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Abstract

The wireline gamma ray log is sensitive to open-hole conditions, and in particular the diameter. This
means that the log can jump at casing points. Although environmental corrections exist, they can fail
at these points. We present a Bayesian method for deriving a new quantity, the shifted gamma ray
index, that takes these shifts into account by fitting a piecewise linear function to open-hole data in a
depth window around the casing point. Because it is Bayesian, the method enables us to assess our
uncertainty about its performance. This method requires very little knowledge of the borehole or drilling
conditions, but relies on the assumption that the lithology is consistent. Investigating the other wireline
logs enables us to assess whether this assumption is valid. We demonstrate our method using well data

from offshore mid-Norway.

1 Introduction

In the petroleum industry, the gamma ray (GR) log is used routinely to estimate the shale volume,
(Vishate), which is the percentage of total rock volume made up of shale. This quantity is particularly
useful in a conventional pore-pressure prediction workflow, where a normal compaction trend will be
defined using data from shales only, usually sonic transit time (DT), density (RHOB), resistivity (RES)
or seismic interval velocity. For more detail on pore-pressure prediction methods, see for example|Zhang
(2011)) or |Mouchet and Mitchell| (1989).



Although the GR log is usually calibrated to a standard such as API units, its value depends on the
position of the sensor, the dimensions of the borehole and various other factors, and so it is not
necessarily a precise expression of the level of GR activity of the formation. The behaviour of the whole
log is therefore used, often by standardising the log to [0, 1], creating a quantity called the gamma ray
index,lgR.

To be able to use the GR log to estimate the lithology, we must account for the effects of these other
factors. The effects can be especially significant at casing points. At these depths drilling is stopped and
casing is run and cemented, hydraulically isolating the open formations from the previous casing point
to the current depth. The lowermost casing section (the shoe) is set in non-reservoir rock, often a shale,
prior to starting drilling again with a smaller bit size. Different logging equipment may be used from
this point, and the type or properties of the drilling mud may also be changed. For these reasons, there
is commonly a sharp change in the behaviour of the open-hole GR log at a casing point. We present a
method for taking into account these larger-scale changes to create a new quantity, the shifted gamma
ray index Sgr. Our approach is based on detecting a change in mean at a known casing point, guided
by prior information as to the depth of the casing point and the surrounding lithology.

In Section [2] we discuss the GR log in more detail, and briefly mention some existing methods for
dealing with its uncertain nature. Our Sgr method is introduced in Section [3] This method makes use
of the Gibbs sampler (a Bayesian sampling method), introduced in Appendix [Al Section explains
the probability model behind our method. In Section |4 we introduce some methods for validating the
assumptions underlying the shifted GR index. In Section 5] we demonstrate the methodology using data
from offshore mid-Norway.

Ideally wireline logs provided as digital data files will already have had environmental corrections made
to them (Serra and Serra,, 2004)), and therefore re-applying environmental corrections would be inappro-
priate. Information about environmental corrections, especially regarding the GR, is often lacking in the
log header and so the recipient must seek a data-driven method to correc for shifts across casing points.
The shifted GR method we present uses the data themselves to create a consistent GR index, and is
therefore of use in such situations. In the example in Section [5| we use wireline log data from digital
LAS (log ASCII standard) files, not knowing whether the GR log has been corrected or not. Because
the log continues through the casing changes with no break or duplication it is clear that some data
processing has taken place.

2 The gamma ray log

The GR log records the natural gamma radiation from radioactive isotopes of uranium, thorium and
potassium, and their daughter isotopes, present in the formation most frequently in clay minerals. This
log is almost always run on all wireline and logging while drilling (LWD) tools for lithology interpretation
and correlation between logging runs. This paper focusses on the wireline GR data in open-hole condi-



tions, as opposed to the behaviour of the GR log as it goes from open hole to cased hole. The spectral
GR log gives a separate value for each decay series, but the total count GR log, which will be our focus,
gives their combined radioactivity. This quantity has various uses in petroleum geology, for example in
sedimentology and in correlations between wells, but our concern is its use in pore-pressure prediction.
Different types of rock are radioactive to different degrees. Among sedimentary rocks, shales tend to
have the highest levels of radioactivity, so the GR is often used to interpret shale from other lithology
(Rider, 1990; Thibal et al., [1999; Serra and Serra, [2004)).

The gamma ray index, defined as

Lo = GR — min (GR)
SR~ max (GR) — min (GR)’

is suggested by |Asquith and Krygowskil (2004) as a primitive but simple value for the shale volume.
This relies on the assumption that although the GR values vary for different shales, within any particular
well one would expect the GR value of a pure shale to be constant (Rider, 1996). Setting Vihale = lgr
also implies that the shale content is proportional to the GR emissions, which may not be the case.
Some non-linear calibration curves defining Vgnae as a convex function of Igg have been developed for
formations of different ages (Bhuyan and Passey, |1994; Rider| [1996)), and other relations have also been
proposed for Vinale.

