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Nonlinear structure formation in Nonlocal Gravity

Alexandre Barreira,1, 2, ∗ Baojiu Li,1 Wojciech A. Hellwing,1, 3 Carlton M. Baugh,1 and Silvia Pascoli2
1Institute for Computational Cosmology, Department of Physics, Durham University, Durham DH1 3LE, U.K.

2Institute for Particle Physics Phenomenology, Department of Physics, Durham University, Durham DH1 3LE, U.K.
3Interdisciplinary Centre for Mathematical and Computational Modeling (ICM),

University of Warsaw, ul. Pawińskiego 5a, Warsaw, Poland

We study the nonlinear growth of structure in nonlocal gravity models with the aid of N-body simulation and
the spherical collapse and halo models. We focus on a model in which the inverse-squared of the d’Alembertian
operator acts on the Ricci scalar in the action. For fixed cosmological parameters, this model differs from
ΛCDM by having a lower late-time expansion rate and an enhanced and time-dependent gravitational strength
(∼ 6% larger today). Compared to ΛCDM today, in the nonlocal model, massive haloes are slightly more
abundant (by ∼ 10% at M ∼ 1014M�/h) and concentrated (≈ 8% enhancement over a range of mass scales),
but their linear bias remains almost unchanged. We find that the Sheth-Tormen formalism describes the mass
function and halo bias very well, with little need for recalibration of free parameters. The fitting of the halo
concentrations is however essential to ensure the good performance of the halo model on small scales. For
k & 1h/Mpc, the amplitude of the nonlinear matter and velocity divergence power spectra exhibits a modest
enhancement of ∼ 12% to 15%, compared to ΛCDM today. This suggests that this model might only be
distinguishable from ΛCDM by future observational missions. We point out that the absence of a screening
mechanism may lead to tensions with Solar System tests due to local time variations of the gravitational strength,
although this is subject to assumptions about the local time evolution of background averaged quantities.

I. INTRODUCTION

It has been almost a century since Einstein proposed his the-
ory of General Relativity (GR) which is still considered one
of the main pillars of modern physics. The outstanding suc-
cess of GR comes mostly from its ability to pass a number of
stringent tests of gravity performed in the Solar System [1].
When applied on cosmological scales, however, GR seems to
lose some of its appeal as it requires the presence of some un-
known form of dark energy in order to explain the observed
accelerated expansion of the Universe. The simplest candi-
date for dark energy is a cosmological constant, Λ, but the
value of Λ required to explain the observations lacks theoreti-
cal support. This has provided motivation for the proposal of
alternative gravity models which attempt to reproduce cosmic
acceleration without postulating the existence of dark energy.
Furthermore, the fact that the laws of gravity have never been
tested directly on scales larger than the Solar System justi-
fies the exploration of such modifications to GR on cosmo-
logical scales. By understanding better the various types of
observational signatures that different modified gravity mod-
els can leave on cosmological observables, one can improve
the chance of identifying any departures from GR, or alterna-
tively, extend the model’s observational success into a whole
new regime. Currently, the study of modified gravity models
is one of the most active areas of research in both theoretical
and observational cosmology [2–5].

Here, we focus on a class of model that has attracted much
attention recently, which is known as nonlocal gravity [6]. In
these models, the modifications to gravity arise via the addi-
tion of nonlocal terms (i.e. which depend on more than one
point in spacetime) to the Einstein field equations. These
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terms typically involve the inverse of the d’Alembertian op-
erator, �−1, acting on curvature tensors. To ensure causality,
such terms must be defined with the aid of retarded Green
functions (or propagators). However, it is well known that
such retarded operators cannot be derived from standard ac-
tion variational principles (see e.g. Sec. 2 of Ref. [6] for a dis-
cussion). One way around this is to specify the model in terms
of its equations of motion and not in terms of its action. One
may still consider a nonlocal action to derive a set of causal
equations of motion, so long as in the end one replaces, by
hand, all of the resulting operators by their retarded versions.
Both of these approaches, however, imply that nonlocal mod-
els of gravity must be taken as purely phenomenological and
should not be interpreted as fundamental theories. In gen-
eral, one assumes that there is an unknown fundamental (lo-
cal) quantum field theory of gravity, and the nonlocal model
represents only an effective way of capturing the physics of
the fundamental theory in some appropriate limit.

It was in the above spirit that Ref. [7] proposed a popular
nonlocal model of gravity capable of explaining cosmic ac-
celeration. In this model, which has been extensively studied
(see e.g. Refs. [6, 8–17] and references therein), one adds
the term Rf

(
�−1R

)
to the Einstein-Hilbert action, where R

is the Ricci scalar and f is a free function. As described in
Ref. [6], the function f can be constructed in such a way that
it takes on different values on the cosmological background
and inside gravitationally bound systems. In particular, at the
background level, f can be tuned to reproduce ΛCDM-like
expansion histories, but inside regions like the Solar System,
one can assume that f vanishes, thus recovering GR com-
pletely. This model, however, seems to run into tension with
data sensitive to the growth rate of structure on large scales
[16, 17].

More recently, nonlocal terms have also been used to con-
struct theories of massive gravity. An example of this is ob-
tained by adding directly to the Einstein field equations a term
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likem2
(
gµν�−1R

)T
[18–21], wherem is a mass scale and T

means the extraction of the transverse part (see also Refs. [22–
25] for models in which �−1 acts on the Einstein and Ricci
tensors). This model has no ΛCDM limit for the background
evolution, but it can still match the current background expan-
sion and growth rate of structure data with a similar goodness-
of-fit [21]. Furthermore, Ref. [20] has investigated spheri-
cally symmetric static solutions in this model, concluding that
it does not suffer from instabilities that usually plague the-
ories of massive gravity. A similar model was proposed by
Ref. [26], which is characterized by a term ∝ m2R�−2R
in the action (see Eq. (1)). Reference [27] showed that this
model can reproduce current type Ia Supernovae (SNIa) data,
although it also has no ΛCDM limit for the background ex-
pansion. The time evolution of linear matter density fluctua-
tions in this model also differs from that in ΛCDM, but the
work of Ref. [27] suggests that the differences between these
two models are small enough to be only potentially distin-
guishable by future observational missions.

Here, we extend the previous work done for the model of
Refs. [26, 27] by examining its predictions in the nonlinear
regime of structure formation. We achieve this by running a
set of N-body simulations, which we use to analyse the model
predictions for the nonlinear matter and velocity divergence
power spectra, and also halo properties such as their abun-
dance, bias and concentration. To the best of our knowledge
this is the first time N-body simulations have been used to
study the nonlinear regime of structure formation in nonlocal
gravity cosmologies. N-body simulations are however com-
putationally expensive to run. To overcome this, it is com-
mon to try to devise semi-analytical formulae that, motivated
by simple physical assumptions, aim to reproduce the results
from the simulations with the calibration of free parameters
kept to a minimum. A popular example is given by the Sheth-
Tormen halo mass function [28–30] and its use in the halo
model approach for the nonlinear matter power spectrum [31].
The performance of the halo model is well understood within
ΛCDM, but less so in alternative gravity scenarios. In par-
ticular, the free parameters in these formulae might need sub-
stantial recalibration in models that differ significantly from
ΛCDM (see e.g. Ref. [32]). One of our goals is to assess the
performance of these analytical formulae in nonlocal gravity
models.

This paper is organized as follows. In Sec. II we present the
model and layout the equations relevant for the background
evolution. We also derive the equations of motion for spher-
ically symmetric configurations under the quasi-static and
weak-field approximations. In Sec. III we present the formu-
lae relevant for the calculation of the nonlinear matter power
spectrum in the halo model formalism. In particular, we de-
scribe the Sheth-Tormen expressions for the halo mass func-
tion and bias, and define the Navarro-Frenk-White (NFW)
halo concentration parameter. We also present the equations
relevant for the linear evolution and spherical collapse of mat-
ter overdensities. Our results are presented in Sec. IV, where
we discuss the results from the N-body simulations and com-
pare them with the predictions from the analytical formulae.
We also comment on the role that Solar System tests of gravity

could play in setting the observational viability of this model.
We summarize our findings in Sec. V.

In this paper, we work with the metric signature
(+,−,−,−) and use units in which the speed of light c = 1.
Latin indices run over 1, 2, 3 and Greek indices run over
0, 1, 2, 3. We use κ = 8πG = 1/M2

Pl interchangeably, where
MPl is the reduced Planck mass and G is Newton’s constant.

