Percolation in suspensions of hard nanoparticles:
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Abstract

We investigate geometric percolation and scaling relatinisuspensions of nanorods,
covering the entire range of aspect ratios from spheres trerarly slender nee-
dles. A new version of connectedness percolation theorgtisduced and tested
against specialised Monte Carlo simulations. The theocyrately predicts perco-
lation thresholds for aspect ratios of rod length to widthoagas 10. The percola-
tion threshold for rod-like particles of aspect ratios bellD00 deviates significantly
from the inverse aspect ratio scaling prediction, thoughbe valid in the limit of
infinitely slender rods and often used as a rule of thumb fopr&res in composite
materials. Hence, most fibres that are currently used assfilecomposite materials
cannot be regarded as practically infinitely slender forpbeposes of percolation
theory. Comparing percolation thresholds of hard rods awl l,enchmark results
for ideal rods, we find that (i) for large aspect ratios, thdfed by a factor that is
inversely proportional to the connectivity distance besweéhe hard cores, and (ii)
they approach the slender rod limit differently.

arXiv:1505.07660v2 [cond-mat.soft] 7 Jul 2015


http://arxiv.org/abs/1505.07660v2

Connectivity percolation is the transition in which is@dtclusters of solid par-
ticles in a fluid (or of voids in a solid) become connected imsasense to form a
system-spanning network. This network has a significamcefin the mechanical
and transport properties of the material on a macroscopie sé]. If, for exam-
ple, an electrically insulating polymer is mixed with cowtlve fibres such as car-
bon nanotubes, the conductivity of the composite increbgdsn or more orders of
magnitude near the percolation transition of the filler matg2]. Given the tech-
nological relevance to opto-electronics, photovoltaied alectromagnetic radiation
shielding, it is no surprise that a large research efforursently being invested to
understand how the formulation and processing of a congo¥iuence the perco-
lation threshold as well as its physical properties beytedthreshold [3].

The topic of percolation originates from studies on fluid flomporous media,
relevant, for example, to oil extraction. It has since beeeresively studied theo-
retically and computationally, both on and off lattice, thger particularly (but not
exclusively) for ideal, non-interacting bodies. An imgort scientific motivation for
these studies is the critical behavior that the percoldtiansition shares with phase
transitions [[4]. For spherical particles, the impact ofulgjve and attractive inter-
actions on continuum percolation has received consideratbéntion([1], while for
non-spherical particles such as nano-wires, current statating is much sketchier,
despite their industrial interest as fillers in compositdanals.

Fibre-like fillers have been modelled as cylinders, sphdirders and ellipsoids
in theoretical studies [5,/6,/ 7] 8]/ 9,110,/11], in simulatiansere interactions are
ignored [12] 18] 14, 15], and in simulations where the pladiénteract via a hard
excluded volume [16, 17, 18, 19]. However, there is no syatenest of theory
against simulation over a large range of aspect ratios feracting particles. In
particular, the intermediate regime, in which the lengtheiss or a few hundred
times the thickness, has not been addressed yet, even thoosthfibres used in
realistic materials fall into this range. The reasons fis dre that it is very time-
consuming to simulate interacting particles of high lengthwidth aspect ratios, and
that analytical theories that are thought to be accuratkerimit of infinite aspect
ratio are difficult to extend to finite values [20].

In this letter we present a combined theoretical and sinmuagtudy of perco-
lation in suspensions of hard spherocylinders that spansprecedented range of
aspect ratios from spheres to slender rods of aspect ratio LP00. We show that
hard-core interactions (i) change the approach to the ¢tieally expected scaling of
the percolation threshold with the inverse aspect raiicslift the percolation thresh-
old to larger values than that for ideal rods by a factor tbatverges only slowly with
respect to rod length and (iii) cause the core packing fsacit percolation to exhibit
a maximum for small aspect ratios. These results show thatieal (penetrable) par-
ticle model has limited predictive value for actual rod syss and that even for very
long rods, a finite-length correction is necessary to gentjadive predictions. We
show that this correction can be obtained explicitly frommmectedness percolation
theory, using a sensible ansatz for the connectednesd dingelation function.