In many standard pore-pressure prediction workflows, (e.g. [Eaton, 1975]), a normal compaction trend
must be defined, showing the decrease in shale porosity with depth under normal compaction where the
pore-pressure is hydrostatic. The porosity in the formation is then compared to this curve to estimate
pore-pressure (Mouchet and Mitchell, [1989)). Since the porosity of a shale cannot easily be measured
directly, data such as compressional sonic transit time (DT), deep resistivity (RES) and formation density
(RHOB), as well as seismic interval velocity, are used as proxies for porosity. Where, for instance, high
sonic transit times are measured by a wireline tool relative to the compaction trend, anomalous pore
pressure is inferred.

The normal compaction trend is based on the assumption that shale lithology is consistent to enable
the selection of shale intervals from the wireline log data (Swarbrickl 2002). The shale volume is usually
used to do this, and so estimating Vinaie is a critical part of the shale pore-pressure prediction workflow.
Thus we must understand the GR log, where this is used as the primary shale indicator.

The GR log is very sensitive to borehole conditions and tool configuration (Maucec et al., 2009; [Men-
doza et al., 2006)), and most of all borehole diameter (Chen, |1998). This can create large jumps in
the GR log, particularly at casing points where the borehole diameter changes suddenly, leading to a
misrepresentation of shale in the rock column, and potential inaccuracy in the final pressure prediction
model. If too much shale is inferred then data that represent sands, for instance, may be incorporated
in defining the normal compaction trend. This would lead to over-estimation of the pore pressure as the
normal compaction curve would plot at faster velocity. Conversely, if too little shale is modelled, then



some key shale intervals may be assigned as sand and not used, and so degrade the definition of the
compaction model. The variation in the GR from changes in these conditions can be far greater than
the variation owing to changes in lithology (Bristow and Williamson| [1998). Before the GR log can be
used to interpret the lithology, therefore, this issue must be addressed.

We review existing methods for taking into account uncertainty in the GR log before introducing our
own Bayesian method, the shifted GR index.

2.1 Existing methods for correcting the GR log

Methods exist for correcting the gamma ray log to account for specific conditions, but they are mostly
empirically derived, and include variables which may not be known. Serra and Serra| (2004) give correc-
tion formulae for different Schlumberger logging tools and different borehole conditions, which include
parameters relating to the casing (if present), pore fluid, mud properties, tool position within the bore-
hole and borehole diameter. These parameters are used to calculate a parameter, t, and the correction
factor is read from a plot showing correction factor against f for different tools, positions within the bore-
hole (centred and eccentred) and drilling mud types. Note that since the shifted GR method concerns
only open-hole data, casing and cement effects are irrelevant.

Lehmann| (2010) collects together GR correction formulae that are used in the uranium mining industry.
Each of these equations calculates a scale factor Y which is then applied to the raw data, such that
GRcor = Y - GRraw, where GRcor is the corrected GR value. Different formulae are presented for Y,
depending on whether there is casing or not, whether the pore fluid is water or oil, whether the GR
sensor is centred or eccentred. The equations for Y involve the borehole fluid density and the borehole
diameter, and each contains several empirically derived constants. Stromswold and Wilson| (1981) also
present correction formulae for the GR log, taking into account the variation in borehole fluid and
diameter and the presence of steel casing. Weatherford| (2009)) gives GR corrections as graphs.

Although philosophically it is appealing to derive equations using physical reasoning, the exact values of
the borehole geometry, drilling conditions, tool position and fluid properties may not be known, and their
effects will not necessarily be as simple as assumed in the derivation of such equations. Furthermore,
the correction methods discussed aim to realign the GR log to calibrated data (Stromswold and Wilson,
1981} [Lehmann| 2010). The method we present in the following section aims simply to realign the GR
log so that it is self-consistent and suitable for identifying zones of similar shale content to create normal
compaction curves.

Since we do not know the tool type, position or diameter for the data used in the example, or indeed
whether the data supplied have already been environmentally corrected as expected, we are unable to
use the methods mentioned above to form a comparison. Because steps in the GR log response across
casing points remain, even if environmental corrections have been applied, some form of shift correction



is still necessary for consistency in zonal identification.

3 The shifted gamma ray index

We propose a method that requires very little knowledge of the borehole conditions, but instead relies
on some assumptions. For the method to be useful, these assumptions need to be reasonable, and we
will look into ways of verifying them using other wireline logs.