II. THE R�−2R NONLOCAL GRAVITY MODEL

A. Action and field equations

We consider the nonlocal gravity model of Refs. [26, 27],
whose action is given by

A =
1

2κ

∫
dx4√−g

[
R− m2

6
R�−2R− Lm

]
, (1)

where g is the determinant of the metric gµν , Lm is the La-
grangian density of the matter fluid, R is the Ricci scalar and
� = ∇µ∇µ is the d’Alembertian operator. To facilitate the
derivation of the field equations, and to solve them afterwards,
it is convenient to introduce two auxiliary scalar fields defined
as

U = −�−1R, (2)
S = −�−1U = �−2R. (3)

The solutions to Eqs. (2) and (3) can be obtained by evaluating
the integrals

U ≡ −�−1R (4)

= Uhom(x)−
∫

d4y
√
−g(y)G(x, y)R(y),

S ≡ −�−1U (5)

= Shom(x)−
∫

d4y
√
−g(y)G(x, y)U(y),

where Uhom and Shom are any solutions of the homogeneous
equations �U = 0 and �S = 0, respectively, and G(x, y)
is any Green function of �. The choice of the homogeneous
solutions and of the Green function specify the meaning of the
operator�−1. To ensure causality, one should use the retarded
version of the Green function, i.e., the solutions of U (or S)
should only be affected by the values ofR (or U ) that lie in its
past light-cone. The homogeneous solutions can be set to any
value, which is typically zero, without any loss of generality.
In principle, the model predictions can be obtained by solving
Eqs. (4) and (5). However, it is convenient to use the fields U
and S to cast the nonlocal action of Eq. (1) in the form of a
local scalar-tensor theory [10, 33, 34] as

A=
1

2κ

∫
dx4√−g

[
R− m2

6
RS − ξ1 (�U +R)

−ξ2 (�S + U)− Lm] , (6)



3

where ξ1 and ξ2 are Lagrange multipliers. The field equations
can then be written as

Gµν −
m2

6
Kµν = κTµν , (7)

�U = −R, (8)
�S = −U, (9)

with

Kµν ≡ 2SGµν − 2∇µ∇νS − 2∇(µS∇ν)U

+

(
2�S +∇αS∇αU −

U2

2

)
gµν , (10)

and where Tµν = (2/
√
−g) δ (Lm

√
−g) /δgµν is the energy-

momentum tensor of the matter fluid. The use of the scalar
fields U and S therefore allows one to obtain the solutions by
solving a set of coupled differential equations, instead of the
more intricate integral equations associated with the inversion
of a differential operator. These two formulations are, how-
ever, not equivalent as explained with detail in many recent
papers (see e.g. Refs.[9, 18, 19, 23, 34–36]): Eqs. (7), (8) and
(9) admit solutions that are not solutions of the original nonlo-
cal problem. For instance, if U∗ is a solution of Eq. (8), then
U∗+Uhom is also a solution for any Uhom, since�Uhom = 0
(the same applies for the field S and Eq. (9)). If one wishes
the differential equations (7), (8) and (9) to describe the non-
local model, then one must solve them with the one and only
choice of initial conditions that is compatible with the choice
of homogeneous solutions in Eqs. (4) and (5). All other ini-
tial conditions lead to spurious solutions and should not be
considered.

B. Background equations

Throughout, we always work with the perturbed
Friedmann-Roberston-Walker (FRW) line element in the
Newtonian gauge,

ds2 = (1 + 2Ψ) dt2 − a(t)2 (1− 2Φ) γijdx
idxj , (11)

where a = 1/(1 + z) is the cosmic scale factor (z is the red-
shift) and the gravitational potentials Φ, Ψ are assumed to be
functions of time and space. γij is the spatial sector of the
metric, which is taken here to be flat.

At the level of the cosmological background (Φ = Ψ = 0),
the two Friedmann equations can be written as

3H2 = κρ̄m + κρ̄de (12)
−2Ḣ − 3H2 = κp̄m + κp̄de, (13)

where we have encapsulated the effects of the nonlocal term
into an effective background "dark energy" density, ρ̄de, and
pressure p̄de, which are given, respectively, by

κρ̄de =
m2

6

[
6S̄H2 + 6H ˙̄S − ˙̄U ˙̄S − Ū2

2

]
, (14)

κp̄de = −m
2

6

[
2S̄
(

2Ḣ + 3H2
)

+ ¨̄S (15)

+4H ˙̄S + ˙̄U ˙̄S − Ū2

2

]
.

Additionally, Eqs. (8) and (9) yield

¨̄U + 3H ˙̄U = 6
(
Ḣ + 2H2

)
, (16)

¨̄S + 3H ˙̄S = −Ū . (17)
(18)

In the above equations, a dot denotes a partial derivative w.r.t.
physical time, t, an overbar indicates that we are considering
only the background average and H = ȧ/a is the Hubble
expansion rate.

The background evolution in the R�−2R model has to be
obtained numerically. The differential equations are evolved
starting from deep into the radiation dominated era (z = 106)
with initial conditions for the auxiliary fields Ū = ˙̄U = S̄ =
˙̄S = 0. Note that, in the radiation era, the Ricci scalar van-

ishes (R̄ = 6Ḣ + 12H2 = 0). Hence, from Eqs. (4) and (5)
one sees that these initial conditions are indeed compatible
with the choice Uhom = Shom = 0. The value of the pa-
rameter m is determined by a trial-and-error scheme to yield
the value of ρ̄de0 that makes the Universe spatially flat, i.e.,
ρ̄r0 + ρ̄m0 + ρ̄de0 = ρ̄c0 ≡ 3H2

0/κ, where the subscripts r,
m refer to radiation and matter, respectively, the subscript 0

denotes present-day values, and H0 = 100hkm/s/Mpc is the
present-day Hubble rate.

C. Spherically symmetric nonlinear equations

By assuming that the potentials Φ and Ψ are spherically
symmetric, one can write the (0, 0) and (r, r) components of
Eq. (7), and Eqs. (8) and (9), respectively, as

2

r2

(
r2Φ,r

)
,r −

m2

6

[
6SH2 +

4S

r2

(
r2Φ,r

)
,r −

2

r2

(
r2S,r

)
,r +2S,r Φ,r −S,r U,r −

U2

2

]
= κρ̄mδa

2, (19)
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2

r
(Φ,r −Ψ,r )− m2

6

[
4SḢa2 + 6SH2a2 +

4S

r
(Φ,r −Ψ,r ) + 4S,r Φ,r −2S,r Ψ,r −4

S,r
r

+ 2S,r U,r −
U2

2

]
= 0, (20)

1

r2

(
r2U,r

)
,r +U,r (Ψ,r −Φ,r ) = 2

1

r2

(
r2Ψ,r

)
,r −4

1

r2

(
r2Φ,r

)
,r , (21)

1

r2

(
r2S,r

)
,r +S,r (Ψ,r −Φ,r ) = U, (22)

where ,r denotes a partial derivative w.r.t. the comoving radial
coordinate r. When writing Eqs. (19)-(22), we have already
employed the following simplifying assumptions:

1. We have assumed the so-called quasi-static limit, un-
der which one neglects the time derivatives of perturbed
quantities, e.g., Ṡ = ˙̄S + ˙δS ≈ ˙̄S, where δS is the per-
turbed part of the auxiliary field;

2. We have also employed the so-called weak-field limit,
which accounts for neglecting terms that involve Φ and
Ψ, and their first spatial derivatives, over those that
involve their second spatial derivatives. For example,
(1− 2Φ) Φ,rr ≈ Φ,rr and Φ,r Φ,r� Φ,rr.

The above equations still contain terms with Ψ,r and Φ,r, be-
cause these terms contain the fields U and S, and up to now,
we have not discussed the validity of applying these approxi-
mations to the auxiliary fields. However:

1. Equation (21) tells us that the U field is of the same
order as the scalar potentials, U ∼ Φ,Ψ. Consequently,
the above approximations also hold for U ;

2. Equation (22) tells us that S,rr ∼ Φ,Ψ, which means
we can also neglect all terms containing S, S,r and S,rr.

Under these considerations, the above equations simplify
drastically. In particular, the only equation that remains rel-
evant for the study of the spherical collapse of matter over-
densities is Eq. (19), which can be written as:

1

r2

(
r2Φ,r

)
,r = 4πGeff ρ̄mδa

2, (23)

where

Geff = G

[
1− m2S̄

3

]−1

. (24)

Equation (23) is the same as in standard gravity, but with New-
ton’s constant replaced by the time-dependent gravitational
strength, Geff . This time dependence follows directly from
the term 2SGµν in the field equations, Eq. (7), which in turn
follows from the variation of the term ∝ SR in the action
Eq. (6). The fact that Geff depends only on time tells us that
gravity is modified with equal strength everywhere, regard-
less of whether or not one is close to massive bodies or in
high-density regions. This may bring into question the ability
of this model to pass the stringent Solar System tests of grav-
ity [1, 37, 38]. We come back to this discussion in Sec. IV C.
We note also that from Eq. (20), it follows that Φ = Ψ in the
quasi-static and weak-field limits.

FIG. 1. CMB temperature power spectrum of the ΛCDM (black)
andR�−2R (blue) models for the cosmological parameters of Table
I. The data points with errorbars show the power spectrum measured
by the Planck satellite [39, 40].

D. Model parameters

The results presented in this paper are for the cosmological
parameter values listed in Table I. These are the best-fitting
ΛCDM parameters to a dataset that comprises the CMB data
from the Planck satellite (both temperature and lensing) [39–
41], and the BAO data from the 6df [42], SDDS DR7 [43] and
BOSS DR9 [44] galaxy redshift surveys. The parameters were
found by following the steps outlined in Ref. [45], although in
the latter, neutrino masses are also varied in the constraints.
In this paper, however, we treat neutrinos as massless for sim-
plicity.

