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Abstract

Background: Many mathematical models have now been employed across every area of systems biology. These
models increasingly involve large numbers of unknown parameters, have complex structure which can result in
substantial evaluation time relative to the needs of the analysis, and need to be compared to observed data of various
forms. The correct analysis of such models usually requires a global parameter search, over a high dimensional
parameter space, that incorporates and respects the most important sources of uncertainty. This can be an extremely
difficult task, but it is essential for any meaningful inference or prediction to be made about any biological system. It
hence represents a fundamental challenge for the whole of systems biology.

Methods: Bayesian statistical methodology for the uncertainty analysis of complex models is introduced, which is
designed to address the high dimensional global parameter search problem. Bayesian emulators that mimic the
systems biology model but which are extremely fast to evaluate are embeded within an iterative history match: an
efficient method to search high dimensional spaces within a more formal statistical setting, while incorporating major
sources of uncertainty.

Results: The approach is demonstrated via application to a model of hormonal crosstalk in Arabidopsis root
development, which has 32 rate parameters, for which we identify the sets of rate parameter values that lead to
acceptable matches between model output and observed trend data. The multiple insights into the model’s structure
that this analysis provides are discussed. The methodology is applied to a second related model, and the biological
consequences of the resulting comparison, including the evaluation of gene functions, are described.

Conclusions: Bayesian uncertainty analysis for complex models using both emulators and history matching is shown
to be a powerful technique that can greatly aid the study of a large class of systems biology models. It both provides
insight into model behaviour and identifies the sets of rate parameters of interest.
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Background
Fundamental challenges facing systems biology
Recent advances in genome sequencing techniques, a vari-
ety of ‘omic’ techniques and bioinformatic analyses, have
led to an explosion of systems-wide biological data. Thus,
identification of molecular components at the genome
scale based on biological data has become possible. How-
ever, a major challenge in biology is to analyse and predict
how functions in cells emerge from interactions between
molecular components. Computational andmathematical
modelling provide compelling tools to study the nonlinear
dynamics of these complex interactions [1]. A particu-
lar example is kinetic modelling, in which the kinetics
of each biological reaction are described in accordance
with the corresponding biological process, and the prop-
erties of the whole system are described using differen-
tial equations: a common tool for analysing biological
systems [2–4].
A critical problem found in the mathematical mod-

elling of many complex biological systems, which is of
particular severity in kinetic modelling, is that the mod-
els often contain large numbers of uncertain parameters
(a common type being reaction rate parameters). In most
cases, such kinetic parameters cannot be directly mea-
sured as experiments typically measure concentrations
rather than rates. Even when such parameters can bemea-
sured ‘directly’, this is usually in experimental conditions
that are significantly different from the cellular environ-
ment we wish to study. Therefore, we have to compare the
mathematical model’s outputs with experimental obser-
vations, often in the form of measured concentrations
and trends, and determine which values of the input or
rate parameters will achieve an acceptable match between
model and reality. This involves consideration of sev-
eral sources of uncertainty including observation error,
biological variability and the tolerance we place on the
model’s accuracy, known as the model discrepancy. It
is vital that we perform a global parameter search for
all input parameter settings that achieve an acceptable
match. This is because a single solution for the rate param-
eter values may suggest certain biological implications
and give particular predictions for future experiments,
both of which could be gravely misleading were we to
explore the parameter space further and find several alter-
native solutions that give radically different implications
and predictions. This is a mistake that is disturbingly
common.
Unfortunately, performing global parameter searches

over high dimensional spaces can be extremely challeng-
ing for several reasons, most notably: (a) the complex
structure of the model and hence the complex way it
imposes constraints on the parameters, (b) the substantial
model evaluation time relative to the needs of the analy-
sis, (c) the need for a careful assessment of an “acceptable

match” that incorporates appropriately all the complex-
ities and uncertainties of the comparison between the
model and the real system, and (d) high dimensional
spaces, being extremely large, require vast numbers of
model evaluations to explore. For example, some spatial
models of root development [5] require at least several
minutes for a single evaluation. It is worth considering
how large high dimensional spaces are: were we just to
evaluate the model in question at the corners of the ini-
tial input space, in say 32 dimensions, we would require
232 � 4.3 billion evaluations, which would take approxi-
mately 136 years if the model took 1 second per evalua-
tion. However, global parameter searches are essential for
any meaningful inference or prediction to be made about
the biological system. Therefore this represents a funda-
mental challenge for the whole of systems biology. This
article describes practical methodology to address this
problem, based on Bayesian statistics methodology for the
uncertainty analysis of complex models [6–9].

Bayesian emulation and uncertainty analysis
The issues surrounding the analysis of complex models
under uncertainty, and specifically the global parameter
search problem, are not unique to systems biology, and
have been encountered in many different scientific disci-
plines. An area of Bayesian statistics has arisen tomeet the
demand of such analyses. This area, sometime referred to
as the uncertainty analysis of computer models, centres
around the construction of Bayesian emulators [6–9]. An
emulator is a statistical construct that mimics the scien-
tific model in question, providing predictions of themodel
outputs with associated uncertainty, at as yet unevalu-
ated input parameter settings. The emulator is however,
extremely fast to evaluate [10]. It provides insight into the
model’s structure and, thanks to its speed, it can be used
to help perform the global parameter search far more effi-
ciently than approaches that just use the comparatively
slow scientific model itself (for examples see [6, 8, 11–14]).
Many analyses and corresponding parameter searches

still fail because an appropriate measure of an acceptable
match between model and reality is not defined. This can
lead to the use of badly behaved objective functions that
do not properly capture the desired match criteria, and
which are often harder to explore in high dimensions, due
to increased numbers of ridges, spikes and local minima.
The Bayesian emulation methodology we introduce natu-
rally incorporates more detailed statistical models of the
difference between the model outputs and the observed
data, which allow the inclusion of important sources of
uncertainty such as observational error and model dis-
crepancy, the later being the upfront acknowledgement of
the limitations of the current model. Various structures of
increasing complexity are available for the representation
of these uncertainties, depending on the requirements and
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importance of the study (see [6, 15–18] for examples and
discussion).
It is worth noting that due to their speed, the use of emu-

lators would greatly improve the efficiency of many forms
of analysis that a modeller may wish to perform, e.g. for
a fully Bayesian MCMC analysis [9, 19, 20] or for more
direct global parameter searches such as [21]. However for
high dimensional models, the particular strategy chosen
for a parameter search is vital. Many approaches struggle
due to being trapped in local minima (of which there may
be many) or because they chase the scientifically spurious
best match parameter setting. Here, we describe an effi-
cient global parameter search method known as Bayesian
history matching, which has proved very successful across
a wide range of scientific disciplines including cosmology
[6, 7, 15, 22–24], epidemiology [11, 25], oil reservoir mod-
elling [8, 26–28], climate modelling [12], environmental
science [16] and traffic modelling [29].
It utilises Bayesian emulators to reduce efficiently the

input parameter space in iterations or waves, by iden-
tifying regions that are implausible as matches to the
observed data, with the objective of identifying all accept-
able input parameter settings. It is a careful approach that
avoids many of the traps of common parameter search
techniques.

Hormonal crosstalk network in Arabidopsis root
development
Understanding how hormones and genes interact to coor-
dinate plant growth is a major challenge in developmental
biology. The activities of auxin, ethylene and cytokinin
depend on the cellular context and exhibit either syn-
ergistic or antagonistic interactions. Previously, three of
our authors developed a hormonal crosstalk network for
a single Arabidopsis cell by iteratively combining mod-
elling with experimental analysis [30]. Kinetic modelling
was used to analyse how such a network regulates auxin
concentration in the Arabidopsis root, by controlling the
relative contribution of auxin influx, biosynthesis and
efflux; and by integrating auxin, ethylene and cytokinin
signalling [30]. Although some of the parameters in the
model were based on experimental data, most parameters
were chosen in an ad hoc way, by adjusting them to fit
experimental data. Conditional on those somewhat ad hoc
choices, it was shown that the hormonal crosstalk network
quantitatively describes how the three hormones (auxin,
ethylene, and cytokinin) interact via POLARIS peptide
(PLS) [31, 32] to regulate plant root growth [30].
In this work we demonstrate the power of the Bayesian

emulation methodology by applying it to the hor-
monal crosstalk network in Arabidopsis root develop-
ment. Specifically, we explore the model’s 32-dimensional
parameter space, and identify the set of all acceptable
matches between model outputs and experimental data,

taking into account major sources of uncertainty. This
provides much insight into the model’s structure and the
constraints imposed on the rate parameters by the cur-
rent set of observed data. We apply the methodology to a
second, competing model, and hence are able to investi-
gate gene functions robustly. As an example, our analysis
suggest that, in the context of the hormonal crosstalk
network, POLARIS peptide (PLS) must have a role in
positively regulating auxin biosynthesis.
The paper is organised as follows. In the “Methods”

section we begin by defining a simple 1-dimensional toy
model that we use to illustrate our definitions and to
demonstrate the threemain parts of the Bayesianmethod-
ology: linking the model to reality, Bayesian emulation,
and history matching, before going on to compare the
strengths and weaknesses of Bayesian history match-
ing to more standard approaches. In the “Results” and
“Discussion” section we describe in detail the application
of this methodology to the full 32 dimensional Arabidop-
sis model, and discuss the relevant insights and biological
implications obtained.

Methods
Simple 1-dimensional exponential example
Here we introduce a simple 1-dimensional exponential toy
model example which we will use to illustrate our defini-
tions of all the parts of a typical systems biology analysis,
for example, the model, the input or rate parameters,
observations with errors, model discrepancy, Bayesian
emulators, implausibility measures and history match-
ing. Specifically, this 1-dimensional example will be used
throughout this “Methods” section to demonstrate each of
the three main parts of our approach:

• Linking the model to reality
• Bayesian Emulation
• History matching: a global parameter search

Say we are interested in the concentration of a chemical
which evolves in time. We represent this concentration as
ft(x)where x is, for example, a reaction rate parameter and
t is time. We model ft(x) with the differential equation:

dft(x)
dt

= x ft(x) (1)

which in this case we can solve precisely to give

ft(x) = f0 exp(xt) (2)

We will temporarily assume the initial conditions are f0 =
ft=0(x) = 1. The system runs from t = 0 to t = 5 and
we are at first interested in the value of ft(x) at t = 3.5.
This mathematical model features an input or rate param-
eter x, which we wish to learn about. We do this using
a measurement of the real biological system at t = 3.5
which we denote z, which corresponds to, but is not the
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same as, the model output ft=3.5(x). Note that usually, for
models of realistic complexity, we would not have the ana-
lytic solution for ft(x) given by Eq. (2). Instead we would
resort to a numerical integration method to solve Eq. (1)
that might require significant time for one model evalu-
ation, ranging from less than a second to hours, days or
even weeks, depending on the full complexity of themodel
[6, 12]. Such a computational cost, for a single evaluation
of the model, means that a full global parameter search
is computationally infeasible, especially when the model
has many rate parameters and therefore a high dimen-
sional input space, which may require vast numbers of
evaluations to explore fully.
We typically begin the analysis by exploring the model’s

behaviour for several different values of the unknown rate
or input parameter x. Figure 1 (left panel), shows five eval-
uations of the model ft(x) for different values of x between
x = 0.1 and 0.5, coloured red to purple respectively, with
time on the x-axis. The measurement of the system is
denoted z, and is represented as the black point in Fig. 1,
with ± 3σe error bars representing observational error,
defined precisely below. This measurement was made at
t = 3.5 shown as the vertical dashed line. Themost impor-
tant questions for the biologist at this point are: can the
model match the observed data z at all, and if so, what is
the entire set of input parameter choices that give rise to
acceptable matches between model output and observed
data? Figure 1 (right panel) represents this question as it
now shows only ft=3.5(x) but now represented purely as a
function of the input parameter x on the x-axis, with the
red to purple points consistent with those in the left panel.
The observed data z is now represented as the solid black
horizontal line, with the ± 3σe error bars as the horizontal

black dashed lines. We see that there will be acceptable
values of x approximately between 0.3 and 0.35.
For a general complex model ft(x), that possesses a

large number of input or rate parameters and possibly
several outputs, a full analysis of the model’s behaviour
encounters the following issues:

1 When comparing the model to observed data from
the real biological system, an adequate statistical
description of the link between model and reality,
covering all major uncertainties, is required.

