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The Tamm–Dancoff approximation (TDA) can be applied to the computation of excitation
energies using time-dependent Hartree–Fock (TD-HF) and time-dependent density-functional
theory (TD-DFT). In addition to simplifying the resulting response equations, the TDA has
been shown to significantly improve the calculation of triplet excitation energies in these the-
ories, largely overcoming issues associated with triplet instabilities of the underlying reference
wave functions. Here, we examine the application of the TDA to the calculation of another
response property involving triplet perturbations, namely the indirect nuclear spin–spin cou-
pling constant. Particular attention is paid to the accuracy of the triplet spin–dipole and
Fermi-contact components. The application of the TDA in HF calculations leads to vastly
improved results. For DFT calculations, the TDA delivers improved stability with respect to
geometrical variations but does not deliver higher accuracy close to equilibrium geometries.
These observations are rationalized in terms of the ground- and excited-state potential en-
ergy surfaces and, in particular, the severity of the triplet instabilities associated with each
method. A notable feature of the DFT results within the TDA is their similarity across a wide
range of different functionals. The uniformity of the TDA results suggests that some conven-
tional evaluations may exploit error cancellations between approximations in the functional
forms and those arising from triplet instabilities. The importance of an accurate treatment of
correlation for evaluating spin–spin coupling constants is highlighted by this comparison.

Keywords: nuclear magnetic resonance; spin–spin coupling constants; Hartree–Fock
theory; density–functional theory; coupled-cluster theory

1. Introduction

The reliable calculation of triplet response properties remains a challenging task
for single-reference approaches such as Hartree–Fock (HF) theory and Kohn–Sham
(KS) density-functional theory (DFT). Issues associated with HF triplet instabil-
ities have been widely discussed in the literature [1–4]. In the context of DFT,
the issues [5] are further complicated by the observation that the stability of cal-
culated triplet properties can be dependent on the choice of exchange–correlation
functional [6, 7].
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For the calculation of triplet excitation energies, the Tamm–Dancoff approxima-
tion [8, 9] (TDA) has been applied using time-dependent Hartree–Fock (TD-HF)
and time-dependent density-functional theory (TD-DFT). This simple approach
not only leads to computationally more tractable response equations but has also
been shown to significantly improve the calculation of triplet excitation energies in
these theories, largely overcoming issues associated with triplet instabilities [2, 10–
16].

In this work, we consider the application of the TDA to the calculation of another
response property involving triplet perturbations, namely the indirect nuclear spin–
spin coupling constant. Computationally, the accurate calculation of this quantity
is challenging because it is composed of a range of different components, including
the triplet spin–dipole and Fermi-contact components. We assess the performance
of the TDA at the HF and KS-DFT levels by comparing the results for the isotropic
spin–spin coupling constants and their components with those from the higher-level
second-order polarization propagator approximation (SOPPA) and coupled-cluster
(CC) theories.

We commence in Section 2 by outlining the theory necessary for the computation
of spin–spin couplings at the HF and DFT levels, as well as how the TDA may
be introduced in these calculations. In Section 4, we first analyze the quality of
the approximation over a broad range of coupling constants in small molecular
systems close to their equilibrium geometries. We then examine the stability of the
calculations in more detail for a representative molecule as a function of geometry,
highlighting the important role of the reference state in the calculations. Finally,
in Section 5, we present some concluding remarks and directions for future work.

2. Theory

The theory for the evaluation of spin–spin coupling constants is reviewed in detail
in Ref. [17]. Here, we give a brief overview of the relevant theory to establish
notation and show how the TDA may be introduced.

2.1. Sum-Over-States Formulation

Although computationally cumbersome, the sum-over-states approach leads to the
conceptually simplest computational evaluation of the reduced spin–spin coupling
tensor. This tensor, KKL, is given by the sum-over-states expression presented by
Ramsey in 1953 [18]. This formula serves to illustrate the main contributions into
which the spin–spin couplings can be decomposed and the different roles of singlet
and triplet excited states,

KKL =
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Here the diamagnetic spin–orbit (DSO), paramagnetic spin–orbit (PSO), Fermi-
contact (FC) and spin–dipole (SD) operators in atomic units are
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where α is the fine-structure constant, riK is the position of electron i relative to
nucleus K, I3 is the three-by-three unit matrix, δ(riK) is the Dirac delta function,
and si is the spin of electron i. The summations run over all excited singlet states
|nS〉 with energy EnS

and all triplet states |nT 〉 with energy EnT
. A few key points

can be noted from this expression. First, all of the contributions are local to the
nuclei. The DSO, PSO and SD terms involve denominators in the electron–nuclear
distances. The FC term is extremely local in that its contributions are only from
electrons at the nuclei. Second, although all terms contribute, in most cases—
in particular, for one-bond coupling constants—it is the terms involving the FC
operator that dominate (note the pre-factor above). Finally, from Eq. (1), we can
see that the FC and SD components are of triplet type, whereas the PSO term is
of singlet type.