The CMB temperature power spectra of the ΛCDM and
R�−2R models for the parameters listed in Table I are shown
in Fig. 1. The R�−2R model predictions were obtained with
a suitably modified version of the CAMB code [46]. The
derivation of the perturbed equations that enter the calcula-
tions in CAMB follows the steps of Ref. [47], to which we
refer the interested reader for details. The results in Fig. 1
shows that theR�−2R model is able to fit the CMB data with
a goodness-of-fit that is similar to that of ΛCDM. In fact,
the R�−2R model is in slightly better agreement with the
data at low-l, which is mostly determined by the Integrated
Sachs-Wolfe (ISW) effect. However, the larger errorbars on
these scales due to cosmic variance do not allow stringent con-
straints to be derived.
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TABLE I. Cosmological parameter values adopted in this paper. Ωr0,
Ωb0, Ωc0, Ωde0, h, ns, and τ are, respectively, the present day frac-
tional energy density of radiation (r), baryons (b), cold dark mat-
ter (c) and dark energy (de), the dimensionless present day Hubble
expansion rate, the primordial scalar spectral index and the optical
depth to reionization. The scalar amplitude at recombination As
refers to a pivot scale k = 0.05Mpc−1. These are the ΛCDM pa-
rameters that best-fit the CMB temperature and lensing data from
the Planck satellite [39–41], and the BAO data from the 6df [42],
SDDS DR7 [43] and BOSS DR9 [44] galaxy redshift surveys. The
parameters were determined by following the strategy outlined in
Ref. [45], although in the latter neutrino masses are also varied in
the constraints. For the purpose of this paper we can assume neu-
trinos to be effectively massless. The R�−2R model parameter m
is derived by the condition to make the Universe spatially flat, i.e. ,
1 = Ωr0 + Ωb0 + Ωc0 + Ωde0(m).

Parameter Planck (temperature+lensing) + BAO

Ωr0h
2 4.28× 10−5

Ωb0h
2 0.02219

Ωc0h
2 0.1177

h 0.6875
ns 0.968
τ 0.0965
log10

[
1010As

]
3.097

Ωde0 0.704
m 0.288

In Sec. IV we shall compare the results of the R�−2R
model with those of standard ΛCDM. In this paper, we are
mostly interested in the phenomenology driven by the mod-
ifications to gravity in the R�−2R model. This is why we
shall use the same cosmological parameters for both models.
A formal exploration of the constraints on the parameter space
in theR�−2R model is beyond the scope of the present paper
(see Ref. [48]).

III. HALO MODEL OF THE NONLINEAR MATTER
POWER SPECTRUM

In this section, we describe the halo model of the nonlinear
matter power spectrum, as well as all of its ingredients. In
particular, we define the halo mass function, linear halo bias
and halo density profiles. We also present the equations that
govern the linear growth and spherical collapse of structures.

A. Halo model

In the halo model approach, one assumes that all matter in
the Universe lies within gravitationally bound structures (see
Ref. [31] for a review). As a result, the two-point correlation
function of the matter field can be decomposed into the con-
tributions from the correlations between elements that lie in

the same halo (the 1-halo term) and in different haloes (the
2-halo term). The power spectrum can also be decomposed in
a similar way, and one can write

Pk = P 1h
k + P 2h

k , (25)

where

P 1h
k =

∫
dM

M

ρ̄2
m0

dn(M)

dlnM
|u(k,M)|2,

P 2h
k = I(k)2Pk,lin, (26)

are, respectively, the 1- and 2-halo terms, with

I(k) =

∫
dM

1

ρ̄m0

dn(M)

dlnM
blin(M)|u(k,M)|. (27)

In Eqs.(25)-(27), ρ̄m0 is the present-day background (to-
tal) matter density; Pk,lin is the matter power spectrum ob-
tained using linear theory; k is the comoving wavenumber;
dn(M)/dlnM is the mass function, which describes the co-
moving number density of haloes per differential logarithmic
interval of mass; u(k,M) is the Fourier transform of the den-
sity profile of the haloes truncated at their size and normalized
such that u(k → 0,M) → 1; blin(M) is the linear halo bias
parameter. We model all these quantities in the remainder of
this section, in which we follow the notation of Refs. [32, 49].

B. Halo mass function

We define the halo mass function as

dn(M)

dlnM
dlnM =

ρ̄m0

M
f(S)dS, (28)

where S is the variance of the linear density field filtered on a
comoving length scale R,

S(R) ≡ σ2(R) =
1

2π2

∫
k2Pk,linW̃

2 (k,R) dk. (29)

Here, W̃ (k,R) = 3 (sin(kR)− kRcos(kR)) / (kR)
3 is the

Fourier transform of the filter, which we take as a top-hat in
real space. The total mass enclosed by the filter is given by

M = 4πρ̄m0R
3/3. (30)

In Eq. (28), f(S)dS describes the fraction of the total mass
that resides in haloes whose variances lie within [S, S + dS]
(or equivalently, whose masses lie within [M − dM,M ]) 1.
Here, we use the Sheth-Tormen expression [28–30],

1 Note that the quantities S, R and M can be related to one another via
Eqs. (29) and (30). In this paper, we use these three quantities interchange-
ably when referring to the scale of the haloes.
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f(S) = A

√
q

2π

δc
S3/2

[
1 +

(
qδ2
c

S

)−p]
exp

[
−q δ

2
c

2S

]
,

(31)

where A is a normalization constant fixed by the condition∫
f(S)dS = 1. δc ≡ δc(z) is the critical initial overdensity

for a spherical top-hat to collapse at redshift z, extrapolated to
z = 0 with the ΛCDM linear growth factor. This extrapola-
tion is done purely to ensure that the resulting values of δc can
be more readily compared to values in ΛCDM. Note that for
consistency, Pk,lin in Eq. (29) is also the initial power spec-
trum of the specific model, evolved to z = 0 with the ΛCDM
linear growth factor.

The Press-Schechter mass function [50] is obtained by tak-
ing (q, p) = (1, 0) in Eq. (31). This choice is motivated by
the spherical collapse model. However, Refs. [28–30] showed
that the choice of parameters (q, p) = (0.75, 0.3) (motivated
by the ellipsoidal, instead of spherical collapse) leads to a bet-
ter fit to the mass function measured from N-body simulations
of ΛCDM models (see also Ref. [51]). For alternative models,
such as those with modified gravity, it is not necessarily true
that the standard ST parameters ((q, p) = (0.75, 0.3)) also
provide a good description of the simulation results. For ex-
ample, in Ref. [32], we demonstrated that the ST mass func-
tion can only provide a good fit to the simulation results of
Galileon gravity models [47, 52–54] after a recalibration of
the (q, p) parameters. In Sec. IV D, we shall investigate the
need for a similar recalibration in the R�−2R model.

C. Linear halo bias

The linear halo bias parameter b(M) [55] relates the clus-
tering amplitude of haloes of massM to that of the total matter
field on large length scales (k � 1h/Mpc),

δhalo(M) = b(M)δmatter, (32)

where δhalo and δmatter are the density contrast of the dis-
tribution of haloes of mass M and of the total matter field,
respectively. On smaller length scales, where the matter over-
densities become larger δmatter & 1, Eq. (32) requires higher
order corrections (see e.g. [56]).

Following the same derivation steps as in Ref. [49], it is
straightforward to show that the ST linear halo bias parameter
can be written as

b(M) = 1 + g(z)

(
qδ2
c/S − 1

δc
+

2p/δc
1 + (qδ2

c/S)
p

)
, (33)

with g(z) = DΛCDM(z = 0)/DModel(z), where D(z)
is the linear growth factor of a specific model defined as
δmatter(z) = D(z)δmatter(zi)/D(zi).

D. Halo density profiles

We adopt the NFW formula [57] to describe the radial den-
sity profile of dark matter haloes

ρNFW(r) =
ρs

r/rs [1 + r/rs]
2 , (34)

where ρs and rs are often called the characteristic density and
the scale radius of the halo. The mass of the NFW halo, M∆,
is obtained by integrating Eq. (34) up to some radius R∆ (the
meaning of the subscript ∆ will become clear later)

M∆ =

∫ R∆

0

dr4πr2ρNFW(r) (35)

= 4πρs
R3

∆

c3∆

[
ln (1 + c∆)− c∆

1 + c∆

]
,

where c∆ = R∆/rs is the concentration parameter.
In our simulations, we define the halo mass as

M∆ =
4π

3
∆ρ̄c0R

3
∆, (36)

i.e., M∆ is the mass that lies inside a comoving radius R∆,
within which the mean density is ∆ times the critical density
of the Universe at the present day, ρ̄c0. In this paper, we take
∆ = 200. By combining the two mass definitions of Eqs. (35)
and (36), one gets ρs as a function of c∆:

ρs =
1

3
∆ρ̄c0c

3
∆

[
ln (1 + c∆)− c∆

1 + c∆

]−1

. (37)

The NFW profile then becomes fully specified by the values
of rs, which are determined by direct fitting to the density
profiles of the haloes from the simulations. Equivalently, and
as is common practice in the literature, one can specify the
concentration-mass relation c∆(M∆), instead of rs(M∆). In
the context of ΛCDM cosmologies, the (mean) concentration-
mass relation is well fitted by a power law function over a
certain mass range [58–61]. The same is true, for instance,
for Galileon gravity models [32], although with very differ-
ent fitting parameters. A proper assessment of the perfor-
mance of the halo model prescription therefore requires us to
fit the concentration-mass relation of the R�−2R simulations
as well. This is done in Sec. IV F. Given the relation c∆(M∆),
then the NFW density profile becomes completely specified
by the halo mass M∆.