2 For complex models, the time taken to evaluate the
model numerically is so long that an exhaustive
exploration of the model’s behaviour is not feasible.

3 The appropriate scientific goal should be to identify
all locations in input parameter space that lead to
acceptable fits between model and data, and not just
find the location of a single good match.

Methods to address these three fundamental issues are
described in the next three sections.

Model discrepancy and linking the model to reality
Most systems biology models are developed to help
explain and understand the behaviour of corresponding
real world biological systems. An essential part of deter-
mining whether such models are adequate for this task is
the process of comparing the model to experimental data.
As a comparison of this kind involves several uncertain-
ties that cannot be ignored, it is therefore vital to develop
a clearly defined statistical model for the link between sys-
tems biology model f (x) and reality z. This allows for a
meaningful definition of an ‘acceptable’ match between
a model run and the observed data. Here we describe a

Fig. 1 Left panel: five evaluations of the model ft(x) for different values of x between x = 0.1 and 0.5, coloured red to purple respectively, with time t
on the x-axis. The measurement of the real system at t = 3.5 is denoted z, and is represented as the black point, with ± 3σe error bars representing
observational error. Right panel: the model at t = 3.5. The curved dashed line gives ft=3.5(x) but now it is represented purely as a function of the
input parameter x on the x-axis, with the red to purple points consistent with those in the left panel. The observed data z is given by the solid black
horizontal line, with the ± 3σe error bars as the horizontal black dashed lines. We see that there will be acceptable values of x approximately
between 0.3 and 0.35
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simple yet extremely useful statistical model for the link
between the biological model and reality, that has been
successfully applied in a variety of scientific disciplines, for
example climate, cosmology, oil reservoir modelling and
epidemiology [6, 8, 11, 12].
The most recognisable source of uncertainty is that of

observational or experimental error. We represent the
uncertain quantities of interest in the real biological sys-
tem as the vector y, which we will measure with a vector
of errors e to give the vector of observations z, such that

z = y + e (3)

where we represent the errors as additive, although more
complex forms could be used. Note that z, y and e here
represent vectors of random quantities, which will reduce
to scalar random quantities if there is only one quantity of
interest. A common specification [6] that we will employ
here is to judge the errors to be independent from y, and
unbiased with expectation E(e) = 0 and, for the scalar
case, Var(e) = σ 2

e .
An important distinction to make is between the model

of the biological system, represented as the vector f (x),
and the system itself y. We represent the difference
between these using a model discrepancy term as follows.
Even were we to evaluate the model f (x) at its best pos-
sible choice of input x∗, the output f (x∗) would still not
be in agreement with the real biological system value y,
due to the many simplifications and approximations of the
model. Hence we state that:

y = f (x∗) + ε (4)

where the ε is themodel discrepancy: a vector of uncertain
quantities that represents directly the difference between
the model and the real system. Again we treat y, f, x∗ and
ε as vectors of random quantities. A simple and popular
specification [6] would be to judge that ε is indepen-
dent of f (x∗), x∗ and e, with E(ε) = 0 and, in the scalar
case, Var(ε) = σ 2

ε . In a multivariate setting, where f (x)
describes a vector of outputs (for example, with each out-
put labelled by time t), the vector ε may have an intricate
structure, possessing non-zero covariances between com-
ponents of ε. This could capture the related deficiencies
of the model across differing time points. Various struc-
tures of increasing complexity are available (for examples
see [6, 8, 9]), along with methods for specification of their
components [6, 16].
While the explicit inclusion of the model discrepancy

term ε is unfamiliar, it is now standard practice in the
statistical literature for complex models [7, 9, 17, 33]. Fur-
thermore, any analysis performed without such a term
is implicitly conditioned with the statement “given the
model is a perfect representation of reality for some value
of the inputs x”, a statement that is rarely true. The model
discrepancy allows us to perform a richer analysis than

before as we can now include any extra knowledge we have
about the model’s deficiencies to improve our modelling
of reality y, through the joint structure of ε (see for exam-
ple [6, 16]). This is especially important in prediction: as a
simple example, if our model undershot every auxin out-
put we have measured so far, we may suspect that it will
undershoot future measurements of auxin also, and may
wish to build this into our prediction for future y [33].
We can specify probabilistic attributes of ε a priori,

or learn about them by comparing to observed data.
For direct specification, there are often various simple
experiments that can be performed on the model itself
to obtain assessments of σε and other aspects if neces-
sary. For example, often models are run from exact initial
conditions, so performing a set of exploratory model eval-
uations with the initial conditions appropriately perturbed
would provide a lower bound on σε . See [16] where sev-
eral such assessment methods are demonstrated, for more
details.

1-dimensional example
Figure 2 (left panel) shows the case for the simple
1-dimensional exponential example model when both the
observation error e and model discrepancy ε are ignored.
The model f (x) is given by the purple line, while the
observed data z is given by the horizontal black line. Here
only one value of x can be viewed as acceptable (coloured
green) while all others are unacceptable (red). This partic-
ular value of x is not unique in that if we were to perform
the measurement again, due to measurement error we
would get a different value for z and hence for x. More
importantly, if the model had a second output, say corre-
sponding to a different time, that also depended on the
same input x, we would be extremely unlikely to be able to
match both outputs to their measurements as we would
have to obtain exact matches simultaneously for precisely
the same value of x. Inferences and predictions about the
biological system made from this case, using this value of
x are not trustworthy.
Figure 2 (right panel) shows the far more realistic situa-

tion where we include both observation error e (the black
dashed lines represent z ± 3σe) and model discrepancy
ε (the purple dashed lines show f (x) ± 3σε). As we have
taken into account both major types of uncertainty there
is now a range of acceptable values for x (green points)
with borderline/unacceptable points in yellow/red. If we
were to consider additional outputs of the model, we still
have a chance to match them simultaneously to data for a
subset of the currently acceptable points. If on the other
hand we cannot find any acceptable points x even given
the uncertainties represented by e and ε, then we can
state that the model is inconsistent with the observed data
and therefore most likely based on incorrect biological
principles. Further, inclusion of the observation error and
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Fig. 2 Left panel: the unrealistic case when both the observation error e and model discrepancy ε are ignored. The model f (x) is given by the purple
line, the observed data z by the horizontal black line. Here only one value of x can be viewed as acceptable (coloured green) while all others are
unacceptable (red), however a repeat of the experiment would yield a slightly different z and hence x. Right panel: the more realistic situation where
we include both observation error e (the black dashed lines represent z ± 3σe) and model discrepancy ε (the purple dashed lines show f (x) ± 3σε ).
There is now a range of acceptable values for x (green points) with borderline/unacceptable points in yellow/red. It now may be possible to
simultaneously match multiple outputs

model discrepancy terms often aids a global parameter
search as they tend to smooth the likelihood surface (or
comparable objective function), making it both easier to
explore while simultaneously more robust. They also help
reduce the temptation to chase the often scientificallymis-
leading global minimum, such as the lone green point in
Fig. 2 (left panel), instead suggesting that the identifica-
tion of a set of acceptable input points is the appropriate
goal for such a search (see the green points in Fig. 2
(right panel)).

Bayesian emulation of systems biology models
Many complexmathematical models have been developed
and employed within the area of systems biology. Often
these models have high dimensional input spaces in that
they posses several input parameters, for example reaction
rate parameters, that must be specified in order to evalu-
ate the model. We represent the list of such inputs as the
vector x, with individual inputs as xk with k = 1, . . . , d.
The model may have any number of outputs, denoted
as the vector f (x), with individual outputs as fi(x) with
i = 1, . . . , q, the behaviour of which we want to investi-
gate, possibly comparing some of these to observed data.
For example, the index i may label the different times we
are interested in, or the different chemical outputs of the
model, or both. Most models are complex enough that
they require numerical integration methods to solve, and
hence take appreciable time to evaluate. This evaluation
time can range anywhere from less than a second to min-
utes, hours or even days for highly sophisticated models:
our approach is applicable in any of these cases, and adds
more value as the dimensionality and evaluation time of
the model increases.

A Bayesian emulator is a fast, approximate mimic of the
full systems biology model. It gives insight into the struc-
ture of the model’s behaviour and can be used instead of
the model in many complex calculations. The emulator
gives a prediction of what the model’s output f (x) will be
at a yet to be evaluated input point x, and additionally pro-
vides an associated uncertainty for that prediction (these
are often expressed as posterior distributions, or simply
expectations and variances in some cases). Critically an
emulator is extremely fast to evaluate as it only requires
a few matrix multiplications, and hence can be used to
explore the input space more fully, as for example in a
global parameter search.
A popular choice for the Bayesian emulator for model

f (x), which has individual outputs fi(x), i = 1 . . . q, is
structured as follows:

fi(x) =
∑

j
βijgij(xAi) + ui(xAi) + wi(x) (5)

where the active variables xAi are a subset of the inputs
x that are most influential for output fi(x). The first term
on the right hand side of the emulator Eq. (5) is a regres-
sion term, where gij are known deterministic functions of
xAi , a common choice being low order polynomials, and
βij are unknown scalar regression coefficients. The sec-
ond term, ui(xAi) is a Gaussian process over xAi (or in a
less fully specified version, a weakly second order station-
ary stochastic process), which means that if we choose a
finite set of inputs {x(1)

Ai
, . . . , x(s)

Ai
}, the uncertain outputs

ui(x(1)
Ai

), . . . ,ui(x(s)
Ai

) will have a multivariate normal dis-
tribution with a covariance matrix constructed from an
appropriately chosen covariance function, for example:
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Cov
(
ui(xAi),ui(x′

Ai)
) = σ 2

uiexp
{

−‖xAi − x′
Ai

‖2
θ2i

}
(6)

where σ 2
ui and θi are the variance and correlation length of

ui(xAi) which must be specified [6]. The third term wi(x)
is a nugget, a white noise process uncorrelated with βij,
ui(xAi) and itself such that

Cov
(
wi(x),wi(x′)

) =
{

σ 2
wi if x = x′
0 otherwise (7)

with expectation zero and Var(wi(x)) = σ 2
wi , that

represents the effects of the remaining inactive input
variables [6].
The emulator, as given by Eq. (5), possesses vari-

ous desirable features. The regression term, given by∑
j βijgij(xAi), is often chosen to represent say a third order

polynomial in the active inputs. This would attempt to
mimic the large scale global behaviour of the function
fi(x), and in many cases, will capture a large proportion of
the model’s structure. (It is worth noting that reasonably
accurate emulators can often be constructed just using
regression models, for example using the lm() function in
R. This can be a sensible first step, before one attempts
the construction of a full emulator of the form given in
Eq. (5).) The second term ui(xAi), the Gaussian process,
mimics the local behaviour of fi(x) and specifically its
local deviations from the third order polynomial given
by the regression terms. We can choose the list of active
inputs xAi using various statistical techniques for example,

classical linear model fitting criteria such as AIC or BIC
[6]. A list of say p active inputs for a particular output fi(x)
means that we have reduced the input dimension from
d to p dimensions, which can result in large efficiency
gains. The small remaining effect of the inactive inputs is
captured by the third term wi(x) in Eq. (5).
We proceed by performing an initial set of carefully cho-

sen model evaluations, often picked to be ‘space filling’, i.e.
well spread out over the input space. For example we may
use a maximin Latin hypercube design, an approximately
orthogonal design which attempts to ensure there are no
large holes in-between the run locations (see Fig. 3 and
[34–36]). An n point Latin hypercube design is created by
dividing the range of each input into n sub-intervals, and
placing points to ensure there is only ever one point in
each sub-interval (this can be done using the lhs() func-
tion in R [37]). Many such Latin hypercube designs are
generated and the one with maximum minimum distance
between points is chosen.
We then fit the emulator given by Eq. (5) to the set of

model runs using our favourite statistical tools, guided
by expert judgement. Specifically we would prefer a fully
Bayesian approach if we required full probability distri-
butions [9], and a Bayes Linear approach [38, 39], which
we will describe below, if we required purely expecta-
tions, variances and covariances of f (x). We make certain
pragmatic choices in the emulator construction process,
for example, while we keep the regression coefficients βij
uncertain, we may directly specify σ 2

ui , σ
2
wi and θi a priori,

or use suitable plugin estimates [6].

