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Abstract

A monopolist bookmaker may set betting odds on a fairly even contest to induce match-
fixing by an influential corrupt punter. His loss to the corrupt punter is more than made up for
by enticing enough ordinary punters to bet on the losing team. This result is in sharp contrast
to competitive bookmaking, where even contests have been shown to be immune to fixing.

The analysis also reveals a surprising result that the incidence of match-fixing can dramat-
ically fall when match-fixing opportunities rise. This is shown by comparing two scenarios –
when only one team is corruptible and when both are corruptible. For both teams corruptible,
the bookmaker is uncertain about to which team the influential punter will have access, so
carefully maneuvering the odds to induce match-fixing is too costly.
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1 Introduction

Match-fixing and betting related corruption seem widespread if one goes by media headlines, and

legal scholars are beginning to pay attention.1 Yet formal research on this issue is relatively lacking.2

If a small group of bettors with financial muscles, to be referred as the influential punter (in short,

IP or fixer), can access player(s) who, by underperforming, can tilt the outcome of a sports contest

that has high visibility and on which many people bet, the competitive show is hit at its foundation.

In an earlier work (Bag and Saha, 2011), we presented a formal model of match-fixing in the

context of a (Bertrand) competitive fixed odds betting market. There the bookmakers’ desire to

steal business by undercutting rivals’ odds exposes the contest to fixing, whereby a favorite delib-

erately underperforms. Such destructive effects of competition are felt mostly in uneven contests;

even contests are generally safe. One question then is what happens if a bookmaker has market

power. Will he try to protect the market and his profit from the corrupt punter? Or, will he abuse

his power to steer the market in the direction of odds rigging? We address this question here, by

restricting our attention mainly to even or near-even contests.

In our model a monopolist bookmaker posts betting odds, or equivalently sets the ‘prices’ of bets,

for a contest between two teams to attract bets from a mass of ordinary bettors. An anonymous

influential punter may be able to bribe some members of one of the teams to underperform, and

then place a large sum of bets on the other team. Such possibilities as well as the ordinary bettors’

response are factored in by the bookie, at the time of posting the odds.

Bettors’ responses (including IP’s) depend on their position in the information hierarchy. We

assume that the ordinary bettors have exogenous and heterogenous beliefs and are unaware of the

risk of match-fixing. So they respond to market prices naively. The bookie and the IP, on the other

hand, have superior information; they both know the teams’ true win probabilities. Further, the

IP can rise to the top of the information hierarchy, if he can fix the match.

Aware of the fact that IP will never have less information than him, the bookie cannot expect

to make profit from the IP. But he needs to be mindful of how IP’s incentives will be affected

by the prices he will set. If the prices are so high that IP’s betting becomes unprofitable despite

match-fixing, the integrity of the contest will be protected, but only after sacrificing a sizeable

1See an edited volume (Haberfeld and Sheehan, 2013) titled, Match-Fixing in International Sports: Existing Processes,
Law Enforcement, and Prevention Strategies.

Betting related match-fixing makes frequent headlines. Latest is the allegation of an entire soccer league being
fixed in Canada (“Revealed: Entire ‘rogue league corrupted by match-fixing’” – October 14, 2015 news at The
Telegraph, http://www.telegraph.co.uk/sport/football/11932437/Revealed-Entire-rogue-league-corrupted-by-match-
fixing.html). The high profile Indian Premier League (or IPL) in which many top international cricketers participate
was rocked by betting and fixing allegations in the recent past – see the report “Fixing? It’s people like us doing
it” on May 22, 2013 at http://www.espncricinfo.com/magazine/content/story/637034.html. For fixing allegations in
other sports including soccer in Europe, ATP tennis tournaments, basketball, horse races etc., see links to various
news reports in Bag and Saha (2011).

2There are some empirical papers on sports corruption. Duggan and Levitt (2002) study corruption in Sumo
wrestling but not betting. Strumpf (2003), Wolfers (2006), Winter and Kukuk (2008) etc. study betting-related
corruption in sports. See also two very recent contributions on detecting match-fixing – De Muinck and Quatacker
(2013) for soccer, and Rodenberg and Feustel (2014) for tennis.
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chunk of the ordinary bettors’ market. On the other hand, if the prices are set appropriately low,

IP can find match-fixing profitable; if he gets to bribe one team, his return from the bet on the

other team will be large enough to cover the cost of bribery. In this case, the bookie faces a clear

loss to IP, but the loss may be partially (if not fully) offset by attracting a significant number of

ordinary bettors. So his profits from these two alternative price regimes can go either way. Since

which price regime is his own choice, the question is whether he would go for the first regime, which

we call bribe prevention or the second regime, which we call bribe inducement. In contests where

teams are (near) evenly matched, which regime would he choose?

When only one team is corruptible, we find that he would choose bribe inducement for any

positive chance of secret liaison with the corruptible team (given some standard assumptions).3

This is because bribe prevention is too costly; it requires giving up too much on the ordinary

punters’ betting. In some extreme instances, when the probability of accessing the corrupt team

is very high, the bookie actually welcomes the fixing role of the IP. With his tacit help he can

drastically increase the losing chance of the corrupt team and steer most of the ordinary bettors to

bet on it. Here, the loss to the IP is much smaller than the substantial gain of capturing (nearly)

the whole of the unsuspecting bettors’ market.

Surprisingly though, this perverse incentive loses its force when both teams are corruptible.

In that case, though match-fixing opportunities are greater, the bookie is unsure of which team

the IP will be able to bribe, and therefore, he needs to make concession on the bet prices of both

teams, which means yielding a much greater loss to not only IP but also a section of ordinary

bettors; lowering both prices does not help to tilt the market in one way or other. Therefore, bribe

inducement will be preferred less frequently.

The finding of the monopoly setup is in sharp contrast to the competitive case analyzed in

Bag and Saha (2011), where even contests are generally immune. Either the competitive prices

are above the bribery threshold level, or the bookmakers (non-cooperatively) coordinate on the

threshold prices for fear of letting the IP in. Under monopoly, despite his full market power, the

bookie may not try to protect the market. The underlying market microstructure of our model

assumes that the median bettor always believes the contest to be dead even. So when the contest

is truly an even (or a near even) contest, the bookie’s informational superiority disappears, and his

expected profit will be minimum. In such cases, an anonymous fixer can come handy to make the

contest lop-sided and in anticipation of that the bookie can induce the ordinary bettors en masse to

back the losing team. But whether this will be optimal depends on how large is the expected cost of

fixing, which can significantly vary depending on whether one team or both teams are corruptible.

Though our main analysis is presented assuming ‘uniform’ distribution of the ordinary bettors’

beliefs, we show that our key insight that the bookie will be most keen to orchestrate match-fixing

in even or near even contests will hold under general (but symmetric) belief distributions. However,

the other assumptions regarding the bettors, such as their exogenous beliefs and their naivety of not

3We assume that the corruptible team’s identity is known. Teams with good reputation or regimentation and
discipline are likely to be immune to outside influence.
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suspecting foul play, are important. That bettors have diverse beliefs and less precise information

than the bookie are somewhat essential to organize betting.4 There is also considerable evidence

on leisure betting, which is most likely to be based on naive beliefs (Saunders and Turner, 1987;

Bruce and Johnson, 1992; Winter and Kukuk, 2008). But if we allow the bettors to be suspicious

of match-fixing, when they see the posted odds that are too good to be true (based on their initial

beliefs), market manipulation will backfire; the bookie will be better off by driving the fixer out

of the market. We accommodate this argument, albeit less formally; but the message is clear: the

more unsuspecting the bettors are, the stronger the incentives to induce match-fixing.

At a theoretical level, our exercise is also useful for extending the literature from insider betting

to fixing and betting. The insider betting model of Shin (1991), from which we adapt the basic

setup, is similar to insider trading (Glosten and Milgrom, 1985; Kyle, 1985; Seyhun, 1992), where

some agents use privileged information which might have been randomly or costlessly acquired.

Match-fixing on the other hand is about generating privileged information at a positive cost and

then using it.5 This is also related to the idea of market manipulation in finance where even an

uninformed trader may buy a stock to bid up its price with the intent of selling the stock at a later

date and profit from it (e.g., Allen and Gorton, 1992; Chakraborty and Yilmaz, 2004). Further,

our study provides insights into the extent by which sabotages can be controlled through market

prices – a relatively neglected issue so far in the industrial organization research.

From an empirical point of view, we question a common perception of the bookmakers as

victims of match-fixing.6 We argue that in many plausible scenarios they may indirectly benefit

from match-fixing. Should the authority go after only the fixer, or the bookmaker as well? When

the bookmaker is merely trying to avoid losses he cannot be blamed; but when he profits from

fixing, he should be held culpable.7

We acknowledge that the insights from our model should not be directly applied to parimutuel

betting markets. Such markets are differently organized and the bookmaker’s role is different

with very little power in setting market odds, as analyzed in a number of works by Ottaviani and

Sorensen (2005; 2008; 2009; 2010). Fixed odds are practised by bookmakers in the UK and Europe,

e.g., ChoiceOdds, Ladbrokes, Paddy Power, and William Hill.

4Diversity of beliefs naturally follow from our assumption of exogenous beliefs; allowing correlated beliefs will
largely eliminate demand for bets.

5A similar theme, namely sabotage, has been studied in contest models with completely different concerns than
ours. There the focus is on the saboteur’s incentives; see, for instance, Konrad (2000), Chen (2003).

6In the famous 2007 tennis episode involving Davydenko and Vassallo Arguello, the internet betting
company, Betfair, voided all its bets following suspicious betting patterns – the market odds as reflected
in bets drifted significantly against 4th seeded Davydenko while ahead in the match. In its Decem-
ber 2011 review the UK gambling commission requires licensed sports bet operators to provide the rele-
vant sports governing body with information that they suspect may lead the gambling commission to con-
sider making an order to void a bet. See Section 15.1 of the Gambling Commission document available at
http://www.gamblingcommission.gov.uk/PDF/LCCP%20consolidated%20version%20-%20December%202011.pdf .

7See “Football match-fixing: How betting odds gives the game away” at http://www.bbc.co.uk/news/world-
europe-11789671.
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The paper is organized as follows. In Section 2, we present the model and an analysis of betting

and bribery decisions. Sections 3 and 4 contain the main results, with some related examples and

simulations appearing in Section 5. Sections 6 and 7 extend the earlier analysis to more general

environments, followed by conclusions in Section 8. The formal proofs appear in the Appendix.

2 The Model

The setup is similar to that of Bag and Saha (2011), which in turn draws upon Shin (1991). A

monopolist bookmaker, the bookie, sets the odds on each of two teams winning a sports match (i.e.

sets the prices of two tickets); the match being drawn is not a possibility. Ticket i with price πi

yields a dollar if team i wins and yields nothing if team i loses. There are a continuum of naive

punters, parameterized by individual and exogenous belief, the probability q, that team 1 will win;

q is distributed ‘uniformly’ over (0, 1).

The assumption of uniform distribution is justified on the ground of the bettors having well

spread-out beliefs. However, later with a general distribution function of beliefs we show that our

key results are likely to hold, if the distribution is continuous and symmetric with mean 1/2.

Bettors’ beliefs are not only exogenous and unrelated to the nature’s draw of a team’s win

probability, but also naive in the sense that bettors are unaware of the risk of match-fixing. Later

we relax the naivety assumption and show how the results might change if the bettors are ‘rational’.

In the absence of any external influence, the probability that team i will win is 0 < pi <

1. External influence is exerted through bribery of a (few) corruptible (members of a) team to

underperform. If team i is bribed, its probability of winning is secretly lowered from pi to λipi

(0 ≤ λi < 1). We assume λi to be exogenous.8

We assume the bookmaker to be honest. There is an anonymous influential punter, IP, who

may bribe a team and bet against it. He can access team i with probability 0 ≤ µi ≤ 1. Note that

the probabilistic access makes the prospect of match-fixing uncertain, even when λi = 0.

The bookie, IP, and the team players – all initially observe the draw p1. The law enforcement

authority investigates the losing team i with an exogenous probability 0 < αi < 1.
9 On conviction,

the corrupt players are fined f in total and the match-fixer fI.