Finally, since it is the Fourier transform of the profiles,
u(k,M), and not the profiles themselves, that enter Eqs. (26)
and (27), we simply mention that it is possible to show that
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uNFW(k,M) =

∫ R∆

0

dr4πr2 sinkr

kr

ρNFW(r)

M∆

= 4πρsr
3
s

{
sin (krs)

M
[Si ([1 + c∆] krs)− Si (krs)]

+
cos (krs)

M
[Ci ([1 + c∆] krs)− Ci (krs)]

− sin (c∆krs)

M (1 + c∆) krs

}
, (38)

where Si(x) =
∫ x

0
dtsin(t)/t and Ci(x) = −

∫∞
x

dtcos(t)/t.
Note that u(k → 0,M)→ 1, as required by its normalization.

E. Linear growth factor and spherical collapse dynamics

In order to use the ST formulae for the mass function and
linear halo bias one still needs to specify and solve the equa-
tions that determine the threshold density δc and the evolution
of the linear overdensities. For scales well within the horizon,
the linear (small) density contrast δlin is governed by

δ̈lin + 2Hδ̇lin − 4πGeff(a)ρ̄mδlin = 0, (39)

or equivalently, by changing the time variable to N = lna, by

D′′ +

(
E′

E
+ 2

)
D′ − 3

2

Geff(a)

G

Ωm0e
−3N

E2
= 0, (40)

where we have used that δlin(a) = D(a)δlin(ai)/D(ai) and a
prime denotes a derivative w.r.t. N . The initial conditions are
set up at zi = 300 using the known matter dominated solution
D(ai) = D′(ai) = ai. The R�−2R model changes the way
structure grows on large scales compared to ΛCDM via its
modifications to E(a) ≡ H(a)/H0 and Geff/G.

We have defined δc(z) as the linearly extrapolated value
(using the ΛCDM linear growth factor) of the initial overden-
sity of a spherical region for it to collapse at a given redshift,
z. To determine δc, we consider the evolution equation of
the physical radius ζ = a(t)r of the spherical halo at time t,
which satisfies the Euler equation

ζ̈

ζ
−
(
Ḣ +H2

)
= −Φ,ζ

ζ
= −Geff(a)

G

H2
0 Ωm0δa

−3

2
,(41)

where the last equality follows from integrating Eq. (23) over∫
r2dr. Changing the time variable to N and defining y(t) =

ζ(t)/ (aR), Eq. (41) becomes

y′′ +

(
E′

E
+ 2

)
y′

+
Geff(a)

G

Ωm0e
−3N

2E2

(
y−3 − 1

)
y = 0, (42)

TABLE II. Summary of the three models we simulate in this pa-
per. All models share the cosmological parameters of Table I.
The QCDM model has the same expansion history as the R�−2R
model, but with GR as the theory of gravity (cf. Sec. IV A).

Model H(a) Geff/G

"Full" R�−2R H(a)R�−2R Eq. (24)
QCDM H(a)R�−2R 1
ΛCDM H(a)ΛCDM 1

where we have used δ = y−3 − 1, which follows from
mass conservation 2. The initial conditions are set up as
y(ai) = 1−δlin,i/3 and y′(ai) = δlin,i/3 (here, δlin,i is the lin-
ear density contrast at the initial time). The value of δc is then
determined by finding the value of the initial density δlin,i that
leads to collapse (y = 0, δ → ∞) at redshift z, evolving this
afterwards until today using the ΛCDM linear growth factor.

As we have noted above, in the R�−2R model, the modi-
fications to gravity are time dependent only. In other words,
the value of Geff is the same on large and on small scales.
This is different, for instance, from the case of Galileon grav-
ity. In the latter, the nonlinearities of the Vainshtein screen-
ing mechanism suppress the effective gravitational strength
felt by a test particle that lies within a certain radius (known
as Vainshtein radius) from a matter source. In Eq. (42), this
would be simply taken into account by replacing Geff(a) with
Geff(a, δ = y−3 − 1) [49]. The picture becomes more com-
plicated in the case of modified gravity models which em-
ploy chameleon-type screening mechanisms [62, 63]. In these
models, Geff also depends on the size (or mass) of the halo
and on the gravitational potentials in the environment where
the halo forms. This requires a generalization of the spherical
collapse formalism for these models, which has been devel-
oped by Ref. [64].

IV. RESULTS

A. N-body simulations summary

Our simulations were performed with a modified version of
the publicly available RAMSES N-body code [65]. RAMSES
is an Adaptive Mesh Refinement (AMR) code, which solves
the Poisson equation on a grid that refines itself when the ef-
fective number of particles within a given grid cell exceeds a
user-specified threshold, Nth. Our modifications to the code
consist of (i) changing the routines that compute the back-
ground expansion rate to interpolate the R�−2R model ex-
pansion rate from a pre-computed table generated elsewhere;
(ii) re-scaling the total force felt by the particles in the simu-

2 Explicitly, one has ρ̄ma3R3 = (1 + δ) ρ̄mζ3 ⇒ δ = (aR/ζ)3 − 1 =
y−3 − 1.
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lation by Geff(a)/G, whose values are also interpolated from
a table generated beforehand.

In the following sections we show the N-body simulation
results obtained for three models. We simulate the "full"
R�−2R model of action Eq. (1), whose expansion history
and Geff/G are given by Eqs. (12) and (24), respectively.
We also simulate a standard ΛCDM model and a model with
the same expansion history as the R�−2R model, but with
Geff/G = 1. We call the latter model QCDM, and compar-
ing its results to ΛCDM allows us to pinpoint the impact of the
modified H(a) alone on the growth of structure. The specific
impact of the modified Geff can then be measured by com-
paring the results from the "full" R�−2R model simulations
with those from QCDM. Table II summarizes the models we
consider in this paper.

We simulate all models on a cubic box of size L =
200 Mpc/h with Np = 5123 dark matter particles. We take
Nth = 8 as the grid refinement criterion. The initial con-
ditions are set up at z = 49, using the ΛCDM linear mat-
ter power spectrum with the parameters of Table I. For each
model, we simulate five realizations of the initial conditions
(generated using different random seeds), which we use to
construct errorbars for the simulation results by determining
the variance across the realizations.

Finally, we simply note that the modifications to RAMSES
needed to simulate the R�−2R model are trivial compared to
those that are necessary to simulate models such as f(R) [66–
71], Symmetron [72, 73] or Galileons [74–79]. In these, be-
cause of the screening mechanisms (which introduce density
and scale dependencies of the total force), additional solvers
are needed for the (nonlinear) equations of the extra scalar
degrees of freedom. In the ECOSMOG code [66] (also based
on RAMSES), these equations are solved via Gauss-Seidel re-
laxations on the AMR grid, which makes the simulations sig-
nificantly more time consuming. We note also that recently,
Ref. [80] has proposed a new and faster scheme to simulate
screened modified gravity in the mildly non-linear regime.
This scheme uses the linear theory result, but combines it with
a screening factor computed analytically assuming spherical
symmetry, which helps speed up the calculations without sac-
rificing the accuracy on mildly nonlinear scales too much.

B. Linear growth and δc curves

Before discussing the results from the simulations, it is in-
structive to look at the model predictions for the linear growth
rate of structure and for the time dependence of the critical
density δc(z).

From top to bottom, Fig. 2 shows the time evolution of the
fractional difference of the expansion rate relative to ΛCDM,
H/HΛCDM − 1, the effective gravitational strength Geff/G
and the fractional difference of the squared linear density con-
trast relative to ΛCDM, (δ/δΛCDM)

2− 1. The expansion rate
in the R�−2R model is lower than in ΛCDM for a & 0.1.
This reduces the amount of Hubble friction and therefore
boosts the linear growth rate. The gravitational strength in the
R�−2R model starts growing after a & 0.2, being approx-

FIG. 2. The upper panel shows the evolution of the expansion rate,
plotted as the fractional difference w.r.t. the ΛCDM (black) result,
H(a)/HΛCDM − 1 as a function of the expansion factor, a. H(a) is
the same for theR�−2R (blue) and QCDM (red) models. The mid-
dle panel shows the evolution of the effective gravitational strength,
Geff/G. This is unity in the ΛCDM and QCDM models at all times.
The lower panel shows the evolution of the squared linear density
contrast, δ2, plotted as the fractional difference w.r.t. the ΛCDM
prediction.

TABLE III. Values of the critical initial overdensity for the collapse
of a spherical top-hat to occur at a = 0.6, a = 0.8, a = 1.0, ex-
trapolated to a = 1.0 with the ΛCDM linear growth factor. This
extrapolation is done to allow the resulting values of δc to be more
easily compared to values in ΛCDM.

Model a = 0.6 a = 0.8 a = 1.0
δc δc δc

R�−2R 2.316 1.859 1.622
QCDM 2.320 1.866 1.632
ΛCDM 2.362 1.913 1.678

imately 6% larger than in GR at the present day. This also
boosts the linear growth of structure, but has a smaller im-
pact compared to the effect of the lower expansion rate. This
is seen by noting that the differences between QCDM and
ΛCDM in the bottom panel are larger than the differences be-
tween QCDM and the R�−2R model.

