, ileum and
colon at 2 weeks after transplantation (Fig. 7d), suggesting that when
transplanted into germfree mice, the pre-intervention gut microbiota
induced higher inflammation and larger adipocytes compared with
the post-intervention gut microbiota from the same volunteer.

10. Discussion

The obesity associated with PWS seems to be genetically deter-
mined, yet the primary drivers are still food craving and low calorie
expenditure, similar to simple obesity. Energy restricted diets have
been recommended for weight control in PWS children (Bonfig et al.,
2009). Most of these diets do not improve satiety of PWS children,
making it difficult for long-term adherence. Energy-restricted diet
with low carbohydrates can lead to production of toxic metabolites by
the gut bacteria, thus may be detrimental to health for long term use
(Russell et al., 2011). In PWS children, a reduced energy diet with well
balanced macronutrients and increased fiber intake yielded a better
weight control than diets with just reduced energy intake (Miller
et al., 2013). However, the impact of this type of diet on gut microbiota
as a potential mechanism for its contribution to obesity improvement
remains elusive in PWS children.

Our study shows that the gut microbiota in both genetic and simple
obesity share similar structural and functional features of dysbiosis,
such as 1) higher production of toxins with known potential to induce
metabolic deteriorations such as TMAO and indoxyl sulfate; 2) higher
abundance of genomes that encode genes for producing these toxic
co-metabolites; 3) higher abundance of pathways for biosynthesis
of bacterial antigens such as endotoxin. Our previous study in mice
showed that diet is the major force shaping the gut microbiota. High
fat diet can override the impact of host genetic mutation to gut micro-
biota (Zhang et al., 2010). The genetic mutation of PWS patients may
have changed their dietary pattern via the hyperphagia. This over-
eating behavior similar to SO volunteers may be the reason why these
two cohorts share similar gut microbiota.

The WTP diet also has balanced macronutrients but much higher
amount of complex carbohydrates as shown by NMR analysis of the
fecal water samples. This excessive amount of carbohydrates until the
end of the gut ensures that the gut bacteria have enough carbohydrates
to ferment for energy extraction so that there is no need to ferment
proteins or fats. Thus, the dietary intervention in this study shifted the
metabolism in the gut microbiota from fermenting proteins and fats to
carbohydrates, corrected the dysbiosis of the gut microbiota, which in
return may have contributed to alleviation of metabolic deteriorations
in genetic as well as simple obesity.

As a “proof of principal study”, gut microbiota transplantation in this
study showed that the pre- and post-intervention gut microbiota from
the same volunteer induced different responses in the hosts, indicating
that the pre-intervention gutmicrobiota of a PWS volunteer indeed had
higher capacity to induce gut inflammation and fat accumulation than
his post-intervention gut microbiota. More trials are needed to confirm
this phenomenon with samples from more donors. It would be also
interesting to see if we can use the PWS microbiota-associated mice as
amodel to understand interactions between host andmicrobiota during
progression of obesity.

Several structural patterns of the gut microbial community have
been suggested to be associated with obesity, such as a high Firmicutes/
Bacteroidetes ratio and low gene richness, but the specific relevant
members of the gut microbiota and their functional interactions that
contribute to obesity development and associated metabolic deteriora-
tions remain elusive (Ley et al., 2005; Le Chatelier et al., 2013). Two or
three enterotypes can be delineated from our 16S rRNA gene sequencing
or metagenomic data. Short-term 10 days intervention did not change
host enterotypes (Wu et al., 2011). Our dietary intervention changed
the enterotypes of some volunteers but the enterotype delineation and
shifts showed no correlation with any of the host phenotype changes.
Our volunteers were not clustered into low gene count and high gene
count groups. Different from previous report (Cotillard et al., 2013), the
diversity and gene richness of their gut microbiota were significantly
reduced after the intervention. The pre-intervention gut microbiota had
higher diversity of toxin-producing and potentially pathogenic bacteria.
The post-intervention gutmicrobiotawere dominated by Bifidobacterium
spp. These changes may have contributed to the overall reduction of
diversity and gene richness after the intervention. It is thus important
to move from general diversity/gene richness to functionally relevant
genomes/genes for understanding the contribution of gut microbiota to
host health phenotypes.

Accumulating evidence shows that important functions of the gut
microbiota may be species or even strain-specific, yet many studies in
metagenomics are conducted at genus or higher taxonomic levels due
to the methodological limitation of assembling individual bacterial
genomes directly from metagenomic data (Zhao, 2013). The recently
developed “canopy-based” algorithm segregates individual genes into
co-abundance gene groups based on the fact that the abundances of
two genes contained on the same genomic DNA molecule will highly
correlate with each other across complex metagenomic samples
(Nielsen et al., 2014). With sufficient sequencing depth, reads in a
CAG can be assembled into a high quality draft genome, which allowed
us to perform genome-specific analysis of microbiota changes induced
by the dietary intervention.