The distribution of the ordinary bettors’ wealth is ‘uniform’ over [0, 1], with 1 dollar each and

a collective wealth of y dollars. The wealth of IP is z = 1− y dollars. All agents are risk-neutral.

� Betting and bribe-taking

Ordinary bettors’ betting decision. The ordinary bettors adopt the following betting rule: Bet on

team 1 if and only if q
π1
≥ max{ 1−qπ2 , 1}; bet on team 2 if and only if 1−qπ2 ≥ max{ qπ1 , 1}.

Player incentives for bribe-taking and sabotage. Suppose a corrupt player (or a group of corrupt

players) of team i is contacted by IP with probability µi and a deal is struck, by which the corrupt

8The team may have honest players who cannot be bribed, and therefore, λi = 0 is not appropriate in a team
game. One can make λi sensitive to bribe at the cost of some complexity.

9It does not employ sophisticated game-theoretic inferences about match-fixing by observing πi or pi.
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player is promised a bribe bi to underperform. The bribe will be paid only if the team loses. In

the event team i wins, regardless of the player’s underperformance the bribe money is not paid;

the corrupt player in that case collects only the team reward w.

Given any belief pi and αi, a bribe deal involving bi is accepted and honored by the corrupt

player, if the expected payoff from underperformance is at least as great as the expected payoff

from honest performance. That is to say, the deal is struck

if and only if λipiw+ (1− λipi)(bi − αif) ≥ piw+ (1− pi)(bi − αif) (1)

i.e., if and only if bi ≥ w+ αif.

The inequality (1) makes underperformance incentive compatible and the agreement self-enforcing.10

The minimum bribe required to entice underperformance is bi = w+αif. We assume that IP holds

all the bargaining power so that bi = bi.

We should emphasize that if the players of two teams had different beliefs regarding the teams’

chances (different from p1), inequality (1) could be easily replicated for those beliefs, because

(1) corresponds to the players’ beliefs, and the lower bound on bi is not sensitive to any belief.

Therefore, divergence in players’ beliefs from each other’s and/or from true p1 does not alter the

analysis. If bi were set in excess of bi, say via Nash bargaining of the surplus, then IP’s belief (i.e.

p1) would be relevant, but not the players’ beliefs.

� Bribery game Γ . There are two key players, the bookmaker and IP, in the bribery game.

Stage 1. Nature draws p1 and reveals it to the bookie, IP and the players; the ordinary punters

draw their respective private signals q. The bookmaker sets the prices (π1, π2) for the tickets on

respective teams’ win, where 0 ≤ π1, π2 ≤ 1.
Stage 2. IP secretly finds out if he could access team 1 or team 2 or neither,11 and decides,

on gaining access, whether to bribe the team to influence the contest outcome.

Stage 3. All punters including IP place bets according to their ‘eventual’ beliefs. The match

is played out according to the teams’ winning probabilities (p1, 1 − p1) or (λ1p1, 1 − λ1p1) (when

team 1 is bribed), or (1− λ2p2, λ2p2) (when team 2 is bribed) and the match takes place.

Stage 4. Finally, the enforcement authority follows its investigation policy, αi. On successful

investigation, fines are imposed on the corrupt player(s) and IP. ||

� Influential punter’s betting and bribery incentives. Before we analyze IP’s incentives,

it should be obvious that IP will hold either superior or same information as the bookie. The

bookie can thus never make positive expected profit from IP. In particular, when IP has superior

information (on the fixing) the bookie’s expected profit from IP will be negative.

This is a consequence of our assumption that IP has precise knowledge of pi (just like the

bookie). Admittedly, this is a somewhat strong assumption, but it helps to underscore his role as a

10The IP will honor his promise with the bribe, as is commonly assumed in corruption models.

11The timing of IP’s access to teams (after or before the odds are posted) is immaterial.
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fixer. We make the bookie’s choice difficult by introducing a certain cost through this assumption.

One can allow greater realism by making IP’s information set coarse, which we do not study here.

Now, consider IP’s incentives. Having learnt pi and observed πi (i = 1, 2), when pi ≤ πi for all

i = 1, 2, the influential punter can profitably bet only if he succeeds in bribing one of the teams,

because otherwise his expected gains from betting is zero. Further, to permit bribery of team i

and betting on team j, it must be the case that 1− λipi ≥ πj. That is, the eventual probability of

team j winning must not fall below πj. Assuming that is the case, his expected profit from bribing

team i is calculated as EΠI(bi) = (1− λipi)
[
z
πj

− bi − αifI
]
− z. Substituting b = w+ αif,

EΠI(bi) = (1− λipi)z
[ 1
πj

−Ωi
]
− z = (1− λipi)z

[ 1
πj

−
1

φi

]
,

where Ωi =
w+ αi(f + fI)

z
, and φi =

1− λipi
1+ (1− λipi)Ωi

.

Clearly, for EΠI to be positive πj must be smaller than φi. By corollary then IP is prevented from

bribing team i if πj > φi. In the event of πi = φj, we make a tie-breaking rule to ensure that the

bookie’s optimal bribery program always has a solution.

Assumption 1 (Tie-breaking rule) If ‘bribing and betting’ and ‘betting without bribing’ yield zero

expected profit, then IP will choose an option (including ‘not betting at all’) in accordance with the

bookie’s preference.

Given Assumption 1, if the bookie wishes to induce match-fixing of team i, he needs to set πj

subject to the following constraint (along with setting πi ≥ pi for both teams):

πj ≤
1− λipi

1+ (1− λipi)Ωi
≡ φi. (2)

What will be the IP’s incentives, if pi > πi were set instead? In this instance, IP can make

positive gains from ‘honest’ betting, and therefore there is an opportunity cost to fixing. φi will

no longer be the threshold price for πj. In Bag and Saha (2011) we have characterized these cases

exhaustively. In this paper we restrict our attention only to the case where pi ≤ πi for both teams.

Setting both π1 and π2 below p1 and p2, respectively, would imply money pump scenario. We

impose the following (no) Dutch-book restriction to rule it out:

Assumption 2 The bookie must always choose prices 0 ≤ π1, π2 ≤ 1 such that π1 + π2 ≥ 1.

3 Prevent, tolerate or encourage match-fixing?

Our main interest is to see whether the bookie would choose not to prevent match-fixing, and if

so in which type of contests that is most likely to happen. To develop an early insight we first

consider the benchmark case of ‘honest’ betting where match-fixing is not possible by assumption.
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� No IP scenario. Suppose there is no IP so that the teams’ winning probabilities are maintained

at (p1, p2). Given Assumption 2, bettors with beliefs q ∈ [0, 1−π2] will buy ticket 2 and q ∈ [π1, 1]

will buy ticket 1; punters with q in(1− π2, π1) will buy neither. Thus the bookie’s objective is:

max
π1,π2

EΠ =
[ ∫ 1
π1

y(1−
p1
π1

) dq
]

︸ ︷︷ ︸
ticket 1 profit

+
[ ∫ 1−π2
0

y(1−
p2
π2

) dq
]

︸ ︷︷ ︸
ticket 2 profit

= y
[
3− π1 − π2 −

p1
π1

−
p2
π2

]
. (3)

The solution to this problem is π01 =
√
p1 and π02 =

√
p2, resulting in expected profit:

EΠ0 = y
[
3− 2

√
p1 − 2

√
1− p1

]
. (4)

Fig. 1 depicts the profit curve, perfectly symmetric and U-shaped. The bookie makes the most

when the contest is highly uneven. By setting the price of the weak team’s ticket very low, he

induces most naive punters to bet on it and earns nearly y. On the other hand, at the perfectly

even contest his profit is the lowest. Here, those bettors who believe that the contest is even or

nearly even abstain from betting.

1 

y 

1/2 

EΠ0 

1/8 p1 

0.42y 

0.17y 

Figure 1: Expected profit when there is no IP

It is around the even contest the bookie would wish that p1 were different from 1/2, say for

example 1/8. Then the bookie’s expected profit would rise from 0.17y to 0.42y. Indeed, the same

gains in profit would be achieved, if the bookie could engage the IP for a fixed fee (not more than

0.25y) to bribe team 1 with probability 4/5 and reduce p1 from 1/2 to 1/32. The ex-ante probability

of team 1 winning would then be exactly 1/8. Of course, when the bookie has no link with IP, the

only way he can engage the IP is by inducing him through market prices, which clearly will have

to be distorted from what is shown in Fig. 1. Nevertheless, the intuition is that the monopolist’s

incentive to manipulate the market is the strongest around the even contest.
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This observation is, of course, made on the basis of the uniform distribution of bettors’ (naive)

beliefs with mean 1/2. That being the case, the intuition is likely to be more general. We show

later on with a general distribution function that as long as it is symmetric with mean 1/2, even

contests are likely to be rife for fixing. However, if the mean belief diverges from 1/2, the minimum

profit point will also diverge from 1/2, but probably not stray too far from 1/2. For the uniform

distribution, the minimum profit point will be between the mean belief and 1/2. We show this in

Section 6. The main point is that the minimum profit point will be fairly close to the dead even

contest, and hence the bookie’s incentive to induce fixing will also be stronger here.

� Bribe prevention program. We now return to our game Γ , and first analyze the bookie’s

bribe prevention strategy. Formally, the bookie solves the following bribe-prevention program:

max
π1,π2

EΠBP = y
[
3− π1 − π2 −

p1
π1

−
p2
π2

]
,

subject to: π1 + π2 ≥ 1, π1 ≥ max{p1, φ2}, and π2 ≥ max{p2, φ1}.

Lemma 1 (Optimal bribe prevention prices) If IP can potentially bribe team j to bet on team

i, bribe prevention price of ticket i at any given pi, is πBPi = max{
√
pi, φj}, i, j = 1, 2 and i 6= j.

It is easy to verify that φ2 is an increasing function of p1 and it intersects the curve
√
p1 from

above at a unique point. Let p01 be this point of intersection. Clearly, at all p1 < p0i the bribe

prevention constraint binds on π1, implying that profit on ticket 1 will have to be sacrificed if

bribery of team 2 is to be prevented. Likewise, φ1 is downward sloping in p1 like
√
p2 and φ1

intersects
√
p2 from below. Let this intersection point be p11. That means, at all p1 > p

1
1 the bribe

prevention constraint binds on π2 implying loss of profit from ticket 2, if bribery of team 1 is to be

prevented. Combining these two observations the following can be stated.

Lemma 2 (Costless or costly prevention of match-fixing) If p01 < p
1
1 then at all p1 ∈ [p01, p

1
1]

bribe prevention is costless (on either tickets), relative to the ‘no IP’ case. Alternatively, if p11 < p
0
1

then at all p1 ∈ [p11, p
0
1] bribe prevention is costly.

These two regimes have different implications for the bookie. When trying to prevent fixing is

costly, he has a hard choice to make. If he chooses ‘not to prevent’, it should be seen as a ‘loss

minimizing’ strategy in a corrupted environment over which he has no control. But when prevention

of fixing is costless, he is certainly on a safer ground. But if he still chooses not to prevent fixing,

it must be due to his intention to profit from the evil influence of the fixer. Though both decisions

favor bribe inducement, and are based on similar profit comparisons, they are qualitatively different.

To underscore their difference we will call the decision to induce bribery in the first scenario bribe

tolerance and in the second scenario bribe encouragement. In the first case, there is very little sense

to go after the bookie, while in the second case he can be held guilty of wrongdoing.

� Bribe inducement: only one team corruptible.We will first analyze the case where

only one team, namely team 1, is corruptible. That means, to induce bribery the bookie needs to
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set π2 below the threshold level φ1 as given by (2). No such constraint will apply to the price of

ticket 1, because team 2 is not corruptible. The formal statement of the bribe inducement (BI)

program is as follows:

max
π1,π2

EΠBI =
[ ∫ 1
π1

y(1−
p1λ
∗
1

π1
) dq

]
︸ ︷︷ ︸

ticket 1 profit

+
[ ∫ 1−π2
0

y(1−
1− p1λ

∗
1

π2
) dq+ µ1z(1−

1− λ1p1
π2

)
]

︸ ︷︷ ︸
ticket 2 profit

= y
[
3− π1 − π2 −

p1λ
∗
1

π1
−
1− p1λ

∗
1

π2

]
− µ1z[

1− λ1p1
π2

− 1] (5)

subject to p2 ≤ π2 ≤ φ1 (< 1− λ1p1), π1 ≥ p1, π1 + π2 ≥ 1,

where λ∗1 = µ1λ1 + (1− µ1) is the dampening impact of bribery on team 1’s winning chances.