Fig. 3Maximumminimum distance Latin hypercube designs of size n = 8 (left panel) and n = 20 (right panel). The blue points represent locations
in rate or input parameter space where we would run the full systems biology model. These designs are both space filling and approximately
orthogonal, both desirable features for fitting emulators. Note that the construction process of a Latin hypercube ensures that there is a blue point
within each of the n subintervals of both inputs, ensuring excellent coverage
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The emulators then provide an expectation and variance
for the value of f (x) at an unexplored input point x.We can
test the emulators using a series of diagnostics, for exam-
ple checking their prediction accuracy over a new batch
of runs [40]. See [10] for an introduction and [6, 7, 9] for
detailed descriptions of emulator construction.
While there are several approaches to emulator con-

struction, our preferred choice is to use Bayes Linear
methods, which is a more tractable version of Bayesian
statistics which requires a far simpler prior specification
and analysis [38, 39]. It deals purely with expectations,
variances and covariances of all uncertain quantities, and
uses the following update equations to adjust our beliefs
in the light of new data. Say we had performed an ini-
tial wave of n runs at input locations x(1), x(2), . . . , x(n)

giving a column vector of model output values Di =
(fi(x(1)), fi(x(2)), . . . , fi(x(n)))T , where i labels the model
output. We obtain the adjusted expectation and variance
for fi(x) at new input point x using:

EDi(fi(x)) = (8)
E(fi(x)) + Cov(fi(x),Di)Var(Di)

−1(Di − E(Di))

VarDi(fi(x)) = (9)
Var(fi(x)) − Cov(fi(x),Di)Var(Di)

−1Cov(Di, fi(x))

All quantities on the right hand side of Eqs. (8) and (9) can
be calculated from Eqs. (5) and (6) combined with prior
specifications for E(βij), Var(βij), σ 2

ui , σ
2
wi and θi. Note that

we could have used the entire collection of model out-
puts D = {D1,D2, . . . ,Dq} instead of just Di in Eqs. (8)
and (9), if we had specified a more complex, multivariate
emulator [41].

EDi(fi(x)) and VarDi(fi(x)) are used directly in the
implausibility measures used for the global parameter
searches described below.

1-dimensional example
We now demonstrate the construction of an emulator for
the simple one dimensional exponential model. As there
is only one output dimension, f (x) is now a scalar, so we
drop the i index from Eqs. (5-9).
Figure 4 (left panel) shows output from such an emula-

tor of the simple model defined by Eq. 1. We suppose that
only n = 5 runs of the model have been performed at the
locations x(j) = 0.1, 0.2, 0.3, 0.4, 0.5, which are shown as
the purple points (these are the same as the five coloured
points in Fig. 1). We therefore have the model output
values

D = (f (x(1)), f (x(2)), . . . , f (x(5)))T (10)
= (e0.1×3.5, e0.2×3.5, . . . , e0.5×3.5)T

where again the output of interest has t = 3.5.
We use a simplified form of the emulator given by

Eq. (5), where we choose the polynomial terms βjgj(xA) to
represent only a constant term β0. As we only have one
input variable, there is no distinction between inactive and
active variables so we also set w(x) to zero, and hence the
emulator Eq. (5) reduces to

f (x) = β0 + u(x) (11)

For simplicity we treat the constant term β0 as known
and hence set Var(β0) = 0, and choose prior expectation
E(β0) = β0 = 3.5, a value which we expect the function
outputs to be approximately centred around. We specify
the parameters in the covariance function for u(x) given

Fig. 4 Left panel: an emulator for the simple 1D exponential model. The purple points show five evaluations D of the model at rate parameter
locations x(j) , which are the same as the 5 coloured points in Fig. 1. The blue line represents the emulator’s updated expectation ED(f (x)), and the
pair of red lines give the credible interval ED(f (x)) ± 3

√
VarD(f (x)), both as functions of x. This defines a region between the red lines that we

believe is highly likely to contain the true function f (x). Note that evaluation of the emulator is extremely fast, as it only requires matrix
multiplication. Right panel: an emulator for the more complex function given by Eq. (17). The true function f (x) is shown as the black line, which lies
within the emulator credible intervals at all points
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by Eq. (6) to be σu = 1.5 and θ = 0.14 representing curves
of moderate smoothness: this process will be discussed in
more detail for the full Arabidopsis model.
All expectation, variance and covariance terms on the

right hand side of Eqs. (8) and (9) can now be found using
Eqs. (11), (6) and (10), for example,

E(f (x)) = β0 (12)
Var(f (x)) = σ 2

u (13)
E(D) = (β0, . . . ,β0)

T (14)

while Cov(f (x),D) is a row vector of length n with jth
component

Cov(f (x),D)j = Cov(f (x), f (x(j))) (15)

= σ 2
uexp

{
−‖x − x(j)‖2

θ2

}

and similarly Var(D) is an n× nmatrix with (j, k) element

Var(D)jk = Cov(f (x(j)), f (x(k))) (16)

= σ 2
uexp

{
−‖x(j) − x(k)‖2

θ2

}

We can now calculate the adjusted expectation and vari-
ance ED(f (x)) and VarD(f (x)) from Eqs. (8) and (9)
respectively.
Figure 4 (left panel) shows ED(f (x)) as a function of x as

the blue line. We can see that it precisely interpolates the
five known runs at outputs D, which is desirable as f (x)
is a deterministic function. The blue line also gives a sat-
isfactory estimate of the true function f (x) = exp(3.5x).
The red pair of lines give the credible interval ED(f (x)) ±
3
√
VarD(f (x)) as a function of x. This defines a region

between the lines that we believe is highly likely to con-
tain the true function f (x). Another desirable feature of
the emulator is that these credible intervals decrease to
zero width at the five known run locations, as is appropri-
ate for a deterministic function, as we precisely know the
value of f (x) there (and because we have no inactive vari-
ables). Therefore when x is close to a known run we are
more certain about the possible values of f (x), compared
to when x is far from any such runs.
Figure 4 (right panel) shows an emulator as applied to

a more complex 1-dimensional function. Here the true
function is

f (x) = 3 x sin
(
5π(x − 0.1)

0.4

)
(17)

which has been simulated at only 10 input points evenly
spread between x(1) = 0.1 and x(10) = 0.5. Here the prior
emulator specifications were as in the previous example,
but with E(β0) = 0, σu = 0.6 and θ = 0.06 allow-
ing for functions with more curvature, centred around
zero. As before the blue and red lines show ED(f (x)) and

ED(f (x))±3
√
VarD(f (x)) as functions of x. The true func-

tion f (x) is given by the solid black line and it can be
seen that it lies within the credible region for all x, only
getting close to the boundary for x > 0.5. This demon-
strates the power of the emulation process: with the use
of only 10 points the emulator accurately mimics a rea-
sonably complex function with five turning points. We
will demonstrate the effectiveness of emulators in higher
dimensions for the main Arabidopsis model example.

History matching: an efficient global parameter search
Bayesian emulation is very useful in a variety of situa-
tions. As emulators are extremely fast to evaluate, they
can replace the original model in any larger calculation,
for example when designing future experiments. They can
also provide much structural insight into the behaviour
of the model. One of the most important applications
of emulation is to the problem of performing a global
parameter search. In this section we describe a powerful
iterative global searchmethod known as historymatching,
which has been successfully employed in a variety of sci-
entific disciplines including galaxy formation [6, 7, 15, 22,
24], epidemiology [11, 25, 42, 43], oil reservoir modelling
[8, 26–28], climate modelling [12], environmental science
[16, 44] and traffic modelling [29]. Many of these applica-
tions involved models with substantial runtime, for which
the process of emulation is vital.
When confronting a systems biology model with

observed data the following questions are typically asked:

1 Are there any input parameter settings that lead to
acceptable matches between the model output and
observed data?

2 If so, what is the full set X that contains all such
input parameter settings?

History matching is designed to answer these questions. It
proceeds iteratively and employs implausibility measures
to determine parts of the input space that can be discarded
from further investigation.
We can ask the question: for an unexplored input

parameter setting x, how far would the emulator’s
expected value for the individual function output fi(x)
be from the corresponding observed value zi before we
could deem it highly unlikely for fi(x) to give an acceptable
match were we to evaluate the function at this value of
x? The implausibility measure Ii(x) captures this concept,
and is given by:

I2i (x) = (EDi(fi(x)) − zi)2

VarDi(fi(x)) + Var(εi) + Var(ei)
(18)

The numerator of Eq. (18) gives the distance between the
emulator expectation EDi(fi(x)) and the observation zi,
while the denominator standardises this quantity by all the
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relevant uncertainties regarding this distance: the emula-
tor variance VarDi(fi(x)), the model discrepancy variance
Var(εi) and the observation error variance Var(ei). This
structure is a direct consequence of Eqs. (3) and (4). A
large value of Ii(x) for a particular x implies that we would
be unlikely to obtain an acceptable match between fi(x)
and zi were we to run the model there. Hence we can dis-
card the input x from the parameter search if Ii(x) > c, for
some cutoff c, and refer to such an input as implausible.
We may choose the cutoff c by appealing to Pukelsheim’s
3-sigma rule [45], which is the powerful result that states
that for any continuous, unimodal distribution, 95% of its
probability must lie within± 3σ , regardless of asymmetry,
skew, or heavy tails, which suggests that a choice of c = 3
could be deemed reasonable [6].
We can combine the implausibility measures Ii(x) from

several outputs in various simple ways, for example we
could maximise over all outputs defining

IM(x) = max
i∈Q

Ii(x) (19)

where Q represents the collection of all outputs, or some
important subset of them (often we will only emulate
a small subset of outputs in early iterations). A more
robust approach would be to consider the second or third
maximum implausibility, hence allowing for some inaccu-
racy of the emulators [6]. Also, multivariate implausibil-
ity measures are available (see [6] for details), but these
require a more detailed prior specification, for example
this requires covariances between different components
of e and ε. Note that a low value of the implausibility IM(x)
does not imply that the input point x is ‘good’ or ‘plausi-
ble’ as it still may lead to a poor fit to outputs that have not
been included in Q yet. Also, low implausibility at x may
occur because of a high emulator variance VarDi(fi(x))
which once resolved following further runs of the model,
may then lead to a high implausibility at x. Hence we
refer to low implausibility inputs x as “non-implausible",
consistent with the literature [6–8, 11, 24, 25, 28].
We proceed iteratively, discarding regions of the input

parameter space in waves, refocussing our search on the
remaining ‘non-implausible’ inputs at each wave. Prior to
performing the kth wave, we define the current set of non-
implausible input points as Xk and the set of outputs that
we considered for emulation in the previous wave asQk−1.
We proceed according to the following algorithm.

1 Design and evaluate a well chosen set of runs over
the current non-implausible space Xk . e.g. using a
maximin Latin hypercube with rejection [6].

2 Check to see if there are new, informative outputs
that can now be emulated accurately (that were
difficult to emulate well in previous waves) and add
them to the previous set Qk−1, to define Qk .