Before discussing the results, we briefly describe our sittal method and
theory. We have generated configurations of hard sphemu®$ at fixed particle
numberN and volumeV, using cubic simulation cells of length, = V¥/3. The
spherocylinders consist of a cylinder of lendgitland diameteD, capped with hemi-
spheres of the same diameter. Hence, the surface of theosglieder consists of
all points lying a distanc®/2 from a line segment of length The full aspect ratio
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Figure 1. Schematic illustration of two spherocylinderiwagverlapping contact shellk.
is the length of the line segment (white) of each spherodglinwhich is common to the
hard core and to the contact shé@l s the diameter of the hard core (dark), and the
diameter of the contact shell (light).

of a hard spherocylinder, including the capsLj® + 1. The core is strictly im-
penetrable but is surrounded by a notional contact shdllishased to define when
two spherocylinders are considered to be connected. Trecsuwf the contact shell

is a spherocylinder that shares the same line segment asrhiduat has diameter

A instead ofD. Hence, the surface of the contact shell lies at a uniforrtaddce
(A—D)/2 from the surface of the core (see Hig. 1). The full aspetd aitthe con-
tact shell is therefore /A + 1. Two hard spherocylinders are connected if their shells
overlap, and clusters are defined by contiguous pairwiseemions.

We sample the fractiof®(@;Lx) of independent configurations that contain a
percolating cluster as a function of the packing fractipof the cores for a given
cell lengthLy. The packing fraction is defined by = NVcore/V, Whereveore =
mD? (L + 2) is the volume of one spherocylinder. To detect a percolatingter
in a cubic simulation cell with periodic boundary conditspnve require that a clus-
ter must connect periodic images of its constituent padich at least one of the
periodic directions. This “wrapping” criterion is somevimore costly to evaluate
than the simpler “spanning” criterion, which only requitkat a cluster connects two
opposite boundaries of the simulation cell. However, wiaglusters are a more
accurate representation of a percolating cluster in theasaopic limit because such
clusters are infinite when the simulation cell is replicatewugh its boundary con-
ditions. In contrast, spanning clusters merely form anyasfdarge but disconnected
clusters when the cell is replicated. Furthermore, wragppiobabilities follow uni-
versal scaling functions [21]—a feature that we will explmi the simulations of
ideal rods to mitigate the small systematic errors arisnognfthe inevitably finite
size of the simulation cell. At finitdy, P(¢;Lx) is a sigmoidal function ofp, be-
coming a sharp step function bg— . The curves for differenit, have a common
crossing point[[211], typically just belo® = 0.5. To make the simulations tractable,
we identify the hard-rod percolation threshajglas the poinP(@,;Lx) = 0.5 using
a cell length up td_x = 10L (never less thahy = 15D). Fig.[2 shows examples of
percolating clusters fdr/D = 200 andL/D = 10.

Properly equilibrated configurations of impenetrable rodsnot be generated



Figure 2: Simulation snapshots of percolating clusters rblas are colour coded accord-
ing to their orientation. Left panel /D = 200, right panelL/D = 10.

by sequential random insertion [22]. Configurations mustéfore be obtained by
Monte Carlo displacements and rotations of particlesctiejg any trial move that
would generate an overlap of cores and accepting all otfidis.procedure becomes
computationally costly for slender rods, where the simaitatell and number of par-
ticles must be large to allow for an accurate computatioh@fpercolation threshold.
To find overlaps quickly, we use a method in which the sphdimdgrs are notion-
ally divided into small segments so that the overlap dedactieed only be performed
for neighboring segments [23]. This method scales lineaily particle number but
requires a large amount of memory.