From a computational point of view, the reduced coupling tensor KKL is depen-
dent purely on the electronic structure in the Born–Oppenheimer approximation.
Its evaluation requires only expectation values involving ground- and excited-state
electronic wave functions and their associated excitation energies. This reduced
quantity is related to the coupling tensor

JKL = h
γK
2π

γL
2π

KKL, (6)

where γK is the gyromagnetic ratio of nucleus K and h is the Planck constant.
Throughout this work, we focus on the isotropic spin–spin coupling constant (and
the corresponding DSO, PSO, FC and SD components), defined as

JKL =
1

3
TrJKL. (7)

This quantity can be observed experimentally for freely tumbling molecules in the
liquid or gas phases using high-resolution nuclear magnetic resonance spectroscopy.

2.2. Response-Theory Formulation

A more computationally tractable (but formally equivalent) approach arises from
the use of linear response theory to calculate spin–spin coupling constants. The
spin–spin coupling tensor for nuclei K and L is given by

KKL =
∂2E

∂mK∂mL
+

∂2E

∂mK∂κ

∂κ

∂mL
. (8)
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Here, the linear response of the wave function ∂κ/∂mL can be obtained from the
linear response equations

∂2E

∂κ∂κ

∂κ

∂mL
= − ∂2E

∂κ∂mL
, (9)

where κ are the wave function parameters. The response equations may be ex-
pressed in the compact form,

GλL = −RL. (10)

For single-reference approaches such as KS-DFT and HF theory, the right-hand
side may be expressed in terms of occupied–virtual orbital rotations κai as

RL,ai =
∂2E
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. (11)

The linear response equations can be separated into components for the PSO,
SD and FC contributions in the manner∑
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The response equations include the electronic Hessians for imaginary (I) singlet
(s) rotations IIGss

ai,bj and real (R) triplet (t) rotations RRGtt
ai,bj . The corresponding

contributions to the spin–spin coupling tensor are calculated as
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along with the DSO contribution, which is given by the expectation value
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2.3. TDA for Spin–Spin Coupling Constants

The connection between the limited accuracy of DFT for spin–spin couplings and
the triplet instability that affects the calculation of triplet excitation energies was
recently explored by Lutnæs et al. [7]. The triplet instability causes the triplet exci-
tations to be too low in general and strongly dependent on the molecular geometry.
Lutnæs et al. observed that density functionals that suffer least from triplet insta-
bilities offer a more stable or robust description of spin–spin couplings, whilst those
that offer higher accuracy tend to be more strongly afflicted and require practical
calculations at or very close to the molecular equilibrium geometry. Often this is
because the functionals include a fraction of the HF exchange contribution. In the
context of HF theory, the triplet instability issues associated with evaluating spin–
spin coupling constants dominate to the extent that practical results at this level
cannot be used [19, 20]. It has long been known that the TDA [8, 9] can be applied
in the calculation of excitation energies and gives results that are essentially free
of errors associated with the triplet instability [10, 11]. However, to the best of our
knowledge, this approximation has not been applied to other molecular properties
involving triplet perturbations.

The orbital-rotation Hessians for general singlet or triplet rotations can be ex-
pressed as

IIGuu = (uA− uB), (23)

RRGuu = (uA + uB), (24)

where

(sA− sB)ij,ab = δijδab(εa − εi)− γgijab + γgajbi − (ij|fxc|ab) + (aj|fxc|bi), (25)

(sA+ sB)ij,ab = δijδab(εa − εi) + 4giajb − γgijab − γgajbi
− (ij|fxc|ab) + (aj|fxc|bi), (26)

(tA− tB)ij,ab = δijδab(εa − εi)− γgijba + γgajbi − (ij|fxc|ab) + (aj|fxc|bi), (27)

(tA+ tB)ij,ab = δijδab(εa − εi)− γgijba − γgajbi − (ij|fxc|ab)− (aj|fxc|bi). (28)

Here εp are the orbital energies, γ is the amount of Hartree–Fock exchange, fxc

is the exchange–correlation kernel and gpqrs represent standard electron repulsion
integrals. In the case of range-separated exchange–correlation functionals, such as
CAM-B3LYP used in this work, the above equations may be modified easily by
replacing the γ-scaled repulsion integrals with their long-range counterparts. In
the sum-over-states formulation of Section 2.1, these orbital-rotation Hessians can
be used to determine the excitation energies via the TDHF or TDDFT equations.
In the response formulation of Section 2.2, these orbital-rotation Hessians enter
directly as IIGuu and RRGuu. The sum-over-states and response formulations are,
of course, equivalent. However, whereas the sum-over-states formulation gives a
clear intuitive picture of the relevance of excitation energies in the computation
of spin–spin couplings, the response formulation is more computationally efficient,
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avoiding the need for the explicit calculation of all excitation energies.
The TDA is most frequently applied in the calculation of excitation energies. It

is defined by setting

uB = 0. (29)

In the sum-over-states formulation, this corresponds to applying the TDA approxi-
mation in the calculation of excitation energies via the TDHF or TDDFT equations
entering the denominators of Eq. (1). Equivalently, in the response formulation, the
TDA corresponds to

IIGuu = RRGuu = uA. (30)

In this work, we investigate the effect that the application of the TDA has on the
calculation of spin–spin coupling constants.

