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Abstract

We investigate the performance of a Bag of (Visual) Words (BoW) object classification model

as an approach for automated threat object detection within 3D Computed Tomography (CT)

imagery from a baggage security context. This poses a novel and unique challenge for rigid

object classification within complex and cluttered volumetric imagery. Within this context

it extends the BoW model to 3D transmission imagery (X-ray CT) from its conventional

application in 2D reflectance (photographic) imagery. We explore combinations of four 3D

feature descriptors (Density Histogram (DH), Density Gradient Histogram (DGH), Scale In-

variant Feature Transform (SIFT) and Rotation Invariant Feature Transform (RIFT)), three

codebook assignment methodologies (hard, kernel and uncertainty) and seven codebook sizes.

Optimal performance is achieved using the DH and DGH descriptors in conjunction with an

uncertainty assignment methodology. Successful detection rates in excess of 97% for handguns

and 89% for bottles and false-positive rates of approximately 2-3% are achieved. We demon-

strate that the underlying imaging modality and the irrelevance of illumination and scale

invariance within the transmission imagery context considered here, result in the favourable

performance of simpler density histogram descriptors (DH, DGH) over 3D extensions of the

well-established SIFT and RIFT feature descriptor approaches.

Keywords: 3D Object classification, Bag of (Visual) Words, 3D descriptors, SIFT, RIFT,

baggage-CT

1. Introduction

Baggage screening plays a central role within the aviation security domain [1]. Recent

advances in airport-security regulations (European Civil Aviation Conference (ECAC) Stan-

dard 3 screening regulations [2]) will see high-speed variants of 3D X-ray Computed Tomog-
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raphy (CT) scanners, which have enjoyed much success in medical imaging, introduced to the

security-screening domain in an attempt to mitigate the limitations of conventional 2D X-ray

based scanners (particularly object occlusion, clutter and density confusion) [3]. In summary,

high-speed CT imaging gives full 3D voxel representation that overcomes the inherent (and

very apparent) problem of inter-object occlusion within conventional X-ray (even with 2 or

more views) and furthermore allows for the recovery of 3D materials-based information (e.g.

effective atomic number [4, 5]) at each voxel location. In turn, this has led to increased re-

search interest in the potential use of object detection and classification techniques to perform

automated-analyses tasks on such 3D-baggage imagery [6–10].

To date, the most prominent application of CT within the security-screening domain has

been the materials-based detection of explosives [1]. Dual-Energy Computed Tomography

(DECT) [4], whereby objects are scanned at two distinct X-ray energies, provides an effective

means for performing such materials-based discrimination (e.g. via the recovery of effective

atomic numbers [4, 5]).

As a result of this primary explosives detection objective within the aviation-security do-

main, DECT baggage scanners have become dominant, offering both CT density as well as

materials-based information. Despite overcoming the inherent problem of occlusion within

2D X-ray, demand for high throughput has often meant that 3D baggage-CT imagery typi-

cally contains substantial noise, metal-streaking artefacts and voxel resolutions of significantly

poorer quality than the modern medical-CT equivalent [1] (Figure 1). Prior work has con-

sidered denoising and metal artefact reduction in baggage-CT imagery [11–14], although the

impact on object classification within this space remains unproven [6–10].

While there exists a rich resource of literature addressing the topic of automated object

recognition in 3D medical imagery, it is important to emphasise that these are typically

targeted at specific organs and/or pathologies. This allows for the development of task-

specific algorithms and crucially, the incorporation of a priori information [15, 16] (which is

not viable in the unconstrained security-scanning context considered here).

The simultaneous segmentation of multiple anatomical structures, which is typically ad-

dressed as a voxel classification problem, is perhaps more closely related to the classification

of multiple objects in baggage-CT imagery. The most significant contributions in this field

address the issue of multi-organ segmentation in varied CT imagery [17–21]. In these ap-

proaches anatomical context is captured via context-rich features, which describe the relative

position of visual patterns in the local anatomy [21]. These features are then used to build,
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Figure 1: Example baggage-CT scan containing handgun and bottle. (a) Volumetric rendering. (b) Single 2D
axial slice. Handgun, bottle and artefacts indicated.

for example, a random-forest-based spatial-context model [20, 21], which is ultimately used

in the voxel classification. Therefore, despite targeting the classification of multiple organs, a

depedence on a priori information is still prominent.

In this study we consider the automatic recognition of two distinct object types, namely

handguns and bottles. While this would suggest that the incorporation of a priori informa-

tion (particularly shape characteristics) would be beneficial, it is important to emphasise that

the restriction to these two object types has been dictated by limitations in the currently

available datasets. In reality, the ultimate objective in baggage screening is more complex.

Particularly, it is a requirement to detect the sub-parts of disassembled objects (e.g. compo-

nents of handguns, weapons and/or explosives). Therefore, while a priori information related

to the geometric properties, the X-ray attenuation characteristics and the spatial relations of

the structures being scanned is readily available in medical imagery, this is generally not the

case in the baggage-CT domain, rendering many of the state-of-the-art medical techniques

infeasible.

To these ends, approaches that rely on strong shape priors [22–24] break down against

this inherent requirement to detect isolated sub-parts of threat objects (e.g. the barrel of a

handgun). Such approaches [22–24] extended to 3D, are commonly used to recognise objects

in their entirety or under occlusion - not where additional shape boundaries are introduced by

potential disassembly in actual 3D real-world space (making any 3D shape signature invalid in

the conventional sense - as new non-occlusion bounded edges are introduced). The flexibility of

the BoW model [25], which is structureless in the object feature sense, is therefore considered

highly correlated with the unique challenges of object classification in this problem space.