The aim of this method is to account for the effect on the GR log of changes in borehole diameter
and possibly in drilling mud and logging tool calibration that take place at casing points. The main
underlying assumption is that the casing is set in a massive shale. This seems reasonable since Leak-Off
Tests, which can only be performed in rocks of low porosity and permeability, are often performed just
below the casing shoe (Mouchet and Mitchell, |1989)), and it is desirable to change casing in a competent
shale (Devereux, 1998). In the well-planning stages casing point selection can be informed by seismic
data (Littleton et al., 2002) or through data from offset wells (Clouzea et al., [1998).

However, the assumption of a homogeneous shale could be verified by checking the mudlog and using
other wireline logs such as RHOB and neutron porosity (NPHI) that are sensitive to lithology but less
affected by casing points. The RHOB log is sensitive to borehole rugosity but is always accompanied by
a caliper log and a delta-RHOB, both of which are useful for assessing the quality of the measurement.
If NPHI is available then NPHI and RHOB can be used to interpret lithology, either to confirm or to
contradict the assumption of a homogeneous shale. We will demonstrate some approaches in Section

4

At each casing point (at depth Zgzs), we fit a piecewise linear function like that in Figure [1] to the

gamma ray data.

This is a simple model we use to estimate the effect of the casing point on the GR log, and the form
was decided after studying GR logs that showed clear signs of being affected by casing points. Such
signs can be seen in real data in Figure [3} which shows shifts in the GR logs around casing points for
three offshore mid-Norway wells. The important features of the fitted function are the values of the
open-hole GR log before and after the casing point, and the transition-zone: the region between Zj;,,
and Zgpot, Where the GR log is not at either stable level. The transition-zone was introduced rather than
an abrupt jump from one level to the next because, in most cases, the data showed a gradual change
over the casing point from one level to the other, although this zone may often be very narrow. This
may be a shoulder effect, as described by |Rider (1996)), or the result of data processing such as splicing
or depth-matching the different log runs. Generally, the casing shoe is set a few metres above current
bottomhole depth, leaving a small section of openhole often called the ‘rathole’. The next section of
borehole is then drilled with a smaller bit size. The transition zone should therefore cover this small
section, the ‘rathole’, and only settle at a constant rate once the borehole is at the smaller diameter.



|
|
|
1
|
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|

=
o
<
o
N
o
&)
A I
Al .
Transition-
I
zbne
I
|
I
: >
Ztop ZdtopZcas  Zdbot Zhot
Depth

Figure 1: This shows the curve's parameters and the shape of the curve in relation to the casing point. The
solid line is chosen to best fit the GR data around the casing point Zggs.

Theoretically one could rescale the data in the transition-zone using the fitted curve, however there are

Tin what

several problems with this. The transition zone part of the fitted curve has its own variance (7,
follows), which may be large if the data in the transition zone are highly variable or non-linear. This is a
desirable property, allowing flexibility between the two constant portions of the curve whilst maintaining
simplicity in the model. However, the poor fit of the curve would be likely to make it inadequate to
transform the data. It is also common for there to be caving in the borehole immediately below the
casing point, and this would cause the data to be of poor quality. One could investigate the caliper log
to see whether this was the case. Instead we use the mean GR found by the model to connect the two

constant portions.

The user is able to restrict the width of the transition-zone, and also to assess whether the model fit is
appropriate. It should be emphasised that this method involves subjective choices to be made by the
user. The nature of these choices is made clear in Section [3.1 and some examples of how the results
depend on of the user’s specifications are shown in Section

The curve begins at Z = Zp, and has a constant value 1 until Z = Zgiop. From Z = Zypor to Z = Zpot
the curve has constant value v1 + 0. For Zyiop < Z < Zgpot, the function changes linearly from ~4 to
Y1 + 0. We refer to this region as the “transition-zone"”. Figure [2| shows an example using some real
data.

In order to fit this curve to real data, we must estimate the parameters vy, 0, Zgiop and Zgpot. The
depths Ziop and Z,or will be fixed, but should not be outside the shale interval, and Z¢zs will be given.
We use the depth of the casing shoe for Zggs, since this is the one most often given in well reports,
although it is likely to be slightly shallower than the depth at which the borehole diameter changes.
This is apparent in the examples, as Zggs is often very near the start of the transition-zone.



50

Gamma ray (gAPI)
S B
o (6]
1 1

w
(&)
1

30

T T
900 920 940 960 980
Depth (m)

Figure 2: Piece-wise linear segments (solid line) as in Figureare fitted to GR data from well 6305/8-1 around
the casing point at 941m.

In allowing a transition-zone of uncertain width, this model extends from the problem of estimating
the mean shift in a known-changepoint time series. [Krishnaiah and Miao| (1988) review least-squares
regression, maximum-likelihood, and Bayesian approaches to that problem. For our extension we choose

a Bayesian approach as it is straightforward to apply, appears to work well, and offers probabilistic
updates of uncertainty for all parameters.