Figure 3 shows the time dependence of δc. In the top panel,
all models exhibit the standard result that δc decreases with
time, i.e., the initial overdensity of the spherical top-hat should
be smaller, if the collapse is to occur at later times. Compared
to ΛCDM, at late times (a & 0.3), the QCDM and R�−2R
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FIG. 3. The upper panel shows the time evolution of the critical
initial density for a spherical top-hat halo to collapse at scale factor
a (linearly extrapolated to the present-day using the ΛCDM linear
growth factor), for the ΛCDM (black), QCDM (red) and R�−2R
(blue) models. The lower panel shows the fractional difference w.r.t.
ΛCDM.

models predict lower values for δc. This is as expected since
structure formation is boosted at late times in these models,
and as a result, this needs to be compensated by smaller val-
ues of the initial overdensities for the collapse to occur at the
same epoch as in ΛCDM. Just like in the case of the lin-
ear growth rate, the differences w.r.t. the ΛCDM results are
mainly affected by the lower expansion rate, and not by the
larger values of Geff/G. At earlier times (a . 0.3), all mod-
els have essentially the same expansion rate and gravitational
strength, and as a result, the values of δc are roughly the same.
Table III shows the values of δc at a = 0.60, a = 0.80 and
a = 1.00, for the three models.

C. Interpretation of the constraints from Solar System tests of
gravity

The absence of a screening mechanism in the R�−2R
model may raise concerns about the ability of the model to
satisfy Solar System constraints [1]. For instance, for the pa-
rameters of Table I, the R�−2R model predicts that the rate
of change of the gravitational strength today, Ġeff/G, is

Ġeff

G
= H0

d

dN

(
Geff

G

)
≈ 92× 10−13 yrs−1, (43)

which is at odds with the observational contraint Ġeff/G =
(4± 9) × 10−13 yr−1, obtained from Lunar Laser Ranging

experiments [81]. Hence, it seems that this type of local con-
straints can play a crucial role in determining the observa-
tional viability of the R�−2R model, potentially ruling it out
(see e.g. Refs. [37, 38] for a similar conclusion, but in the
context of other models).

It is interesting to contrast this result with that of the nonlo-
cal model of Ref. [7], which we call here the f(X) model (for
brevity), where f(X) is a free function that appears in the ac-
tion and X = �−1R. The equations of motion of this model
can be schematically written as

Gµν [1 + χ(X)] + ∆Gµν = Tµν , (44)

where ∆Gµν encapsulates all the extra terms that are not pro-
portional to Gµν and the factor χ(X) is given by

χ = f(X) +�−1

[
R

df

dX
(X)

]
. (45)

For the purpose of our discussion, it is sufficient to look only
at the effect of χ in Eq. (44). This rescales the gravitational
strength as

Geff

G
= {1 + χ}−1

, (46)

which is similar to the effect of S in theR�−2Rmodel. There
is, however, one very important difference associated with the
fact that in the case of the f(X) model, one has the freedom
to choose the functional form of the terms that rescale Geff .
To be explicit, we write the argument of f as

X = �−1R = �−1R̄+�−1δR, (47)

where R̄ and δR are, respectively, the background and spa-
tially perturbed part of R. As explained in Ref. [6], the rela-
tive size of R̄ and δR is different in different regimes. At the
background level, �−1δR = 0 and so the operator �−1 acts
only on R̄. On the other hand, within gravitationally bound
objects we have �−1δR > �−1R̄. Now recall that the co-
variant � operator acts with different signs on purely time-
and space-dependent quantities 3. As a result, the sign of X
on the background differs from that within bound systems,
such as galaxies or our Solar System. This can be exploited
to tune the function f in such a way that it vanishes when
the sign of X is that which corresponds to bound systems. In
this way, χ = 0 and one recovers GR completely 4. When
X takes the sign that corresponds to the background, then the
function f is tuned to reproduce a desired expansion history,
typically ΛCDM. In the case of theR�−2Rmodel, S is fixed

3 For instance, in flat four-dimensional Minkowski space we have � =

+ ∂2

∂t2
− ∂2

∂x2 − ∂2

∂y2 − ∂2

∂z2 .
4 In Eq. (44), ∆Gµν also vanishes if χ = 0.
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TABLE IV. Best-fitting Sheth-Tormen (q, p) parameters to the simu-
lation results at a = 0.6, a = 0.8 and a = 1.0. The uncertainty in
the values of q and p is ∆q = 3.5 × 10−3 and ∆p = 1.5 × 10−3,
respectively. These parameters are those that minimize the quan-
tity
∑
i |n

sims(> Mi)/n
ST(> Mi, q, p)− 1|, in which nsims is the

cumulative mass function measured from the simulations and nST

is the analytical result given by the Sheth-Tormen mass function of
Eqs. (28) and (31). Here, the index i runs over the number of bins
used in the simulation results.

Model a = 0.6 a = 0.8 a = 1.0
(q, p) (q, p) (q, p)

Standard (0.750, 0.300) (0.750, 0.300) (0.750, 0.300)

ΛCDM (0.713, 0.323) (0.756, 0.326) (0.756, 0.341)
QCDM (0.727, 0.321) (0.756, 0.331) (0.763, 0.344)
R�−2R (0.720, 0.321) (0.741, 0.326) (0.756, 0.336)

to be S = �−2
(
R̄+ δR

)
and one does not have the freedom

to set it to zero inside bound objects. Consequently, the time-
dependent part of S is always present in Eq. (24), which could
potentially lead to a time-dependent gravitational strength that
is at odds with the current constraints.

For completeness, one should be aware of a caveat. In the
above reasoning, we have always assumed that the line ele-
ment of Eq. (11) is a good description of the geometry of the
Solar System. The question here is whether or not the fac-
tor a(t)2 should be included in the spatial sector of the metric
when describing the Solar System. This is crucial as the pres-
ence of a(t) in Eq. (11) determines if S varies with time or
not. If a(t) is considered, then S varies with time and Geff

is time-varying as well. In this way, the model fails the So-
lar System tests. On the other hand, if one does not consider
a(t) in the metric, then Geff is forcibly constant, and there are
no apparent observational tensions. Such a static analysis was
indeed performed by Refs. [20, 26], where it was shown that
the model can cope well with the local constraints.

This boils down to determining the impact of the global ex-
pansion of the Universe on local scales. It is not clear to us
that if a field is varying on a time-evolving background, then
it should not do so in a small perturbation around that back-
ground. However, we acknowledge this is an open question
to address, and such study is beyond the scope of the present
paper. In what follows, we limit ourselves to assuming that
Eq. (24) holds on all scales, but focus only on the cosmologi-
cal (rather than local) interpretation of the results.

D. Halo mass function

Our results for the cumulative mass function of the ΛCDM
(black), QCDM (red) and R�−2R (blue) models are shown
in Fig. 4 at a = 0.60, a = 0.80 and a = 1.00. The symbols
show the simulation results obtained with the halo catalogues
we built using the Rockstar halo finder [82]. The results
in the figure correspond to catalogues with subhaloes filtered

out. The lines show the ST analytical prediction (Eqs. (28) and
(31)) computed for the fitted (solid lines) and standard (dashed
lines) ST (q, p) parameters of Table IV. The (q, p) parameters
were fitted for all of the epochs shown, using the correspond-
ing values of δc in Table III. From the figure, one notes that al-
though performing the fitting helps to improve the accuracy of
the analytical formulae, overall the use of the standard values
for (q, p) provides a fair estimate of the halo abundances in the
R�−2R model, and of its relative difference w.r.t. ΛCDM.
This is not the case, for instance, in Galileon gravity models,
for which Ref. [32] has found that it is necessary to recalibrate
substantially the values of (q, p) if the ST mass function is to
provide a reasonable estimate of the effects of the modifica-
tions to gravity. In the case of theR�−2R model, the fact that
the standard values of (q, p) = (0.75, 0.30) work reasonably
well means that the modifications in the R�−2R model, rel-
ative to ΛCDM, are mild enough for its effects on the mass
function to be well captured by the differences in δc(z).

At a = 1.00, the mass function of the QCDM model shows
an enhancement at the high-mass end (M & 5× 1012M�/h),
and a suppression at the low-mass end (M . 5×1012M�/h),
relative to ΛCDM. This is what one expects in hierarchical
models of structure formation if the growth rate of structure
is boosted, as smaller mass objects are assembled more effi-
ciently to form larger structures, leaving fewer of them. The
effects of the enhanced Geff/G maintain this qualitative pic-
ture, but change it quantitatively. More explicitly, the mass
scale below which the mass function drops below that of
ΛCDM is smaller than the mass range probed by our simu-
lations; and the enhancement of the number density of mas-
sive haloes is more pronounced. In particular, compared to
ΛCDM, haloes with masses M ∼ 1014M�/h are ∼ 5%
and ∼ 15% more abundant in the QCDM and R�−2R mod-
els, respectively. Figure 4 also shows that the relative differ-
ences w.r.t. ΛCDM do not change appreciably with time after
a ∼ 0.80. At earlier times (a ∼ 0.60), the halo abundances in
the QCDM and R�−2R models approach one another, and
their relative difference to ΛCDM decreases slightly, com-
pared to the result at later times.