Let us note that the solution to the BI problem is

π1 =

{ √
p1λ

∗
1, ∀µ1 ∈ (0, p2

1−λ1
]

p1, ∀µ1 ∈ ( p2

1−λ1
, 1),

π2 =

{ √
1− p1λ∗1 + µ1

z
y
(1− λ1p1), ∀µ1 ∈ (0, µ̃1]

φ1(p1), ∀µ1 ∈ (µ̃1, 1],
(6)

where by setting
√
1− p1λ

∗
1 + µ1(z/y)(1− λ1p1) = φ1, we obtain

µ̃1 =
y

1− λ1p1 − yp2

[
φ21 − p2

]
. (7)

� Even contests. While the above solution is given for any given p1, for the rest of this section

we will concentrate on a specific value of p1, namely 1/2, for our suspicion that it is at and around

the even contest the bookie’s incentive to induce fixing is strongest. If we find bribe inducement

optimal at p1 = 1/2, then by continuity at all p1 close to 1/2 also bribe inducement will be optimal.

Now we set out to compare the profit from bribe prevention with that from bribe inducement

at p1 =
1
2 . Given that only team 1 can be bribed, if 1/2 < p11 then at p1 = 1/2 bribe prevention is

costless (relative to the benchmark case), and the bookie’s profit will be EΠBP = y[3−2
√
2] ≡ EΠ0.

Alternatively, if p11 < 1/2, then his bribe prevention profit will be lower:

EΠBP = y[3−
√
2− φ1 −

1

2φ1
] < EΠ0. (8)

Turning our attention to bribe inducement profit, we see from Eq. (6) that at any given p1, such

as 1/2, the expected profit critically depends on the range of µ1, i.e. whether µ1 falls in between or

below/above the two critical values of µ1, namely µ̃1 and p2
1−λ1

which is simply 1
2(1−λ1)

at p1 = 1/2.

However, a priori we cannot guarantee if µ̃1(
1
2) > or < 1

2(1−λ1)
, and of the two cases the first one

is less tractable. Hence, we focus on µ̃1(
1
2) <

1
2(1−λ1)

by assuming the following:

Assumption 3 For any given λ, y and Ω are such that µ̃1(
1
2) < min

{
1, 1

2(1−λ1)

}
.
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If λ1 ≥ 1
2 , our assumption automatically holds, because µ̃1 < 1.

12

We now write the bookie’s profit function for bribe inducement for three ranges of µ1.
13 At

each range of µ1 total profit is broken into two terms, showing profit from each ticket, as follows:

EΠ1BI = y

(
1−

√
λ∗1
2

)2
+ y

[
3

2
+ µ1 ·

2− y(1+ λ1)

2y
−

√
2{1+ µ1(

2− λ1
y

− 1)}

]
∀ µ1 ∈ (0, µ̃1] , (9)

EΠ2BI = y

(
1−

√
λ∗1
2

)2
+ y

[
3

2
+ µ1 ·

2− y(1+ λ1)

2y
− φ1 −

1

φ1

{
1

2
+
µ1

2y
(2− y− λ1)

}]
∀ µ1 ∈ (µ̃1,

1

2(1− λ1)
] , (10)

EΠ3BI = y

[
µ1(1− λ1)

2

]
+ y

[
3

2
+ µ1 ·

2− y(1+ λ1)

2y
− φ1 −

1

φ1

{
1

2
+
µ1

2y
(2− y− λ1)

}]
∀ µ1 ∈ (

1

2(1− λ1)
, 1]. (11)

From the above we can make the following observations.

At sufficiently small values of µ1, bribe inducement profit is arbitrarily close to the benchmark

(i.e. no IP) profit. As µ1 → 0, from (9) we see that EΠ1BI → EΠ0 (with λ∗1 → 1). Now if p11 <
1
2 (so

that EΠBP < EΠ0), then we can claim that at all sufficiently small values of µ1 bribe inducement is

optimal. This is our first result, and it does not depend on any additional assumptions.

The reason is that for a very small chance of bribery, prices do not need to be distorted much

from their unconstrained levels in order to induce bribery. But to do the contrary, price of ticket 2

has to be discretely raised to φ1 which forces a significant loss. Therefore, tolerating a small chance

of match-fixing is preferable.

At moderate or higher values of µ1, the optimality of bribe inducement depends on how long

EΠBI continues to be greater than EΠBP. If EΠ1BI, EΠ
2
BI and EΠ3BI were all declining in µ1, then the

prediction is straightforward. After a critical value of µ1 the cost of inducing bribery would be far

greater than the cost of preventing bribery, and hence match-fixing will be prevented. Furthermore,

EΠBI will never exceed EΠ0, and hence bribe encouragement will never happen.

But if EΠ2BI and EΠ3BI are increasing in µ1 then some interesting possibilities arise. In Fig. 2

we present this scenario. It is then possible that the whole profit curve EΠBI can be above EΠBP,

which means that at all values of µ1 bribe inducement is preferred (provided EΠBP < EΠ0). Indeed,

sufficient conditions can be specified to ensure this possibility. A key requirement for this to happen

is to make sure that EΠ2BI is increasing in µ1. It can be verified that as µ1 → 0, EΠ2BI → EΠBP.

Further, imposing a positive slope condition on EΠ2BI ensures that EΠBI would be above EΠBP for

at least up to µ1 =
1

2(1−λ1)
, and also guarantees positive slope of EΠ3BI.

Formally, the sufficient condition comes down to restricting the wealth of the ordinary punters

12But if λ1 <
1
2
, then we need w+ α1(f + fI) > max

{
2(1− y)

[√
y(1−λ1)

y(1−2λ1)+2−λ1
− 1
2−λ1

]
, 0
}

.

13Implicitly, for EΠ3BI we are assuming λ1 <
1
2
, otherwise the interval [ 1

2(1−λ1)
, 1] would be empty.
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within a critical range, which we denote by Σ1 introduced in Definition 1 below (see Lemma A1 in

Appendix for the derivation of Σ1; some simulations are also included).

Definition 1 Suppose J(y) ≡ y− 2(1−φ1)−λ1
1−
√
2[
√
2−(1−λ1)]φ1

= 0 at two values of y, say y0 and y1.
14 Then

define Σ1 to be the set of all y ∈ (y0, y1), such that at all y ∈ Σ1 we have J(y) > 0.

The condition says that y should not be too high or too small. The reason for this lies in the

fact that the bookie must do a tricky balancing act if he were to induce bribery. On the one hand,

he must reduce the price of ticket 1 to entice the naive punters to bet on team 1. Hence their

wealth and consequently their wagers on team 1 should not be too small. However, higher y also

releases some countervailing effect via ticket 2. As IP is to be conceded enough gains to finance his

fixed cost of bribery, the price of ticket 2 must be so adjusted that iIf IP’s wealth (z) falls, the price

of ticket 2 must be lowered appropriately to enable him to generate the same surplus as before

to cover the cost of bribery. Thus, lower z means lower π2 (via lower φ1), which in turn attracts

many naive punters as well to bet on team 2 – something the bookie must try to avoid. Essentially,

enabling the IP to fix the match creates a free riding opportunity for some ordinary bettors. Hence,

z should not be too small, i.e. y should not be too high. We now state our first set of results.

m1 

~ 

m1 

   1         
2(1-l1) 1 

EP 

EPBP 

EP0 

EPBI 

m1
0 

Figure 2: Inducement of bribery at all µ1 ∈ (0, 1]

Proposition 1 (Inducing match-fixing) Consider even and near even contests, and suppose

p11 <
1
2 , so that bribe prevention is costly.

(i) Then there is always a range of µ1 starting from µ1 = 0 where inducing match-fixing is optimal.

(ii) Suppose Assumption 3 holds. If y ∈ Σ1, inducing match-fixing will be optimal at all µ1 ∈ (0, 1].

14J(y) = 0 is quadratic in y (φ1 is a function of z = 1 − y).
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Thus, for the even and near-even contests match-fixing is very likely. While that could be due

to the high cost of preventing match-fixing, our next result will show that the bookie may have

good reasons to even encourage match-fixing, because EΠBI can potentially exceed EΠ0 at some

high value of µ1, as shown in Fig. 2. For this to happen we need two things: (i) EΠ3BI must be

increasing in µ1, and (ii) EΠ3BI must exceed EΠ0 at µ1 sufficiently close to 1. It turns out that both

requirements are met if we ensure EΠ3BI > EΠ0 (as µ1 → 1), which boils down to another critical

range of y, denoted as Σ2.
15 See Appendix for some simulations of Σ2.

Since Σ2 is defined in terms of EΠ3BI which presupposes λ < 1
2 , we need to consider λ ≥ 1/2 as

well, in which case EΠ2BI applies to all µ1 ≥ µ̃1. There, we define the critical region of y in terms

of the limiting value of EΠ2BI (exceeding EΠ0) as Σa2 .

Definition 2 Define

L(y) ≡ (2− λ1)

[
y

2+ (2− λ1)Ω1
+
Ω1
2

]
.

(i) Suppose λ1 <
1
2 , and let Σ2 be the set of all y such that y[2

√
2− 3

2 − λ1] − L(y) > 0.

(ii) Suppose λ1 ≥ 1
2 , and let Σa2 be the set of all y such that y[2

√
2− 3

2−λ1]+y
(√
λ1−

1√
2

)2
−L(y) > 0.

If y ∈ Σ2 when λ1 <
1
2 , or if y ∈ Σa2 when λ1 ≥ 1

2 , then by definition EΠBI > EΠ0 as µ1 → 1.

Once again the critical range of y specifies the size of the ordinary punters’ wealth to be neither too

high nor too low. The explanation is same as before. If it is too high, match-fixing is potentially

rewarding, but the scope of free riding (by some ordinary punters) is also great. But if it is too

low, the potential gain from bribery is small.

Now in Proposition 2 we claim that if y ∈ Σ2 or Σa2 , then above a critical value of µ1, not only

is bribe inducement optimal, but it is of the ‘bribe encouragement’ type.

Proposition 2 (Actively encourage bribery) Consider the even or a near-even contest

and suppose Assumption 3 holds.Then there exists a critical value of µ1, say µ01 ∈ (µ̃1, 1), such

that at all µ1 > µ
0
1 the expected profit from bribe inducement exceeds the expected profit of the ‘no

IP’ case, if (i) y ∈ Σ2, when λ1 < 1/2, or (ii) y ∈ Σa2 , when λ1 ≥ 1/2.

It is notable that we have not insisted on p11 <
1
2 and/or y ∈ Σ1 in Proposition 2. While those

assumptions along with the condition specified in Proposition 1 give rise to the graph we have

presented in Fig. 2, they are not necessary for bribe encouragement. As long as y ∈ Σ2, EΠBI will

cross EΠ0 at some high µ1, and bribe encouragement will take place. So, Propositions 1 and 2

focus on two different aspects – general bribe inducement for unrestricted µ1 (Proposition 1) vs. a

specific type of bribe inducement for a smaller range of µ1 (Proposition 2) – and it is not always

possible to rank the corresponding y-value sets. Table 1 provides a comparison of results.

The main message of Propositions 1 and 2 is that when contests are close the bookmaker may

prefer to orchestrate match-fixing (via market prices). Though in most cases, such orchestration is

15Let µ1 → 1 in EΠBI and write the expression for EΠBI − EΠ0 > 0, which gives y[2
√
2− 1

2
− p1 − λ1] > yφ1 + (1−

λ1p1)Ω1. Substitute p1 = 1/2 on the right-hand side to obtain L(y).
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Proposition 1 Proposition 2

Type of contests Even Even

Bribe prevention Costly May or may not

( relative to the be costly

benchmark case )

Bribe inducement is At all µ1 At high values of µ1

preferred

Nature of bribe Bribe tolerance Bribe encouragement

inducement highlighted

The required range of y Relatively narrow Relatively wide

Table 1: Comparison of results

merely a strategy of cutting losses, we cannot rule out a perverse motive of market manipulation

with the tacit help of an anonymous fixer, quite legally.