3.1 Fitting a piecewise linear function

The model described here is for the data around one casing point, at depth Zggs.

The algorithm requires some starting values:

Omin : the minimum length of the constant sections, that is of Zjiop — Ztop aNd Zhot — Zdbot,
which restricts the width of the transition-zone;
Omax : the distance from Zgas to Ziop and Zpor (assumed to be the same);

a, b, p : hyperparameters for the prior distributions below.

The value of dmax should be chosen to cover an interval above and below the casing point in which
the GR log appears to be approximately constant. In the examples that follow we used Omax = 40m
unless otherwise stated. The parameter dmin broadly controls how many observations are used to
estimate the means for the constant segments preceding and succeeding the casing point. After some
experimentation, we found that a value of 3m worked well for all our examples. A reasonable starting



choice for the parameter is the mean of the GR log between dp,in and Zggs. In practice, the results we
obtained were not sensitive to the value of when it was varied between 0 and 100. We used the values
a=1, b=1 for all examples, to provide a non-informative prior distribution |Carlin and Louis| (2009).

We first establish a model for the likelihood:

1 .
GR; | v1,7 ~ N (1, ") if Ztop < Z < Zatop
Z— 24 _ X
GRz | 71,0, 7w ~ N [y + "2 .1 if Zatop < Z < Zdbot
Zdbot — Zdtop

GRZ|'Y1a9,TzNN('Y1+01 TZ1> if Zdgbot < Z < Zpot-

This stipulates that the GR data will be normally distributed about the curve we have described, and
that the variances in the different sections (Ziop t0 Zgtop, Zdtop tO Zdbot and Zgpot to Zhot) may differ
from one another. These variances are given by the precisions 7, 7y, 72, and are considered unknown.

Prior distributions must also be specified, and we use:

1 .
|f (Ztop + dmln) <Z< ans

Ky
p (Zdtop = Z) X ! )
0 otherwise

1 .

p(z 2) & T if Zcas < Z < (Zbot — Amin)
dbot =

0 otherwise

Tvy Twy Tz ™~ r(a, b)
~ N ~1
Y1 | 7Y Hps Ty
0717~ N(O,TZ_1).
The top two distributions give equal probability to every permissible depth for Zgiop and Zgpor. The

constants Ky and ko are such that the probabilities sum to one. The precisions 7, 7 and 75 are forced
to be positive by a Gamma distribution, which has density function

1

f(x) = Xaf1efx/b’
(x) bar (a)

where the centre and spread are determined by the hyperparameters @ and b. A prior mean must be

given for ¢, but a priori we expect § = 0. This would be simple to change.

Our aim is to combine data with this probability model to find the posterior probability distributions of
the parameters, i.e. the distribution conditional on the data. Analytically this would be impossible, and
so we use a Bayesian sampling tool, the Gibbs sampler, which we describe in Appendix [Al The Gibbs
sampler combines our prior model with the data (gamma ray data around a casing point) to produce
samples from the posterior distributions of the model parameters 1, 0, Zgtop, Zdbot, Tv, Tw and 7.

At each casing point, the data in the transition-zone are removed, and the GR log below the transition-
zone is shifted by the estimate of 6. Finally, as the absolute value of 6 is arbitrary, we find Sgr by
rescaling it to the interval [0, 1], so that Sgg is analogous to Igg.



Mathematically, this is no different from varying GRgang and GRgpae above and below each casing
point, which is common practice, but this method is not prone to arbitrary choices of the values and
enables uncertainty analysis on the resulting log.

It may seem appealing to have a multiplicative element to the model. Indeed, many of the correction
formulae given by [Lehmann| (2010), Weatherford (2009) and others are multiplicative. With this in
mind, a multiplicative probability model was specified, where the constant part of the curve from Zgpot
to Zpor Was ayr + 6. In this data-based approach, the only quantity with which we can estimate the
scaling parameter « is the variance of the GR log. Therefore, rather than having three separate and
independent variances, as in the probability model above, there was one variance, 7=, which was then
scaled by a.

When this model was applied to real data it was clear that too much weight was being given to the
variance, with previously significant features of the GR logs being lost. The additional parameter also
made convergence of the Gibbs sampler much slower.

As stated in the introduction, the wireline logs in the digital data files should have already had environ-
mental corrections made to them. In the case of the GR log, these would be likely to be multiplicative
as we have seen.

4 \Validating our assumptions

According to [Rider] (1996), RHOB, DT, NPHI and photo-electric effect (PEF) logs can all be used
quantitatively (or semi-quantitatively) to interpret lithology. Therefore we will use these logs, where
available, to validate (or expose as false) our assumption that the lithology around the casing point is
homogeneous. The GR log is among the most available of the wireline logs, and is usually recorded
over almost all of the well, along with the resistivity, sonic transit time and caliper logs. The caliper
log in particular is useful for quality control, since if it shows rugosity in the borehole the other wireline
logs are likely to be affected. Neutron porosity and density logs are typically run over shorter intervals
around the reservoir. It may therefore be that over some casing points we have a limited selection of
logs to study.