Lutnæs et al. [7] have shown the close connection between the quality of conven-
tional evaluations in KS-DFT and the onset of triplet instabilities for a variety of
functionals. These issues afflict the SD and FC contributions in particular due to
their triplet symmetry. Since the latter often accounts for the bulk of the spin–spin
coupling values, the application of the TDA to these quantities is of particular
interest.

3. Computational Details

We have implemented the TDA in the flexible response module [21–23] of the
DALTON quantum chemistry program [24, 25]. This implementation allows for the
calculation of a range of properties within the TDA. All HF and DFT calculations
are carried out in a spin-restricted formalism. We consider the application of the
TDA uniformly in the calculations (i.e., also to the response evaluation of the singlet
PSO term) and quantify its influence in HF and DFT calculations. To benchmark
our results, we use SOPPA(CC2) and SOPPA(CCSD) coupling constants [26–29]
calculated with the DALTON program, and CCSD constants, excluding orbital
relaxation contributions [30], from the CFOUR program [31].

It is known that DFT evaluations of spin–spin coupling constants offer a sub-
stantial improvement over HF. However, the stability of spin–spin couplings can
be particularly sensitive to the molecular geometries employed [6, 7]. Care must
therefore be taken to select appropriate geometries. In Section 4.1, we initially
consider 60 isotropic spin–spin couplings for 16 molecules at the CCSD(T)/cc-
pVTZ optimized geometries of Refs. [32, 33] to assess the utility of the TDA; for
further details of the systems considered, see the supplementary material. Here,
we consider all possible couplings, irrespective of isotopic abundance, to maximize
the number of data points in assessing the accuracy of the TDA. In Section 4.2,
we consider the geometrical dependence of the conventional and TDA spin–spin
coupling evaluations in more detail for the CO molecule.

Given the locality of the contributions to the nuclei in Eq. (1), we must take some
care when performing practical calculations—in particular, in the choice of basis
sets. A range of special basis sets have been developed that augment those used in
typical calculations with higher exponent (tight) Gaussian functions. Examples of
such sets are the aug-cc-pVXZ-J sets of Sauer et al. [34, 35], the augmented sets
of Helgaker et al. [36], the ccJ-pVNZ sets of Benedikt et al. [37], and the pcJ-N
basis sets of Jensen [38].
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We here utilize the aug-pcJ-N series of Jensen [38]. All calculations at DFT, HF
and SOPPA(CC) levels are computed using the aug-pcJ-2 basis sets. Preliminary
studies showed that the values of isotropic couplings are reasonably well converged
at this level. For the CCSD calculations using the CFOUR program, we have used
the same basis set where possible, resorting to the aug-pcJ-1 basis sets for some of
the larger systems; see the supplementary information for further details [39].

All TDA calculations use an implementation of the response-theory formulation
in Section 2.2, which has been tested by also performing selected calculations using
the sum-over-states formulation of Section 2.1.

4. Results

Individual values for the calculated indirect nuclear spin–spin couplings can be
found in the supplementary information [39].

4.1. Comparison with Coupled-Cluster Theory

4.1.1. TDA-HF calculations

We begin by considering the application of the TDA at the HF level of theory.
Conventional RHF calculations are exceptionally strongly affected by the triplet
instability, with the RHF Coulson–Fischer point (the onset of triplet instabilities)
often being close to the equilibrium geometry. This has a strong effect on the the
calculated triplet FC and SD components of the spin–spin couplings and, since
the FC term often dominates, a seriously detrimental effect on the total spin–
spin couplings. Indeed, this effect is often sufficiently severe to render the results
practically useless.

In Figure 1, we present a box-whisker plot of the errors for the HF, TDA-HF,
SOPPA(CC2) and SOPPA(CCSD) approaches relative to the CCSD data. The
HF results shown in the top panel clearly illustrate the issues associated with the
conventional evaluation—note the much larger range of errors. The application
of the TDA leads to substantial improvement (shown in blue in the lower panel),
although a number of significant outliers still remain. The remaining two bars show
the comparison of SOPPA(CC2) (orange) and SOPPA(CCSD) (purple) results with
the CCSD data. As expected, these values agree reasonably well with the CCSD
data except for a few outliers; this comparison indicates that these approaches are
of sufficient accuracy to be used as a reference to assess the application of the TDA
near to equilibrium molecular geometries.