3 Use the runs to construct new, more accurate
emulators defined only over the region Xk for each
output in Qk .

4 The implausibility measures Ii(x), i ∈ Qk , are then
recalculated over Xk , using the new emulators.

5 Cutoffs are imposed on the Implausibility measures
Ii(x) < c and this defines a new, smaller
non-implausible volume Xk+1 which should satisfy
X ⊂ Xk+1 ⊂ Xk .

6 Unless a) the emulator variances for all outputs of
interest are now small in comparison to the other
sources of uncertainty due to the model discrepancy
and observation errors, or b) the entire input space
has been deemed implausible, return to step 1.

7 If 6 a) is true, generate as large a number as possible
of acceptable runs from the final non-implausible
volume X , sampled depending on scientific goal.

We then analyse the form of the non-implausible vol-
ume X , the behaviour of model evaluations from differ-
ent locations within it and the corresponding biological
implications. If the entire input space has been deemed
implausible in step 6 b), this may imply that the model is
inconsistent with the observed data, with respect to the
specified uncertainties. This could be because the biologi-
cal principles that underlie themodel’s structure are incor-
rect, and hence remodelling is required. Or that we may
have underestimated the observation errors, the model
discrepancy or even the emulator uncertainty, although
emulator diagnostics [40] combined with the choice of
fairly conservative cutoffs should make the latter unlikely.
Note that concluding that a far larger model discrep-
ancy is needed is essentially stating that the model is
highly inaccurate, and may, for example be judged unfit
for purpose.
The history matching approach is powerful for several

reasons:

• As we progress through the waves and reduce the
volume of the region of input space of interest, we
expect the function f (x) to become smoother, and
hence to be more accurately approximated by the
regression part of the emulator βijgij(xAi), which is
often composed of low order polynomials (see Eq. 5).

• At each new wave we have a higher density of points
in a smaller volume and hence the Gaussian process
term ui(xAi) in the emulator will be more effective, as
it depends mainly on the proximity of x to the
nearest runs.

• In later waves the previously strongly dominant
active inputs from early waves will have their effects
curtailed, and hence it will be easier to select
additional active inputs, unnoticed before.

• There may be several outputs that are difficult to
emulate in early waves (perhaps because of their
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erratic behaviour in uninteresting parts of the input
space) but simple to emulate in later waves once we
have restricted the input space to a much smaller and
more biologically realistic region.

1-dimensional example
We now demonstrate the history matching process as
applied to the simple 1-dimensional exponential example.
Figure 5 (left panel) shows the emulator expectation and
credible intervals as in Fig. 4, however now the obser-
vation z plus observed error has been included as the
horizontal black solid and dashed lines respectively. Here
we have set the model discrepancy to zero (σε = 0) and
reduced the size of the observation errors σe for clar-
ity. Also given are the implausibilities I(x) as represented
by the colours on the x=axis: red, yellow and green for
high (I(x) > 3.5), borderline (3.5 < I(x) < 3) and low
(I(x) < 3) implausibility respectively.
The non-implausible spaceX1 at wave 1 is the full initial

range of the rate parameter x, which is 0.075 < x < 5.25.
If we impose cutoffs of I(x) < 3 then this defines the wave
2 non-implausible space X2 as shown by the green region
of the x-axis in Fig. 5 (left panel).
We then perform the second wave by designing a set

of two more runs over X2, reconstructing the emula-
tor over this region, and recalculating the implausibility
measure I(x). The results of this second wave are shown
in Fig. 5 (right panel). It can be seen that the emula-
tor is now highly accurate over the X2 region and that
the non-implausible region in green has been further
reduced. As the emulator is now far more accurate than
the corresponding observation error, we may stop the

analysis with this wave as X3 � X , implying that fur-
ther runs will do little to reduce the non-implausible
region further. Note that providing we have enough runs
in each wave, we would often create new emulators at each
wave, defined only over the current green non-implausible
region [6], instead of updating emulators from previous
waves, as in Fig. 5. See the Additional file 1 for R code to
reproduce the example model output, discrepancy, emu-
lation and history matching plots of Figs. 1, 2, 4, and 5
respectively.

History matching and Bayesian MCMC
Here we discuss the standard form of a full Bayesian
analysis, and compare it to the above history matching
approach, highlighting the relative strengths and weak-
nesses of each method.
History matching attempts to answer efficiently some

of the most important questions that a modeller may
have, identifying if the model can match the data, and
where in input space such acceptable matches can be
found. It requires only a limited specification related to
the key uncertain quantities, in terms of means, vari-
ances and covariances. A fully Bayesian approach goes
further [46], and delivers a posterior distribution across
all uncertain quantities, which has the benefit of pro-
viding probabilistic answers to most scientific questions
e.g. in this context it gives the posterior distribution of
the location of the true input x∗. However, it requires
a more detailed prior specification of joint probability
distributions across all these quantities, and critically, it
also assumes the existence of a single true x∗ (and the
accuracy of the statistical model that defines it). This

Fig. 5 Left panel: the emulator expectation and credible intervals as in Fig. 4, however now the observation z plus observed error has been included
as the horizontal black solid and dashed lines respectively. The implausibilities I(x) are represented by the colours on the x-axis: red, yellow and
green for high (I(x) > 3.5), borderline (3.5 < I(x) < 3) and low (I(x) < 3) implausibility respectively, with the green interval defining the
non-implausible regionX2 for the second wave. Right panel: the second wave is performed by evaluating two runs located withinX2. The
emulator becomes more accurate overX2 and the implausibility more strict, hence defining the smaller non-implausible regionX3, given by the
green interval. As the emulator is now far more accurate that the observed errors withinX3, additional runs will not significantly reduceX3 any
further, and hence the history match is complete



Vernon et al. BMC Systems Biology  (2018) 12:1 Page 12 of 29

may not be judged appropriate, for example, in a situa-
tion where two different x∗s were found that gave good
matches to two different subsets of the observed data. In
more detail, a fully Bayesian specification in the context
of Eqs. (3) and (4) requires the multivariate distributions
π(z|y),π(y|f (x∗)),π(f (x(j))|x(j)) for a collection of inputs
x(j), and a prior distribution π(x∗) over the true input
x∗. Meaningful specifications of this form can be difficult
to make, for example, often familiar distributional forms
are assumed such as the multivariate normal distribution,
but such choices are often made for mathematical conve-
nience or computational tractability. Really, choices of this
kind demand a careful justification, without which results
such as the posterior for x∗ rapidly lose meaning. For
example, the fully Bayesian approach will, after substantial
calculation, return a posterior for x∗, which may be quite
narrow, even if the model cannot fit the observed data
at all. History matching however may quickly discover
this mismatch after a few waves, making further analysis
unnecessary.
The second drawback of the fully Bayesian approach

is that it is often hard to perform the necessary cal-
culations, and therefore various numerical schemes are
required, the most popular being MCMC [47]. While
MCMC has enjoyed much success, issues still remain
over the convergence of an MCMC algorithm for even
modest dimensional problems [48]. Often the likelihood
may be highly multimodal, and therefore vast numbers of
model evaluations are usually required to reach conver-
gence, making MCMC prohibitively expensive for mod-
els of even moderate evaluation time. In contrast, the
calculations for history matching are relatively fast and
simple.
A third issue is that of robustness: small changes in the

full Bayesian specification, especially involving the like-
lihood, can lead to substantial changes in the posterior.
These sensitivities can go unnoticed and can be hard to
analyse [49–52], but will call into question the resulting
scientific conclusions.
Due to these issues, we support the fully Bayesian

approach, but only for cases where such detailed cal-
culations are warranted, say for a well tested, accurate
biological model, which possesses well understood model
deficiencies, and which is to be combined with data that
have a trusted observation error structure, and critically,
where full probabilistic results are deemed essential. If,
instead, the main concern is to check whether the model
can fit the data; to see what regions of input parameter
space give acceptable matches, and for this to be used
for further model development, then a history match may
be the more appropriate analysis. Even if one wishes to
forecast the results of future experiments [33, 53] and
to make subsequent decisions, history matching can be
sufficient, as one can either re-weight appropriately the

samples generated in the final wave, as was done in [11],
or as stated in step 7 of the history matching algorithm,
use more sophisticated sampling in the non-implausible
region depending on the scientific question.
Now the use of emulators can of course facilitate

the large number of model evaluations required for
Bayesian MCMC algorithms, admittedly at the expense of
increased uncertainty (see for example [9, 54]). However,
a more serious problem is then encountered. The like-
lihood function, which is a core component of Bayesian
calculations, is constructed from all outputs of interest
(and therefore attempts to describe both the ‘good’ and
‘bad’ inputs simultaneously). Hence we need to be able to
emulate with sufficient accuracy all such outputs, includ-
ing their possibly complex joint behaviour. This may be
extremely challenging as often, especially in early waves,
there may exist several erratically behaved outputs that
are extremely difficult to emulate, which will dramatically
fail emulator diagnostics [40]. Unfortunately, the likeli-
hood and hence the posterior may be highly sensitive
to such poorly constructed emulators. Therefore, from a
purely practical perspective, employing the full Bayesian
paradigm using inadequate emulators constructed at wave
1, may be unwise [6, 15].

History matching as a precursor to MCMC
If one does wish to perform a fully Bayesian analysis on
a well tested biological model, we would usually recom-
mend performing a history match first [15]. This would
identify the non-implausible region X which should con-
tain the vast majority of the posterior. Then MCMC or
an equivalent Bayesian calculation (such as importance
sampling) can be performed within X , using the accurate
emulators defined in the final wave (for an example of this
see [11]).
This is because if the model is of modest to high

dimension, the posterior may often only occupy a tiny
fraction of the original input space X1. Unless the
model is very fast to evaluate, we would need to use
emulators to overcome the MCMC convergence issues,
but performing enough model runs to construct suffi-
ciently accurate emulators over the whole of X1 would
be extremely inefficient. Iterative history matching nat-
urally provides the accurate emulators that we would
need, defined only over X , which should contain the
posterior.
Note that the history match cuts out space efficiently,

based on small numbers of easy to emulate outputs in
early waves, and designs appropriate runs for the next
wave that have good coverage properties for the cur-
rent non-implausible region. Alternative iterative strate-
gies, such as using MCMC at each wave to generate
samples from the current posterior (which includes high
emulator uncertainty), for use as model runs in the
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next wave, may be highly inefficient and could run
into a series of difficulties. Such strategies would not
fully exploit the smoothness of the model output, and
may tend to cluster points together around the current
posterior mode (hence squandering runs, for smooth
deterministic models), leading to poor coverage of the
full non-implausible space. Such strategies may also be
highly misled by inaccurate emulators and the subsequent
posterior sensitivity combined with multimodal likeli-
hood issues, leading to clustered designs in the wrong
parts of the input space, and in some cases a lack of
convergence.
To conclude, if one really desires a fully Bayesian

analysis, then performing a history match first can
greatly improve efficiency. In this way we view his-
tory matching not as a straight competitor to alterna-
tive approaches, but instead a complimentary technique,
which has many benefits in its own right. See [6] and
the extended discussion in [15] for more details of this
argument.

History matching and ABC
Another Bayesian technique that has been developed
more recently, and compared (somewhat cautiously) to
history matching, by for example [55], is that of Approx-
imate Bayesian Computation or ABC [56]. While the
two approaches seem to share some superficial similar-
ities, they are fundamentally different in their goal and
the principled way each approach is set up and imple-
mented. For example, ABC attempts to approximate full
Bayesian inference and hence to obtain an approximate
Bayesian posterior distribution (critically, using a toler-
ance that tends to zero). History matching is not an
inference procedure, as it is simply attempting to rule
out all the input space that is clearly inconsistent with
the data given the model discrepancy and observation
error (which are meaningful ‘tolerances’ that critically will
never tend to zero). It is worth noting that if one attempts
to specify a meaningful minimum size for the tolerance
in ABC, one is arguably not really employing ABC any-
more, but is instead just back using Bayesian inference
(as shown by [56]) in the form of a sampling-resampling
algorithm (as described for example by [57]). History
matching does not attempt to probabilize the remaining
input space in any way, which can result in increased
efficiency of the parameter search. We have directly com-
pared and contrasted the two approaches in [58], where
we demonstrated that a powerful version of ABC failed
to find any part of parameter space that matched the
observed data for a 22-dimensional stochastic epidemiol-
ogy model, while history matching found the correct part
of input space and many good matches using approxi-
mately half the number of runs that the (failed) ABC-SMC
approach used.