The first step will be to confirm that the casing point does not affect each log. We will do this by using
the same function-fitting procedure as for the GR, except that now our concern is whether the posterior
estimates for 6 differ significantly from zero.

Secondly, assuming no casing point effect has been found, we must use the logs to interpret the lithology
around the casing point. [Hearst et al.|(2000]) suggested cross-plotting NPHI against RHOB. Where these
logs are available we will do this, to check that all logged depth points around the casing shoe lie in
the same lithological region of the NPHI-RHOB cross-plot. We will use some of these methods on real



data in Section 5.4]

5 Example: Offshore Mid-Norway

To demonstrate Sgg in practice, we will use some wells from offshore mid-Norway, whose GR data and
casing points are shown in Figure 3] In Section we will use the other logs, as described in Section

[ to back up our use of Sgg.
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Figure 3: Input GR data and casing points (horizontal lines) for the three mid-Norway wells.
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We do not know what environmental corrections, if any, have already been made on these GR logs, and
this gives another reason for preferring our data-based approach to a deterministic one. In this section
we demonstrate the shifted GR method, and in Section we use other available wireline log data to
validate the assumption that the casing change is in a consistent shale, as described in Section

5.1 Well 6406/1-1

For well 6406/1-1 there are two casing points where we have sufficient GR data, and these are at 3008m
and 4611m rKB. Figure [4] shows samples from the posterior distribution at these points. The input
parameter values are as given in Section [3.I] and three parallel chains were used in the Gibbs sampler.
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Figure 4: Fitted curves from the Gibbs Sampler (left hand plots) and posterior density samples for the shift
parameter 6 (right hand plots) for well 6406/1-1. These use the model outlined in Section

The left hand plots in each case show the GR data (points), the casing point depth (vertical line) and
a random sample of 100 fitted curves from the 3000 samples from the posterior distribution given by

11



the Gibbs sampler. We ran three parallel chains (see appendix) in each case, giving three independent
estimates of all model parameters. The density plots on the right show the posterior densities for the
shift parameter 6, with different colours indicating the three independent estimates. Table [1] gives
summaries of the posterior distribution of each parameter.

Parameter Mean SD Min Max Parameter Mean SD Min Max

Y 49.37 0.22 48.62 50.17 Y 85.14 0.89 81.94 88.31

0| 3341 0.65 31.27 35.79 0| 26.85 0.94 23.65 30.92
Zgrop | 3007.88  0.16  3006.29 3007.97 Zgrop | 4609.08  2.24  4602.22 4611.06
Zabot | 3027.54 0.79 3024.73 3030.07 Zdabot | 4626.78  0.83 462524 4631.64

Tv 0.08 0.007  0.059 0.115 7v | 0.004 0.0004 0.003 0.006

7w | 0.014  0.002 0.008 0.021 Tw 0.01 0.002 0.006 0.017

7. | 0.017  0.002 0.011 0.024 7, | 0.062 0.007 0.04 0.093

Table 1: Summaries of posterior distributions for well 6406/1-1 at 3008m (left) and 4611m (right).

In all cases the model is clearly working in terms of finding suitable fits to the data. The posterior
distributions for each chain, shown by different colours in the density plots, match fairly well, giving us

confidence that the Gibbs sampler has converged.

The method can be sensitive to the values for Omax, dmin, @ b and pp. For example, Figure |5 shows
the fitted functions for two different values of dmax. The light grey lines were found using Qmax = 40,
as in Figure[4al The dark grey lines were found by reducing d to 20. This removes most of the GR log
below Zg5s that is at the stable level, and so the model very easily fits the level using data that should
be part of the transition-zone. The end of well report shows that the mud type was changed at 3016m,
and this can sometimes cause a jump in the GR log, as it appears to here.
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Figure 5: Casing change at 3008m with dmax = 20 (dark grey lines) and dmax = 40 (light grey lines).
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If the number of iterations were high enough, all three chains would converge to the same distribution,

but this early result indicates that this distribution would not be appropriate.

Figure |§| allows us to compare the final result (Fig. with the input GR (Fig. . Figure also
shows the lithology data available, with dark grey horizontal lines denoting shale and light grey denoting
sandstone. The lithological markers were obtained mostly from cutting samples, and while there may
therefore be some error in their depths, the shales appear consistent. Again we are reassured that the

casing points are in shales.
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5.2 Well 6506/11-7

For well 6506/11-7 there are three casing points where we have sufficient GR data, and these are at
1387m, 2700m and 4312m RKB. The GR log behaviour at 2700m is somewhat surprising, as ordinarily
one would expect an increase in GR with a smaller borehole diameter. However, the mud log shows
that the mud type was changed at 2710m, from a KCl/polymer/glycol mud to a Versapro mineral oil
based mud.