There is limited prior work in the area of automatic recognition of items in scanned

baggage-CT imagery. A larger resource of literature exists concerning automated object

recognition in 2D X-ray imagery. In particular, several techniques have been presented for

the detection of handguns. Nercessian et al. [26] use edge detection to characterise handgun

features but only considering handguns in fixed orientations. A small dataset was used (40
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handgun images, 400 clutter images) with two simple examples of handgun detection shown

but no statistical results presented. Oertel and Bock [27] present an approach for that may be

categorised as an instance of specific item recognition: one type of handgun was characterised

using the distinguishing features of its trigger, hammer and spring. Regions of interest are

created for each pixel on an edge contour and a descriptor is constructed from the distribution

of white and black pixels in the local neighbourhood. While it is unclear if the approach is

invariant to rotation in the horizontal plane, it is not invariant if the weapon is rotated out

of this plane. A small dataset was used (30 training images; 10 test images) and again no

quantitative results were presented. Gesick et al. [28] search for the handgun trigger in the

edge information of the scans in a similar fashion to [27]. The proposed approach is not

rotation invariant and no quantitative results have been presented.

Bastan et al. [29] recently applied the BoW model to colour 2D dual-energy X-ray images

of baggage items to detect handguns and are the first to report detection results. Investi-

gation of a variety of interest point detectors (DoG, Hessian-Laplace, Harris, FAST, STAR)

coupled with three descriptors (SIFT, SURF, BRIEF) was made. Whole baggage items were

considered, as opposed to adopting a sliding-window approach, which raises the complexity of

the recognition task. In the classification of baggage containing handguns they reported that

the method does not work well in isolation but results can be improved using the extra in-

formation available from the colour image (indicating material type). In an extension of [29],

Turcsany et al. [30] present a BoW model using the Speeded-Up Robust Features (SURF)

[31] and a Support Vector Machine (SVM) [32] classifier for automated object recognition

within 2D X-ray baggage imagery. Correct classification rates in excess of 99% and a false

positive rate of approximately 4% are demonstrated on a diverse dataset.

Comparatively few studies consider 3D volumetric baggage-CT imagery. Bi et al. [33]

attempted handgun detection in baggage-CT imagery. The work did not involve processing

the 3D data directly as the problem was reduced to searching for the characteristic cross-

section of the handguns and appeared preliminary in nature as no explicit quantitative or

qualitative detection results are presented. Further work by the same author [34] proposed

a methodology for the detection of planar materials within CT-baggage imagery using a

3D extension to the Hough transform [35]. Megherbi et al. [36] investigated the detection of

potential threats in CT volumetric data using curvature information captured via a normalised

histogram of shape index descriptor [37]. While correct classification rates in excess of 98.0%

are presented on a relatively small dataset, curvature properties are shown to be beneficial
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for particular exemplar items only (namely, bottles) and are severely limited in the presence

of noise.

The observation that curavature information is of limited value in the current context has

been substantiated by Mouton [38], who demonstrates the ineffectiveness of curvature-based

descriptors in the representation of typical 3D objects segmented from baggage-CT imagery.

Extending upon their earlier work, Flitton et al. [7] present an experimental comparison

of four interest point descriptors (the Density Histogram (DH) descriptor [7]; the Density

Gradient Histogram descriptor (DGH) [7]; 3D SIFT [6] and 3D RIFT [39, 40]) in the detection

of known rigid objects within low resolution, cluttered volumetric CT imagery. It is shown that

the simpler density-statistics-based descriptors (DH and DGH) outperform the more complex

3D descriptors (SIFT and RIFT) due to the low-resolution imagery and the high level of

noise and artefacts. It is worth emphasising, however, that object detection is achieved using

a traditional instance-specific recognition approach, whereby a particular reference object is

identified (e.g. a handgun) and pose estimated within a given unknown volume. The study

does not consider the task of generalised object classification by type, as we consider in this

study.

In the domain of object class recognition, the Bag of (Visual) Words (BoW), or codebook,

approach has been met with considerable success [25, 41–43]. In terms of object recognition

in 3D baggage-CT imagery, Flitton et al. [8] compare the performance of a 3D visual cortex-

based approach to a BoW model using the 3D SIFT descriptor [6]. The cortex-based approach

is shown to outperform the BoW approach in the detection of handguns and bottles in subvol-

umes. Mouton et al. [10] demonstrate a further improvement over the 3D visual cortex model

in terms of classification accuracy and processing time using a codebook approach based on

Extremely Randomised Clustering (ERC) forests [44], a dense feature sampling strategy [45]

and an SVM classifier [46]. In particular, correct classification rates in excess of 98% and false

positive rates of less than 1%, in conjunction with a reduction of several orders of magnitude

in processing time are demonstrated for the 3D object classification in subvolumes. While

these studies have not considered the impact on performance of the BoW model parameters

(e.g. codebook size, descriptor type, cluster assignment strategy), related works [7, 47] sug-

gest the potential for improved recognition performance provided the optimal BoW model

parameters are determined.

We expand on these earlier works by providing a comprehensive performance evaluation

of the suitability of the BoW model for the automated recognition of rigid threat-like ob-
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jects (handguns and bottles) in low resolution, noisy and complex 3D baggage-CT imagery.

The study examines the effectiveness of this object-classification paradigm within complex

and cluttered transmission imagery (X-ray CT) and challenges convention with regard to

relative 3D descriptor performance within this imaging modality when compared to regular

reflectance (photographic) imaging. We determine the optimal combination of model param-

eters by evaluating and comparing the performance of the four descriptor types described in

[7] (DH, DGH, 3D SIFT, 3D RIFT) and three cluster assignment methodologies (hard, kernel,

uncertainty) within a supervised machine learning framework based on the Support Vector

Machine (SVM) classifier [46].