4 Both teams corruptible

When both teams are corruptible, how does the prospect of match-fixing change? We can see that

the bookie now has a choice of targeting a specific team or either teams (to bribe). If a specific

team is bribed, the analysis is similar to that of the previous section.16 So we extend our analysis to

bribery of either teams. Prima facie the scope for match-fixing increases under this option. But as

the bookie does not know which team the IP might get access to, he will have to concede sufficient

rents on either ticket. This makes bribe inducement quite costly and less often preferable.

To simplify the analysis, we impose symmetry: 0 < µ1 = µ2 = µ ≤ 1/2, λ1 = λ2 = λ ≥ 0,
α1 = α2 = α and Ω1 = Ω2 = Ω. As before, we assume that at most one team can be accessed

(with probability 2µ).

Even contests. We focus on p1 = 1/2, and recall from Lemma 1 that the optimal bribe

prevention prices are πi = max{
√
pi, φj}. At p1 = 1/2, if the price constraints don’t bind (i.e

p01 <
1
2 < p

1
1), EΠBP = EΠ0 = y

[
3− 2

√
2
]
; but if the constraints bind (i.e. p11 <

1
2 < p

0
1 ), the bribe

prevention profit (at p1 = 1/2) is

EΠBP = y[3− 2φ−
1

φ
]. (12)

For bribe inducement, we need to consider first the ex-ante probability of each team’s win.

For team 1 it is r1 = µ(λp1 + (1 − λp2)) + (1 − 2µ)p1 = p1 + µ(1 − λ)(1 − 2p1); for team 2 it is

16There is one difference though. The team which is not targeted must be protected from bribery.
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r2 = p2+µ(1− λ)(1− 2p2). Curiously, at p1 = 1/2 we have r1 = r2 = 1/2. The prospect of bribing

either team cancels out each other’s gains in winning probability. However, an exact offset occurs

only at p1 = 1/2; at p1 > 1/2, r1 < p1 and consequently r2 > p2. So in general bribery of either

team reduces the gap between the favorite and the longshot, making the contest more even.

If at the perfectly even contest the probability of win does not change with bribery, then what

is the potential benefit of inducing bribery? The simple answer is: none, unless bribe prevention is

costly. In other words, in this environment there is no hope for getting higher profit than the ‘no

IP’ case. Bribe encouragement cannot occur here; at best there may be bribe tolerance.

The general statement of the bribe inducement problem is

max
π1,π2

EΠBI = y
[
3− π1 − π2 −

r1
π1

−
1− r1
π2

]
− z[

µ(1− λp2)

π1
+
µ(1− λp1)

π2
− 2µ] (13)

subject to p2 ≤ π2 ≤ φ1 (< 1− λp1), p1 ≤ π1 ≤ φ2 (< 1− λp2), π1 + π2 ≥ 1.

The unconstrained solution is given by

π̌1 =
√
r1 + µ(z/y)(1− λp2), π̌2 =

√
1− r1 + µ(z/y)(1− λp1), (14)

At p1 =
1
2 , the symmetric unconstrained solution is π̌1 = π̌2 =

√
1
2 + µ

z
y
(2−λ)
2 , leading to profit

EΠUBI = y[3− 4π̌] + 2µz = 3y− 2
√
2y
√
y+ µz(2− λ) + 2µz. (15)

On the other hand, if the constraints bind the profit is restricted to be

EΠCBI = y[3− 2φ−
1

φ
] + µz[2−

2− λ

φ
] = EΠBP − (2− λ)Ωµz. (16)

Clearly, bribery is not preferred. Further, if bribe prevention is costless, i.e. EΠBP = EΠ0, bribe

inducement will be out of question. Therefore, the best prospect for bribe inducement arises when

πi = π̌i < φ, in addition to EΠBP < EΠ0 and we would be looking for the scenario EΠBP ≤ EΠUBI <
EΠ0. We find that the condition π̌ < φ (at p1 = 1/2) is satisfied if y belongs to a critical range,

which we call Σ3.
17

In the Appendix we show through simulation that under suitable parameter specifications Σ3 is

nonempty (see Table 6). With higher µ and λ the set Σ3 shrinks. Intuitively, the expected payout

to IP increases with µ. So the bookie will try to optimize on this loss, by raising the unconstrained

prices, but then the likelihood of the constraint binding also increases.

Assuming y ∈ Σ3, we are guaranteed to have unconstrained prices for the BI problem. Now we

try to identify the values of µ at which we will get EΠUBI > EΠBP. We note that EΠUBI is a decreasing

17It can be checked that π̌ is declining in y (with the second-order derivative positive), and drops from infinity (at
y = 0) to

√
1/2 at y = 1. Likewise, φ is also declining in y (but with the second-order derivative being negative) and

drops from a fraction at y = 0 to zero at y = 1. If the two curves cross each other, they will cross twice. Let these
two intersection points be denoted as ŷ0(> 0) and ŷ1(< 1). Let us denote all the values of y strictly lying between
the two points by Σ3 = {y|ŷ0 < y < ŷ1}.
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function of µ, as

∂EΠUBI
∂µ

= 2z

[
1−

2− λ

π̌

]
< 0 since π̌ < φ =

2− λ

2+ (2− λ)Ω
< 2− λ.

From Eq. (15) we also see that EΠUBI approaches EΠ0 when µ → 0, and thereby at all µ

sufficiently small we must have EΠUBI > EΠBP. At the other end of µ, i.e. µ = 1/2, we impose

EΠUBI < EΠBP with the help of the following assumption.

Assumption 4 Let 2
√

2−λz
y − z

y > 2φ+ 1
φ .

Now we state the main result of this section.

Proposition 3 (More match-fixing possibilities imply less match-fixing) Suppose p11 <
1
2 < p

0
1 (so that EΠBP < EΠ0), y ∈ Σ3 (so that EΠBI = EΠUBI), and Assumption 4 holds. Then at

all even and near-even contests bribe inducement of either team is preferred to bribe prevention if

µ is less than a critical value µ̂ < 1/2. For µ above µ̂ match-fixing will be prevented. Bribery in

the range µ ≤ µ̂ will be of the ‘bribe tolerance’ variety.

The message of Proposition 3 is strikingly different from that of Propositions 1 and 2. No

longer does bribery yield higher profit than the ‘no IP’ case. So the bookie has no incentive to

‘welcome’ the IP. He can tolerate him but only up to a certain level of µ. The intuition is that, to

induce bribery the bookie must incur losses to IP on both tickets. This loss steadily rises with µ

outweighing the relative cost of bribe prevention, rendering bribe inducement quickly suboptimal.

It can also be shown that if λ is sufficiently small the EΠUBI curve will be U-shaped and symmetric

(against p1), which will shift down with µ, as illustrated in Fig. 4 for an example. An implication

is that even when the incentive to induce bribery disappears at the perfectly even contest, it may

still persist at nearby contests. Example 2 in the next section makes this point sharper.

5 Examples and simulations

Example 1. We present some simulations on the basis of an example assuming only team 1 is

corruptible. Here, the entire range of p1 is considered, though our main interest lies around p1 =

1/2. As our simulations show, the theoretical results are generalizable to a large set of p1.

We set λ1 = 0, w+ α(f + fI) = 0.05 and y = 0.8, which implies z = 0.2 and therefore Ω = 0.25.

Since λ = 0, φ1 = φ2 = 1/(1+Ω) = 0.8 at all p1; we can also calculate the upper limit of y to be 0.88

that supports Assumption 3. Further, it is clear that y = 0.8 belongs to the set Σ1 = (0.29, 0.83)

(see Table 4 in the Appendix). Hence the conditions for Proposition 1 are satisfied. So we can

expect bribe inducement to be optimal at all µ1 at p1 = 1/2.
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µ1 p10 p̂1 p11
EΠBI−EΠBP

EΠBP
at EΠBI−EΠ0

EΠ0
at

p1 = 0.5 (%) p1 = 0.5 (%)

0.05 0.245 0.450 1 3.87

0.10 0.198 0.465 1 3.10

0.20 0.194 0.505 1 6.98 0.73

0.30 0.189 0.540 0.660 14.73 8.02

0.40 0.183 0.579 0.695 27.13 19.70

0.50 0.178 0.610 0.710 43.41 35.04

0.60 0.171 0.632 0.720 62.79 53.28

0.70 0.169 0.646 0.725 82.17 71.53

0.80 0.168 0.656 0.728 101.55 89.78

0.90 0.166 0.665 0.732 120.93 108.02

0.95 0.166 0.669 0.733 131.00 118.25

Table 2: Bribe inducement range of p1

In Table 2 we present several values of µ1 over which bribe inducement is optimal.18 p10 is the

critical probability at which EΠBI = EΠ0 (also = EΠBP). p̂1 is the critical value of p1 at which

EΠBI = EΠ0(> EΠBP). p11 is the probability at which EΠBI = EΠBP. So at all p1 < p10 and at all

p1 > p11 (provided p11 < 1), bribe inducement is not optimal. Alternatively, bribe inducement is

optimal at all p1 ∈ [p10, p11], of which at all p1 ∈ [p10, p̂1] bribery is of the ‘bribe encouragement’

type, and at all p1 ∈ [p̂1, p11] bribery is of the ‘bribe tolerance’ type.

Columns 2-4 of Table 2 give these critical values of p1 against µ1. As can be seen, with successive

increases in µ1, p10 declines and p̂1 increases; thus, clearly the region of bribe encouragement

expands. As p11 also decreases with µ the region of bribe tolerance contracts. It is also seen that

when team 1 is a strong favorite, bribery is not optimal at µ1 = 0.3. On the other hand, when

team 1 is moderately underdog (p1 slightly greater than p10) not only is bribery optimal, but it

gives higher profit than the benchmark case.

More importantly, bribery is always optimal at the perfectly even contest (p1 = 1/2), a confir-

mation of Proposition 1. At µ1 = 0.20 or higher values, we have bribe encouragement at p1 = 1/2.

Columns 5 and 6 give the percentage of profit gained from bribe inducement, over and above

the bribe prevention profit and the benchmark profit respectively, at the perfectly even contest.

We see that these proportions also rise with µ1. With µ1 = 0.9 the profit gains from bribery

exceed 100 percent. For Column 6, we should note that the condition for Proposition 2 is met;

y = 0.8 ∈ Σ2 = (0.16, 0.92) (for which see Table 5 in the Appendix).

Figs. 3a, 3b and 3c show the profit curves for three values of µ1. The red curve represents profit

from bribe inducement and the blue curve profit from bribe prevention. The yellow curve is the

expected profit from the ‘no IP’ case. Three sets of graphs are based on the same parameter values

except µ1. In Fig. 3a, we assume µ1 = 0.05, in Fig. 3b, µ1 = 0.3 and in Fig. 3c µ1 = 0.7.

18All the simulation work in the paper has been done in Microsoft Excel.
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Fig. 3a: Bribe inducement is optimal at p1=0.245 onward at all p1; =0.05 

 

Fig. 3b: Bribe inducement is optimal at all p1in [0.189, 0.66]; =0.3 

 

Fig. 3c: Bribe inducement is optimal at all p1in [0.136, 0.725]; =0.7  
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Figure 3: Data common to three figures above: λ1 = 0,Ω1 = 0.25, φ1 = 0.8, y = 0.8



µ EΠBI at EΠBI−EΠBP

EΠBP
at EΠBI > EΠBP

p1 = 0.5 p1 = 0.5 at p1

0 0.137 14.16 ∈ [0.36, 0.64]

0.03 0.132 10.00 ∈ [0.36, 0.64]

0.05 0.129 7.50 ∈ [0.36, 0.64]

0.08 0.124 3.33 ∈ [0.36, 0.64]

0.10 0.121 0.83 ∈ [0.36, 0.64]

0.11 0.120 0 ∈ [0.36, 0.64]

0.13 0.117 -2.50 ∈ [0.36, 0.42]

and [0.58, 0.64]

0.15 0.114 -5.00 ∈ [0.36, 0.39]

and [0.61, 0.64]

0.17 0.111 -7.5 = 0.36, and =0.64

Table 3: Bribe tolerance range of p1

As should be obvious, the bribery incentive is concentrated around p1 = 1/2. When µ1 is as low

as 0.05 (Fig. 3a), bribe inducement profit actually exceeds the ‘no IP’ profit between p1 = 0.245

and p1 = 0.45. But as µ1 increases (see Figs. 3b or 3c) the match-fixing incentive disappears from

the higher end of p1. The bribing incentives generally increase in moderately uneven contests with

team 1 being weak. The even contests remain vulnerable and the payoff from match-fixing around

these contests keeps increasing with µ1. In fact, higher the value of µ1, stronger the incentive to

fix the match (around the even contest). This heightened incentive spreads to uneven contests

(moving leftward) where team 1 is an underdog. This also confirms our discussion based on Fig. 1

that the bookie’s incentive to induce bribery is strongest at p1 = 1/2.