Figure [7| shows the posterior samples for the fitted functions (left) and posterior densities for (right) at
each of these casing points. Table [2] summarises the posterior distributions for each parameter at each

casing point.
Parameter Mean SD Min Max Parameter Mean SD Min Max
Y 74.54 0.48 73.06 76.21 Y1 84.33 0.73 81.41 86.84
0| 16.82 0.63 14.56 194 6 | -33.92 0.84 -36.99 -30.98
Zgop | 1360.17  0.21  1360.07 1361.74 Zgrop | 2689.73  0.39 2686.4  2690.06
Zabot | 1401.79 197 1396.79 1413.25 Zgbot | 2703.63  0.15  2703.32 2704.69
7v | 0.004  0.001 0.001 0.011 v | 0.016 0.002 0.01 0.025
7w | 0.066 0.006 0.049 0.088 7w | 0.002  0.0003 0.001 0.003
7. | 0.065  0.008  0.029 0.088 7, | 0.032 0.003 0.021 0.047

Parameter Mean SD Min Max
Y1 47.03 0.67 448 49.38

6| 38.84 1.88 32.69 4477
Zgtop | 4311.81  0.28  4310.23 4312.05
Zabor | 432252 257 4316.63 4327.45

7v | 0.012 0.001 0.008 0.017

Tw | 0.004 0.002 0.002 0.012

7, | 0.004 0.001 0.002 0.006

Table 2: Summaries of posterior distributions for casing points in well 6506/11-7 at 1387m (top left), 2700m
(top right) and 4312m (bottom).
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Figure 7: Fitted curves from Gibbs Sampler (left hand plots) and posterior density samples for the shift parameter
6 (right hand plots) for well 6506/11-7. These use the model outlined in Section
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Again, the Gibbs sampler’s chains appear to have converged, and the fitted curves appear to fit the GR
data well.
Figure [8] demonstrates another feature of this shifted GR method, which is that it will not necessarily

produce distributions that focus in on one curve. Here, the posterior distribution appears to favour two
different values of Zjor more or less equally. For this reason the posterior mean for Zgpet in Table 2] lies

between the two values, and the SD and range are large.
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20, i 4317 4320 4323 4326
4340 Zdbot

4280 4300
Depth (m)

Figure 8: The casing change at 4312m in well 6506/11-7, with posterior function fits (left), and the posterior

samples from Zypor (right).

This is not necessarily a problem, particularly since here it results only in a slight difference in the width
of the transition-zone (the posterior values for 1 and 6 are still very similar). If the difference was more
serious, for example in the value of 0, then it may be wise to look further into the other wireline logs

and the well report to try to understand whether one solution is more realistic.

Figure [9 compares the input GR (left, with lithology data also shown) with the mean Sgg found using

our method.
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Figure 9: Input GR log and mean shifted GR index, Sgg, for well 6506/11-7.

5.3 Well 6406/2-7

For well 6406/2-7 there are four casing changes with GR data, at 379m, 1399m, 2707m and 4458m. The
posterior function fits are shown in Figure [10} along with posterior densities for 6. Table [3] summarises

the posterior densities for each parameter at each casing point.
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Some of the shifts in GR are much more gradual in this well, particularly that at 379m.

Parameter | Mean SD Min Max Parameter | Mean SD Min Max
v | 6955 035 68.31 70.79 v | 52.09 033 50.86 53.26
0| 3.73 0.5 225 5.32 0| 3464 051 3296 36.46
Zgop | 3425 0.19 3422 3437 Zatop | 1397.6  0.72 13951 1398.9
Zabot | 395.2 2.63 379.4 398.6 Zabot | 1416.2  0.49 1413.7 1418.1
7v | 0.005 0.001 0.002 0.013 7v | 0.037 0.003 0.025 0.05
7w | 0.085 0.007 0.059 0.115 Tw | 0.045 0.006 0.03 0.074
7, | 0.05 0.007 0.032 0.078 7, | 0.042 0.005 0.027 0.062
Parameter | Mean SD Min Max Parameter | Mean SD Min Max
v | 84.11 0.36 8284 85.43 ~v1 | 80.45 0.68 77.79 82.8
0| -1086 0.66 -14.01 -8.69 0| 14.25 1.01 10.47 17.98
Zgtop | 2670.1  0.09 2670.1 2670.9 Zitop | 44549  0.25 44538 44578
Zabot | 2709.1  0.47 2707.3 2713.2 Zabot | 4491.7 1.72  4486.4 44949
7v | 0.003 0.001 0.001 0.008 7v | 0.004 0.0004 0.003 0.005
w | 0.116 0.012 0.067 0.164 w | 0.026 0.003 0.017 0.036
7, | 0.016 0.002 0.01 0.023 7| 0.049 0.012 0.016 0.114

Table 3: Summaries of posterior distributions for casing points in well 6406/2-7 at 379m (top left), 1399m (top
right), 2707m (bottom left) and 4458m (bottom right).
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Figure [L1] compares the smoothed GR data with the mean Sgg, this time without lithology data.
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Figure 11: Input GR log and mean shifted GR index, Sgg, for well 6406/2-7.