Results
Application to the hormonal crosstalk network in
Arabidopsis root development model
We now describe the relevant features of the hormonal
crosstalk in Arabidopsis root development model [30], in
preparation for the application of the Bayesian emulation
and history matching processes introduced above.
The hormonal crosstalk in Arabidopsis model was con-

structed on the basis of known molecular interactions
and experimental evidence, and models the crosstalk
between auxin, ethylene and cytokinin via the PLS gene in
Arabidopsis root development. The network for the
model is shown in Fig. 6 which displays the two main
modules of auxin and ethylene signalling. A full descrip-
tion of the model, along with justifications of the various
modelling choices employed, can be found in [30].
The mathematical representation of the Arabidopsis

model, given in Table 1, is a set of 15 ordinary differential
equations that describe the evolution in time of 15 dif-
ferent biological quantities. Note the analogy with Eq. (1)
describing the simple exponential model. The Arabidopsis
model requires the specification of 32 input or rate param-
eters before it can be evaluated: these are represented in
Table 1 as the parameters (k1, k1a, . . . , k1veth). The rate
parameter k6 is an exception: it is a control parameter and
is set to 0.3 to represent the wildtype and 0 to represent
the pls mutant [30], and hence it will not be included in
our parameter search, leaving 31 free parameters.
As we will compare the model output to data at equi-

librium only [30], we can perform a substantial dimen-
sional reduction of the input space. Referring to the model
equations given in Table 1, we see that at equilibrium
the derivative on the left hand side of each equation will
equal zero, and that the right hand side can hence be rear-
ranged in terms of one less rate parameter. For example,
the equation for d[Ra] /dt becomes:

0 = −[Auxin] [Ra]+
(
k5
k4

)
[Ra∗] (20)

which depends only on the ratio of (k5/k4). Hence data at
equilibrium can inform only about the ratio (k5/k4) and
cannot provide any constraint upon the original parame-
ters k4 and k5 individually (it is worth noting that if the
model was a stochastic model instead of a deterministic
model, it may be possible to learn about the parameters
individually, even at equilibrium, as discussed in chapter
1 of [59]). We can therefore remove a total of 8 parame-
ters and reduce the dimension of the input space from 31
to 23, by choosing to work with appropriate rate param-
eter ratios. The specific rate parameter ratios we use as
well as the unaltered rate parameters are given in Table 2.
Also shown are the ranges used to define the initial search
space X1, discussed further below.
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Fig. 6 The network for the hormonal crosstalk in Arabidopsis model, displaying the two main modules of auxin and ethylene signalling, as
described in detail in [30]

As we consider ranges of the rate parameters and their
ratios which are always positive and span two or more
orders of magnitude, we choose to convert to a log scale.
Hence we define the 23-dimensional vector x of input
parameters for the model as:

x = (log(k1), log(k2/k1a), . . . , log(k1veth/k12)) (21)

which corresponds to the first column of Table 2, without
the inclusion of the control parameter k6. It is this vector
of inputs x that will be used in the emulator Eqs. (5), (6),
(8), (9), and that is directly analogous to the 1-dimensional
input x of the simple model given in Eqs. (1) and (2). The
Arabidopsis model also requires initial conditions for each
of the 15model outputs [30], and the values used are given
in Table 3.
We are primarily interested in the behaviour of the

four measurable outputs: [Auxin], [PLSm], ethylene [ET]
and cytokinin (represented as [CK] in the model). These
were measured for the following cases: wild type (wt),
pls mutant (mu), wild type fed auxin (fa), wild type fed

ethylene (fe), wild type fed cytokinin (fc) and pls mutant
fed ethylene (mu_fe). The critical behaviour that we want
the Arabidopsis model to capture is that of the trends
exhibited between certain pairs of measurements. For
example, the auxin level is seen to decrease in the pls
mutant compared to that of the wild type, while it is seen
to increase when ethylene is fed to the wild type com-
pared to the wild type with no feeding. A summary of
the 16 experimental trends that were used in this anal-
ysis is given in Table 4 (see [30] for details). The six
different experimental scenarios are correspondingly rep-
resented in the model by choosing certain values for the
control parameter k6 (which corresponds to the effect of
the PLS gene) and the initial conditions for IAA, ACC
and cytokinin, which represent the concentration of feed-
ing chemicals present. The wild type and plsmutant cases
correspond to setting k6 = 0.3 and k6 = 0 respec-
tively, while no feeding implies IAA=ACC=cytokinin=0,
with IAA=1, ACC=1 or cytokinin=1 corresponding to
the feeding of auxin, ethylene or cytokinin respectively
(see Table 4).
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Table 1 The hormonal crosstalk in Arabidopsis root
development model differential equations

d[ Auxin]

dt
= k1a

1 + [X]
k1

+ k2 + k2a[ ET ]

1 + [CK]
k2b

[ PLSp]

k2c+[ PLSp]
−

(k3 + k3a[ X] )[ Auxin]+k1vauxin[ IAA]

d[ X]

dt
= k16 − k16a[ CTR1

∗]−k17[ X]

d[ PLSp]

dt
= k8[ PLSm]−k9[ PLSp]

d[ Ra]

dt
= −k4[ Auxin] [ Ra]+k5[ Ra

∗]

d[ Ra∗]
dt

= k4[ Auxin] [ Ra]−k5[ Ra
∗]

d[ CK]

dt
= k18a

1 + [Auxin]
k18

− k19[ CK]+k1vCK [ cytokinin]

d[ ET ]

dt
= k12 + k12a[ Auxin] [ CK]−k13[ ET ]+k1veth[ ACC]

d[ PLSm]

dt
= k6[ Ra∗]

1 + [ET ]
k6a

− k7[ PLSm]

d[ Re]

dt
= k11[ Re

∗] [ ET ]−(k10 + k10a[ PLSp] )[ Re]

d[ Re∗]
dt

= −k11[ Re
∗] [ ET ]+(k10 + k10a[ PLSp] )[ Re]

d[ CTR1]

dt
= −k14[ Re

∗] [ CTR1]+k15[ CTR1
∗]

d[ CTR1∗]
dt

= k14[ Re
∗] [ CTR1]−k15[ CTR1

∗]

d[ IAA]

dt
= 0,

d[ cytokinin]

dt
= 0,

d[ ACC]

dt
= 0

See [30] for details. See also table 15 in the Additional file 2 for the dimensions or
units of each of the rate constants

To represent the possible model outputs correspond-
ing to each of the cases, we define the time dependant
function h:

hj,a(x, t), a ∈{wt,mu, fa, fe, fc,mu_fe}
j ∈ {Auxin,PLSm,ET ,CK}
x =(log(k1), . . . , log(k1veth/k12))

where we have introduced a control parameter a that rep-
resents the combined choice of plant type and feeding
action, the subscript j indexes each of the four measur-
able chemicals, the vector x represents the vector of rate
parameters as before and t represents time.
We are mainly interested in matching the observed

trends which are often specified as ratios to wild type.
Therefore we choose to work with the log ratio of model
outputs, as these will bemore robust and allowmultiplica-
tive error statements. We also equate these trends to the
output of the model at equilibrium [30], that is for t → ∞,
and hence we define the main outputs of interest to be

fi(x) = lim
t→∞log

{hj,a2(x, t)
hj,a1(x, t)

}
(22)

where the subscript i indexes the elements of the list
{j, a1, a2} corresponding to the 16 trends that were actu-

Table 2 The input or rate parameter ranges that define the initial
search regionX1 over which the history match is performed

Input rate parameters Minimum Maximum

k1 0.1 10

k2/k1a 0.02 2

k2a/k1a 0.28 28

k2b 0.1 10

k2c 1× 10−6 1

k3/k1a 0.2 20

k3a/k1a 0.045 4.5

k5/k4 0.1 10

k6 Control: 0 (plsmutant) or 0.3 (wildtype)

k6a 0.002 2000

k7 0.1 10

k9/k8 0.1 10

k10a/k10 166 1.66× 104

k11/k10 166 1.66× 105

k12a/k12 0.1 10

k13/k12 1 1000

k15/k14 2.83× 10−4 0.283

k16a/k16 0.33 33.3

k17/k16 0.033 3.33

k18 0.01 10

k19/k18a 0.01 10

k1vauxin/k1a 0.1 100

k1vCK/k18a 0.1 10

k1veth/k12 1 100

Due to symmetries in the model at equilibrium, only ratios of certain parameters will
be constrained, hence we choose to work directly with these ratios, as given in the
left column. Note that k6 is a control parameter used to define wildtype or pls
mutant, and hence is not included in the parameter search

ally measured, as presented in Table 4. It is this function
fi(x) that will be directly compared to the observed trends.
Again, note the analogy with ft(x) as defined by Eqs. (1)
and (2). We also append to fi(x) two additional outputs
of interest which are not ratios: log(hauxin,wt(x, t)) and
log(hCK ,wt(x, t)), again evaluated as t → ∞. These will
ensure the acceptable matches found will not have unre-
alistic concentrations of auxin and cytokinin. Note that
the Bayesian emulation and history matching methods we
propose could be applied to outputs at any time point, and
not just to the equilibrium points of primary interest here
(see for example [11, 24, 25, 27, 28]).
The primary question that the modeller may ask at this

point is whether the outputs of the model, in the form of
fi(x), match the observed trends given in Table 4, to within
an acceptable level of tolerance, and what is the setX of all
rate or input parameters corresponding to such acceptable
matches.
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Table 3 The list of 15 original model outputs, their initial
conditions and whether measurements are available

Model output Initial concentration Measurement available

Auxin 0.1 Yes

X 0.1

PLSp 0.1

Ra 0

Ra* 1

CK 0.1 Yes

ET 0.1 Yes

PLSm 0.1 Yes

Re 0

Re* 0.3

CTR1 0

CTR1* 0.3

IAA 0 or 1

cytokinin 0 or 1

ACC 0 or 1

For simplicity of terminology, exogenous application of IAA, cytokinin or ACC is
referred to as “feeding auxin, cytokinin or ethylene”. The values of 0 or 1 for IAA,
cytokinin and ACC correspond to no feeding or feeding of auxin, cytokinin or
ethylene respectively. See [30] for details

The initial input spaceX1 that we choose to perform the
global parameter search or history match over is defined
in Table 2. This was constructed by specifying ranges on
the 23 inputs that covered at least one order of magni-
tude above and below the single input parameter setting
found in [30]. The ranges of some parameters of particu-
lar interest were subsequently increased to allow a wider
exploration. This means we will explore a biologically
plausible space that covers at least two orders of magni-
tude in every dimension, centred (on a log scale) around
the original parameter point. This gives rise to a large
space X1, of suitable size to demonstrate our methodol-
ogy. Note that we could make these ranges wider still if
this was deemed plausible, which would simply result in

us having to perform more waves to complete the history
match.