2. 3D Interest Point Detection

An overview of the basis of interest point detection and description is provided here - for

a comprehensive description, the reader is referred to the literature [7].

2.1. Interest Point Detection

We perform interest point detection using a 3D extension to the SIFT algorithm [6, 48].

Scale-space extrema detection: The 3D input volume I(x, y, z) is convolved with a 3D

Gaussian filter G(x, y, z, kσ) at multiple scales to generate a series of multi-scale Difference-

of-Gaussian (DoG) volumes:

DoG(x, y, z, k) = I(x, y, z) ? G(x, y, z, kσs)− I(x, y, z) ? G(x, y, z, (k − 1)σs) (1)

where ? represents the convolution operator; k is an integer in the range {1..5} representing

the scale index; σs = 3
√

2 and (x, y, z) are defined in voxel coordinates. Subsequently a three

level pyramid (L = 0, 1, 2) is constructed up by subsampling the Gaussian filtered volume for

k = 4 and repeating the process. Initial candidate keypoints are identified as the local extrema

of the DoG images across scales. A given voxel is considered a maximum/minimum if it is

a maximum/minimum amongst its 26 neighbours at the same scale and its 27 corresponding

neighbours in each of the neighbouring scales in R3 voxel space.

Keypoint refinement: The candidate keypoints are refined by rejecting poor-contrast

keypoints and keypoints poorly localised on edges. The removal of low-contrast keypoints

(determined by a density threshold τc = 0.05) eliminates points that are likely to produce

unstable descriptors and points associated with metal artefacts. Keypoints located along

edges are likely to produce unstable descriptors in the presence of noise. Such keypoints are

removed via a second threshold τ(e):
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Reject if
Trace3(H)

Det(H)
>

(2τe + 1)3

(τe)2
(2)

where H is the 3 × 3 Hessian matrix at a given candidate point; Det(H) and Trace(H)

are respectively the determinant and trace of the Hessian. In this work, a value of τe = 40 is

used and, hence, points where Trace3(H)
Det(H) > 332.15 are rejected.

Keypoint localisation: Finally sub-voxel estimates of the true locations of the extrema

are determined by quadratic interpolation of the DoG volumetric data.

2.2. Interest-Point Neighbourhood Weighting

A Gaussian window function, w(d, σ), is used to limit the contribution of voxels around

the point of interest to those in the local neighbourhood [48]:

w(d, σ) = exp

[
−
(
d

σ

)2
]

(3)

where d is the voxel distance from the point of interest to the contributing voxel and σ

defines the extent of the local contribution. This function is used in conjunction with each of

the four descriptors described in Sections 3.1 - 3.4. Given the definition of distance in voxel

units, this window will remain consistent with the resolution of the volume being examined.

3. 3D Point-of-Interest Descriptors

Based on the definitions provided in [7], four interest point descriptors are considered

(in increasing complexity): Density Histogram (DH); Density Gradient Histogram; 3D SIFT

and 3D RIFT [40]. On completion, all descriptors are normalised to unit area. For a more

comprehensive description, the reader is again referred to [7].

3.1. Density Histogram (DH) Descriptor

This descriptor defines the local density variation at a given interest point as an N -bin

histogram defined over a continuous density range. Given the local area function w(dk, σ)

(Equation 3), an addition of w(dk, σ) is made to the appropriate histogram bin where dk is

the voxel distance from the point of interest to the voxel k.

3.2. Density Gradient Magnitude Histogram Descriptor, (DGH)

The Density Gradient Histogram (DGH) for a given interest point quantifies the distribu-

tion of the density gradient magnitude in the local neighbourhood of that point. The density
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gradient magnitude is calculated for all voxels in the volume using a central difference for-

mulation to ensure that the gradient location is aligned with the voxel grid. An addition of

w(dk, σ) is again made to the appropriate histogram entry. It is worth noting that, due to the

rotational variance of the objects under consideration for detection, the gradient magnitude

is used as opposed to the gradient orientation (frequently used for recognition tasks in 2D

[49]).

3.3. Rotation Invariant Feature Transform, (RIFT)

Lazebnik et al. [40] developed the Rotation Invariant Feature Transform (RIFT). The

RIFT descriptor examines the local neighbourhood gradients with reference to a radial vector

emanating from the point of interest. Histograms are constructed from the gradient orien-

tation and magnitude. Multiple histograms are derived following segmentation of the local

neighbourhood into a series of rings centred on the point of interest. RIFT has been shown

to operate well in standard 2D imagery and is used in our work as it is more complex than

the simple histograms described above but is not as complex as the SIFT descriptor [40, 48].

For a detailed description of the 3D extension of RIFT used here, see [7].

3.4. 3D Scale-Invariant Feature Transform (SIFT)

This descriptor is closely modelled on that used in [6, 50], considering the correct definition

of 3D orientation, based on azimuth, elevation and tilt. Volume gradients are examined in a

two stage process to locally establish an invariant orientation to be used in the subsequent

keypoint description. Firstly, a dominant direction for a keypoint is determined by computing

a 2D direction histogram that groups the Gaussian filtered volume gradients in bins dividing

azimuth and elevation into 45◦ sections (with Na = 8 azimuth bins and Ne = 4 elevation

bins). A regional weighting is applied to the gradients according to their voxel distance from

the keypoint location. The dominant directions of the keypoint are determined by locating

the peaks in this histogram and refining them via interpolation. Histogram peaks within

80% of the largest peak are also retained as possible secondary directions [48]. Secondly, the

keypoint orientation is determined by calculating the tilt angle for each derived direction.