We have also calculated the percolation threshold for fpyetrable (ideal)
spherocylinders, consisting of the contact shell with nodh@ore. By definition,
¢ = 0 for ideal rods, but hard and ideal spherocylinders may lepesed using
a packing fraction renormalised to the volume of the conshetl, n = Nvgpe/V,

wherevgpe = T2 %Jr% . n is the hypothetical volume fraction of the shells in the

absence of shell overlaps. Independent equilibrium cordtgans of ideal sphero-
cylinders are easily generated by placing rods with randositipns and orientations
within the simulation cell. For ideal rods we used cells basgup toLy = 6L (never
less than 18) and identified the percolation threshold from the crosgomt of
P(n;Lx) at two cell sized .y, sampling 20 000 configurations at eaglandLy. This
procedure minimises the systematic errors due to finitestadls and reduces statis-
tical uncertainty in the ideal-rod percolation threshdll€.1%.

Our theoretical predictions are based on connectednesslg@ion theory. The
percolation threshold is defined as the filler fractgat which the mean cluster size
diverges and is equal 1o/ ((CT)) [20]. Here,veore is again the particle volume,
Ct the spatial Fourier transform of the connectedness dir@cklation function,
C*(r,u,u’), at zero wave vector. The direct correlation function is acfion of
the vectorr connecting the centres of mass of the particles, and tham-baaly-
axis vectorsu andu’. The angular brackets denote an orientational averagieg ov
these two directors. In the limit of long thin rods the seceiréal approximation
is accurate[20]. Within the second virial approximati@i,(r,u,u’) = f*(r,u,u’),
wheref* = exp(—U ) is the connectedness Mayer function with =U* (r,u,u’)



the connectedness interaction potential scaled to thentideznergy. U™ = o for
non-connected configurations abld = 0 for connecting ones, i.e., configurations
for which the connectivity shells overlap but the hard catesot.

To go beyond the second virial approximation, we invoke a-Bagsons type of
approximation that has proven remarkably accurate in ptiedi the phase behav-
ior of hard rods and mixtures of hard rods and hard spher€s [2& based on an
interpolation between the Percus—Yevick equation of dtatbard spheres and the
second virial equation of state for hard rods. In the contéxionnectedness perco-
lation, it can be written a8+ = f* x (1—3@/4)/(1— @)?, given the known relations
between the direct correlation function and the conneessivariant of it'[20, 25].
This then gives for the percolation threshold an explicppression in terms of the
ratioy=L/D and the dimensionless measure of the connectivity range\ /D — 1,
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To obtain numerical results for the percolation threshald,must select a value
for the connectivity criteriord. The separation — D of the core spherocylinder sur-
faces at the connectivity cut-off (see Hig. 1) should be atteristic of the distance
over which electron tunnelling between nanorods decays T26s distance depends
on the details of both the nanorods and the medium in whichdhe suspended][5]
and a full quantum mechanical treatment is a formidable. tékbwever, if the en-
ergetic barrieAE for tunnelling can be measured or calculated then an estifoat
A — D can be obtained from the tunnelling lendfif/2meAE )Y/2 through a rectan-
gular barrier, wheren is the electron mass. For suspensions of carbon nanotubes
(diameters on the order of a nanometre), the tunnellingtietypically lies at a frac-
tion of a nanometre [5]. We have therefore tak¢d = 1.2 as a representative value
for most of our results, but will consider the effects of aftg this value later.

In Fig.[3 we present our simulation results (circles) for peecolation threshold
of hard rods in terms of the renormalised volume fractipaersus the full aspect
ratioL/A + 1, from spheres (aspect ratioll/D = 0) to very slender rods with core
L/D = 1000. For comparison, we also show (i) our simulation redoit ideal rods
(pluses), (ii) the phenomenological expression for idgahders of the same aspect
ratio, obtained by Mutiso et al. using a fit to simulation datesomewhat shorter rods
[15] (dashed line), and (iii) our theoretical predictioll{d line). Our theory agrees
gquantitatively with the simulations of hard rods for aspatios above 10, and semi-
quantitatively below that. The largest discrepancy beiwsienulation and theory
occurs for aspect ratios approaching zero and amounts to &% %ur choice of
connectivity range. This is to be expected given the levelooluracy of the Percus—
Yevick approximation for the percolation of hard spheteg][2ZThe Mutiso fit for
ideal cylinders[15] captures the qualitative deviatioranf the long-rod limit, but
only agrees with our simulations within statistical erroepa narrow middle range
of aspect ratios.