Linking the Arabidopsis model to reality
The next task is to link the Arabidopsis model formally to
reality [6, 7, 15]. The Bayesian paradigm allows us to rep-
resent scientific judgements as probabilistic specifications
or, if we follow the Bayes Linear approach, as expectation
and variance statements [39]. As we do not have access to
the precise quantitative values for the observations zi that
feature in Eq. 3, we instead propose values for the obser-
vations, observation errors Var(ei) andmodel discrepancy
Var(εi) that are consistent both with the observed trends
given in Table 4 and with expert judgement concerning
the accuracy of the model and the relevant experiments.
We do this for two reasons: firstly to demonstrate that our
approach can be reasonably applied to situations where
only qualitative data is available, and secondly to highlight
what kinds of analysis are possible if quantitative mea-
surements are actually available across all the outputs of
interest, hence motivating more detailed future data col-
lection. There are several possible ways to assess these
quantities while conserving consistency with the observed
trends. We choose a conservative, minimal approach, and
specify for the “Up”, “Down” and “No Change” trends
that zi = 1.24,−1.24 and 0, and that σi = 0.35, 0.35
and 0.061 respectively, where σi represents the combined
model discrepancy and observed errors

σi = √
Var(εi) + Var(ei). (23)

These combined specifications have been made so that
the intervals

zi ± 3 σi (24)

represent an increase of between 20% to ten fold for the
“Up” trends, a decrease also of between 20% to ten fold
for the “Down” trends, and an interval of 40% decrease to

Table 4 Summaries of the direction of observed trends of the four measurable chemicals, relative to wild type for the four types of
experiment: plsmutant, feeding auxin, ethylene and cytokinin respectively (first four columns)

Trend relative to wild type with no feeding Trend relative to plsmutant with no feeding

(k6 = 0.3, IAA=ACC=cytokinin=0) (k6 = 0, IAA=ACC=cytokinin=0)

Chemical output plsmutant Feed Auxin Feed Ethylene Feed Cytokinin plsmutant + Feed Ethylene

(k6 = 0) (IAA=1) (ACC=1) (cytokinin=1) (k6 = 0 and ACC=1)

Auxin Down Up Up Down Down

PLSm - Up Down Down -

ET No change Up Up Up -

CK Up Down Down Up -

The final column gives the trend for the case of feeding ethylene to the plsmutant, relative to the plsmutant with no feeding. See the text and also [30] for more detail on the
size and related uncertainties for each of the measured trends
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40% increase for the “No Change” trend. These intervals,
assumed symmetric on the log scale, were formulated by
answering the natural question: where would each model
output have to lie to avoid violating the trends given in
Table 4, considering relevant observational and model
uncertainties? This specification captures the main fea-
tures of the trend data and is sufficient for our purposes
of demonstrating the Bayesian history matching method-
ology. Obviously, a more detailed treatment would involve
having more information regarding the observations zi
themselves, and their associated measurement errors rep-
resented by Var(ei). Also, were we to consider in more
detail the known deficiencies of the model, we could
give a more detailed specification of the model discrep-
ancy Var(εi), which would most likely include correlations
between different outputs that exploited the joint struc-
ture suggested by the choice of chemical, choice of mutant
and choice of feeding regime, or even including a simple
dependence on certain input parameters. See [6, 8, 16] for

examples of more detailed model discrepancy specifica-
tions in alternative applications, and [15, 18] for further
discussions.
Figure 7 shows all 16 intervals corresponding to the

measured trends, as represented by Eq. (24), given as the
black error bars, on a log scale. Also shown (as the first
two errors bars from the left) are the two additional non-
ratio wildtype outputs for Auxin and Cytokinin, which are
given reasonably wide intervals of 0.24 plus or minus an
order of magnitude [30].
The specification of zi, Var(ei) and Var(εi) or equiv-

alently σi, can be used to define an ‘acceptable match’
between model output and observed data via the implau-
sibility measures of Eq. (18), as any model evaluation that
satisfies Ii(x) < c for some cutoff c. A common choice
is c = 3, based on Pukelsheim’s 3-sigma rule (see [45]).
We may impose this constraint simultaneously across all
of the 18 outputs shown in Fig. 7, by demanding that
IM(x) < c where IM(x) is the maximum implausibility

Fig. 7 The 2000 wave 1 run outputs fi(x) for all 18 outputs considered (see Eq. (22)) are shown as the purple lines, with the observed data zi ± 3σi
given as the black error bars, and the best run previously found by [30] shown as the light blue line. The horizontal black line at zero represents no
trend. As these runs were generated from a space filling maximin Latin hypercube design, they can give substantial insight into the broad behaviour
of the model over the initial search regionX1. We can see that some outputs are seemingly constrained to give only positive (e.g. Auxin_fa) or
negative (e.g. Auxin_mu) trends, and that many of the runs are far from the target ranges (as the y-axis is on a log scale). We also find that no
individual wave 1 run passes through every one of the target intervals
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defined by Eq. (19), or we could impose a less stringent
criteria by constraining the second or third maximum
implausibility instead, which would allow model runs to
deviate from one or two outputs respectively.

Bayesian emulation of the Arabidopsis model
We can now proceed with the first wave of emulation of
the Arabidopsis model as follows. Note that several pack-
ages are available that perform standard Gaussian Process
emulation (see for example the BACCO [60] and GPfit
[61] packages in R, or GPy [62] for Python) which may be
of use to the uninitiated, as an alternative to the slightly
more sophisticated emulators we describe here.
First we design a set of 2000 wave 1 runs over the ini-

tial search regionX1 based on a maximin Latin hypercube
design (see Fig. 3 and [34, 35]), using for example the
lhs() function in R [37]. Each of these runs specifies a
distinct set of values of all the rate parameters in x, and
therefore for each run the differential equations given in
Table 1 were solved numerically using the lsoda() func-
tion again in R, with initial conditions given in Table 3,
up to t = 10000 seconds to ensure equilibrium is reached
(equilibrium was then checked). Each run took approx-
imately 1 second of real time to evaluate, implying that
although this is a relatively fast model, it is still too slow
to exhaustively search the full 23 dimensional input space,
which would likely require a vast number of runs. The
emulators that we develop turn out to be 4 orders of mag-
nitude faster than the model, and hence allow a much
more detailed and efficient exploration. This ratio of emu-
lator speed versus model speed actually improves as the
model complexity increases, as the speed of an emulator
is a function of the number of runs used to construct it
[6]. Note that when choosing the number of wave 1 runs,
the computer model literature tentatively suggests that at
least 10d are required for emulator construction, where d
is the dimension of the input space. Of course, depending
on the complexity of the model, far more may be needed.
Here, as the Arabidopsis model is of reasonable speed, we
could afford to run 2000 runs per wave, and this allows the
fitting of higher order polynomial terms such as cubics,
once a restricted set of active inputs has been identified.
Also, 2000 runs allows for a tractable inverse Var(Di)−1

that is computed in the emulator Eqs. (8) and (9).
The wave 1 run outputs fi(x) for all 18 outputs consid-

ered (see Eq. (22)) are shown in Fig. 7 as the purple lines,
with the observed data intervals zi ±3σi given as the black
error bars, and the best run previously found by and dis-
cussed in [30] shown as the light blue line. As these runs
were generated from a space filling design, they can give
substantial insight into the broad behaviour of the model
over the initial search region X1. We can see that some
outputs are seemingly constrained to give only positive
(e.g. Auxin_fa) or negative (e.g. Auxin_mu) trends, and

that many of the runs are far from the target ranges (as
the y-axis is on a loge scale). We also find that no indi-
vidual wave 1 run passes through every one of the target
intervals. This all suggests that the volume of the non-
implausible space X containing only acceptable runs may
be small or indeed zero, and hence we may need several
waves for the history match.
We employ the more general emulator structure as rep-

resented by Eq. (5). For each output fi(x), we identify the
list of active input parameters xAi by fitting first order
polynomials in x and selecting the active inputs based
on AIC criteria (using for example the lm() and step()
functions in R [37]). We choose the set of deterministic
functions gij(xAi) by selecting terms from the complete
third order polynomials in the active inputs, discarding
terms again based on AIC criteria (see [6, 7, 15, 22] for
more details). We show the structure of these wave 1 emu-
lators in terms of the deterministic functions gij(xAi), and
the choice of active variables xAi , in the Additional file 2.
Due to the large number of runs and in the absence of
strong prior information, we set E(βij) = 0 and take a
large Var(βij) limit. The βij terms will hence behave, after
the Bayes Linear update represented by Eqs. (8) and (9),
approximately like their Ordinary Least Squares linear
model fits (see [6] for details). Note that the linear models
formed at this point, without the inclusion of the Gaus-
sian process part below, would already give reasonably
effective emulators (see for example [42]).
We choose the combination of the Gaussian process and

nugget variances σ 2
ci = σ 2

ui +σ 2
wi to be equal to the residual

standard error from the OLS linear model fit [6], and set
σ 2
wi = pσ 2

ci where p is a parameter governing the propor-
tion of variance explained by the inactive variables, taken
to be between 0.05 to 0.1, and checkedwith emulator diag-
nostics described below. Note that we could design more
runs that vary the inactive variables to assess pmore accu-
rately, as is done in [6]. We utilise the argument presented
in full in [6] for choosing correlation lengths for emulators
that contain low order polynomials, which states that as
we are fitting third order polynomials in the active inputs,
we expect the residual surface to look approximately like
a fourth (or higher) order surface, and hence we can
choose the correlation length accordingly. We hence set
the (scaled) correlation lengths θi, required for Eq. (6), to
be 0.35, in agreement with [6], where the inputs x have
all been scaled to the range [−1, 1]. Note that one can go
further and estimate the individual correlation lengths θi
using say maximum likelihood, which may improve the
emulators accuracy, but provided the polynomial surface
is fitting well, as judged say by the adjusted R2 of the linear
model, this improvement would only be modest.
Finally, we constructed the emulators by using the

Bayes Linear update Eqs. (8) and (9) to obtain EDi(fi(x))
and VarDi(fi(x)) for each output i, where Di is the
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corresponding vector of 2000 run output values. Emula-
tor diagnostics were then performed by evaluating 200
new diagnostic runs and comparing them to the corre-
sponding emulator predictions, in the form of prediction
intervals EDi(fi(x)) ± 3

√
VarDi(fi(x)) (here 200 runs was

deemed sufficient but see [40] for detailed emulator diag-
nostics). In the first wave we found that 13 out of the
18 outputs were straightforward to emulate, in that their
emulators were of sufficient accuracy to allow reasonably
large parts of the input space to be removed, while simul-
taneously satisfying emulator diagnostics. The remaining
5 outputs were left to be considered in later waves. Each
of these 13 outputs (that define Q1) required between 7–
13 active inputs xAi , out of a total of 31 full or 23 reduced
input parameters x, which represents a substantial dimen-
sional reduction and hence a large benefit to the emulator
construction process and subsequent parameter search, as
discussed in [15]. This is in addition to the speed increase
of using emulators as they are in this case 104 times faster
to evaluate than the full Arabidopsis model. Note that
each one of the 23 inputs featured in at least one of the 13
emulators.

History matching the Arabidopsis model
We now employ the iterative history matching strategy
described above to the Arabidopsis model.