This is accomplished by re-orientating the volume around the keypoint and constructing a

1D tilt histogram that resolves the gradients orthogonal to the dominant direction. This

histogram is again built in 45◦ bins using the same regional weighting method as for the

direction histogram. The interpolated peaks in the tilt histogram are used to derive an
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estimate of the keypoint tilt. Again, peaks within 80% of the largest peak are retained to give

secondary orientations.

Keypoint description is obtained by constructing an Ng × Ng × Ng grid of gradient his-

tograms, with each histogram being computed from a Nv × Nv × Nv voxel grouping. Each

gradient histogram is derived by splitting both azimuth and elevation into 45◦ bins. Conse-

quently, each descriptor, normalised to unity, contains N3
g × Na × Ne elements. For further

details of this 3D SIFT extension the reader is referred to [6].

4. The Bag of (Visual) Words (BoW) Model

Given the requirement for detecting the components of disassembled objects and the re-

lated limitations of traditional shape-based approaches (see Section 1), we seek a shape-

independent representation/model for object recognition. The Bag of (Visual) Words (BoW),

or codebook, model [25] is one such approach which has enjoyed success in various object

recognition and image classification tasks. Traditionally, the BoW model is composed of

the following steps: [51]: 1) feature detection and description (Section 2 and 3); 2) visual

codebook generation and 3) classification. A similar approach is adopted here.

A k-means clustering algorithm [52] is employed to calculate a set of cluster centres from

a set of descriptors obtained from a series of baggage items. For each baggage item, a single

BoW vector is then obtained via vector quantisation of the set of descriptors describing that

bag [25]. The assignment methodology used in the vector quantisation is known to have an

impact on performance [40]. We consider the performance of three assignment methodologies:

hard assignment, kernel assignment and uncertainty assignment.

Hard assignment is the original and the most basic codebook assignment approach

whereby every descriptor is assigned to the cluster centre, ci, where the distance D (dm, ci)

is minimal over all ci. Essentially the closest cluster to the descriptor is taken as the only

possible assignment and an allocation to that cluster proceeds:

CBH(i) =
1

M

M∑
m=1

k∑
i=1


1 if wi = arg min (D (dm, ci))

0 otherwise

(4)

where k is the number of clusters and M is the number of descriptors in the volume. Note

the normalisation by M to ensure that the same histogram is constructed, regardless of the

number of contributing descriptors.

Kernel assignment: In order to overcome the problems associated with a hard assign-

ment methodology (e.g. quantisation errors [47]) an assignment that considers the possibility
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of error is used. A simple Gaussian kernel is used to provide the assignment ambiguity in the

codebook - assigning values to the codebook as a function of the distance from the descriptor

to the cluster centre:

CBk(i) =
1

M

M∑
m=1

k∑
i=1

exp

(
−1

2

(
D (dm, ci)

σ

)2
)

(5)

where k is the number of clusters; M is the number of descriptors in the volume and σ

is the smoothing parameter defining the degree of assignment ‘fuzziness’ (i.e. the degree to

which assignments to adjacent clusters are made). A known shortcoming of kernel assignment

occurs when the smoothing parameter of the kernel is much smaller than the nearest cluster

centres (in terms of Euclidean distance), resulting low weightings being assigned to ‘important’

clusters.

Uncertainty assignment: The aforementioned limitation of the kernel assignment pro-

cedure may be addressed by adopting a normalisation scheme whereby each descriptor con-

tributes the same cumulative (sum) value to the codebook. This normalisation ensures that

each descriptor only contributes a sum total of 1.0 to the codebook and eliminates the low val-

ues (weak contributions) that can occur using kernel assignment. The uncertainty assignment

is then given by:

CBU (i) =
1

M

M∑
m=1

k∑
i=1

exp

(
−1

2

(
D(dm,ci)

σ

)2)
∑k

j=1 exp

(
−1

2

(
D(dm,cj)

σ

)2) (6)

where k is the number of clusters; M is the number of descriptors in the volume and σ the

smoothing parameter. Van Gemert et al. [47] have demonstrated that uncertainty assignment

approach yields the highest true-positive rates in the task of 2D scene classification.

5. Object Classification Methodology

A set of training descriptors is extracted from a given set of training volumes (Sections 2

and 3). These descriptors are passed to the k-means algorithm to derive a set of cluster centres

or visual words (Section 4). The k-means algorithm is initialised using the algorithm proposed

by Arthur and Vassilvitskii [53], which has been shown to improve the speed of convergence

over a random initialisation of the cluster centres. The algorithm is prone to sub-optimal

solutions when the initial cluster centres are randomly assigned. Therefore, the algorithm

is executed 10 times and the result with the minimal cluster compactness is chosen. The

resulting cluster centres constitute the codebook words over which training descriptors then
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undergo vector quantisation using a chosen assignment method (Section 4). Classification

is accomplished via a Support Vector Machine (SVM) classifier [46] with a Gaussian Radial

Basis Function (RBF) kernel (controlled by two parameters: cost C and the kernel width γ).

The optimal values of (C; γ) are derived using a grid-search approach over a 10-fold cross-

validation. A further 10-fold cross-validation procedure is used to obtain the final classification

results. Traditional True-Positive Rates (TPR) and False-Positive Rates (FPR) are used as

performance measures.

6. Evaluation Imagery

We consider the classification of two target objects, namely handguns and bottles. The

restriction to these two object types has been dictated by limitations in the currently available

datasets, which has been derived from a recognised test set of baggage items used for the

validation of human-in-the-loop studies such as threat resolution [54], Explosive Detection

Systems (EDS) [1] and threat image projection [9, 55].