Like species in macro-ecosystems such as the rain forest (Ellison
et al., 2005), bacterial species in the human gut may also survive,
adapt, and decline as interdependent functional groups (guilds)
responding to environmental perturbations (Claesson et al., 2012;
Ellison et al., 2005; Zhou et al., 2013). Co-abundance analysis can help
identify such groups but so far most studies did this analysis at the
genus level (Claesson et al., 2012). In our study, all the 161 prevalent
bacterial genomes were clustered into 18 Gene Interaction Groups
(GIGs). The Commensurate changes of the GIGs with the overall struc-
tural changes of the gut microbiota based on 16S rRNA or CAGs data
suggest that these GIGs may work as functional groups within the
ecosystem. Members of the same GIG can thrive or decline together as
a guild but they can come from very different taxonomic background,
suggesting that we should study functional interactions of gut bacteria
at the individual strain/genome level. Studies on the mechanisms of
how bacteria form a GIG would lead to new insights on ecological in-
teractions among prevalent members of the gut microbiota. More
importantly, group-level abundance of some GIGs showed positive or
negative correlations with host disease/health phenotypes. For exam-
ple, the Bifidobacterium-dominating GIG3 was negatively associated
with 12 disease phenotypes. Their interactionswith the host for pheno-
type development in health and disease warrant further exploration.

In ecosystems such as rainforest, all species are not created equal.
The tall trees are the “foundation species” as they cover the forest to
create a unique environment for all other species to thrive (Prevey
et al., 2010). It is an interesting questionwhether amicrobial ecosystem
in a healthy human gut would also have its “foundation species”. In this
study, we found not only overall structural changes of the gut micro-
biota but also significant changes of specific predominant species such
as the enrichment of the genome of a carbohydrate-fermenting species
B. pseudocatenulatum in response to the intervention. It is amajormem-
ber of GIG3, which significantly increased after intervention. This
bifidobacteria-dominatedGIG showed negative correlationwith several
other GIGs containing potentially detrimental species. The “bifid shunt”
pathway gives bifidobacteria growth advantages over other carbohy-
drates fermentation bacteria by producing higher amount of acetate
and producing more ATP from the same amount of available sugars
(Pokusaeva et al., 2011). Species in GIG3 may work as “foundation
species” to define much of the structure of a healthy gut ecosystem by
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rendering the gut environment unfavorable to pathogenic and detri-
mental bacteria, possibly via increased production of acetate and lactate
(Ellison et al., 2005; Gibson and Wang, 1994). As such foundation
species may become a powerful probiotic candidate for recovering
and maintaining a healthy gut microbiota, this question warrants
further exploration.

The gut microbiota may impact host health by producing toxic
bacterial metabolites such as TMA and indole and delivering them into
the bloodstream. However, the specific members of the gut microbiota
that produce these detrimental compounds remain largely unknown,
particularly in humans. In a previous “proof of principle” study of a
healthy human cohort,we showed that changes in the population levels
of individual bacterial species in the gut can be correlated with changes
of specific metabolites in the urine to reveal “who does what in the
microbiome” (Li et al., 2008). In this study, we correlated changes in
the population levels of individual bacterial genomes in the gut with
changes of specific metabolites in the urine to reveal “which genome
doeswhat function in themicrobiome” (Li et al., 2008). Several bacterial
genomes that correlated with TMAO and indoxyl sulfate levels in the
urine were found to encode genes for production of their precursors
by fermentation of choline or tryptophan in the gut. This opens the pos-
sibility of getting pure isolates of these key bacterial genomes for further
mechanistic studies.

11. Conclusion

In summary, we have demonstrated that morbidly obese children
with either genetically predisposed or simple obesity share similar
dysbiosis of the gut microbiota. A dietary intervention rich in non-
digestible carbohydrates shifted the dysbiotic gut microbiota to a
healthier structure with relatively lower level of bacteria that can
produce potentially toxic metabolites from the fermentation of dietary
fats and proteins, and higher level of bacteria that can produce poten-
tially beneficial products from the fermentation of carbohydrates. Our
study shows that dietary modulation of the gut microbiota contributes
to the alleviation of metabolic deteriorations in both PWS and SO
cohorts, suggesting a common etiological role of dysbiotic microbiota
for disease progression, regardless whether the obesity is genetically
predisposed or simply diet-induced. Thus, dietary modulation of gut
microbiota may become a promising strategy for being integrated into
the management of metabolic diseases.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ebiom.2015.07.007.
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