Example 2. This example is for the case of both teams corruptible. We assume symmetry and

consider similar parameter values, λ1 = λ2 = 0, Ω1 = Ω2 = 0.25 and y = 0.8; but we restrict our

attention to p1 ∈ [ 1
(1+Ω)2

, 1 − 1
(1+Ω)2

]= [0.36, 0.64]. Also verify from Table 6 in the Appendix that

y = 0.8 belongs to Σ3 for any µ ≤ 0.15, given λ = 0. Hence the unconstrained solution will hold

for the BI problem. Further, Assumption 4, required for Proposition 3, is also satisfied.

Fig. 4 shows two expected profit curves from bribe inducement, at µ = 0.05 and µ = 0.15,

and the benchmark and the bribe prevention profit over the interval of p1, [0.36, 0.64]. Here,
√
pi < φ(= 1/(1 +Ω)) for both i = 1, 2. That is, bribe prevention is costly at p1 = 1/2. EΠBP is

constant at 0.120. The benchmark profit EΠ0 is 0.137 at p1 = 1/2, but higher elsewhere.

How the BI profit varies with successive changes in µ at p1 = 1/2 (in reference to Proposition 3)

is given in Table 3 by simulating the BI and BP profits for a range of µ. We see that EΠBI is equal

to EΠ0 only at µ = 0. As µ rises, EΠBI falls (see Column 2 of Table 3); but still bribe inducement

is preferred at all µ ≤ 0.11, as shown by column 3 of Table 3.

From Fig. 4 we see that the optimality of bribe inducement holds over the entire interval

[0.36, 0.64] at µ = 0.05. At µ = 0.15, no longer is bribery optimal at the perfectly even contest (see

18



Table 3). However, contests with p1 ∈ (0.36, 0.39) and p1 ∈ (0.61, 0.64) are still suitable for fixing.

These two intervals gradually shrink and disappear at µ > 0.17 (see column 4 in Table 3).

If we compare the maximum incidence of match-fixing at the perfectly even contest (p1 = 1/2)

between the two examples, it falls from 1 in Example 1 to 2µ = 0.22 in Example 2. Greater scope

of bribery drastically reduces the incidence of bribery.

0.1

0.12

0.14

0.16

0.36 0.4 0.44 0.48 0.52 0.56 0.6 0.64
p1 

No IP profit 

Bribe inducement  
Profit (µ=0.05) 

Bribe inducement  
Profit (µ=0.15) 

Bribe prevention  
Profit 

Profit 

Figure 4: Bribe tolerance in even contests

6 More general distribution functions of bettors’ beliefs

We now examine whether our analysis of the bookie’s incentives is specific to uniform beliefs

assumption. One way to do that would be to extend the ‘no IP’ case to a class of more general

distribution functions, and see if the bookie’s profit is still minimum around even contests.

Suppose the bettors’ beliefs are given by a probability density function g(q) over q ∈ [a, b]

with 0 ≤ a < 1
2 and 1

2 < b ≤ 1; g(q) > 0 at all q ∈ (a, b). The cumulative density function is

G(q). One advantage of this formulation is that we can allow the bettors’ beliefs to be correlated

with the draw of p1. For example, we may have a = a > 0 with b = 1 for any draw of p1 >
1
2 ,

b = b < 1 with a = 0 for any draw of p1 <
1
2 , and (a = 0, b = 1) if p1 =

1
2 .

Bettors with beliefs q ∈ [π1, b] buy ticket 1, and with beliefs (1 − q) > π2 (or q ∈ [a, 1 − π2] )

buy ticket 2. They each have one dollar to bet. Restricting π1 < b and π2 < 1− a for positive sale

of tickets, the bookie maximizes the following, subject to (no) Dutch-book, i.e., Assumption 2:

EΠ0 = y

∫b
π1

(1−
p1
π1

)g(q)dq+ y

∫ 1−π2
a

(1−
p2
π2

)g(q)dq

= y

[
1−G(π1) −

p1
π1

+ p1
G(π1)

π1
+G(1− π2) − p2

G(1− π2)

π2

]
.
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The first-order conditions for profit maximization are:

∂EΠ0
∂π1

= y · p1g(π1)
π21

[
1−G(π1)

g(π1)
−

(π1 − p1)

p1
π1

]
= 0, (17)

∂EΠ0
∂π2

= y · p2g(1− π2)
π22

[
G(1− π2)

g(1− π2)
−

(π2 − p2)

p2
π2

]
= 0. (18)

The second-order conditions are satisfied if the following assumption is made, which also helps to

ensure monotonicity of the optimal prices.19

Assumption 5 The hazard rate 1−G(x)
g(x) is decreasing, and G(x)

g(x) is increasing, in x.

It is easy to see that the above assumption will be satisfied by densities symmetric around (a+b)
2 =

1/2 with support [a, b] where 0 ≤ a < 1/2 < b ≤ 1, and also for asymmetric distributions generated

by mildly moving away from the symmetric distributions.

The following lemma shows that the bookie’s problem has a unique interior solution and prices

are (weakly) monotonic in p1. Moreover, the bookie will never set π1 below a and π2 below 1− b

because by raising π1 up to a and π2 up to 1− b, profit can be raised without losing ticket sales.

Lemma 3 (Monotonic prices) Optimal prices (π01, π
0
2) solving the bookie’s problem are unique:

π01(p1) ≥ max{p1, a} , π02(p2) ≥ max{p2, 1−b}. π
0
1 is non-decreasing in p1 and π02 is non-increasing

in p1. Further, the ‘price markup’ on ticket i (i.e. πi−pi
pi

) is decreasing in pi. At p1 > b ticket 1 is

not sold and at p1 < a ticket 2 is not sold.

The markup behavior noted above is implied by Assumption 5.

Substituting (π01, π
0
2) into the profit function, we derive EΠ0(p1). There are two aspects of

interest – the level of EΠ0 at extreme values of p1, and the slope of EΠ0. At p1 < a, when only

ticket 1 is sold, EΠ0 = y(1−
p1
a ) when π1 = a. That is, the expected profit is close to y. Similarly,

at p1 > b, expected profit is again close to y, as EΠ0 = y(1−
p2
1−b) when π2 = 1− b. The slope of

EΠ0 is negative at p1 < a and positive at p1 > b. But at p1 ∈ [a, b] that we are primarily interested

in, the slope can vary from negative to positive, as can be seen from the following expression, on

the basis of which we arrive at our claim (Proposition 4) about the shape of the profit function:

k(p1) ≡
∂EΠ0
∂p1

= y

[
−
1−G(π01(p1))

π01(p1)
+
G(1− π02(p2))

π02(p2)

]
. (19)

19Second-order conditions are: ∂2EΠ0

∂π2
1

= − [g(π1)]2+(1−G(π1))g ′(π1)

[g(π1)]2
− 2π1−p1

p1
< 0, ∂2EΠ0

∂π2
2

=

− [g(1−π2)]2−G(1−π2)g ′(1−π2)

[g(1−π2)]2
− 2π2−p2

p2
< 0. The first terms (inclusive of the negative sign) are the derivatives

of 1−G(π1)
g(π1)

and G(1−π2)
g(1−π2)

that are negative by Assumption 5. Since πi > pi for positive profit, second-order conditions
follow.
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Proposition 4 (A class of distribution functions & corruption-free betting) (i) The

bookie’s profit EΠ0(p1) is (nearly) U-shaped with a unique minimum at p∗1, which solves

k(p1) = 0 in (19).

(ii) Further, if g(q) is symmetric and a+ b = 1, then p∗1 = 1/2.

(iii) Suppose g(q) is symmetric. Also assume that at p1 =
a+b
2 , the price markups satisfy

π1
p1
≤ (>)

π2
p2

if a+ b ≥ (<)1. (20)

Then, for a+ b > 1, p∗1 ∈ ( 12 ,
a+b
2 ) if

(at p1 =
1

2
) π1 − π2 ≤ a+ b− 1 ≤ π1 − π2 (at p1 =

a+ b

2
) ; (21)

and for a+ b < 1, p∗1 ∈ (a+b2 ,
1
2) if

(at p1 =
a+ b

2
) π1 − π2 ≤ a+ b− 1 ≤ π1 − π2 (at p1 =

1

2
) . (22)

(The second assumption in part (iii), i.e. condition (20), suggests that when team 1 is already

a favorite, the price markup on ticket 1 should be smaller than that on ticket 2, reflecting the

difficulty of making a profit from a team that has a greater chance to win.)

As an illustration we derive the minimum profit point for ‘unbalanced’ uniform distribution,

which automatically satisfies Assumption 5, the second assumption in part (iii), and conditions

(21)–(22). Optimal prices are

π∗1 = min
{
b, max{a,

√
bp1}
}
, π∗2 = min

{
(1− a), max{1− b,

√
(1− a)p2}

}
.

Substituting π1 =
√
bp1 and π2 =

√
(1− a)p2 into Eq. (19) we obtain the minimum profit point

as
√
p1 =

√
b
1−ap2, or p∗1 = b

1+b−a . If b = 1 − a (symmetry) then at p∗1 = 1
2 . But if a + b < 1,

p∗1 =
b

1+b−a ∈ (a+b2 ,
1
2), and if a+ b > 1, b

1+b−a ∈ ( 12 ,
a+b
2 ).

The main message of Proposition 4 is that for a symmetric distribution the minimum profit

point will diverge from the even contest, only if the support is ‘unbalanced’ (i.e. a+ b 6= 1). Even

then, p∗1 will not stray too far from 1/2, as long as the prices observe some regularity conditions

(i.e. (21) or (22)). Therefore, our insight into the bookie’s desire to orchestrate fixing at even and

near-even contests remains valid for a class of (general) distribution functions.

7 Partially rational bettors

So far our analysis relied on naive bettors assumption. Here we briefly consider the case of rational

bettors. Intuitively, like in markets for financial assets involving noise and sophisticated/informed
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traders where the latter group benefits at the expense of the former, in our model naive bettors

create an environment in which unscrupulous fixers and monopolist bookmaker can implicitly col-

lude or coordinate to the detriment of fair contest and fair betting. It is to be expected that if the

market is populated more by rational bettors, the monopolist’s hands will be somewhat tied limit-

ing his profitable match-fixing opportunities. We will verify this simple intuition using a plausible

description of rational bettors.

There are at least two counts on which the bettors’ rationality can be improved. First, bettors

may become aware that there is a possibility of match-fixing, and second, they can try to extract

information about the teams’ winning chances from the posted odds.

If we were to admit rationality only on the first count, then our model can be easily extended

by allowing the bettors to revise their q as q[µ1λ1 + (1 − µ1)] when only team 1 is corrupt and

[µλq + µ(1 − λ(1 − q)) + (1 − 2µ)q] when both teams are corrupt. Bettors may apply this belief

regardless of the bookie’s strategy. This belief revision will effectively compress the support of

the bettors’ belief distribution.20 Then using the insight of Proposition 4 we can tell the bookie’s

expected profit curve (ignoring his potential loss to the fixer, if any) will certainly be somewhat

dampened at very low and very high values of p1, but will still have a minimum point at or near

p1 =
1
2 , which suggests that the bookie’s match-fixing incentive may weaken, but will not disappear.