As well as the maximised implausibility IM(x) defined
by Eq. (19), we also use the more robust second and third
maximum implausibilities denoted I2M(x) and I3M(x)
respectively, defined using the set Qk of outputs consid-
ered in wave k, as these implausibility measures are more
robust to emulator failure. In the first wave, only I2M(x)
and I3M(x) were used with conservative cutoffs c of 3.25
and 3 imposed respectively. This defined X2: the non-
implausible space remaining after wave 1, which had a
volume of 2.06 × 10−1 of the original input space X1.
Figure 8 top left and bottom left panels show two ways

of visualising the shape of the non-implausible region X2
resulting from the wave 1 analysis. The former is the min-
imised implausibility plot. This is formed by using the
emulators to evaluate the implausibility of a large number
of points within the 23 dimensional X1. These implausi-
bilities are then projected down to two dimensions (the
input parameters k1vauxin/k1a and k1veth/k12 in this case)
by minimising the implausibility over the remaining 21
dimensions. If we partition x into (x′, x′′) where x′ is the
two dimensional vector representing the inputs we wish
to project onto and x′′ is the remaining 21 inputs, then the
minimised implausibility is defined as:

IP(x′) = min
x′′ IM(x′, x′′) (25)

Fig. 8 Two different ways to view the non-implausible input or rate parameter space (on a log scale) after waves 1, 2 and 4 (left, middle and right
columns respectively). The top row gives the minimised implausibility IP(x′), where x′ = (k1vauxin/k1a , k1veth/k12). The red and dark grey regions
imply that no matter what values are chosen for the remaining 21 inputs, the model will still be a poor match to the data for these settings of
k1vauxin/k1a and k1veth/k12. The bottom row gives the optical depth ρ(x′) which shows the thickness or depth of the non-implausible regionXk in
the remaining 21 input dimensions, as a proportion of the depth of the original spaceX1
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The plot has the following interpretation: the red/dark
grey regions correspond to high implausibility and imply
that no matter what values we choose for the remain-
ing 21 inputs, the Arabidopsis model will not give good
matches to the data in these regions of (k1vauxin/k1a,
k1veth/k12) space. The green/yellow regions imply that
somewhere within the 21-dimensional space there are low
implausibility points with these values of k1vauxin/k1a and
k1veth/k12. We are therefore looking at the silhouette of
X2 for various different cutoffs represented as colours [7].
The green and yellow regions will be investigated further
in subsequent waves.
The bottom left panel of Fig. 8 shows an optical

depth plot again for the inputs k1vauxin/k1a and k1veth/k12.
This gives the 21 dimensional thickness or depth of
X2 as a proportion of total depth, for each point x′ in
the 2-dimensional (k1vauxin/k1a, k1veth/k12) space. It is
defined as

ρ(x′) = V21{x ∈ X2 | x′ fixed}
V21{x ∈ X1 | x′ fixed} , (26)

where V21{.} denotes the 21-dimensional volume of the
remaining space. ρ(x′) can therefore show where large or
small amounts of non-implausible points can be found,
conditioned on x′, providing further insight into the struc-
ture ofX2. Both IP(x′) and ρ(x′) are generalisable to higher
dimensions if necessary, and various computational short-
cuts in the emulator calculations can be exploited (see
[6, 7, 15, 22] for details).
We then proceeded with a total of 4 waves of emulation

and history matching. Summaries of the waves’ properties
in terms of outputs emulated, numbers of active inputs
used, and cutoffs and implausibility measures employed
can be found in Table 5. The final column gives the pro-
portion of non-implausible space remaining in terms of
the original input space, after each wave. At each wave
emulator diagnostics are performed by evaluating another
200 model runs over the current non-implausible space,
and checking that the new emulators predict these 200
runs with appropriate accuracy (see [40] for more details
on emulator diagnostics).

Figure 8 middle and right columns, show the min-
imised implausibility and optical depth plots after wave 2
and wave 4 respectively, again for the inputs k1vauxin/k1a
and k1veth/k12, and highlight the progression of the his-
tory match and the sequential reduction of the non-
implausible space. Theminimised implausibility plots also
show the sensitivity of the size and location of the non-
implausible region to the choice of cutoff motivated by
Pukelsheim’s rule, and given in Table 5. Note that in the
optical depth plot after wave 4 (bottom right panel), the
depth of the non-implausible region is now very small.
Even if we were to set the inputs k1vauxin/k1a and k1veth/k12
to values corresponding to the largest depth (given by the
dark red region), the chances of finding a non-implausible
point by randomly choosing the other inputs is approxi-
mately 2.3× 10−4, highlighting the difficulty of manual or
ad hoc searches of the input space.
The history matching process is terminated with the

evaluation of a wave 5 set of uniformly drawn accept-
able runs. As shown in Table 5, the non-implausible space
X was now 1.21 × 10−6 smaller than that of the origi-
nal X1: a small target, which would require on average a
total of 830000 runs chosen at random to obtain 1 single
acceptable run, requiring approximately 230 hours of pro-
cessor time. In contrast, our history matching approach
generated hundreds of acceptable runs using only 10000
model evaluations, requiring approximately 2.7 hours of
processor time. For a more expensive model in terms of
evaluation time, such efficiency gains would be even more
dramatic [6, 7, 15].
We now go on to describe the results of the parameter

search and discuss their implications.

Discussion of the results of the parameter search
Figure 9 shows the wave 5 minimised implausibility
(below diagonal) and optical depth (above diagonal) plots
for the 12 most informed input rate parameters, as
labelled along the diagonal. For example, the top right
panel gives the optical depth plot with k1veth/k12 on the
x-axis and k2a/k1a on the y-axis, while the bottom left
plot gives the corresponding minimised implausibility

Table 5 Summary of the 4 waves of emulation

Wave Outputs emul. Active inputs Cutoffs c used Prop. space non-imp.

IM I2M I3M

1 13 7-13 - 3.25 3 2.06 × 10−1

2 18 6-15 - 3.1 2.8 4.83 × 10−3

3 18 6-16 5 2.9 2.7 4.34 × 10−4

4 18 11-19 3.2 2.8 2.65 2.69 × 10−5

5 - - 3.2 - - 1.21 × 10−6

Col. 2: no. of outputs emulated, Col. 3: the no. of active inputs used; Col. 4-6: the implausibility thresholds; Col. 7: the proportion of the parameter space deemed
non-implausible. The 5th wave was performed but not emulated
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Fig. 9 The wave 5 minimised implausibility (below diagonal) and optical depth (above diagonal) plots for the 12 most informed input rate
parameters, as labelled along the diagonal. Note that the input rate parameters are on a log scale as given by Eq. (21) with ranges consistent with
Table 2. The input location of the previous best run as described in [30] is shown as the single white point. Along the main diagonal, 1-dimensional
optical depth plots are given

plot with the x- and y-axis swapped. The input location
in parameter space of the previous best run as described
in [30] is shown as the single white point in all panels:
this corresponds to the single light blue run in Fig. 7.
Along the main diagonal, 1-dimensional optical depth
plots are given, showing that we have learnt most about
inputs k16a/k16, k18, k19/k18a, k1vauxin/k1a and k1veth/k12.
All inputs that are not shown in this plot were either
not constrained at all, or only loosely constrained by the

observed data. Often, a “pairs plot” such as shown in Fig. 9,
can provide much insight into both the structure of the
model and the complex constraints placed upon the input
rate parameters by the data. For example, we instantly
see that input k16a/k16 is highly constrained and must lie
close to a value of 1/0.3, which we can see is the value
that precisely balances the first two terms on the right
hand side of the differential equation for dX/dt (given
in Table 1), when CTR1∗ obtains its maximum value of
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0.3. The k13/k12 vs k2a/k1a panel (top row, fifth along
from the left) shows a linear relationship (on a log scale)
between k13/k12 and k2a/k1a, in that high values of k13/k12
require high values of k2a/k1a to compensate them, and
vice versa. The input k6a, for which a large range was
explored, is constrained to lower values, and has subtle
relationships with both the inputs k2a/k1a and k2c (see the
panels third from the left in the top two rows). This has
important consequences as discussed below. We also see
that although the previous best run is close to being an
acceptable input point, it is not actually contained within
the wave 5 non-implausible volume, as can be seen from
the k11/k10 vs k15/k14 plot. This implies that we now
have a large number of wave 5 runs that are superior
fits to the data than were previously found. The min-
imised implausibility plots of Fig. 9 also provide, via the
implausibility cutoff, insight into the sensitivity of the size
and location of the non-implausible region to the origi-
nal specification of the size of the trend intervals, given by
σi in Eq. (23). For example the red regions may be ruled

out, were these intervals judged to be moderately less
conservative.
Figure 10 shows the waves 1, 3 and 5 runs as the purple,

green and red lines respectively, for the 18 model outputs
of interest. The targets for the history match given by the
intervals zi ± 3σi, are shown as the black error bars, and
the previous best run found by [30] is again shown as the
light blue line. Note that the first two error bars corre-
spond to the extra two ouputs of Auxin and CK wildtype
with no feeding, while the remaining 16 are the trend data
from Table 4. The horizontal black line at zero represents
no trend. We see that the history match has proceeded
as expected, with the runs from subsequent waves getting
closer and closer to the target data. In wave 1, none of the
runs simultaneously passed through all the targets, which
we now know is due to X being so small (1.21 × 10−6),
however we now have hundreds of acceptable runs from
within X shown here as the wave 5 red runs, all of which
are a better match than the previous best run, and we can
quickly generate more.

Fig. 10 The waves 1, 3 and 5 runs as the purple, green and red lines respectively, for the 18 model outputs of interest. The targets for the history
match given by the intervals zi ± 3σi , are shown as the black error bars, and the previous best run found by [30] is shown as the light blue line. The
horizontal black line at zero represents no trend. We see that the history match has proceeded as expected, with the runs from subsequent waves
getting closer and closer to the target data, resulting in a large number of acceptable wave 5 runs in red, that possess a better match quality than
the previous best run
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Figure 10 also informs as to the class of possible
observed data sets that the model could have matched,
and hence gives insight into the model’s flexibility. We
see that 6 out of the 16 trend outputs could have pre-
dicted either positive or negative (or zero) trends, and
hence could possibly have fitted many different data sets,
although further investigation of the joint structure of
these outputs would be required to confirm this. For
example, if these 6 outputs were found to vary indepen-
dently, then they could be adjusted to fit any combination
of positive, negative (or zero) trends. However the remain-
ing 10 trend outputs are restricted to giving the ‘correct’
trend, and hence seem not to be flexible at all. In gen-
eral, we may be concerned about an overly flexible model,
possessing say a high number of rate parameters, and
specifically about claims that it has been validated based
purely on a comparison to data, as it would be no sur-
prise when it fits the observed data well, and therefore
it may not contain much inherent biological structure at

all. This is clearly not the case for the Arabidopsis model
considered here. Only by performing a global parameter
search such as described here, can one guard against such
issues.
We can gain further insight into the model’s structure

by plotting pairs of outputs against each other, for each
wave, as is shown in Fig. 11. Here the colour scheme is
consistent with Fig. 10 with the wave 1, 3 and 5 runs
as purple, green and red points respectively, the target
intervals are now represented as 2D boxes and the previ-
ous best run given as the light blue point. The top right
panel, for example, shows the Auxin output for the pls
mutant strain (Auxin_mu) on the y-axis and the PLSm
output with Auxin feeding (PLSm_fa) on the x-axis. This
suggests that large negative trends for the Auxin_mu out-
put can only occur when the PLSm_fa trend is close to
zero. Similarly, a high PLSm_fa trend implies Auxin_mu
must also be close to zero. These plots also highlight pre-
viously unknown model constraints between the outputs

Fig. 11We can gain further insight into the model’s structure by plotting pairs of outputs against each other, for each wave. Here the colour
scheme is consistent with figure 10 with the wave 1, 3 and 5 runs as purple, green and red points respectively and the outputs labelled along the
diagonal. The target intervals are now represented as 2D boxes and the previous best run given as the light blue point. We can hence see several
hard constraints between the model’s outputs, for example between Auxin_fa and CK_fa
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e.g. the Auxin_fa vs CK_fa panel shows that these two
trends satisfy a strict inequality in log space that bisects
the target box. Similar strict constraints are seen in the
Auxin_mu vs CK_mu and Auxin_fa vs PLSm_fa panels.
We now go onto discuss in more detail the implications
for gene functions of the parameter search results.