The data was obtained from a CT80-DR dual-energy baggage-CT scanner manufactured

by Reveal Imaging Inc, designed specifically for materials-based explosives detection. A fan-

beam geometry was employed with a focus-to-isocentre distance of 550mm, a focus-to-detector

distance of 1008.4mm and nominal tube voltages of 160kVp and 80kVp. A volumetric rep-

resentation of a given bag is obtained by stacking its FBP-reconstructed 2D axial slices

(512×512). The data is characterised by anisotropic voxel resolutions of 1.56×1.61×5.00mm.

Anisotropic voxel resolutions are known to negatively impact both human and comput-

erised detection rates [1, 11]. Therefore, the anisotropic volumes have been resampled (using

cubic spline interpolation) to create isotropic voxel resolutions of 2.5x2.5x2.5mm. The in-

terpolation results are not hard-limited to the range {0.0⇒ 1.0} - the working voxel value

range is thus extended to {−1.0⇒ 2.0}. Use of this extended voxel value range in subsequent

descriptor formulations (Section 3) needs to be noted.

We construct two distinct datasets for each of the target classes (handguns and bottles).

Each dataset is composed of the given target object scanned in random poses (to obtain

rotational invariance) and isolated (in a sliding window fashion) prior to feature extraction

(Figure 2). The two object classes are considered independently of one another. All non-target

objects are considered as clutter (e.g. clothing, books, mobile phones etc.) and are chosen

to provide an environment that is representative of that encountered within the transport

infrastructure. The handgun dataset consists of 284 target volumes and 971 clutter volumes,
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Figure 2: Examples of subvolumes used in study.

while the bottle dataset consists of 534 target volumes and 1170 clutter volumes.

We emphasise that ideally a larger dataset, incporating an extended set of target objects

is desirable. Unfortunately, given the sensitive nature of security-CT imagery (particularly

threat-containing data), as well as the tight regulations surrounding access to baggage-CT

scanners, the data gathering process is not straightforward. Expanding the current dataset

has therefore not been feasible for this work but is highlighted as an important area for future

work.

7. Results

Four sets of descriptors (DH, DGH, RIFT and SIFT) were calculated for each of the

aforementioned datasets. Codebooks were generated using varying combinations of assign-

ment methods (hard, kernel or uncertainty) and parameter values (k, σ (Section 4)). For each

resulting codebook a 10-fold cross validation procedure was performed and the mean and

standard deviation for both true-positive and false-positive rates recorded. In the interest of

brevity, we have chosen to display only the optimal results for each experiment.

The kernel and uncertainty-assignment methods rely on the smoothing parameter, σ, to

determine the influence on neighbouring clusters (Equations 5 - 6). The choice of a suitable
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(a) Three example cluster centres (b) Distance matrix (c) Sorted distance matrix

Figure 3: Cluster distance and sorting

value for σ is dependent on the cluster spacings for a given dataset as well as the value

of k. Optimal values for the parameters k and σ used in the clustering and assignment

procedures were thus determined according to procedure illustrated in Figure 3. In Figure 3

(a) k = 3, resulting in three cluster centres (c1, c2, c3) separated by the distances indicated.

These distances are stored in a square distance matrix (3 (b)). The rows of this matrix are

sorted in ascending order. Figure 3 (c) illustrates these distances as well as the mean of each

column, mn, representing the mean distance to the nth closest cluster. The second column

of this sorted matrix contains the mean distance to the nearest adjacent cluster centre for a

given k-means clustering operation. A histogram over the nearest adjacent cluster distances

is constructed using the information in column 2 of the sorted distance matrix (Figure 3 (c)).

For a given value of k, this histogram exhibits peaks (for each descriptor type) for some range

of distances. The range which captures the peaks of all four descriptor types then provides

an indication of an appropriate range of values for σ using the a codebook of size k.

In this way, we computed the σ ranges k = 1024 and k = 128. are determined. For

k = 1024 (Figure 4 (a)), the SIFT, DH and DGH descriptors have peaks in the region 0.05 to

0.06, while the RIFT descriptor peak is nearer to 0.025, though its distribution is quite broad.

These values indicate that 0.02 ≤ σ ≤ 0.06 should be used for the kernel and uncertainty

assignment methodologies when using 1024 clusters. For k = 128 (Figure 4 (b)) the SIFT

descriptor peaks at a distance of 0.05, while the DH and DGH distributions have shifted from

≈ 0.06 (for k = 1024) to ≈ 0.09. As these results were not conclusive, we ultimately chose to

use a range of σ values (as per prior works [47, 56]), where the ranges were selected based on

the peaks in Figures 4 (a) and (b). We further evaluated performance for a range of codebook

sizes (for all assignment methods): k = 32, 64, 128, 256, 512, 1024, 2048.

Caution associated to airport security-screening domain dictates the acceptability of a

13



(a) Case: k = 1024 (b) Case: k = 128

Figure 4: Nearest adjacent-cluster distance histograms

Descriptor k TPR (%) FPR (%)

DH 256 96.1 ± 2.0 1.4 ± 1.3

DGH 2048 97.2 ± 2.2 2.1 ± 1.2

RIFT 512 83.0 ± 3.5 4.5 ± 1.7

SIFT 256 83.0 ± 5.4 3.4 ± 2.3

Table 1: Handgun detection: optimal detection results using hard assignment

low false-positive rate at the expense of even lower false negatives (i.e. missed items) [57].

Therefore, the optimal parameters for each experimental configuration presented hereafter,

were chosen as those maximising the True-Positive Rate (TPR) and hence minimising the

false-negative rate.

7.1. Handgun Results

The following optimal handgun TPRs were recorded when using hard assignment (Table

1): DH = 96.1% (k = 256); DGH = 97.2% (k = 2048); RIFT = 83.0% (k = 512) and SIFT

= 83.0% (k = 256). Surprisingly, the DH and DGH descriptors significantly outperformed

the SIFT and RIFT descriptors, both in terms of true-positive TPRs and FPRs (incidentally,

this was true for all values of k).