In Table 1, we present the mean errors and standard deviations (StDev) of the
errors for each of the approaches considered in Figure 1. These quantities are shown
for the total isotropic spin–spin coupling constant (ISO) as well as for the DSO,
PSO, SD and FC components individually. We first note that the DSO contribution
is small. Also, the error in this component is unaffected by the response treatment
since the component is an expectation value; see Eq. (22).

The PSO term is a singlet contribution; accordingly, the errors in this term at
the HF level are modest compared with the errors in the triplet SD and FC terms.
Interestingly, the TDA reduces the mean errors and, in particular, the standard
deviation in the PSO term further. Whilst, as shown in Section 2.3, the TDA is ex-
pected to influence triplet properties most strongly, it affects also singlet properties
owing to the reduction of the orbital-rotation Hessian in Eq. (30). The observation
that the TDA improves agreement with CCSD results is consistent with recent
observations for singlet excited states [13–15].
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Figure 1. Box-whisker plots of the error in calculated spin–spin coupling constants for HF, TDA-HF,
SOPPA(CC2) and SOPPA(CCSD) using the aug-pcJ-2 basis set against CCSD reference data. The left-
and right-hand fences of the whiskers denote the maximum negative and positive errors respectively, the
white vertical lines denote the median error, the thick black vertical lines denote the mean error, and the
left- and right-hand edges of the coloured bar denote the 25% and 75% quantiles respectively.

The triplet-type SD term shows a larger mean error and a very large standard
deviation at the HF level. The TDA reduces the error measures substantially, the
TDA-HF results being competitive with the SOPPA(CC) approaches, suggesting
that the errors in the SD term are dominated by those associated with the triplet
instability.

The remaining triplet FC term is often the dominant contribution to the overall
isotropic spin–spin coupling constant. Accordingly, this term has the largest mean
errors and standard deviations for all approaches. Again, the TDA substantially
reduces the error measures. However, in this case, the remaining TDA-HF errors are
not competitive with the higher-level methodologies. This behaviour may indicate
that the FC errors, although largely arising from the triplet instability, also have a
substantial (dynamical) correlation component. For all approaches, the errors in the
total isotropic couplings parallel those of the FC term. However, the SOPPA(CC)
approaches agree far more closely with the reference coupled-cluster data.

To better examine the range of coupling constants considered here, a correlation
plot is presented in Figure 2. The influence of the triplet instability on the HF spin–
spin couplings is clear, resulting in almost no correlation with the CCSD results.
When the TDA is applied, the improvement is remarkable, all couplings moving
much closer to the ideal line. It is notable that, for the larger absolute values of
the couplings, the TDA-HF approach produces values systematically below the
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Table 1. Mean errors (ME) and standard deviations (StDev) relative to CCSD reference data for the DSO, PSO,

SD, FC and total isotropic coupling constants (ISO) using the HF, TDA-HF, SOPPA(CC2) and SOPPA(CCSD)

methods with the aug-pcJ-2 basis set.

Method Error DSO PSO SD FC ISO
HF ME −0.02 0.06 2.50 33.95 36.49

StDev 0.03 2.18 32.95 153.00 175.40
TDA-HF ME −0.02 −0.17 0.02 −4.21 −4.37

StDev 0.03 1.12 0.64 13.81 13.58
SOPPA(CC2) ME −0.02 0.20 0.05 1.19 1.42

StDev 0.53 0.92 0.38 5.03 4.78
SOPPA(CCSD) ME −0.02 0.20 0.05 0.54 0.78

StDev 0.53 1.12 0.27 4.12 3.93

HF
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Figure 2. Correlation plot for calculated spin–spin couplings in Hz at the HF (blue points) and TDA-HF
(red points) levels with the CCSD couplings. The ideal correlation is shown by the purple line.

corresponding CCSD values.
The improvement in the spin–spin-couplings at the TDA-HF level is encouraging,

transforming the results from being of no practical utility into results approaching
the quality of conventional KS-DFT. Whilst the results are not of high quality,
it should remembered that the cost of TDA-HF calculations is substantially lower
than those of SOPPA(CC) and CCSD calculations. Given that the remaining errors
at the TDA-HF level result from the neglect of correlation effects, it is interesting
to investigate the performance of TDA-DFT methods in this context.

4.1.2. TDA-DFT calculations

To investigate whether TDA-DFT could offer improved accuracy over TDA-HF
theory, we performed indirect spin–spin calculations (with and without the TDA)
using the following selection of exchange–correlation functionals: LDA [40, 41],
BLYP [42, 43], PBE [44], KT2 [45], B3LYP [46, 47], B97-1 [48], B97-2 [49], B97-
3 [50], PBE0 [51], and CAM-B3LYP [52]. The quality of the resulting coupling
constants is illustrated in Figure 3.