A number of conclusions can be drawn from Kif. 3. First, we w@ypare the
accurate results of the Monte Carlo simulations with thergeptic scalings for the

where
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Figure 3: Percolation thresholg, as a function of aspect ratio for ideal rods and hard
rods. The approach to the scaling regime, whéré\ + 1)n would be constant in each
case, is highlighted in the inset. Statistical errors initleal-rod results are smaller than
the symbols. Tabulated data for the main plot are availabkupplementary material.



0.2 T T | T |

— L/D =10, theory
-- L/D = 20, theory

=3 0.15- ® L/D =10, simulation |
o % L/D = 20, simulation
<

7}

Q

=

c 01

i)

T

o

o

[}

L 0.05

0 | 1 | 1 | 1 |
0.2 0.3 0.4 0.5

contact shell thicknesa/D - 1

Figure 4. Percolation threshold as a function of the conshetl thickness, i.e., the
surface-to-surface distance criterion for connectivity.

percolation thresholds of long rods. The long-rod scaliregligtions are), ~ A /2L

for ideal rods[[28] and), ~ A%/2L(A — D) for hard rods. Both these results can be
obtained from connectedness percolation theory withirséo®nd virial approxima-
tion in the limitL > D [5]. However, the same prediction for ideal rods was also
made in earlier work [28, 29], using a conjecture based thiren average excluded
volume and the number of contacts between objects at thelpgon threshold. In
both the ideal- and hard-rod cases, the produ¢h + 1)n should approach a con-
stant value with increasing rod length. In the inset of Elgh@wvever, we see that
the asymptotic scalings for the percolation threshold ofloods are only reached
for aspect ratios in excess of several hundred [20]. For fwdsl, a constant value of
(L/A+1)n is reached slowly from below, while for ideal rods the resweclateau

is approached from above after initially overshooting.

Second, hard-core interactions seem to have a larger ingpaitte percolation
threshold for large aspect ratios than for smaller oness dhservation agrees with
previous Monte Carlo simulations of hard spheres [30, 28 3maller the connec-
tivity range, the larger the difference between the petmmiahresholds of hard and
ideal rods. Figl ¥ illustrates this point, showing a sigwificimpact of the connec-
tivity range on the percolation threshold even for reldyiahort rods of aspect ratio
10 and 20, itself quite accurately predicted by our theorythe slender rod limit,
the ratio of percolation thresholds of ideal to hard rodsusdhdoe proportional to
the thickness of the connectivity shell around the corépasD)/A. The results in
Fig.[3 bear out this theoretical prediction but, again, thting behavior is reached
for the very longest of the rods included in our simulations.

In Fig.[5 we focus on very short hard rods3¥X L/D + 1 < 3). The connectiv-
ity criterion was again set th/D = 1.2. For short rods, if we define the percolation
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Figure 5: Percolation threshold for short hard rods withraamtivity criterionA /D = 1.2

from simulation. If plotted as a function of the physicalwaie fraction of the hard cores
(left-hand panel), the percolation threshold is non-moniatin the aspect ratio, while the
notional volume fraction of the connectivity shells (rigiand panel) shows no extremum.