In addition to varying k, kernel assignment performance was measured over a range of σ

= 0.02, 0.04, 0.08, 0.16. For each descriptor type, the following optimal detection results were

recorded (Table 2: DH = 97.3% (k = 1024; σ = 0.04); DGH = 96.8% (k = 2048; σ = 0.04);

RIFT = 86.9% (k = 1024; σ = 0.02) and SIFT = 85.8% (k = 2048; σ = 0.08).

The differences in the optimal TPRs recorded for the hard-assignment and the kernel

assignment methodologies for each descriptor fall within the margin of error measured across

the 10 folds and are therefore unlikely to be statistically significant. Based on the measured
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Descriptor k σ TPR (%) FPR (%)

DH 1024 0.04 97.3 ± 3.4 1.8 ± 1.7

DGH 2048 0.04 96.8 ± 2.6 1.4 ± 1.3

RIFT 1024 0.02 86.9 ± 5.4 4.7 ± 2.0

SIFT 2048 0.08 85.8 ± 4.3 3.3 ± 1.8

Table 2: Handgun detection: optimal detection results using kernel assignment

Descriptor k σ TPR (%) FPR (%)

DH 2048 0.02 97.2 ± 2.1 1.6 ± 1.4

DGH 512 0.04 97.2 ± 2.8 2.1 ± 1.3

RIFT 2048 0.01 87.3 ± 3.9 5.1 ± 2.3

SIFT 1024 0.02 87.0 ± 5.4 3.8 ± 2.4

Table 3: Handgun detection: optimal detection results using uncertainty assignment

measurement error, however, the DH and DGH descriptors outperform SIFT and RIFT.

Although the values of the smoothing parameter, σ, are relatively coarse, the values used for

DH and DGH substantiate the observations in Figure 4. Likewise, the setting for RIFT is in

line with its lower distance histogram result (Figure 4 (a)). With SIFT a higher setting for σ

= 0.08 is observed. This setting is above the peak in the distance histogram (Figure 4 (a)),

suggesting that the SIFT clusters are less distinct as visual words and require greater spread

in the assignment.

Uncertainty assignment performance was similarly measured over a range of σ = 0.005;

0.01; 0.02; 0.04; 0.08; 0.16 . This extended range was selected based on initial experimentation

which showed a noticeable decline in performance for all descriptors at σ = 0.08 and σ = 0.16.

The optimal handgun detection results are illustrated in Table 3: DH = 97.2% (k = 2048; σ

= 0.02); DGH = 97.2% (k = 512; σ = 0.04); RIFT = 87.3% (k = 2048; σ = 0.01) and SIFT

= 87.0% (k = 1024; σ = 0.02).

The density histogram (TPR = 97.2%; FPR = 1.6%) and density-gradient histogram

(TPR = 97.2%; FPR = 2.1%) descriptors again yield the optimal detection rates, while SIFT

(TPR = 87.0%; FPR = 3.8%) and RIFT (TPR = 87.3%; FPR = 5.1%) perform significantly

poorer.

7.2. Bottle Results

The optimal bottle detection rates using hard assignment are shown in Table 4: DH =

87.0% (k = 64); DGH = 80.3% (k = 1024); RIFT = 73.9% (k = 128) and SIFT = 78.5% (k

= 64). Surprisingly, the DH and DGH descriptors significantly outperformed the SIFT and

RIFT descriptors, both in terms of true-positive TPRs and FPRs (incidentally, this was true

for all values of k). Although the DH and DGH descriptors outperformed the SIFT and RIFT
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Descriptor k TPR (%) FPR (%)

DH 64 87.0 ± 4.9 2.7 ± 1.1

DGH 1024 80.3 ± 4.7 4.7 ± 2.3

RIFT 128 73.9 ± 5.8 5.8 ± 1.2

SIFT 64 78.5 ± 6.6 5.0 ± 1.7

Table 4: Bottle detection: optimal detection results using hard assignment

Descriptor k σ TPR (%) FPR (%)

DH 512 0.08 89.3 ± 5.5 3.0 ± 1.4

DGH 2048 0.04 84.4 ± 5.4 3.5 ± 2.0

RIFT 1024 0.04 78.1 ± 5.5 4.6 ± 1.6

SIFT 2048 0.16 82.8 ± 5.7 5.6 ± 1.5

Table 5: Bottle detection: optimal detection results using kernel assignment

descriptors (in TPR and FPR) for all values of k, the results were significantly poorer than

the handgun results (Table 1) for all four descriptors.

The optimal performance values using kernel assignment (measured over σ = 0.02, 0.04,

0.08, 0.16) for the botte subvolumes are shown in Table 5: DH = 89.3% (k = 512; σ = 0.08);

DGH = 84.4% (k = 2048; σ = 0.04); RIFT = 78.1% (k = 1024; σ = 0.04) and SIFT = 82.8%

(k = 2048; σ = 0.16). There was a general decline in performance for all four descriptors

relative to the handgun dataset (Table 2. With the exception of the SIFT descriptor, kernel

assignment (when optimally tuned) did, however, signficantly outperform hard assignment

(Table 4) - substantiating the findings of [47, 56].

The performance of each descriptor using uncertainty assignment was again measured over

and extended range of σ = 0.005; 0.01; 0.02; 0.04; 0.08; 0.16. Optimal results are illustrated

in Table 6: DH = 88.2% (k = 512; σ = 0.04); DGH = 87.2% (k = 512; σ = 0.04); RIFT =

78.2% (k = 2048; σ = 0.01) and SIFT = 82.7% (k = 2048; σ = 0.02).