E. Halo bias

The linear halo bias predictions for the ΛCDM (black),
QCDM (red) and R�−2R (blue) models are shown in Fig. 5
at a = 0.6, a = 0.8 and a = 1.0. The symbols show the sim-
ulation results, which were obtained by measuring the ratio

b(k,M) =
Phm(k,M)

Pk
, (48)

where Pk is the total matter power spectrum and Phm(k,M)
is the halo-matter cross spectrum for haloes of massM . These
were measured with the aid of a Delaunay Tessellation field
estimator code [83, 84]. We measure the cross spectrum, in-
stead of the halo-halo power spectrum, to reduce the amount
of shot noise. The linear halo bias parameter is then given by
the large scale limit of b(k,M), i.e., b(M) = b(k � 1,M).
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FIG. 4. The cumulative mass function of dark matter haloes (upper panels) for the ΛCDM (black), QCDM (red) and R�−2R (blue) models,
at three epochs a = 0.6, a = 0.8 a = 1.0, as labelled. The lower panels show the difference w.r.t. the ΛCDM model results. The symbols
show the simulation results, and the errorbars indicate twice the variance across the five realizations of the initial conditions. We have used
the phase-space friends-of-friends Rockstar code [82] to build the halo catalogues (without subhalos) used to compute the halo abundances.
We only show the results for haloes with mass M200 > 100 ×Mp ∼ 5 × 1011M�/h, where Mp = ρm0L

3/Np is the particle mass in the
simulations. The lines correspond to the ST mass function of Eqs. (28) and (31) obtained using the fitted (solid lines) and the standard (dashed
lines) (q, p) parameters listed in Table IV.

We only consider the halo mass bins for which b(k,M) has
clearly saturated to its asymptotic value on large scales.

The simulation results show that, within the errorbars, the
linear halo bias parameter for the three models is indistin-
guishable at all epochs shown. This shows that the modifi-
cations to gravity in the R�−2R model are not strong enough
to modify substantially the way that dark matter haloes trace
the underlying density field. The ST formula, Eq. (33), repro-
duces the simulations results very well. Note also that there is
little difference between the curves computed using the fitted
(solid lines) and the standard (dashed lines) (q, p) parameters
of Table IV. We conclude the same as in the case of the mass
function that, in the context of the R�−2R model, there is
no clear need to recalibrate the (q, p) parameters in order to
reproduce the bias results from the simulations.

F. Halo concentration

Figure 6 shows the halo concentration-mass relation for the
ΛCDM (black), QCDM (red) and R�−2R (blue) models, at
a = 0.60, a = 0.80 and a = 1.00. The symbols correspond to
the mean values of c200 identified in the same halo catalogues
used in Fig. 4. For all models, and at all epochs and mass

TABLE V. Concentration-mass relation best-fitting (α, β)
parameters in the parametrization log10(c200) = α +
βlog10

(
M200/

[
1012M�/h

])
to the simulation results at a = 0.6,

a = 0.8 and a = 1.0. The uncertainty in the values of α and β is
∆α = ∆β = 0.001. These are the parameters that minimize the
quantity

∑
i(c

sims
200 (Mi) − cparam

200 (Mi, α, β))2/(2∆csims
200 (Mi))

2,
where csims

200 (Mi) is the mean halo concentration measured from the
simulations, ∆csims

200 (Mi) is the variance of the mean across the five
realizations and cparam

200 (Mi, α, β) is the concentration given by the
parametrization. Here, the index i runs over the number of mass
bins.

Model a = 0.6 a = 0.8 a = 1.0
(α, β) (α, β) (α, β)

ΛCDM (0.729,−0.066) (0.813,−0.084) (0.863,−0.093)
QCDM (0.726,−0.068) (0.814,−0.087) (0.866,−0.100)
R�−2R (0.737,−0.067) (0.834,−0.086) (0.898,−0.095)

scales shown, one sees that the halo concentrations are well
fitted by the power law function (solid lines),

log10(c200) = α+ βlog10

(
M200/

[
1012M�/h

])
, (49)
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FIG. 5. Linear halo bias in the ΛCDM (black), QCDM (red) and R�−2R (blue) models, for three epochs a = 0.6, a = 0.8 and a = 1.0,
as labelled. The symbols show the asymptotic value of the halo bias on large scales measured from the simulations as b(M) = Phm(k →
0,M)/P (k), considering only haloes (and not subhaloes) with mass M200 > 100×Mp ∼ 5× 1011M�/h, where Mp = ρm0L

3/Np is the
particle mass. Only the mass bins for which the values of Phm(k,M)/P (k) have reached a constant value on large scales are shown. The
errorbars show twice the variance across the five realizations of the initial conditions. The solid and dashed lines show the prediction from the
ST formula, Eq. (33), computed, respectively, with the best-fitting and standard (q, p) parameters listed in Table IV.

FIG. 6. Halo concentration-mass relation in the ΛCDM (black), QCDM (red) and R�−2R (blue) models, for three epochs a = 0.6, a = 0.8
and a = 1.0, as labelled. The symbols show the mean halo concentration in each mass bin, considering only haloes (and not subhaloes) with
mass M200 > 1000×Mp ∼ 5× 1012M�/h, where Mp = ρm0L

3/Np is the particle mass. In the a = 0.6 panel, we omit the results from
the two highest mass bins due to their few number of objects. The errorbars show twice the variance of the mass-binned mean concentration
across the five realizations of the initial conditions. The solid lines show the best-fitting power law relations of Table V.

.

with the best-fitting (α, β) parameters given in Table V. In
the R�−2R and QCDM models, one recovers the standard
ΛCDM result that halo concentration grows with time at fixed
mass, and that, at a given epoch, the concentration decreases
with halo mass.

At early times (a . 0.6), all models predict essentially the
same concentration-mass relation. At later times, however,
the halo concentrations in theR�−2Rmodel become increas-
ingly larger compared to ΛCDM. In particular, at a = 1.00,
the halos are ≈ 8% more concentrated in the R�−2R model,
compared to ΛCDM, for the entire mass range probed by
the simulations. This can be attributed to a combination of
two effects. Firstly, the enhanced structure formation in the

R�−2R model may cause the haloes to form at earlier times.
This leads to higher concentrations since the haloes form at
an epoch when the matter density in the Universe was higher.
Secondly, the increasingly larger value of Geff is also ex-
pected to play a role via its effect in the deepening of the
gravitational potentials. In other words, even after the halo
has formed, the fact that gravity keeps getting stronger with
time may also help to enhance the concentration of the haloes
(see also Refs. [85–88]). In the case of the QCDM model,
one finds that the halo concentrations are hardly distinguish-
able (within errorbars) from those in the ΛCDM model, at
all times and for all mass scales. This suggests that the dif-
ferences between the expansion history of the QCDM and
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ΛCDM models (cf. Fig. 2) are not large enough to have an
impact on the formation time of the haloes. Once the haloes
have formed in these two models, one can think as if the clus-
tering inside these haloes decouples from the expansion. As a
result, and since the gravitational strength is the same (cf. Ta-
ble II), one sees no significant differences in the concentration
of the haloes from the QCDM and ΛCDM simulations.

G. Nonlinear matter power spectrum

Figure 7 shows our results for the nonlinear matter power
spectrum. The power spectrum from the simulations was mea-
sured using the POWMES code [89]. The solid (dashed) lines
show the halo model prediction obtained using Eq. (25) with
the fitted (standard) (q, p) parameters of Table IV. The dotted
lines show the predictions obtained using linear theory. Next,
we discuss these results separately for large, intermediate and
small length scales.

Large scales. On scales k . 0.1h/Mpc, the halo model
is dominated by the 2-halo term, which is practically indis-
tinguishable from the linear matter power spectrum. This is
because, in the limit in which k → 0, one has that

I(k) ∼
∫

dM
1

ρ̄m0

dn(M)

dlnM
blin(M) = 1, (50)

where we have used the fact that |u(k → 0,M)| → 1 and
the last equality holds by the definition of the ST mass func-
tion and halo bias [31]. In fact, in the standard halo model
approach, replacing P 2h

k by Pk,lin in Eq. (25) leads to prac-
tically no difference. As a result, the agreement between the
halo model and the simulation results on large (linear) scales
is always guaranteed.

Intermediate scales. On scales 0.1h/Mpc . k . 1h/Mpc,
the halo model underpredicts slightly the power spectrum
measured from the simulations, for all models and at all
epochs shown. This is due to a fundamental limitation of the
halo model on these scales, which follows from some simpli-
fying assumptions about the modelling of halo bias on these
intermediate scales (see e.g. Sec. IV.F of Ref. [32] for a sim-
ple explanation). In fact, the so-called halofit model arises as
an alternative to the halo model that is more accurate on these
intermediate scales [90–92]. Nevertheless, in terms of the rel-
ative difference to ΛCDM, the halo model limitations cancel
to some extent, which leads to a better agreement with the
simulation results. Focusing on a = 1.00, the halo model pre-
dictions for the QCDM model reproduce very well the results
from the simulations. The predictions for the R�−2R model,
although not as accurate as in QCDM, still provide a fair es-
timate of the enhancement of the clustering power relative to
ΛCDM. For example, at k ≈ 1h/Mpc and a = 1.00, the
simulations show an increase of ≈ 11% in the power relative
to ΛCDM, whereas the halo model predicts an enhancement
of ≈ 15%, which is similar. Finally, it is worth mentioning
that the performance of the halo model when ones uses the
standard (q, p) = (0.75, 0.30) values (dashed lines) is com-

parable to the case where one uses the values that best fit the
mass function results (solid lines).