5.4 Example: validating our assumptions

To verify that the shifted GR model is appropriate, we use some of the approaches mentioned in Section
on the data from the three mid-Norway offshore wells to see whether the lithology around each casing
change is consistent. There is often little choice of wireline log in the shallower sections of the well, and

so the choice of logs depends on which logs are available.
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5.4.1 Well 6406/1-1

The only other wireline log available around 3008m is resistivity. |Hearst et al| (2000) states that
resistivity does change with lithology, even though this change is complicated by other factors, such as
fluid content. Figure [I2] shows the resistivity around 3008m, with a fitted linear model of resistivity
against depth shown in blue. The gradient coefficient in the linear regression of resistivity against depth
is estimated to be —2.8 x 10~*Ohm.m/m which is not significant under the linear regression model
(the t statistic is —1.7, which has a p-value of 0.09). This supports the notion that the lithology is
consistent, and the resistivity values themselves are consistent with shale.
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Figure 12: Deep resistivity (left) and GR (right) around 3008m, with linear regression fits shown.

Figureshows the density log around the casing change at 4611m in well 6406/1-1, with the posterior
samples of the fitted model function, and the posterior samples of 6.
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Figure 13: Density log for well 6406/1-1 around the casing point at 4611m, with the posterior function fits (left),
and posterior samples for the shift parameter f. The different coloured lines represent different chains from the
Gibbs sampler.

The density does not show any sign of change over this region, and again this supports a consistent
lithology.
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5.4.2 Well 6506/11-7

Most of the wireline logs were recorded only below the casing point at 1387m, so again we have only
resistivity for the shallowest casing point. Figure [14| shows the resistivity around the casing point, with
a linear regression fit in blue. Again, the coefficient of depth in a linear regression of resistivity against
depth is non-significant (the ¢ statistic is —1.6 which has a p-value of 0.11).

2754

2.50

N)

N

a
1

Resistivity (Ohmm)
g
1

1.754

1.50 4

13:80 14‘00 14‘20
Depth (m)

Figure 14: Deep resistivity around 1387m, with a linear regression fit shown.

Figure (15| shows the neutron porosity (in limestone units) and density logs around the casing point at
4312m separately, and both show slight trends with depth.
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Figure 15: Neutron porosity (top) and density (bottom) around the casing point at 4312m (shown by vertical
line). There is a clear spike in porosity at the casing point, and a slight trend in both logs.
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Figure [16] shows the neutron-density combination plot around the casing change at 4312m in well

6506/11-7, as in Rider| (1996)). The alignment of the scales results in both curves overlapping in water-

filled limestone porosity. Below 4292m the data appear to be shale as indicated by the characteristic

separation between the curves, with NPHI reading a considerably higher porosity than RHOB.
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Figure 16: Neutron porosity (solid) and density (dashed) around the casing point at 4312m (shown by black

line). There is a clear spike in porosity at the casing point, and a slight trend in both logs, consistent with a gradual
reduction in porosity with increasing depth.
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5.4.3 Well 6406/2-7

Again, for the casing changes at 379m and 1399m there are few wireline logs, but below this depth
both neutron and density are available. Figure [I7] shows the neutron and density plotted against depth
around the casing points at 2707m and 4458m. Although the data are not in the same regions of the
plots, the separations between the logs are consistent with shale and show similar lithology above and

below the casing point.
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Figure 17: Neutron-density plots for two casing changes from well 6406,/2-7, at 2707m (left) and 4458m (right).
Both are consistent with shale, though the data around 2707m are more variable, possibly due to hole wash-out
around the casing point.
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6 Discussion

The problem we have addressed is that of detecting a shift in mean response at a specified casing point.
In the statistical literature, this is a changepoint problem (Krishnaiah and Miao [1988)), with the added
complication that in all the examples we have seen the change in shift is not instant but takes place
over an interval or transition-zone. These zones vary in length from example to example. Moreover, the
observations within the transition zone tend to transit to the new level unpredictably and with higher
variability than preceding and succeeding observations. The typical industry approach to this problem
is to make a "“by eye” adjustment for shift, and to ignore the transition zone. The method described
here is a statistical formalisation of that process.