The differences in performance between the kernel assignment (Table 5) and uncertainty

assignment methodologies are negligible, with the DH and DGH descriptors again significantly

outperforming SIFT and RIFT. Similarly to the hard assignment results, there was a general

and significant decline in performance relative to the handgun dataset (Table 3). Although

not evident in Table 6, it is worth noting that performance varied significantly across the

range of values for σ. In particular, setting σ too high (≥ 0.08) or too small (≤ 0.01) led to

large drops in performance - emphasises the necessity for the correct adjustment of σ for each

setting of k.
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Descriptor k σ TPR (%) FPR (%)

DH 512 0.04 88.2 ± 4.7 2.2 ± 1.3

DGH 512 0.04 87.2 ± 6.8 4.0 ± 1.8

RIFT 2048 0.01 78.2 ± 6.4 5.6 ± 2.4

SIFT 2048 0.02 82.7 ± 7.0 4.2 ± 1.2

Table 6: Bottle detection: optimal detection results using uncertainty assignment

8. Discussion

We examine more closely the volumes that were misclassified in order to determine the

possible causes of the misclassifications in each of the experiments.

Several examples of misclassified images in the handgun subvolume experiments are shown

in Figure 5. The missed handguns (Figure 5 (a)) do not indicate any obvious reason for the

error (e.g. a particular handgun and/or orientation). Several commonalities exist in the ob-

jects found in the false-positive volumes (Figure 5 (b)), which may be triggering the errors.

For the DH and DGH descriptors, common objects include: batteries, electrical transformers,

in-line roller skates and electronic equipment. Metallic objects also appear frequently in these

images. These objects all have similar material characteristics to the materials constituting

the handguns and therefore will result in similar CT numbers [58]. Since the DH and DGH

descriptors capture information related to the distribution of these densities (which is depen-

dent on material characteristics), it is understandable that materials with similar properties

would trigger false positives. The SIFT and RIFT false-positive images, however, differ sub-

stantially from the DH and DGH images - with a far greater number of metal-free images

triggering false-positives - this is likely due to the fact that the original SIFT and RIFT con-

cepts [40, 48] were designed around use in reflectance (photographic) imagery (as opposed to

transmission/attenuation imagery). This observation is discussed in further detail below.

The soft-assignment methodologies (uncertainty and kernel) consistently outperform the

more traditional hard assignment approach. While the uncertainty approach performs marginally

better than the kernel approach, the high error margins do not allow for a definitive conclu-

sion. A closer examination of those volumes that led to erroneous classifications does not

indicate in obvious reasons for the misclassifications. Further investigation of the causes of

these errors is left as an area for further work.

A universal decline in performance is observed for the bottle subvolume dataset, sug-

gesting that the proposed methodology is less well-suited to this object class. Despite fairly

substantial variations in the optimal true-positive detection rates for the various descriptors

(see Table 7 vs. Table 8), an examination of the threat-containing volumes which have been
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Descriptor
Assignment

Method k σ TPR (%) FPR (%)

DH Kernel 1024 0.04 97.3 ±3.4 1.8 ±1.7

DGH Hard 2048 - 97.2 ±2.2 2.1 ±1.2
Uncertainty 512 0.04 97.2 ±2.8 2.1±1.3

RIFT Uncertainty 2048 0.01 87.3 ±3.9 5.1 ±2.3

SIFT Uncertainty 1024 0.02 87.0 ±5.4 3.8 ±2.4

Table 7: Handgun detection: optimal settings for each descriptor

Descriptor
Assignment

Method k σ TPR (%) FPR (%)

DH Kernel 512 0.08 89.3 ±5.5 3.0 ±1.4

DGH Uncertainty 512 0.04 87.2 ±6.8 4.0 ±1.8

RIFT Uncertainty 2048 0.01 78.2 ±6.4 5.6 ±2.4

SIFT Uncertainty 2048 0.02 82,7 ±7.0 4.2 ±1.2

Table 8: Bottle detection: optimal settings for each descriptor

incorrectly classified as clutter, again does not indicate any obvious characteristic that triggers

the misclassification (Figure 6 (a)). Furthermore, the misclassified bottles do not appear to

be particularly challenging in nature. The most likely reason for the decline in performance is

the large intraclass variation in this dataset (in terms of bottle types and contents). The most

obvious solution to this is to increase the size of the dataset, but it may perhaps be worth

subdividing the bottle dataset into smaller subsets (according to contents, bottle type etc.).

It therefore remains unclear as to why some bottle instances are misclassified while others

are not. While we suggest an expansion of the dataset as an area for future work, it is worth

acknowledging the difficulties related to gathering security-sensitive baggage-CT data (hence

the limitations in the currently available data).

Similarly to the missed detections, the false-positive detections using the RIFT descriptor

(Figure 6 (b)) bear little resemblance to bottles. The poor overall performance of the RIFT

descriptor suggests a codebook that poorly characterises bottles, making it a poor choice for

this particular problem.

In contrast, the DH, DGH and SIFT false-positives (Figure 6 (b)) do exhibit several

distinct characteristics that appear to have triggered the errors. While the DH false-positives

contain little evidence of any bottle-shaped items, there do appear to be several regions in

these images that are similar in density to the liquids used in the training set. This observation

highlights an obvious shortcoming of the codebook approach: namely the inability to capture

spatial/shape information [59, 60]. The DGH false-positives contain several, virtually empty

deodorant bottles as well as items with similar gradients to those from genuine bottle objects

(e.g. perspex rods). Similarly, the SIFT false-positives contain several metallic objects whose
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(a) Missed handguns (b) False-positives

Figure 5: Handgun misclassifications

features, when normalised during the SIFT descriptor generation, likely resemble bottles in

shape. Particularly, several electrical transformers, batteries and perspex rods are present

whose circular cross sections are similar to that of a full bottle. These observations suggest

that items with circular cross-sections are particularly challenging. It is worth noting, however,

that not all instances of such items were misclassified.