In the upper panel, the results of the conventional coupling evaluations are shown.
As might be expected, local-density-approximation (LDA) couplings are of low
accuracy. For the generalized-gradient-approximation (GGA) functionals BLYP,
KT2, and PBE, we observe a broad range of performance. Interestingly, the KT2
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functional, which performs well for the singlet-type shielding constants, does not
perform well for the triplet-type spin–spin coupling constants, consistent with pre-
vious findings [53]. The PBE results are noticeably more accurate. The hybrid
functionals B97-2 and B97-3 stand out as offering the highest accuracy, again con-
sistent with previous work [7, 54]. The range-dependent CAM-B3LYP functional
gives results similar to the B3LYP and B97-1 functionals, indicating that the influ-
ence of long-range HF exchange on these near-nuclear properties is unimportant.

The lower panel of Figure 3 shows the results upon application of the TDA. Sur-
prisingly, a general deterioration in the quality of the calculated spin–spin coupling
constants is evident, as indicated by the width of the coloured bars. Some reduc-
tion in the magnitudes of the maximum negative and positive errors is evident
however, as shown by the position of the left- and right-hand fences, indicating
that some of the most severe outliers are improved by the application of the TDA.
However, given the success of the TDA approach in HF theory, the overall deteri-
oration of the results is disappointing. A notable feature of the TDA-DFT results
is their uniformity—variations between functionals are greatly reduced. In par-
ticular, the quality of the TDA-B97-2/3 results is substantially reduced for most
of the couplings. With all exchange–correlation functionals, TDA-DFT tends to
underestimate the value of the spin–spin coupling constants.

Table 2 contains the mean errors and standard deviations associated with each
exchange–correlation functional, in the same manner as for HF theory in Table 1.
As in HF theory, the DSO errors are small. Moreover, the PSO and SD contribu-
tions are generally improved by the TDA. For the PSO term, this effect is more
pronounced for the hybrid functionals than for the pure functionals. The SD term
tends towards underestimating the CCSD value, rather than overestimating it as in
the conventional evaluation. Standard deviations are much improved on application
of the TDA.

As in HF theory, the FC errors dominate the overall errors in the spin–spin
couplings, both with and without the TDA treatment. However, unlike at the HF
level, the application of the TDA leads to a general deterioration in the quality
of the results, with larger standard deviations and mean errors (with a tendency
towards underestimation of the coupling constants). Whilst one might expect an
improved FC term due to the potential improvement of triplet excitation energies
with the TDA, our results indicate that this is not the case in practice, presumably
reflecting the fact that many excitations can contribute and that the numerator in
the final term in Eq. (1) is also affected.

Based on the error measures in Table 2, the most accurate TDA-DFT method is
TDA-B3LYP. Figure 4 illustrates the correlation of the B3LYP and TDA-B3LYP
results with the CCSD values. In the left-hand panel, the full range of couplings is
shown. Clearly, the conventional results are not afflicted by the large errors present
at the HF level, indicating that the influence of the triplet instability is less severe
close to equilibrium geometries for these systems. For larger absolute coupling
values, we observe a similar tendency of TDA-B3LYP theory to underestimate the
absolute CCSD values as for TDA-HF. In the right-hand panel, we present a more
detailed plot for the couplings between −20 and 80 Hz. The TDA-B3LYP results
have more scatter than the B3LYP results in this area, leading to poorer error
measures consistent with the broadening of the coloured bars in the lower panel of
Figure 3.

4.1.3. Comparison of HF and DFT spin–spin coupling constants

A comparison of Tables 1 and 2 shows that, when the TDA is applied, the error
measures for the FC contribution become remarkably similar to the HF measures
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Figure 3. Box-whisker plots of the error in the calculated spin–spin coupling constants for several DFT
and TDA-DFT functionals using the aug-pcJ-2 basis set compared against CCSD reference data. The left-
and right-hand fences of the whiskers denote the maximum negative and positive errors respectively, the
white vertical lines denote the median error, the thick black vertical lines denote the mean error, and the
left- and right-hand edges of the coloured bar denote the 25% and 75% quantiles respectively.

for most of the exchange–correlation functionals considered. This observation in-
dicates that, in the calculation of spin–spin coupling constants, standard DFT
functionals benefit from a compensation of errors in the treatment of dynamical
and static correlation similar to that observed upon bond dissociation.

The application of the TDA removes the negative impact of the triplet instability
in the calculation of spin–spin couplings. The fraction of HF exchange present in
the density functional does, however, still influence the quality of the KS orbitals
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Table 2. Mean errors (ME) and standard deviations (StDev) in the calculated DSO, PSO, SD, FC and total

isotropic coupling constants (ISO) for several functionals using DFT and TDA-DFT in the aug-pcJ-2 basis set

compared against CCSD reference data.