An alternative would be to allow for rationality on both counts. Admittedly, modeling infor-

mation extraction from the posted odds is a challenging problem and it is beyond the scope of this

paper. In our setting, by observing the bet prices the bettors cannot infer p1 (even if they know all

parameters of the model), simply because they cannot be sure which strategy the bookie is pursuing

– bribe prevention or inducement. Therefore, we introduce a simple assumption on the bettors’

behavior, which makes the bettors at least partially rational. We assume that the knowledge of the

presence of a fixer makes them suspicious of foul play, if they see the posted odds are really ‘too

far away’ from the odds induced by their initial belief. Our assumption is couched as a ‘behavioral

rule’ as follows:

If the market odds are too good to be true, a ‘partially rational’ bettor would apply extreme

caution and may revise his prior q before placing any bets. If the posted prices offer a rate of

return in excess of an exogenous threshold R > 0 on a particular ticket, say ticket 1, then the

rational bettor reasons that it is too good to be true; team 1 is going to be bribed, and it is wise not

to bet on it at all.

Suppose for a bettor with belief q, ticket 1 is a preferred bet: max{ 1−q−π2π2
, 0} ≤ q−π1

π1
. As long as

q−π1
π1
≤ R, he sticks to his belief q and bets on team 1. But if q−π1

π1
> R, he completely withdraws

from betting (i.e. revises q = 0). Similar rule applies for a bettor when ticket 2 is his preferred bet.

There are several justifications for the above strategy. First, in reality, most investors are weary

of projects that promise too high a return, when they are conscious of the possibility of foul plays.

In gambling too, betting odds that are ‘too good to be true’ should make them nervous. It is also

20In the first case the support is [0, µ1λ1 + (1 − µ1)], and in the second case, it is [µ(1 − λ), 1 − µ(1 − λ)].
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nearly impossible for the bettors to do sophisticated guesswork and extract precise information

from posted odds, due to cognitive limitations, bounded rationality, or just lack of expertise. A

simple cut-off strategy can be the most practical way to make decisions in such environments.

Second, though our assumption pertains to a sudden withdrawal from betting, one could al-

ternatively model gradual withdrawal. Discontinuous participation in markets populated by rogue

elements is similar in spirit to how prices may not smooth transactions in markets with asymmetric

information, as shown in the credit-rationing model of Stiglitz and Weiss (1981). The theoretical

basis for the cut-off strategy can also be traced to studies on market manipulation in finance, where

insiders’ profitable trading opportunities become restricted for fear of unfavorable response by un-

informed participants if prices signal informed trading; see, for instance, Chakraborty and Yilmaz

(2004).

Third, our behavioral assumption can be seen as an alternative to allowing bettors’ beliefs to

be correlated with the nature’s initial draw (which makes them ‘less naive’, a point we mentioned

in Section 6). Even without such information precision, the bettors may bet conservatively (for

other reasons), which in turn can limit the monopolist’s hands in inducing match-fixing.

Fourth, the real world betting market is likely to have a mix of both types of bettors – naive

and rational (full or partial, whichever way it is defined). The first group, called leisure/amateur

bettors, takes a punt of a few dollars on a sport that they love for the enjoyment of gambling

(Saunders and Turner (1992), Bruce and Johnson (1987, p.3), Winter and Kukuk (2008)). The

second type of bettors, who may not be fully rational but are instinctively watchful, are very likely

to conform to our behavioral assumption. In a simple tractable way, we aim to incorporate this mix

of bettors in our model. Admittedly, an ideal treatment of rational bettors requires a richer model

borrowing insights from recent developments in the market manipulation and learning literature.

In what follows, we will refer to our ‘partially rational’ bettors simply as ‘rational’ bettors.

Betting rule for rational bettors. Given the above definition of rationality, a rational

bettor bets on team 1 if and only if π1 ≤ q ≤ π1(1 + R), and bets on team 2 if and only if

π2 ≤ 1− q ≤ π2(1+ R), or 1− π2(1+ R) ≤ q ≤ 1− π2.

The above rule implies that there are now two additional groups of bettors who will not bet.

All (rational) bettors with q < 1− π2(1+ R) and q > π1(1+ R) will not bet, in addition to bettors

with q ∈ (1 − π2, π1). That also means under no circumstances, the bookie will be able to induce

all bettors to bet in a preferred direction and collect the entire fund y. This is probably an early

indication of the difficulty of defrauding a rational bettor.

We now present an analysis of the bookie’s problem for the case where both teams are corrupt,

and µi, λi, and Ωi are symmetric (µ < 1
2). The analysis is comparable with Section 4 for p1 =

1
2 ,

and for better comparison we will assume that the ordinary bettors are of two types: naive as in

previous sections and rational as defined above; ρ proportion of the ordinary bettors is naive and

1− ρ proportion is rational. Their prior beliefs are ‘uniform’.
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Given any p1 (ignoring bribery), the bookie’s profit from rational bettors is calculated as:

(1− ρ){
[ ∫π1(1+R)
π1

y(1−
p1
π1

) dq
]

︸ ︷︷ ︸
ticket 1 profit

+
[ ∫ 1−π2
1−π2(1+R)

y(1−
p2
π2

) dq
]

︸ ︷︷ ︸
ticket 2 profit

} = (1− ρ)yR
[
π1 + π2 − 1

]
.

Note that, the expected profit from the rational bettors becomes independent of p1. The expected

profit from the naive bettors is unchanged from the previous section(s). Combining all bets (in-

cluding IP’s) we write bookie’s aggregate profit and the bribe inducement program as:

max
π1,π2

EΠ = (1− ρ)yR
[
π1 + π2 − 1

]
+ ρ
[
3− π1 − π2 −

r1
π1

−
r2
π2

]
+ µz

[
2−

1− λp1
π2

−
1− λp2
π1

]
,

subject to p2 ≤ π2 ≤ φ1 (< 1− λp1), p1 ≤ π1 ≤ φ2 (< 1− λp2), π1 + π2 ≥ 1,

where r1 = q+ µ(1− λ)(1− 2q) and r2 = 1− r1. Differentiating EΠ with respect to πi yields:

∂EΠ

∂πi
= (1− ρ)yR+ ρy

[
− 1+

ri

π2i

]
+ µz(1− λpj)

1

π2i
, i 6= j.

Since ρ < 1, πi has to be potentially much larger now for an interior optimum. In particular,

consider the special case of ρ = 0 (all bettors are rational). Then the above derivative is strictly

positive, and by (2), the bookie should set π1 = φ2 and π2 = φ1, yielding match-fixing inducement

profits:

EΠBI = yR
[
φ1 + φ2 − 1

]
− µzΩ[2− λ].

On the other hand, in this special case if the bookie were to prevent bribery, his profits would

be at least:

EΠBP = yR
[
φ1 + φ2 − 1

]
.

Thus, we have the following result:

Proposition 5 (Rational bettors and no match-fixing) When almost all ordinary bet-

tors are rational (i.e. ρ → 0), the monopolist bookie prefers bribe prevention over match-fixing.

With a mix of bettors, match-fixing may be optimal less often than when all bettors are naive.

The above result shows that rational bettors are an obstacle to orchestrating match-fixing.

While the complete elimination of match-fixing result (obtained in the special case) is rather ex-

treme, we should keep in mind that the underlying assumptions are also extreme, such as complete

withdrawal from betting, and both teams being corruptible.21 Also, with all rational bettors, if

withdrawal from betting is gradual, then match-fixing is likely to become optimal in some cases.

An additional consideration that we have ignored due to the one-shot nature of the game is the

bookie’s reputation effect. If match-fixing is uncovered, ordinary bettors would be reluctant to bet

21Recall, for naive bettors, both teams being corruptible may imply less match-fixing.
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in the future. This will work against bribe inducement.

Does Proposition 5 cast a serious doubt on our model of match-fixing? We definitely think not.

In real-life sports betting, markets are likely to have a mix of naive and rational bettors. So long as

there are considerable number of naive bettors, who follow the game with their exogenous beliefs

and completely unmindful of the dark side of betting, unscrupulous fixers will always have their

negative influence.

8 Enforcement issues and concluding remarks

We have presented a model of monopoly betting with the risk of match-fixing, and shown that the

market outcome is vastly different from the competitive case for even contests. The monopolist

bookmaker abuses his market power sometimes and encourages match-fixing. But other times, he

tolerates match-fixing as more of a survival strategy. The undesirable outcome of course depends on

several market microstructure elements, such as the bettors’ beliefs, information hierarchy, market

concentration and the extent to which fixing can tilt the outcome.

One key element of our analysis is exogenous enforcement. Clearly strategic enforcement would

add a particular type of interaction between the bookie and anti-corruption authority. But in light

of our present analysis it can be said that even if enforcement is made clever, it would hardly pick

an even contest to investigate, because its outcome is ‘meant’ to go either way. We can also see

that in many cases of interest, the optimal odds by the bookie give away whether the bookie is

trying to orchestrate match-fixing. Shouldn’t then the bookie be prosecuted as well? Particularly

when match-fixing is encouraged, he is as much culpable as the match-fixer.

It is also well known, and often discussed in the public media, how bookmakers can tell whether

some unusually high wagers or betting activity and even the odds pattern (where odds are generated

endogenously as in parimutuel setting) can be the tell-tale sign of fixing (see footnote 7). But

then shouldn’t the enforcement’s investigation policy be accordingly more sophisticated to extract

information from market data?

In the real world, there may also be a lack of will, and appropriate regulation and coordination

among different agencies. A random report on the internet about football governance by the sport’s

highest body, FIFA, expresses disappointment in the following

(source: http://www.fifa.com/aboutfifa/organisation/footballgovernance/news/newsid=2001014/index.html):

“In football, a national association can sanction a member of the football family if they are

found guilty of contravening the legal, football framework....But for people outside of football,

currently the custodial sentences imposed are too weak, and offer little to deter someone from

getting involved in match-fixing.”

Our analysis highlights that enforcement in sports betting is a complex task requiring sophis-

ticated guesswork about what the bookie is trying to do and what he knows, and there are also

legislative challenges.
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Appendix A

Proof of Lemma 1. First consider the case of no IP. Maximizing the bookie’s payoff as given in

(3) we obtain the following first-order conditions:

∂EΠ

∂π1
= y

[
− 1+

p1

π21

]
= 0, and

∂EΠ0
∂π2

= y
[
− 1+

p2

π22

]
= 0.

These determine the unconstrained optimal prices for the bookie: π∗1 =
√
p1, π

∗
2 =
√
p2. Clearly,

the Dutch-book constraint is satisfied, as
√
p1 ≥ p1,

√
p2 ≥ p2. If team 1 is corruptible, then π∗2

must be at least φ1, hence π∗2 = max{
√
p2, φ1}. If not, then π∗2 =

√
p2. Q.E.D.

Derivation of bribe inducement profit when only team 1 is corruptible. From Eq. (5)

we can write the ticket 1 profit as EΠBI(Ticket 1) = y(1 − π1)(1 −
λ∗1p1
π1

). From Eq. (6) substitute

π1 =
√
p1λ
∗
1 assuming

√
λ∗1p1 > p1 (i.e. the constraint on π1 does not bind), and obtain

EΠBI(Ticket 1) = y(1−
√
λ∗1p1)

2 ; (23)

when
√
λ∗1p1 < p1 (i.e. the constraint on π1 does bind), we have

EΠBI(Ticket 1) = yµ1p2(1− λ1). (24)

On the other hand, as the IP bets on team 2, ticket 2 profit is

EΠBI(Ticket 2) = y(1− π2)

(
1−

1− λ∗1p1
π2

)
+ zµ1

(
1−

1− λ1p1
π2

)
= y

[
1− π2 −

1− λ∗1p1 + µ1(z/y)(1− λ1p1)

π2
+

(
1− λ∗1p1 + µ1

z

y

)]
.

Substituting λ∗1 = µ1λ1 + (1− µ1) and z = 1− y in the third term above rewrite it as

EΠBI(Ticket 2) = y

[
(1− π2) −

1− λ∗1p1 + µ1(z/y)(1− λ1p1)

π2
+

(
p2 + µ1

{
1− y

y
+ p1(1− λ1)

})]
.