We emphasise that, in practice, whole volumes are scanned as a series of sub-volumes,

in the same way one would perform object detection (localisation) in images using scanning-

windows. As such, the subvolumes used here represent a real-world scenario in the same

way as we consider False-Positive Per Window (FPPW) and alike in 2D imagery [61, 62].

In the current context whole volumes are bags of varying shapes and sizes. Therefore, each

is comprised of a different number of ‘non-empty’ sub-volumes. If whole volumes are used,

the system is biased by the very large and the very small bags with a very large or a very

small number of empty (i.e. trivially easy) regions (for measures such as FPPW). As such,

we propose that subvolumes are both statistically valid and real-world in this context.

The most significant observation in this study has been the superior performance of the

DH and DGH descriptors relative to the more complex SIFT and RIFT descriptors (in all ex-

periments). We attribute this to the inherent illumination and scale redundancies in the SIFT
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(a) Missed bottles (b) False-positives

Figure 6: Bottle misclassifications

and RIFT descriptors [40, 48] as these were initially developed for illuminated optical imagery

containing surface reflectance colour information. Since the densities in CT imagery depict

the linear attenuation properties of the materials being imaged and not the reflectance prop-

erties, these built-in redundancies in SIFT and RIFT become largely irrelevant and appear

to have a negative impact on performance.

Within transmission imagery such as X-ray CT, captured via a parallel (orthographic)

projection as opposed to a perspective projection at the sensor level [63], scale invariance at

the feature level is a significantly lessor issue as the size of an object does not vary with its

distance to the sensor (i.e. measurements can be recovered from CT-scan imagery in real-

world values). Furthermore, although variations in the transmission attenuation and surface

reflectance are present, these are largely resolved within the in image recovery stages of modern

scanners. Attenuation variation that is present is indicative of material characteristics (e.g.

physical density) and arguably implicitly aids in object classification, rather than hindering it,

as some form of materials information encoded within the density derived feature descriptors

(DH and/or DGH). The information captured by the density-based descriptors (DH and

DGH), is independent of what the actual densities represent (e.g. surface reflectance or linear

attenuation) and hence the imaging formality. We therefore believe that this fundamental
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change in the nature of the data being considered affects the relative performance of the

descriptor types, such that simplicity, that is directly driven by the core modality (i.e. DH and

DGH), outperforms convention in the wider object classification space (i.e. poor performance

of SIFT and RIFT).

In light of the above observation, it is likely that all gradient-based relfectance-imaging

descriptors (e.g. Harris3D [64]; Histograms of Oriented Gradients (HoG) [49, 65]) will be less

effective in the transmission imaging domain consisered here. In the context of this study,

an exhaustive comparison of further reflectance-based imaging descriptors thereby becomes

redundant.

Finally, it is worth noting that, due to the size of the dataset, the measurement er-

rors are consistently large. The considerable task of gathering annotated datasets in this

problem-space, whilst maintaining realistic variation and levels of background clutter, on a

scale representative of operational scenarios (e.g. airport scale) is left as an area for future

work.

9. Conclusions

This work has investigated the suitability of the Bag-of-Words (BoW) approach in the

classification of two object classes (handguns and bottles) in 3D baggage-CT imagery. In

particular, the performance of four descriptor types (density histograms, density gradient

histograms, SIFT and RIFT) and three cluster assignment methodologies (hard assignment,

uncertainty assignment and kernel assignment) have been compared.

Optimal performance in both the handgun and bottle experiments was achieved using the

Density Histogram (DH) and Density Gradient Histogram (DGH) descriptor types. Partic-

ularly, the DH descriptor yielded the highest true-positive rates (97.3% for handguns; 89.3%

for bottles) as well as the lowest false-positive rates (1.8% for handguns; 3.0% for bottles)

in both experiments. The DGH descriptor similarly, with correct detection rates of 97.2%

for handguns and 87.2% for bottles and false-positive rates of 2.1% for handguns and 4.0%

for bottles. Interestingly, the performance of the more complex SIFT and RIFT descriptors

was significantly poorer, yielding both lower detection rates as well as higher false-positive

rates. We have attributed this change in relative performance of the descriptor types to

the change in the underlying imaging modality from reflectance (photographic) imaging to

transmission imaging. This finding, within transmission imagery (X-ray CT), challenges es-

tablished convention on the relative performance of 3D feature descriptors [7] and is attributed
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to the redundancy of the illumination (primarily) and scale (partially) components present in

established approaches (e.g. SIFT, RIFT, HoG, Harris etc.) within this imaging modality.

Soft kernel-assignment (uncertainty and kernel) has been shown to outperform hard-

assignment. A general improvement in performance has been observed for larger codebooks,

with the optimal results achieved using k = 512; 1024; 2048 - suggesting that too few visual

words (small k) produces codebooks with insufficient salient entries to accurately describe the

data. The observations regarding the impact of the assignment methodology and codebook

size substantiate the findings of van Gemert et al. [47].

Finally, we hihglight several promising areas for future work. Automated segmentation

within this problem domain will enable a true end-to-end classification of baggage-CT imagery

and eliminate the need for computationally intensive subvolume generation. An investigation

into the impact of image noise and artefacts on performance will enable performance optimi-

sation under operational conditions. An extended target object dataset will provide further

robustness to the evaluation protocol in use.
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