Small scales. On scales of k & 1h/Mpc, the halo model
predictions are dominated by the 1-halo term, whose agree-
ment with the simulations becomes better than on intermedi-
ate scales, especially at a = 1.00. There are still some visible
discrepancies at a = 0.60, which are similar to those found
in Ref. [32] for Galileon gravity models. These discrepancies
are however likely to be related with some of the assumptions
made in the halo model approach, namely that all matter in the
Universe lies within bound structures, which is not true in the
simulations. However, similarly to what happens on interme-
diate scales, the halo model performs much better when one
looks at the relative difference w.r.t. ΛCDM. The predictions
obtained by using the standard (q, p) parameter values (dashed
lines), although not as accurate as the results obtained by us-
ing the fitted (q, p) values (solid lines), are still able to provide
a good estimate of the effects of the modifications to gravity
in the R�−2R model on the small-scale clustering power.

In the QCDM model, the relative difference w.r.t. ΛCDM
becomes smaller with increasing k. In particular, for k &
10h/Mpc at a = 1.0, the clustering amplitude of these two
models becomes practically indistinguishable. This result can
be understood with the aid of the halo model expression for
the 1-halo term, P 1h

k , (cf. Eq. (26)), which depends on the
halo mass function and concentration-mass relation. Firstly,
one notes that for smaller length scales, the integral in P 1h

k
becomes increasingly dominated by the lower mass end of
the mass function. Consequently, the fact that the mass func-
tion of the QCDM model approaches that of ΛCDM at low
masses (becoming even smaller for M . 5 × 1012M�/h at
a = 1.00), helps to explain why the values of ∆Pk/Pk,ΛCDM

decrease for k & 1h/Mpc. Secondly, according to Fig. 6,
the halo concentrations are practically the same in the ΛCDM
and QCDM models. In other words, this means that in-
side small haloes (those relevant for small scales), matter is
almost equally clustered in these two models, which helps
to explain why ∆Pk/Pk,ΛCDM is compatible with zero for
k & 10h/Mpc (Ref. [93] finds similar results for k-mouflage
gravity models).

The same reasoning also holds for the R�−2R model,
which is why one can also note a peak in ∆Pk/Pk,ΛCDM

at k ∼ 1h/Mpc. However, in the case of the R�−2R
model, the mass function is larger at the low-mass end and the
halo concentrations are also higher, compared to QCDM and
ΛCDM. These two facts explain why ∆Pk/Pk,ΛCDM does
not decrease in the R�−2R model, being roughly constant at
a = 1.00 for k & 1h/Mpc. In particular, we have explic-
itly checked that if one computes the halo model predictions
of the R�−2R model, but using the concentration-mass re-
lation of ΛCDM, then one fails to reproduce the values of
∆Pk/Pk,ΛCDM on small scales. This shows that a good per-
formance of the halo model on small scales is subject to a
proper modelling of halo concentration, which can only be
accurately determined in N-body simulations.
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FIG. 7. The nonlinear matter power spectrum (upper panels) in the ΛCDM (black), QCDM (red) and R�−2R (blue) models, at three epochs
a = 0.6, a = 0.8 and a = 1.0, as labelled. The lower panels show the different w.r.t. ΛCDM. The symbols show the simulation results,
where the errorbars show twice the variance across the five realizations of the initial conditions. The solid lines show the halo model prediction
obtained using Eq. (25), with the best-fitting (q, p) parameters listed in Table IV. The dashed lines show the power spectrum when using
the standard ST (q, p) = (0.75, 0.30) parameter values. The dotted lines show the result from linear perturbation theory. These lines are
indistinguishable in the upper panels.

H. Nonlinear velocity divergence power spectrum

Figure 8 shows the nonlinear velocity divergence power
spectrum, Pθθ,5 for the three models of Table II and for
a = 0.60, a = 0.80 and a = 1.00. The computation was
done by first building a Delaunay tessellation using the par-
ticle distribution of the simulations [83, 84], and then inter-
polating the density and velocity information to a fixed grid
to measure the power spectra. The upper panels show that on
scales k . 0.1h/Mpc, the results from the simulations of all
models approach the linear theory prediction, which is given
by

P linear
θθ = a2

(
H

H0

)2

f2P linear
k , (51)

where P linear
k is the linear matter power spectrum and f =

dlnδlin/dlna. On smaller scales, the formation of nonlinear
structures tends to slow down the coherent (curl-free) bulk

5 Here, θ is the Fourier mode of the divergence of the peculiar physical ve-
locity field v, defined as θ(~x) = ∇v(~x)/H0.

flows that exist on larger scales. This leads to an overall sup-
pression of the divergence of the velocity field compared to
the linear theory result for scales k & 0.1h/Mpc, as shown in
the upper panels.

In the lower panels, the simulation results also agree with
the linear theory prediction for k . 0.1h/Mpc. On these
scales, the time evolution of the power spectrum of all models
is scale independent and the relative difference encapsulates
the modifications to the time evolution of P linear

k , H and f ,
in Eq. (51). On smaller scales, the values of ∆P θθk /P θθk,ΛCDM
decay w.r.t. the linear theory result until approximately k =
1h/Mpc. This suppression follows from the fact that the
formation of nonlinear structures is enhanced in the QCDM
and R�−2R models, relative to ΛCDM (cf. Figs. 4 and 7).
Hence, on these scales, the suppression in the velocity diver-
gence caused by nonlinear structures is stronger in the QCDM
and R�−2R model, compared to ΛCDM. Finally, on scales
k & 2 − 3h/Mpc, the relative difference to ΛCDM grows
back to values comparable to the linear theory prediction. On
these scales, one does not expect haloes to contribute con-
siderably to P θθk for two main reasons. First, as haloes viri-
alize, the motion of its particles tends to become more ran-
dom, which helps to reduce the divergence of the velocity
field there. Secondly, and perhaps more importantly, P θθk is
computed from a volume-weighted field, and as a result, since
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FIG. 8. The nonlinear peculiar velocity divergence power spectrum (upper panels) in the ΛCDM (black), QCDM (red) and R�−2R (blue)
models, for three epochs a = 0.6, a = 0.8 and a = 1.0, as labelled. The lower panels show the difference w.r.t. ΛCDM. The symbols show
the simulation results, where the errorbars show the variance across the five realizations of the initial conditions. The dashed lines only link
the symbols to help the visualization. The dotted lines in the bottom panels show the prediction of linear perturbation theory.

haloes occupy only a small fraction of the total volume, they
are not expected to contribute significantly to the total velocity
divergence power spectrum. On the other hand, considerable
contributions may arise from higher-volume regions such as
voids, walls or filaments, where coherent matter flows exist.
For instance, matter can flow along the direction of dark mat-
ter filaments, or inside a large wall or void that is expanding
(see e.g. [94–96]). These small scale flows are larger in the
QCDM and R�−2R models at a fixed time, as shown by the
growth of the values of ∆P θθk /P θθk,ΛCDM on small scales.

On scales k & 2 − 3h/Mpc, one may find it odd that the
QCDM model predicts roughly the same matter power spec-
trum as ΛCDM (cf. Fig. 7), but has a different velocity diver-
gence power spectrum. This has to do with the weight with
which different structures contribute to Pk and P θθk . For in-
stance, Pk is computed from a mass-weighted density field,
and hence, it is dominated by the highest density peaks, which
are due to dark matter haloes. In other words, it is very insen-
sitive to the behavior of the clustering of matter in voids, walls
or filaments due to their lower density. On the contrary, P θθk ,
which is computed from a volume-weighted field, is forcibly
less sensitive to dark matter haloes due to their low volume
fraction. The values of P θθk are then mostly determined by the
velocity field inside voids, walls and filaments. These struc-
tures are typically larger than haloes and therefore they are
more sensitive to the background expansion of the Universe.
Consequently, they are more likely to be affected by modifi-

cations to H(a), compared to haloes which detach from the
overall expansion sooner. This can then explain the differ-
ences in the sizes of the modifications to Pk and P θθk on small
scales in the QCDM model, relative to ΛCDM. To test this
we have computed P θθk by artificially setting θ(~x) = 0 in re-
gions where the density contrast exceeds δ = 50. This should
roughly exclude the contribution from haloes to the values of
P θθk . We have found no visible difference w.r.t. the results of
Fig. 8, which shows that the small scale behavior of the ve-
locity divergence is not affected by what happens inside dark
matter haloes. We have performed the same calculation, but
by setting θ(~x) = 0 whenever δ < 0, to exclude the contri-
bution from voids. We have found that at a = 1, the relative
difference of QCDM to ΛCDM at k ∼ 10h/Mpc drops from
∼ 9% (as in Fig. 8) to ∼ 7%. This seems to suggest that the
dominant effect in the small scale behavior of P θθk comes from
walls and/or filaments. The velocity divergence in these struc-
tures is typically large (see e.g. Fig. 2 of Ref. [97]) and they
also occupy a sizeable fraction of the total volume as well.
A more detailed investigation of these results is beyond the
scope of the present paper.