Discussion
Evaluation of gene functions using Bayesian emulation
methodology
In the previous sections, we have shown that Bayesian
emulation and history matching methodology allows
extensive exploration of the input rate parameter space,
giving multiple insights into the model’s structure, con-
straints placed upon it by the observed data and on the
corresponding biological consequences.
Here we further demonstrate that this methodology

can be used to evaluate regulatory relationships and gene
functions in hormonal signalling systems, by examining
both the above results and the results obtained from a
second history match of an alternative model.
The k6a rate parameter describes the regulatory

strength of ethylene as applied to the PLS transcriptional
rate. It features in the first term on the right hand side
of the d[PLSm] /dt equation in Table 1, and in the limit
k6a → ∞ we have that

k6[Ra∗]
1 + [ET]

k6a

−→ k6[Ra∗] (27)

Therefore increasing k6a decreases this regulatory
strength. Thus, low values of k6a indicate that a regula-
tory relationship of ethylene inhibiting PLSm production
is required. The optical depth and minimised implausi-
bility plots corresponding to k6a in Fig. 9 show that high
values of k6a are ruled out. Our analysis suggests that no
acceptable parameter combinations with large k6a can be
found that are consistent with the target data, and hence
our results strongly support the assertion that the inhi-
bition of PLSm production by ethylene is required for
predicting known experimental trends, conditional on the
remaining specifications made in the analysis.
The k2c parameter describes the very important ques-

tion of whether the PLS gene has a function in auxin
biosynthesis. Examining the third term on the right hand
side of the d[Auxin] /dt equation in Table 1, we see that
as k2c → 0 we have that

k2a[ET]
1 + [CK ]

k2b

[PLSp]
k2c+[PLSp]

−→ k2a[ET]
1 + [CK ]

k2b

(28)

Therefore the k2c = 0 case implies that the PLS gene
has no direct function in auxin biosynthesis, where the
k2c > 0 case would imply that it does. However, for several
of the outputs considered, [PLSp] can also tend to zero,
implying that the limit given in Eq. (28) is not uniquely

defined, and that the original model is not continuous at
k2c = 0. Hence, to answer questions regarding the role
of the PLS gene in auxin biosynthesis we cannot simply
examine low values of k2c. As the k2c = 0 case effectively
defines a distinct model, we perform a new 5 wave his-
tory match to find any acceptable matches to the observed
data, following the samemethodology as described above.
The results of the new history match are given in Fig. 12,
and notably we again found several acceptable wave 5
runs shown as the red lines, that are in agreement with
the observed trends. The acceptable runs were found in
a smaller region than previously, with a volume of X
approximately 2.4 × 10−8 of that of X1.
Comparing the results of the k2c = 0 case (Fig. 12) with

the results of the k2c > 0 case (Fig. 10) we can imme-
diately see some important differences between the two
models. For the Auxin_mufe output (7th error bar from
the left), the k2c > 0 model always returns the correct
negative trend. In contrast the k2c = 0 model returned
the incorrect positive trend for the vast majority of the
wave 1, 2 and 3 runs, implying that there is only a very
small region of input space that returns the correct nega-
tive trend, a region located by the history match analysis
and explored by the wave 5 runs. Without such an anal-
ysis it would be easy to incorrectly conclude that the
k2c = 0 model is inconsistent with the data. This demon-
strates perhaps the most important difficulty in explor-
ing high dimensional models: there may be one (or more)
extremely small regions of input space of scientific inter-
est, and conventional optimisation techniques may easily
get stuck in local minima far away from these regions. Our
Bayesian history matching approach however is specif-
ically designed to combat such difficulties by carefully
exploring the space using efficient emulator based global
search methods, as we have demonstrated here.
After considering that the PLS gene is required for the

response of ethylene downstream based on experimen-
tal observations (mathematically this is equivalent to the
response of ethylene downstream, X, remaining constant
for the pls mutant (k6=0) fed with ethylene), previous
research [30] deduced that the PLS gene does indeed have
a function in auxin biosynthesis. However, the history
match of the k2c = 0 model (Fig. 12) suggests that, given
the specification of the trends and their relevant uncer-
tainties, the k2c = 0 model is consistent with observed
data, and hence it may not be essential for the PLS gene to
play a role in auxin biosynthesis.
However, examining the differences between the two

models reveals some interesting results. Figure 13 sum-
marises the history match results of both the k2c > 0 and
k2c = 0 models.
It shows a comparison of the spread of input parame-

ter locations of the acceptable runs found for the k2c > 0
model (red box plots) and the k2c = 0 model (blue box
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Fig. 12 The results from the history match of the k2c = 0 model, showing the waves 1, 3 and 5 runs as the purple, green and red lines respectively,
for the 18 model outputs of interest. We see that a large number of acceptable wave 5 runs have been found that match the target data (the black
error bars) and hence that the reduced k2c = 0 model is still consistent with the specified observational data, within a small region of the input
space. Comparison with Fig. 10 shows the main differences between the two models, most noticeably in the Auxin_mufe output (7th error bar from
the left) for which the vast majority of the input space returns an incorrect positive trend for the k2c = 0 model, as can be seen by the large number
of wave 1 and 3 lines above zero, with only a small and hence hard to find region returning the correct negative trend. The k2c > 0 model
conversely, always returns the correct negative trend

plots) in terms of individual input rate parameters as
labelled along the x-axis. Note that the two sets of accept-
able runs being compared correspond to the red lines in
Figs. 10 and 12 respectively. The y-axis is on a log10 scale,
and the grey rectangles show the initial ranges that define
the original search region X1 as given in Table 2. The light
blue horizontal lines show the input parameter values of
the previous best run as found by [30]. The main differ-
ences between the two models’ acceptable runs are exhib-
ited by the following parameters or ratios of parameters:
k2/k1a, k2b, k3/k1a, k3a/k1a, k12a/k12, k15/k14, k18, k19/k18.
To the best of our knowledge, the biological significance
of many of these differences cannot be judged using cur-
rent biological insight. However, two ratios, k2/k1a and
k3a/k1a, do reveal some important results. k1a is the max-
imal rate of transporting auxin from shoot to root; k2 is
the background auxin biosynthesis rate; k3a is the rate
constant describing the control of ethylene downstream
over auxin transport from root to shoot. First, biologically
k2/k1a must be very small. This is because the background

auxin biosynthesis rate, k2, must be very small and usually
biologically negligible, as it represents the non-enzymatic
process in auxin biosynthesis. Moreover, auxin transport
from shoot to root, whosemaximal rate is k1a, is an impor-
tant process, as evidenced experimentally [63]. Therefore,
k1a should be large. However, for the k2c = 0 model to
match target data, the majority of acceptable runs have
relatively large k2/k1a, while for the k2c > 0 model much
smaller and more realistic values are preferred. Second,
biologically k3a/k1a should be small. This is because it is
known that auxin more predominantly transports from
shoot to root, to form an auxin concentration maximum
in the root tip [64, 65]. However, for the k2c = 0 model to
match target data, the set of acceptable runs suggest that
relatively large k3a/k1a is required. Therefore, the differ-
ences between the two models’ parameter ratios highlight
that, although we have found acceptable matches for the
k2c = 0 model, these matches have not been found at
biologically realistic parameter values. While we must be
cautious about such conclusions that are based on the
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Fig. 13 A comparison of the spread of input parameter locations of the acceptable runs found for the k2c > 0 model (red boxplots) and the k2c = 0
model (blue boxplots) in terms of individual inputs as labelled along the x-axis. Note that the two sets of acceptable runs being compared
correspond to the red lines in Figs. 10 and 12 respectively. The y-axis is on a log10 scale, and the grey rectangles show the initial ranges that define
the original search regionX1 as given in Table 2. The light blue horizontal lines show the input parameter values of the previous best run as found
by [30]. We can see that some inputs, for example, k1, are either unconstrained by the observed data, or possibly that changes in these inputs can be
compensated by appropriate changes in other inputs. Some inputs such as k16a/k16 are highly constrained, while others such as k2/k1a , k2b , k3/k1a
and k3a/k1a show clear differences between the k2c > 0 and k2c = 0 models, with the latter model preferring higher values of k2/k1a and k3a/k1a
and lower values of k2b and k3/k1a

finite sampling of the non-implausible regions, we have
generated hundreds of approximately uniformly sampled
acceptable runs from each model that do indeed exhibit
the features discussed. Therefore our results suggest that
biological insight clearly favours the model with k2c > 0,
i.e. that the PLS gene does have a function in auxin biosyn-
thesis. More detailed measurements of the key outputs
that restrict k2/k1a and k3a/k1a would of course further
clarify this issue.
Our results show that Bayesian emulation and his-

tory matching methodology can be used to evaluate reg-
ulatory relationships and gene functions in hormonal
signalling systems. To further improve the accuracy of
the results of this methodology, the following aspects
should be considered. First, experimental data should be
more quantitatively measured, to define more accurate
trends. The example trends we have used in this work,
as summarised in Table 4 and the associated discussion,

are mainly formulated based on qualitative or semi-
quantitative experimental data, combined with scientific
judgement. Second, model development should include
more components, to better describe the experimental
systems. Third, Bayesian emulation methodology should
be used to study the effects of additional experiments,
such as the response of ethylene downstream when feed-
ing ethylene, etr1 mutant and etr1-pls double mutant, on
the evaluation of regulatory relationships and gene func-
tions. Fourth, Bayesian emulation methodology should
also be used to explore the effects of the uncertainty of
quantitative trends on the evaluation of regulatory rela-
tionships and gene functions, as in most cases trends of
biological data are not sufficiently quantitative.

Conclusions
We have provided an introduction to the study of complex
systems biology models using Bayes linear uncertainty



Vernon et al. BMC Systems Biology  (2018) 12:1 Page 27 of 29

analysis. This represents a possible solution to the funda-
mental challenge that faces systems biology in terms of
the necessity of global parameter searches of high dimen-
sional models. Our approach features three main aspects:

• A more formal statistical model linking the biological
model to reality, which encompasses major sources
of uncertainty such as observational errors and model
discrepancy.

• A Bayesian emulator allowing a very fast exploration
of model behaviour, applicable to models even with
very long evaluation times.

• A careful history match using implausibility measures
that performs an iterative global exploration of the
input parameter space using the emulators, to find
the region containing all acceptable matches to the
observed data.

We applied this methodology to two versions of the hor-
monal crosstalk in Arabidopsis root development model,
and in each case identified the small region of input space
containing scientifically interesting matches. The two
models and their biological implications were then com-
pared in a robust manner and used to discuss gene func-
tions. We found that although some acceptable matches
to the specified trends could be found for the k2c = 0
model, these were only found at parameter settings that
violated other known biological evidence, whereas the
k2c > 0 model’s acceptable matches seemed far more
realistic. This implied that PLS does indeed play a role
in auxin biosynthesis. Our results also strongly supported
the assertion that the inhibition of PLSm production by
ethylene is required for consistency with known experi-
mental trends.
We would stress that searching for all acceptable

matches between model output and observed data is vital
for several reasons. It avoids the danger of false conclu-
sions being made, based on the analysis of a single run
(or a small number of runs) consistent with the data: con-
clusions that could easily change if an alternative run was
found instead, that also matched the data but which pro-
vided different biological implications. If we want to use
themodel tomake predictions for the results of future bio-
logical experiments, all acceptable matches must be found
and the corresponding range of predictions examined.
A narrow range of predictions from the acceptable runs
for a particular proposed future experiment, for example,
would imply that it would be a good test of the model as it
could possibly rule it out, while a large range implies that
this experiment would most likely be informative for the
model’s rate parameters. Model predictions, using all the
acceptable runs, can then be used to design efficient sets
of future experiments that are most likely to realise partic-
ular scientific goals, such as learning about all or subsets

of the rate parameters, testing the model or distinguishing
between certain biological hypotheses. We would assert
that this design problem is also a fundamental challenge to
the area of systems biology, but leave a detailed exposition
to future work.
Since plant root development is regulated by multi-

ple hormones in a coordinated way [66], unravelling the
regulatory relationships and gene functions for root devel-
opment is a difficult task that requires the investigation
of how biological information is spatiotemporally inte-
grated and communicated [67]. Modelling hormonal
crosstalk as an integrative system is an important aspect
for integrating information in plant root development
[5, 30, 68–71]. This work demonstrates that a combina-
tion of experimental data, a model of hormonal crosstalk
in Arabidopsis root development, and Bayesian emulation
and history matching methodology is able to evaluate reg-
ulatory relationships and gene functions in a hormonal
signalling system. In particular, Bayesian emulation and
history matching methodology is a useful method for
performing a global parameter search to attempt to find
all input parameter settings that achieve an acceptable
match.
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used in the wave 1 emulators, described in the subsection entitled
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