From Eq. (6) substitute π2 =
√
1− λ∗1p1 + µ1(z/y)(1− λ1p1) into the above and obtain

EΠBI(Ticket 2) = y

[
1− 2

√
1− λ∗1p1 + µ1

z

y
(1− λ1p1) +

(
p2 + µ1

{
1− y

y
+ p1(1− λ1)

})]
.

Further, we can simplify 1− λ∗1p1 + µ1
z
y(1− λ1p1) to be p2 +

µ1
y {p1(y− λ1) + 1− y} and write

EΠBI(Ticket 2) = y

[
1− 2

√
p2 +

µ1

y
{p1(y− λ1) + 1− y}+

(
p2 + µ1

{
1− y

y
+ p1(1− λ1)

})]
. (25)
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Now suppose π2 is constrained to be φ1, then ticket 2 profit is

EΠBI(Ticket 2) = y

[
1− φ1 −

p2 +
µ1

y
{p1(y− λ1) + 1− y}

φ1
+

(
p2 + µ1

{
1− y

y
+ p1(1− λ1)

})]
. (26)

In order to calculate total profit we need to consider two cases depending on the size of λ1.

Case 1: λ1 <
1
2 and µ̃1 <

1
2(1−λ1)

< 1. This is the case presented in Eqs. (9)–(11). When neither

of the two prices are constrained, the total bribe inducement profit is given by the sum of the profit

expressions given in Eqs. (23) and (25) as follows:

EΠBI = y(1−
√
λ∗1p1)

2 + y

[
1− 2

√
p2 +

µ1

y
{p1(y− λ1) + 1− y}+

(
p2 + µ1

{
1− y

y
+ p1(1− λ1)

})]
. (27)

Substitute p1 = 1/2, and with some rearrangement of terms obtain Eq. (9), referred as EΠ1BI.

Next, consider π1 to be unconstrained and π2 to be constrained. The total profit is now given

by the sum of (23) and (26), which yields

EΠBI = y(1−
√
λ∗1p1)

2 + y

[
1− φ1 −

p2 +
µ1

y
{p1(y− λ1) + 1− y}

φ1
+

(
p2 + µ1

{
1− y

y
+ p1(1− λ1)

})]
. (28)

Once again substitute p1 = p2 = 1/2 and rearrange terms to obtain EΠ2BI as given in Eq. (10).

Finally, when both prices are constrained we need to sum up the profits given in Eqs. (24) and

(26) to derive the total profit, which is

EΠBI = yµ1p2(1− λ1) + y

[
1− φ1 −

p2 +
µ1

y
{p1(y− λ1) + 1− y}

φ1
+

(
p2 + µ1

{
1− y

y
+ p1(1− λ1)

})]
. (29)

Set p1 = 1/2 in the above to obtain EΠ3BI in Eq. (11). This completes the derivation of Eqs. (9)–

(11).

Case 2: λ ≥ 1
2 or µ̃1 < 1 ≤ 1

2(1−λ1)
. This case arises if λ1 ≥ 1

2 . Here the constraint on π1 never

binds. Total profit from bribe inducement will be EΠBI = EΠ1BI at all µ1 ∈ (0, µ̃1] as before, and

EΠBI = EΠ
2
BI at all µ1 ∈ (µ̃1, 1].

There are two other possible cases. The case of 1
2(1−λ1)

< 1 < µ̃1 does not apply, because the

constraint on π2 will always bind at some µ1 (given p1 = 1/2). Hence µ̃1 is always less than 1.

Finally, the case of 1
2(1−λ1)

< µ̃1 < 1 is ruled out by Assumption 3. ||

Next, we develop two lemmas for subsequent use in the proof of Proposition 1.

Lemma A1. If y ∈ Σ1, then the profit expression EΠ2BI is increasing in µ1 ∈ (0, 1
2(1−λ1)

] when λ1 <

1/2, and increasing over the entire interval µ1 ∈ (0, 1] when λ1 ≥ 1/2. Also, at µ̃1, EΠ
2
BI > EΠBP.

Proof of Lemma A1. First note that EΠ2BI is the highest BI profit at µ1 ∈ [µ̃1,min{ 1
2(1−λ1)

, 1}].

But EΠ2BI is also feasible over µ1 ∈ (0, µ̃1), because setting π2 = φ1 induces bribery at this range

of µ1; but the bookie does better by setting π2 =
√
1− λ∗1p1 (< φ1). Hence we can check the slope

of EΠ2BI over its entire feasible range.
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Consider EΠ2BI as given in Eq. (10) and differentiate with respect to µ1:

EΠ2BI
∂µ1

= y

[
(1− λ1)

(
1√
2λ∗1

−
1

2

)
+
2− y(1+ λ1)

2y
−
2− y− λ1
2yφ1

]
.

This derivative is positive if

(1− λ1)
√
2yφ1

y(2φ1 − 1) + 2(1− φ1) − λ1
>
√
λ∗1.

The right-hand side expression is largest (= 1) when µ1 → 0. So we try to identify the values

of y such that the left-hand side expression is strictly greater than 1. If such values of y are found,

then clearly at any µ1 the above inequality will hold. For that we need

y >
2(1− φ1) − λ1

1− φ1
√
2[
√
2− (1− λ1)]

.

But note that φ1 is also a function of y (via Ω1 which depends on z). Let us denote the right-hand

side expression as K(y), and write J(y) = y− K(y).

Higher y means lower z and higher Ω1, which in turn implies lower φ1. In particular at

y = 0, 0 < K(0) < 1; on the other hand, when y → 1, φ1 → ∞ and by L’Hospital’s theorem

K(1) = 2

2−
√
2(1−λ1)

> 1. So by Intermediate value theorem there must be at least two values of y,

say y0 and y1, such that for all y ∈ Σ1 = (y0, y1) we must have J(y) > 0 (see Definition 1); in fact,

as footnote 14 asserts, the {y0, y1} pair is unique. Thus, if y ∈ Σ1, at all µ1, EΠ
2
BI will be increasing.

Now note from Eq. (10) that, if EΠ2BI were evaluated at µ1 = 0, it would be just equal to EΠBP.

Then by the positive slope of EΠ2BI it is implied that at µ̃1 we must have EΠ2BI > EΠBP. Q.E.D.

Lemma A2. If y ∈ Σ1, then EΠBI is increasing in µ1 at all µ1 > µ̃1.

Proof of Lemma A2. Consider first µ̃1 ≤ 1
2(1−λ1)

(< 1), where EΠBI is given by EΠ2BI as in

Eq. (10). By Lemma A1 we know EΠ2BI is increasing in µ1 if y ∈ Σ1.
Next, consider µ1 ∈ ( 1

2(1−λ1)
, 1], where EΠBI is given by EΠ3BI as in Eq. (11). We know EΠ3BI =

EΠ2BI at µ1 = 1/[2(1− λ1)]. Therefore, all we need is to ensure that EΠ3BI is increasing in µ1 in this

range. We obtain

∂EΠ3BI
∂µ1

= y

[
1

2φ1
− 2

]
+ 1−

2− λ1
2φ1

> 0, if y >
2− 2φ1 − λ1
1− 2λ1φ1

.

This restriction is automatically satisfied if y ∈ Σ1, because 2−2φ1−λ1
1−2λ1φ1

<
2(1−φ1)−λ1

1−φ1
√
2[
√
2−(1−λ1)]

.

Therefore, EΠ3BI is also upward-sloping if y ∈ Σ1.
The case of λ1 ≥ 1/2 is trivial. Here EΠ3BI is not relevant; EΠ2BI applies to the whole range of

[µ̃1, 1]. As y ∈ Σ1 guarantees increasing EΠ2BI, the claim is true. Q.E.D.
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Proof of Proposition 1. (i) The proof of this part involves only EΠ1BI. Recall,

EΠ1BI = y

(
1−

√
λ∗1
2

)2
+ y

[
3

2
+ µ1

2− y(1+ λ1)

2y
−

√
2{1+ µ1(

2− λ1
y

− 1)}

]
∀ µ1 ∈ (0, µ̃1].

As µ1 → 0, EΠ1BI → y(3 − 2
√
2) = EΠ0. Now since p11 <

1
2 , we must have EΠBP < EΠ0. Then as

µ1 → 0, EΠ1BI > EΠBP. Hence, at all µ1 quite close to zero, EΠ1BI > EΠBP. That proves part (i).

(ii) There are two ranges of λ1 to consider: λ1 <
1
2 and λ1 ≥ 1

2 . Before we consider each of

these cases, let us first note that EΠ1BI is decreasing in µ1 at sufficiently small values of µ1.

Deriving
∂EΠ1BI
∂µ1

and then letting µ1 → 0 (i.e. λ∗1 → 1) we obtain (with some simplification):

∂EΠ1BI
∂µ1

∣∣∣∣
µ1→0 =

1− y

2
√
2

[
2λ1 − (4− 2

√
2)
]
< 0 at all λ1 ∈ [0, 1].

Case 1: λ1 <
1
2 and µ̃1 <

1
2(1−λ1)

(< 1). The expected profit from bribe prevention at p1 = 1/2

is given in Eq. (8). The BI profit is given in Eqs. (9)–(11), with the underlying prices as

For µ1 ∈ (0, µ̃1], π1 =
√
λ∗1/2, π2 =

√
2− λ∗1
2

+ µ1
z

y

(2− λ1)

2
;

For µ1 ∈ (µ̃1,
1

2(1− λ1)
], π1 =

√
λ∗1/2, π2 = φ1(1/2) ;

For µ1 ∈ (
1

2(1− λ1)
, 1], π1 = 1/2, π2 = φ1(1/2) .

Now recall Eqs. (9)–(11). It turns out that comparing EΠ1BI with EΠBP is cumbersome; therefore,

we will take an indirect route by comparing EΠ2BI with EΠBP and then compare EΠ2BI with EΠ1BI (for

µ1 ∈ (0, µ̃1]). We should note that when µ1 ∈ (0, µ̃1] the bookie could have chosen for ticket 2 any

price from the interval [p2, φ1], but he chose π2 =
√
1− p1λ

∗
1 + µ1

z
y(1− λ1p1) < φ1. Therefore,

it must be that EΠ1BI ≥ EΠ2BI at all µ1 ∈ (0, µ̃1], if EΠ2BI was evaluated in this interval.

Comparing EΠ2BI and EΠBP we see that the latter is constant in µ1, whereas the former is

increasing in µ1 (refer to Lemma A1). Moreover, as µ1 → 0 we have

EΠ2BI = EΠBP = y
[
3−
√
2− φ1 −

1

2φ1

]
.

Thus, EΠ2BI > EΠBP at all µ1 ∈ (0, µ̃1]. Then as EΠ1BI ≥ EΠ2BI at all µ1 ∈ (0, µ̃1], we must have

EΠBI > EΠBP. Further, by Lemma A2 EΠBI is increasing at all µ1 > µ̃1. Therefore, EΠBI > EΠBP

at all µ1 > µ̃1 as well.

Case 2: λ1 ≥ 1
2 or µ̃1 < 1 ≤

1
2(1−λ1)

. In this case, EΠBI = EΠ
2
BI at all µ1 ∈ (µ̃1, 1]. Here EΠ3BI does

not apply. We know that if y ∈ Σ1, EΠ2BI will be an increasing function of µ1 (refer to Lemma A1),

and EΠ2BI > EΠBP at all µ1 ≥ µ̃1. At µ1 < µ̃1, we must also have EΠBI ≡ EΠ1BI > EΠBP by the same

reasoning given in case 1 above. Hence, at all µ1 bribe inducement will be optimal. Q.E.D.
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w+ α1(f + fI) = 0.05 w+ α1(f + fI) = 0.06

λ1 Σ1 ȳ λ1 Σ1 ȳ

0 (0.29, 0.83) 0.88 0 (0.33, 0.77) 0.855

0.05 (0.32, 0.81) 0.87 0.05 (0.44, 0.725) 0.845

0.10 (0.37, 0.78) 0.86 0.10 (0.57, 0.62) 0.83

0.15 (0.44, 0.73) 0.85 0.15 null 0.82

0.19 (0.60, 0.62) 0.838 0.19 null 0.805

0.20 null 0.835 0.20 null 0.805

Table 4: Critical range of y: Σ1

Proof of Proposition 2. (i) Suppose λ1 <
1
2 and consider EΠ3BI − EΠ0 at µ1 = 1. After

simplification the expression for EΠ3BI − EΠ0 > 0 (i.e. EΠBI − EΠ0 > 0) becomes

y[2
√
2− 1− p1 − λ1] > yφ1 + (1− λ1p1)Ω1.