Focusing at a = 1, at k ∼ 10h/Mpc and relative to
ΛCDM, the velocity power spectrum in the R�−2R model
is enhanced by ∼ 12%, and the matter power spectrum by
∼ 15%. On large (linear) scales the same figures are ∼ 12%
and ∼ 7%, respectively. The size of the modifications to
the matter and velocity divergence power spectrum are rather
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similar, but the latter might be easier to measure as they are
typically less sensitive to assumptions about baryonic pro-
cesses such as galaxy bias. As an example, redshift space
distortions (RSD) [98–100] are sensitive to the boost of the
velocity field on large scales, and therefore can be used to
test modified gravity models (see e.g. Refs. [77, 101]). The
work of Refs. [102, 103] illustrated how the velocity distribu-
tion of infalling galaxies around massive clusters can be used
to detect modifications to gravity (see also [104]). More re-
cently, Ref. [105] demonstrated that modified gravity models
can leave particularly strong signatures in the velocity disper-
sion of pairs of galaxies on a broad range of distance scales.
The level of precision of the data from future observational
missions should prove sufficient to disentangle the differences
depicted in Fig. 8. Such a forecast study would involve run-
ning simulations with better resolution and larger box sizes,
and as such, we leave it for future work.

V. SUMMARY

We have studied the nonlinear regime of structure forma-
tion in nonlocal gravity cosmologies using N-body simula-
tions, and also in the context of the semi-analytical ellipsoidal
collapse and halo models. To the best of our knowledge, this
is the first time the nonlinear growth of structure in nonlocal
cosmologies has been studied. In particular, we investigated
the impact that the modifications to gravity in nonlocal mod-
els have on the halo mass function, linear halo bias param-
eters, halo concentrations and on the statistics of the density
and velocity fields of the dark matter.

The action or equations of motion of nonlocal gravity
models are typically characterized by the inverse of the
d’Alembertian operator acting on curvature tensors. Here, we
focused on the model of Refs. [26, 27], in which the standard
Einstein-Hilbert action contains an extra term proportional to
R�−2R (cf. Eq. (1)). The constant of proportionality is fixed
by the dark energy density today, and hence this model con-
tains the same number of free parameters as ΛCDM, although
it has no ΛCDM limit for the background dynamics or gravi-
tational interaction.

Our goal was not to perform a detailed exploration of the
cosmological parameter space in the R�−2R model. Instead,
for the R�−2R model we used the same cosmological pa-
rameters as ΛCDM (cf. Table I). In this way one isolates the
impact of the modifications to gravity from the impact of hav-
ing different cosmological parameter values. Nevertheless,
although a formal exploration of the parameter space in the
R�−2Rmodel is left for future work (see Ref. [48]), the com-
parison presented in Fig. 1 suggests that the model fits the
CMB temperature data as well as ΛCDM. Our main results
can be summarized as follows:

• The expansion rate in the R�−2R model is smaller than
in ΛCDM at late times, and the gravitational strength is en-
hanced by a time-dependent factor (cf. Fig. 2). Both effects
help to boost the linear growth of structure (cf. Fig. 2) and
also speed up the collapse of spherical matter overdensities

(cf. Fig. 3). In particular, at the present day, the amplitude of
the linear matter (velocity divergence) power spectrum is en-
hanced by ≈ 7% (≈ 12%) in the R�−2R model, compared
to ΛCDM. These results are in agreement with Ref. [27]. The
critical density for collapse today, δc(a = 1), is≈ 3% smaller
in the R�−2R model, relative to ΛCDM (cf Fig. 3). For
these results, the modified expansion history plays the dom-
inant role in driving the differences w.r.t. ΛCDM, compared
to the effect of the enhanced Geff .

•At late times (a > 0.6), the number density of haloes with
masses M & 1012M�/h is higher in the R�−2R model,
compared to ΛCDM. The difference becomes more pro-
nounced at the high-mass end of the mass function. In par-
ticular, at a = 1, haloes with mass M ∼ 1014M�/h are
≈ 10% more abundant in the R�−2R model than in ΛCDM.
At M = 1012M�/h this difference is only ≈ 2%. The ef-
fects of the modified H(a) and Geff on the enhancement of
the high-mass end of the mass function are comparable.

The ST mass function describes well the absolute values of
the halo number densities as well as the relative differences
w.r.t. ΛCDM, for all of the epochs studied (cf. Fig. 4). We
find that the use of the standard (q, p) = (0.75, 0.30) ST pa-
rameter values provides a fair estimate of the modifications to
the mass function in the R�−2R model. However, recalibrat-
ing these parameters to the simulation results helps to improve
the accuracy of the fit (cf. Table IV).

• The linear halo bias parameter in the R�−2R model is
barely distinguishable from that in ΛCDM for all masses and
epochs studied (cf. Fig. 5). In other words, the modifications
to gravity in the R�−2R model play a negligible role in the
way dark matter haloes trace the underlying density field. The
ST halo bias formula provides therefore a good description of
the simulation results. There is also almost no difference be-
tween the semi-analytical predictions for the bias computed
using the best-fitting and standard values for the (q, p) ST pa-
rameters.

• The halo concentration-mass relation is well-fitted by a
power law function (cf. Fig. 6), but with fitting parameters that
differ from those of ΛCDM (see Table V). For a . 0.6, the
concentration of the haloes in the R�−2R model is roughly
the same as in ΛCDM, but it increases with time. In particu-
lar, at a = 1.0 (a = 0.8) and for all masses, haloes are ≈ 8%
(≈ 4%) more concentrated in the R�−2R model, compared
to ΛCDM. This is likely to be mainly due to the enhanced
Geff on small scales, which helps to make the gravitational
potential continuously deeper inside the haloes. On the other
hand, the effects of the modifications to the expansion history
in the R�−2R play a negligible role in changing the concen-
tration of the haloes. This can be explained by the fact that
the modifications to H(a) are small enough not to have a sig-
nificant impact on the formation time of the haloes. Conse-
quently, once the haloes form, they detach from the expansion
of the Universe and no longer "feel" the dynamics of the back-
ground.
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• The modifications to gravity in the R�−2R model lead
only to a modest enhancement of the clustering power. For
instance, at a = 1.0 (a = 0.8) the amplitude of the non-
linear matter power spectrum is never larger than ≈ 15%
(≈ 10%) on all scales (cf. Fig. 7). These differences might
be hard to disentangle using data from galaxy clustering given
the known uncertainties in modelling galaxy bias. On small
scales, k & 1h/Mpc, the differences w.r.t. ΛCDM are com-
pletely determined by the enhanced Geff , and not by the mod-
ifications to H(a).

At a = 1.0, the halo model describes the simulation results
on large (k . 0.1h/Mpc) and small (k & 1h/Mpc) scales
very well. On intermediate scales and also at earlier times,
the performance becomes worse due to known limitations of
the halo model [31, 32]. These follow from a number of ap-
proximations in the derivation of the halo model formalism,
which sacrifice some accuracy in favour of analytical con-
venience. In terms of the relative difference w.r.t. ΛCDM,
these limitations cancel out and the halo model describes the
simulation results reasonably well for all epochs and scales.
Moreover, the performance of the halo model formulae in de-
scribing the simulation results does not depend critically on
the fitting of the (q, p) parameters to the mass function. How-
ever, we have checked that the good performance of the halo
model on small scales is subject to a correct modelling of the
halo-concentration mass relation, which can only be properly
determined via N-body simulation.

• Similarly to the case of the matter power spectrum,
the modifications in the R�−2R model lead only to modest
changes in the amplitude of the nonlinear velocity divergence
power spectrum. In particular, at a = 1.0 (a = 0.8) the en-
hancement relative to ΛCDM is kept below ≈ 12% (≈ 10%)
on all scales. However, measurements of RSD and/or galaxy
infall dynamics are less subject to galaxy bias uncertainties,
and therefore, might stand a better chance of distinguishing
between these two models.

• The R�−2R model possesses no screening mechanism
to suppress the modifications to gravity on small scales. As
a result, Solar System tests of gravity can be used to con-
strain the model. For example, the R�−2R model predicts
that Ġeff/G ≈ 92× 10−13 yrs−1, which is incompatible with
the current bound from Lunar Laser Ranging experiments,
Ġeff/G = (4± 9)×10−13 yr−1 [81]. The local time variation
ofGeff follows from the background evolution of the auxiliary
scalar field S, and it seems nontrivial to devise a mechanism
that can suppress it around massive objects or in high-density
regions [37, 38]. In this paper, we focused only on a partic-
ular choice of cosmological parameters. As a result, it might
be possible that certain parameter combinations can be made
compatible with Solar System tests, whilst still being able to

yield viable cosmological solutions. Nevertheless, it seems
clear that these tests should be taken into account in future
constraint studies, as they might have the potential to rule out
these models observationally.

In conclusion, the R�−2R model, although it has no
ΛCDM limit for the dynamics of the background and grav-
itational interaction, exhibits changes of only a few percent
in observables sensitive to the nonlinear growth of structure.
Some of these effects are degenerate with baryonic mecha-
nisms such as AGN feedback or galaxy bias, or even with
massive neutrinos [45, 106–108]. This makes it challenging
to distinguish this model from ΛCDM, but the precision of
upcoming observational missions such as Euclid [109, 110],
DESI [111] or LSST [112] should make this possible. From
an observational point of view, however, future nonlinear stud-
ies are only warranted provided the model is able to fit suc-
cessfully the CMB data from Planck (see Ref. [48]), in a way
that is also compatible with the constraints from Lunar Laser
Ranging experiments. The latter requirement might be hard to
satisfy due to the absence of a screening mechanism.
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