Method Error DSO PSO SD FC ISO
Conventional Evaluation

LDA ME 0.003 0.28 0.07 −4.91 −4.56
StDev 0.015 1.13 0.44 16.19 15.54

KT2 ME −0.011 0.07 0.11 1.13 1.30
StDev 0.017 0.58 0.77 17.11 16.81

BLYP ME −0.004 0.12 0.10 2.30 2.51
StDev 0.015 0.67 0.61 16.35 16.23

PBE ME 0.001 0.13 0.10 −0.96 −0.72
StDev 0.014 0.61 0.57 14.55 14.26

PBE0 ME −0.005 0.12 0.13 0.15 0.40
StDev 0.013 0.79 0.86 10.93 10.54

B3LYP ME −0.008 0.12 0.11 2.40 2.62
StDev 0.015 0.82 0.77 13.28 13.03

CAM-B3LYP ME −0.010 0.18 0.14 1.92 2.23
StDev 0.016 1.04 0.98 11.58 10.92

B97-1 ME −0.005 0.09 0.09 2.24 2.41
StDev 0.013 0.72 0.48 11.13 11.11

B97-2 ME −0.006 0.07 0.08 −0.56 −0.41
StDev 0.014 0.69 0.48 9.38 9.42

B97-3 ME −0.007 0.10 0.08 0.54 0.71
StDev 0.014 0.82 0.53 8.53 8.44

TDA Evaluation
LDA ME 0.003 0.03 0.03 −7.50 −7.44

StDev 0.015 1.07 0.46 20.04 19.62
KT2 ME −0.011 −0.08 0.01 −4.34 −4.42

StDev 0.017 0.93 0.36 16.39 16.32
BLYP ME −0.004 −0.08 0.02 −3.63 −3.69

StDev 0.015 0.84 0.36 15.10 15.10
PBE ME 0.001 −0.08 0.02 −5.55 −5.61

StDev 0.014 0.86 0.38 17.24 17.15
PBE0 ME −0.005 −0.08 0.02 −5.52 −5.58

StDev 0.013 0.76 0.37 15.13 15.02
B3LYP ME −0.008 −0.06 0.02 −3.98 −4.04

StDev 0.015 0.71 0.34 13.10 12.99
CAM-B3LYP ME −0.010 −0.01 0.03 −4.30 −4.28

StDev 0.016 0.79 0.34 13.05 12.79
B97-1 ME −0.005 −0.09 0.01 −4.29 −4.38

StDev 0.013 0.76 0.43 13.79 13.74
B97-2 ME −0.006 −0.11 0.00 −5.62 −5.73

StDev 0.014 0.79 0.45 15.58 15.57
B97-3 ME −0.007 −0.09 0.01 −4.95 −5.04

StDev 0.014 0.74 0.43 14.27 14.21

and eigenvalues obtained and so the final value of the isotropic coupling constant.
To investigate this effect, we considered a range of hybrid functionals based on the
PBE functional of the form

EPBEh
xc = axE

HF
x + (1− ax)EPBE

x + EPBE
c . (31)

12



January 21, 2015 Molecular Physics tda˙spin˙spin

B3LYP

TDA-B3LYP

-100 0 100 200 300
-100

0

100

200

300

CCSD Isotropic Coupling Constant / Hz

Is
ot
ro
pi
c
C
ou
pl
in
g
C
on
st
an
t/
H
z

B3LYP

TDA-B3LYP

-20 0 20 40 60 80
-20

0

20

40

60

80

CCSD Isotropic Coupling Constant / Hz

Is
ot
ro
pi
c
C
ou
pl
in
g
C
on
st
an
t/
H
z

Figure 4. Correlation plot for calculated spin–spin couplings in Hz at the B3LYP (blue points) and TDA-
B3LYP (red points) levels with the CCSD couplings. The ideal correlation is shown by the orange line.
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Figure 5. DFT and TDA-DFT errors in calculated spin–spin coupling constants for the PBE functional
with various amounts of HF exchange using the aug-pcJ-2 basis compared with CCSD reference data.

The results for a series of functionals with ax = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 are shown
in Figure 5.

Comparing the top and bottom panels, we see that, whereas the DFT results
obtained conventionally deteriorate for the bulk of the couplings (as expected) as
more HF exchange is introduced, the variation with the fraction HF exchange is
much less pronounced when the TDA is applied. This behaviour again hints towards
error cancellations between the treatment of static and dynamical correlation by
density-functional approximations.