At p1 =
1
2 the LHS expression becomes y[2

√
2− 3

2 − λ1], and the RHS expression becomes

L(y) = (2− λ1)

[
y

2+ (2− λ1)Ω1
+
Ω1
2

]
,

which we have introduced in Definition 2. So if y ∈ Σ2 then the above inequality holds. We know

from Proposition 1 that at µ̃1, we have EΠBI < EΠ0. Then by the intermediate value theorem there

must exist a critical µ1, namely µ̂1 ∈ (µ̃1, 1) such that at all µ1 > µ̂1 we have EΠBI > EΠ0. That

is, bribe encouragement takes place.

(ii) For λ1 ≥ 1
2 the proof is identical, except that now we consider EΠ2BI−EΠ0 at µ1 = 1. Q.E.D.

Proof of Proposition 3. Given p11 <
1
2 < p

0
1, we have EΠBP < EΠ0. Further, given y ∈ Σ3, the

unconstrained prices given in Eq. (14) solve the BI problem. The resultant BI profit at p1 = 1/2

is given by Eq. (15), while the BP profit is given by Eq. (12). We have already checked that EΠUBI
is declining in µ, and at µ close to 0, EΠUBI > EΠBP. At µ = 1/2 by setting EΠUBI < EΠBP and

rearranging terms we get 2
√

2−λz
y − z

y > 2φ+ 1
φ , which is precisely our Assumption 4.

Hence, there must exist a unique critical value µ̂ ∈ (0, 1/2), such that at all µ ≤ µ̂ we have

EΠBI ≥ EΠBP and at all µ > µ̂ we have EΠBI < EΠBP. BI is optimal up to µ̂. Q.E.D.

Simulation of the critical ranges of y – refer Tables 4, 5 and 6.

Proof of Lemma 3. It is obvious that it will never be optimal to set π1 < a and π2 < 1 − b. If

π1 is set below a, the expected profit from ticket 1 is y(1 − p1
π1
) which can be increased by raising

π1 towards a. Similarly, if π2 < 1 − b, EΠ0 = y(1 − p2
π2
) can be improved by raising π2. Hence,

π1 ≥ max{p1, a} and π2 ≥ max{p2, 1 − b}. Next, to show existence and uniqueness, we need to

consider three cases, depending on the range of p1.
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w+ α1(f + fI) = 0.05 w+ α1(f + fI) = 0.06

λ1 Σ2 λ1 Σ2

0 (0.16, 0.925) 0 (0.19, 0.909)

0.05 (0.17, 0.922) 0.05 (0.2, 0.904)

0.10 (0.18, 0.917) 0.10 (0.215, 0.895)

0.15 (0.19, 0.91) 0.15 (0.23, 0.886)

0.20 (0.2, 0.9) 0.20 (0.27, 0.878)

Table 5: Critical range of y: Σ2

w+ α1(f + fI) = 0.05

λ Σ3 Σ3 Σ3

at µ = 0.05 at µ = 0.10 at µ = 0.15

0 (0.11, 0.88) (0.21, 0.87) (0.29, 0.87)

0.10 (0.13, 0.86) (0.24, 0.85) (0.33, 0.84)

0.15 (0.14, 0.85) (0.26, 0.84) (0.36, 0.83)

0.30 (0.22, 0.76) (0.40, 0.75) (0.55, 0.70)

0.40 (0.37, 0.61) null null

0.45 null null null

Table 6: Critical range of y: Σ3

Case 1 [ p1 ∈ [a, b]]. Consider Eq. (17). For any given p1 neither π1 = a nor π1 = b

can be a solution. If π1 = a, the bracketed expression is 1−G(a)
g(a) + (p1−a)a

p1
= 1

g(a) +
(p1−a)a
p1

> 0

(and infinitely large if g(a) is arbitrarily small). Similarly, if π1 = b, the bracketed expression is
1−G(b)
g(b ) − (b−p1)b

p1
. Since b > p1 and G(b) = 1 the sign of the bracketed term depends on whether

g(b) > 0 or g(b) = 0. If g(b) > 0 then the term is clearly negative. If g(b) = 0 then by L’Hospital

rule limx→b 1−G(x)g(x) = − limx→b g(b)
g ′(b) = 0 because g ′(b) > 0 due to our assumption that g(q) > 0 at

all q ∈ (a, b). Hence, here too the bracketed term is negative. Hence, by the intermediate value

theorem, there must be a unique π1 ∈ (a, b) such that ∂EΠ0
∂π1

= 0. Similar reasoning applies for the

unique interior solution of π2 with respect to Eq. (18).

Case 2 [p1 < a]. Here ticket 2 will not be sold, because p2 > 1 − a. For ticket 1, π1 is either

given by Eq. (17) or π1 = a whichever is greater.

Case 3 [p1 > b]. Here ticket 1 sale is zero. For ticket 2, the solution given by Eq. (18) must

not fall below 1− b, and the maximum of the two will be optimal.

Next, we consider (weak) monotonicity of prices. We know that each price is constant over at

some values of p1. Specifically, at p1 < a we have π01 = a over a range of p1 , and at p1 > b we have

π2 = 1−b over a range of p1. But when (π01, π
0
2) is given by Eqs. (17) and (18), strict monotonicity

31



holds due to Assumption 5, which we show as follows. From Eq. (17) we can derive:

∂2EΠ0

∂π21

∂π01
∂p1

+
∂2EΠ0
∂π1∂p1

= 0, or
∂2EΠ0

∂π21

∂π01
∂p1

+
(πh1 )

2

p21
= 0.

Since ∂2EΠ
∂π21

< 0 by the second-order condition, we must have
∂π01
∂p1

> 0.

Symmetric argument establishes
∂π02
∂p2

> 0 from Eq. (18).

For the markups consider Eqs. (17)–(18). By Assumption 5, 1−G(π1)
g(π1)

decreases with p1. Then

it follows that (π1−p1)
p1

π1 also decreases in p1. Since π1 is increasing in p1,
π1−p1
p1

must be falling.

Similarly, from Eq. (18) it follows that (π2−p2)
p2

π2 must fall if π2 rises, and π2 rises if p2 rises;

therefore, the fall in (π2−p2)
p2

π2 must be attributable to π2−p2
p2

. This completes the proof. Q.E.D.

Proof of Proposition 4. (i) To establish that EΠ0(p1) is (nearly) U-shaped we determine its

slope in three ranges of p1: p1 < a, p1 > b and p1 ∈ [a, b]. It is straightforward to check that at

p1 < a, EΠ ′0(p1) = −y/a if π1 = a and EΠ ′0(p1) = −y(1− π01)π
0
1 if π1 = π01. Similarly, at p1 > b,

EΠ ′0(p1) = y/(1− b) if π2 = 1− b and EΠ ′0(p1) = y(1− π
0
2)π

0
2 if π2 = π

0
2.

For p1 ∈ [a, b], consider the slope function k(p1) (Eq. (19)). At p1 = a, k(p1) = −
1−G(π01(a))

π01(a)
−

G(a)
1−a = −

1−G(π01(a))

π01(a)
< 0 as π2 = 1− a. At p1 = b, k(p1) = −1−G(b)

b +
G(1−π02(b))

π02(b)
=

G(1−π02(b))

π02(b)
> 0.

Next, to show that k(p1) is an increasing function, we differentiate the terms given in (19):

∂

∂p1

(
1−G(π01)

π01

)
= −

π01g(π
0
1) + (1−G(π01))

(π01)
2

π01
′
(p1) < 0,

∂

∂p1

(
G(1− π02)

π02

)
= −

π02g(1− π
0
2) + (G(1− π02))

(π02)
2

π02
′
(p1) > 0,

since π ′1(p1) > 0 and π ′2(p1) < 0. By combining these two expressions, we obtain:

k ′(p1) ≡
∂2EΠ(πh1 , π

h
2 )

∂p21
= −

∂

∂p1

(
1−G(πh1 )

πh1

)
+

∂

∂p1

(
G(1− πh2 )

πh2

)
> 0.

Now, as k(p1) is strictly increasing in p1, and k(a) < 0 and k(b) > 0, there must be a unique p1

between a and b at which k(p1) = 0. This proves the claim that p∗1 is unique. It gives minimum

profit because EΠ0(.) is convex (as confirmed by k ′(p1) > 0).

Assume symmetry of g(q) around a+b
2 , and consider three cases.

(ii) Case a + b = 1. g(q) is symmetric around 1
2 . At p1 =

1
2 , by symmetry π1 = π2 and also

g(π1) = g(1−π2) and therefore, 1−G(π1) = G(1−π2); hence we must have k(p1) = 0 ⇒ p∗1 = 1/2.

(iii) For the remaining two cases, impose condition (20). The proof here involves evaluating

k(p1) at two points – p1 =
1
2 and p1 =

a+b
2 . For that, we make use of the optimal price conditions

by substituting 1−G(π1)
π1

= (π1−p1)
p1

g(π1) from Eq. (17), and G(1−π2)
π2

= (π2−p2)
p2

g(1−π2) from Eq. (18),
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into Eq. (19), to rewrite k(p1) as

k(p1) = y

[
−
(π1 − p1)

p1
g(π1) +

(π2 − p2)

p2
g(1− π2)

]
.

We also note that from the symmetry of g(.) it follows that g(π1) = g(a+ b−π1) and g(1−π2) =

g(a+ b− 1+ π2). Now consider each case.

Case a+b > 1. Here the even contest (p1 =
1
2) is to the left of the midpoint of the distribution,

as majority of the bettors believe team 1 to be favorite. Therefore, π1 = π2 at some p1 <
1
2 and

π1 > π2 thereafter. Now first evaluate k(p1) at p1 =
1
2 , where

sign of k(p1) = sign of [−(π1 − p1)g(π1) + (π2 − p2)g(1− π2)] .

As π1 > π2, the sign of k(p1) critically depends on whether g(π1) > g(1− π2). Since π1 > π2 >
1
2 ,

we must have 1 − π2 <
1
2 where g ′(.) > 0, because p1 =

1
2 is to the left of the midpoint a+b

2 . This

implies that due to the symmetry of g(.) at p1 = a+b−(1−π2), the density function g(.) must be

decreasing. However, we cannot ascertain whether π1 would be greater or less than a+b
2 . As long

as π1 ≤ a+ b− 1+ π2, or π1 − π2 < a+ b− 1, g(π1) ≥ g(1− π2). Then k(p1) < 0 at p1 =
1
2 . This

confirms the upper bound on π1 − π2 as specified in (21).

Now evaluate k(p1) at p1 =
a+b
2 , at which p1 > p2. Here,

sign of k(p1) = sign of

[
−
(π1 − p1)

p1
g(π1) +

(π2 − p2)

p2
g(1− π2)

]
.

By our assumption, (π1−p1)
p1

<
(π2−p2)
p2

. Since π1 >
a+b
2 , g(π1) must be declining at π1, while g(1−π2)

must be upward-sloping at 1 − π2 (since π2 > 1 −
a+b
2 ). Also as g(1 − π2) = g(a + b − 1 + π2) by

the symmetry of g(q), g(π1) < g(1− π2) if π1 > a+ b− 1+ π2. This is what is given as the lower

bound on π1 − π2 in (21). Then at p1 =
a+b
2 , k(p1) > 0. Hence, p∗1 must lie between 1

2 and a+b
2 .

Case a+ b < 1. Here a+b
2 < 1

2 and π1 < π2 at all p1 ≤ 1
2 . Follow the same reasoning as above

and make use of the markup assumption. At p1 =
a+b
2 , g(π1) > g(1−π2) if π1−π2 < a+b−1; this

makes k(p1) < 0 at p1 =
a+b
2 as specified in condition (22). Similarly, at p1 =

1
2 , g(π1) < g(1−π2)

if π1 − π2 > a+ b− 1; then k(p1) > 0. Therefore, k(p1) = 0 at some p∗1 ∈ (a+b2 ,
1
2). Q.E.D.
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