threshold in terms of the physical volume fractigidue to the cores of the particles,
we find the threshold to be a non-monotonic function of theeespatio (left-hand
panel of Fig[5), with a maximum close kgD = 0.7 (full core aspect ratio.T). Our
theory also predicts a maximum at short aspect ratios. Maaiion ofg, in Eq. (1)
with respect toy = L/D givesL/D = (—1+v/7+ 120 + 6a2) for the aspect ratio

at maximum percolation threshold. Using the connectivatygea =A /D —1=0.2
from the simulations, the theoretical expression evatutid /D ~ 1.4, i.e., about

a factor ot 2 larger than the simulation result. One mightdrepted to speculate
that the maximum imy, is related to the fact that slightly aspherical objectshsae
ellipsoids, pack more efficiently than spheres| [31]. Howgelfe¢he data are plotted

in terms of the renormalised volume fractigp, the curve becomes monotonic (see
Fig.[8, right-hand panel). Thus the maximum arises from #fendion of connectiv-

ity. Crucially, however, it igp that corresponds to the experimental volume fraction
of rod-like filler. Hence, real composite materials shouldeéed show a local maxi-
mum in loading a the percolation threshold when short filkmtiples are used. The
renormalised volume fraction that includes the effective, penetrable contact shell
is generally not accurately knovenpriori.

In summary, we have introduced a new version of connectsdregsolation the-
ory which accurately predicts percolation thresholds fomerods over a large range
of aspect ratios. We show that for aspect ratios below 108&@dincolation threshold
deviates significantly from the inverse aspect ratio sggbirediction. Hence, caution
is required when making predictions about systems in tlegnmtédiate regime of as-
pect ratios that is relevant to typical materials applwagi We have also presented



new simulation data for hard and ideal rods, which are thetfirsover aspect ratios
from a sphere to very slender rods, providing a new benchnéelal rods—a conve-
niently simple model—differ both quantitatively and qtatively from more phys-
ical models that include an impenetrable core, and the risoliiitations should

therefore not be ignored in the context of real nanorod systeHard-core inter-
actions change the approach to the theoretically expectdihg of the percolation
threshold with the inverse aspect ratio and shift the patiwsi threshold to larger
values than that for ideal rods by a factor that convergeg sloivly with respect to

rod length. We have shown that the correction to the longseading regime that is
needed at all realistic aspect ratios of hard nanorods caiaéned from connect-
edness percolation theory, demonstrating the strengtiiodpproach.



Supplemental Table1: Percolation threshold of hard spherocylinders with cylin-
drical portion of lengthL, diameterD and contact shell thicknegs= 1.2D, from
Monte Carlo simulations (blue circles in Figure 2 of the ).

core aspect ratio overall aspect ratio percolation thleshaincertainty

L/D L/A+1 Np Np
0.3 125 0349 Q002
0.5 1416667 0347 Q002
0.6 15 0.346 Q002
0.7 1583333 0343 Q002
0.732051 1610042 0343 Q002
0.8 1666667 0342 Q002
1.0 1833333 0337 Q002
2.0 2.666667 0311 Q002
10.0 9.333333 017974 000009
200 17666667 011848 000003
30.0 26 Q08892 000002
50.0 42666667 005930 000007
70.0 59333333 00447 00003
1000 84.333333 003250 000004
2000 167.666667 00171 00004
100Q0 834333333 000359 000006
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Supplemental Table2: Percolation threshold of ideal spherocylinders with cylin
drical portion of lengthL and diameteA from Monte Carlo simulations (red pluses
in Figure 2 of the article). The fractional uncertainty ire thercolation threshold is
dnp/np = 0.001

overall aspect ratio percolation threshold

L/A+1 Np
1 0.3424
11 0.3403
12 0.3373
13 0.3320
14 0.3256
15 0.3188
16 03122
18 0.2969
2 0.2823
2.2 0.2687
2.5 0.2495
3 0.2215
4 01772
S) 0.1464
7 0.1072
9 0.08368
11 006814
16 004564
21 003389
31 002208
41 001619
51 001279
61 001044
81 0007636
101 0005992
151 Q003878
201 0002846
401 0001366
601 Q0008955
1001 00005281
2001 00002590
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