We adopt a Bayesian approach as the most appropriate, extending from the changepoint problem
discussed by |Carlin et al.| (1992)), who also give a brief introduction to the Gibbs sampler. One advantage
of the Bayesian approach is that it can incorporate expert judgements as to the process - for example, in
the depth of the transition-zone. Another advantage is that it can handle uncertainties for the different
kinds of quantities involved: depth of transition-zone, variation in mean shift, and so forth. The results
produced are posterior probability distributions for these quantities.

The Bayesian approach requires parameters to control the estimation process. These can be chosen
subjectively according to the problem at hand, but we also suggest defaults which we have found to
work well in practice. Typically, the defaults are based on non-informative prior distributions, where we
would expect data to dominate the prior formulation very quickly.

The use of a Markov Chain Monte Carlo mechanism such as the Gibbs sampler, as described in the
Appendix, is standard in such settings. The algorithm we present is implemented in the statistical
language R (R Development Core Team, [2011]), making use of R packages rjags (Plummer, 2014) and
R2Jags (Su and Yajima, 2014). All our examples run automatically with default parameters and take a
few minutes each on a desktop PC. In addition to providing a formal statistical basis for the alignment of
GR segments between casing points, this method should provide results which are faster, more reliable,
more automatic, and less biased than those produced by manual manipulations of the GR log. Further,
the procedure is transparent and with assumptions which may be challenged and pursued via diagnostics
at a finer level of detail, if so desired. We would expect such a tool to be used with expert oversight
rather than to provide unchecked fully automated realignments.

Except diagnostically, we do not presently make use of uncertainties attached to the mean shift or to
segments joining the casing points. However, elsewhere we are constructing stochastic dynamic Bayesian
networks which model pore pressure layer by layer as we descend through the earth. The shifted GR
index is an important ingredient to this modelling process. The availability of uncertainties attached to
features in the shifted GR index is essential in that context.
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7 Summary

We have presented a Bayesian, data-based approach for accounting for uncertainty in the open-hole GR
log around casing changes. This method relies on the assumption that the lithology around the casing
point is consistent, and we have shown some methods for validating this using other wireline logs. The
shifted GR method does not rely on any parameters relating to borehole conditions, mud type and so on,
but does require careful consideration from the user. Using the posterior distributions obtained through
the probability model, we are able to asses our uncertainty about the fit (given the model). Although
the mathematics is unavoidably complex, they can be implemented in software, and an R package is in
development for release to the community.
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A The Gibbs sampler

When trying to solve a problem in the Bayesian framework, the desired end result is usually a marginal
posterior distribution. For instance, in the GR shift problem described in this report, we would like to
know the marginal posterior distribution for 0, the probability of # conditional on the data. Finding this
distribution analytically would involve some prohibitively complicated integration. The Gibbs sampler
provides a way to obtain random samples from posterior marginal distributions without ever having to
solve these integrals, by sampling from the conditional distributions.

The Gibbs Sampler has been popular since the 1980s, and has been used in a wide array of problems
(Gelfand et al} 1992). It is an iterative sampling scheme and proceeds in the following way. We write
© = {64, ..., 0k} to denote the collection of all the model's parameters, and D for the data. We start
with an arbitrary set of values 00 = (920), . 95(0)). We then draw 0g1) from the distribution

0169, ...,00,D.
and then 65" from
026", ...,0°, D,

and so on, until we have drawn 95(1) from

o | 04, ..., D.
This gives us a new set of values ©(1). We repeat this process, in general sampling 0,(-j) from

6;169,....69 0 0V D

i i+1

until we have several thousand or more such ©U). Under fairly general conditions, the distribution
of these samples tends towards the true posterior distribution. Although eventual convergence can be
proved, it is not possible to calculate how many iterations there should be before it is reached. Therefore
several precautions are often taken (Carlin and Louis, 2009).

= Burn-in: the first m sets ©() are discarded, to remove dependence on the initial value ©©).

= Parallel chains: several independent sequences are generated, rather than just one. In practice,
this means re-running the full estimation procedure several times. If the results have very similar
properties, this suggests the samples can be trusted.

» Thinning: this deals with the problem of the chain getting stuck in particular areas, and not
exploring the full probability space properly, which is particularly a problem where there are local
maxima separated by regions of very low probability. The sequence of values ©0) is ‘thinned’ by
keeping only every n set.
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Once the final collection of samples has been found, samples of the marginal posteriors are given by the
values of each parameters. Population properties can be estimated using the samples; for example, the
mean of 4 can be approximated by the mean of the sample values of 81, and so on. More detail about
the mathematics behind the Gibbs Sampler is given in [Casella and George| (1992), and |Gelfand et al.
(1992)) give an example. The problem we describe is very similar to the changepoint problem discussed
by |Carlin et al.| (1992)), who also give a brief introduction to the Gibbs sampler.
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