4.2. Geometry Dependence of the Spin–Spin Coupling Constant in CO

So far, the analysis has focussed on nuclear spin–spin couplings evaluated close to
molecular equilibrium geometries. However, it is well known that the evaluation
of spin–spin couplings is very sensitive to the choice of molecular geometry. In
particular, Lutnæs et al. [7] showed that some of the more accurate functionals
such as B97-2/3 are particularly sensitive to the choice of geometry, whilst less
accurate forms such as LDA are more robust. This geometrical stability correlates
with the extent to which the methods are influenced by triplet instabilities close
to the equilibrium geometry.

To investigate this issue further, we considered the variation of the coupling
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Figure 6. The lowest singlet (top) and triplet (bottom) excited states of the CO molecule calculated using
TD-HF (left) and TDA-TD-HF (right) linear response theory. The energies are given in hartree and the
bond lengths in Å.

constants as a function of bond length for all of the diatomics in our dataset. In all
cases, we found a similar behaviour. We therefore discuss here only the behaviour
of the spin–spin coupling constant in the CO molecule.

4.2.1. HF and TDA-HF spin–spin coupling constant of CO

In Figure 6, we have plotted HF energy curves of CO calculated using response
theory. The top panels contain the dissociation curves of the ground state and the
three lowest singlet excited states, calculated in the conventional HF manner (left)
and using the TDA (right). The bottom panels contain the corresponding curves
for the ground state and four lowest triplet states.

As expected, the TDA has little effect on the singlet excitation energies, influ-
encing only the lowest excitation energy at 1.8 Å significantly. By contrast, it has a
large influence on triplet excitation energies. In particular, the lowest three excited
states without the TDA can only be calculated up to approximately 1.4 Å; beyond
this distance the excitation energies become imaginary. Even before this point, the
calculated states show unphysical behaviour.

When the TDA is applied, all states show a more physical behaviour and can
be calculated out to arbitrary internuclear separation. This behaviour is consistent
with the fact that the TDA is equivalent to the configuration-interaction-singles
(CIS) approximation, the variational nature this approach imparting stability to
the TDA excited states.
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Figure 7. The PSO, SD and FC components of the spin–spin coupling constant (Hz) in CO molecule as
a function of bond length (Å), calculated at the HF (orange) and TDA-HF (blue) levels.
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Figure 8. CCSD spin–spin coupling components (Hz) and triplet excited state energies as a function of
bond length (Å).

In Figure 7, we present the components of the spin–spin coupling constant in CO
as a function of bond length. The DSO term is not shown since it is not affected
by the application of the TDA and it gives a small contribution in comparison to
the other components. The increase in the PSO term with increasing bond length
is slightly less with the application of the TDA.

As expected from the energy curves in Figure 6, we see much stronger geometry
effects in the SD and FC terms. In both cases, the HF coupling constant tends
towards large negative values between 1.2 and 1.4 Å, consistent with the bond
lengths at which the triplet excitation energies become unreliable. The application
of the TDA (blue curves) leads to more reasonable SD and FC values for a much
broader range of bond lengths.

It is noteworthy that the SD term shows a sharp upturn around 1.6 Å, as does the
PSO term. At this geometry, the RHF ground state itself is becoming unreliable,
approaching the excited state singlet curves and (in the TDA case) crossing the
lowest triplet curves. Whilst the TDA can help to remove the influence of the
triplet instability in the calculation of excitation energies, the remaining reduced
orbital-rotation Hessian uA is still dependent on the quality of the the ground
state orbitals and eigenvalues and so we may not expect accurate results at very
stretched geometries.

For comparison, we have plotted the corresponding CCSD spin–spin coupling
constant components and triplet excited-state curves of CO in Figure 8. Qualita-
tively, the CCSD energy curves are are much more similar to the TDA-HF curves
than to the HF curves until about 1.5 Å, where the RHF reference state starts to
become insufficiently accurate.
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Figure 9. Comparison of HF / TDA-HF and DFT / TDA-DFT results with CCSD total isotropic coupling
constants (Hz) as a function of bond length (Å).

Finally, we have in the left-hand panel of Figure 9 plotted the geometry depen-
dence of the total spin–spin coupling constant of CO at the HF, TDA-HF and
CCSD levels of theory. The dramatic improvements from HF to HF-TDA theory is
clearly illustrated—in fact, the HF-TDA coupling constant is quite similar to the
CCSD constant up to a bond length of about 1.4 Å.

4.2.2. B3LYP and TDA-B3LYP spin–spin coupling constant of CO

Qualitatively, the B3LYP and TDA-B3LYP energy curves depicted in Figure 10
resemble those for HF and TDA-HF in Figure 6. However, there are a couple of
important differences. Firstly, the onset of issues associated with the triplet insta-
bility is much later for the B3LYP triplet states—namely, beyond 1.5 Å, compared
with 1.2 Å at the HF level. Secondly, the B3LYP ground-state energy curve is rea-
sonable for a wider range of internuclear separations. In particular, at stretched
geometries, the energy curve rises less quickly and so crossings occur at longer bond
lengths when the TDA is applied.

The geometry dependence of the components of the B3LYP and TDA-B3LYP
spin–spin couplings reflect these observations, see Figure 11, to be compared with
Figure 7 for HF theory. In particular, the later onset of triplet instability issues is
reflected in the much improved agreement between the conventional and TDA SD
and FC components for a much broader range of bond lengths than in Figure 7. The
more reasonable B3LYP ground-state energy curve close to equilibrium is reflected
in the substantially different behaviour of the PSO term compared with Figure 7.

In the right-hand panel of Figure 9, the comparison of the overall isotropic spin–
spin coupling constant with CCSD as a function of the internuclear separation is
presented. The behaviour at bond lengths up to 1.4 Å is similar, whether or not the
TDA is applied. In fact, a slight reduction in accuracy is observed near equilibrium
when the TDA is applied, in agreement with the observations of Section 4.1 for the
full set of molecules. However, for bond lengths between 1.4 and 1.8 Å, the TDA
offers a significant improvement, agreeing well with the CCSD reference curve.
In the context of DFT, the main result of the application of the TDA is a more
global stability of the spin–spin couplings as a function of geometry. However,
expectations of this stability must be tempered by the realization that the TDA
cannot correct deficiencies in the reference state.

4.2.3. Variation with exchange–correlation functional

Finally, we consider how the geometry dependence of the spin–spin coupling
constant in CO is affected by the choice of density-functional approximation. As a
representative selection, we present results for LDA, PBE and B3LYP in Figure 12.
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Figure 10. The ground state and three lowest singlet (top) and triplet (bottom) excited states of the
CO molecule calculated using TD-DFT (left) and TDA-TD-DFT (right) linear response theory with the
B3LYP functional. The energies are given in hartree and the bond lengths in Å.
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Figure 11. The PSO, SD and FC components of the spin–spin coupling constant (Hz) in CO molecule as
a function of bond length (Å), calculated at the B3LYP (orange) and TDA-B3LYP (blue) levels.

Without the TDA, we see that the breakdown of the isotropic spin–spin coupling
constants as the bond length increases occurs first for B3LYP, then PBE and finally
for LDA, consistent with the observations of Lutnæs et al. [7]. Remarkably, when
the TDA is applied, all three functionals give very similar results for bond lengths
up to 1.8 Å. This result is consistent with those in the previous section, suggesting
that, to some extent at least, the accuracy of some functionals in the conventional
evaluation of spin–spin coupling constants may be dependent on error cancellation.
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Figure 12. Isotropic spin–spin coupling constants as a function of internuclear separation calculated using
a variety of density-functional approximations in the conventional manner and with the application of the
TDA.

5. Conclusions

The application of the TDA to the calculation of indirect nuclear spin–spin cou-
pling constants has been explored. The calculation of these constants is particularly
challenging since they are composed of several contributions of quite different char-
acter. The DSO contribution is a simple ground-state expectation value, the PSO
contribution requires an accurate treatment of singlet excited states, and the SD
and FC contributions require an accurate treatment of triplet excited states.

At the HF level of theory, the errors due to triplet instabilities are dominant, mak-
ing the application of the TDA remarkably effective. In fact, practically meaningless
results are transformed into results of semi-quantitative accuracy. Furthermore, the
TDA-HF results show stability over a reasonably wide range of geometries.

For the density-functional approximations, the application of the TDA at the
equilibrium geometry led to a slight decrease in accuracy. Nevertheless, the TDA
results are more reliable over a broader range of bond lengths, making it less
important to have optimized geometries available at a given level of theory to
perform spin–spin coupling calculations. A notable feature of the TDA-DFT results
is their uniformity—indicating the possibility that existing functionals exhibiting
reasonable accuracy trade-off between errors in the dynamical and static correlation
energies.

An important message from this study is that, to achieve high accuracy, it is
necessary for the reference state to be of reasonable accuracy. The TDA can over-
come issues associated with the triplet instability in the determination of response
quantities—however, if the orbitals and eigenvalues entering the reduced orbital-
rotation Hessian uA are not sufficiently accurate, such as at very stretched ge-
ometries, then high accuracy cannot be expected. This essentially determines the
‘window of opportunity’ in which simple approximations like the TDA may have
a positive effect. The uniformity of the TDA-DFT results may suggest that, for
further progress in the calculation of spin–spin couplings at the DFT level, it is
essential to improve the description of electronic correlation effects in both ground
and excited states.
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C. Jagau, D. Jonsson, J. Jusélius, K. Klein, W.J. Lauderdale, D.A. Matthews, T. Metzroth,
D.P. O’Neill, D.R. Price, E. Prochnow, K. Ruud, F. Schiffmann, S. Stopkowicz, A. Tajti, J.
Vázquez, F. Wang, J.D. Watts and the integral packages MOLECULE (J. Almlöf and P.R.
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