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Abstract. For a model of a driven interface in an elastic medium
with random obstacles we prove existence of a stationary positive
supersolution at non-vanishing driving force. This shows the emer-
gence of a rate independent hysteresis through the interaction of
the interface with the obstacles, despite a linear (force=velocity)
microscopic kinetic relation. We also prove a percolation result,
namely the possibility to embed the graph of an only logarithmi-
cally growing function in a next-nearest neighbor site-percolation
cluster at a non-trivial percolation threshold.

1. Introduction and the main result

In this article, we consider a model for the propagation of one-
dimensional fronts immersed in an elastic medium subject to an ex-
ternal driving force and randomly distributed obstacles. The goal is
to understand the overall macroscopic behavior of such fronts and its
dependence on the external forcing. Here we prove existence of sta-
tionary solutions at positive driving force and thus the emergence of
hysteresis.

In order to precisely state our model, let (Ω,B,P) be a probability
space, ω ∈ Ω. The random front at time t is given as the graph
(x, u(x, t, ω)) of a function u : R×(0,∞)×Ω→ R solving the semilinear
fractional diffusion problem

ut(x, t, ω) = −(−∆)1/2u(x, t, ω)− f(x, u(x, t, ω), ω) + F(1)

u(x, 0, ω) = 0.

The function f(x, y, ω) ≥ 0 is assumed to be locally smooth in x and
y for any ω and of the form of localized obstacles of identical shape

Date: January 24, 2012.
2010 Mathematics Subject Classification. 35Q74, 35R11, 60K35.
Key words and phrases. Phase boundaries, percolation, lattice embeddings in

percolation, interfaces, elastic media, random media, pinning, fractional diffusion
equations, supersolutions.

1

ar
X

iv
:1

20
1.

48
36

v1
  [

m
at

h.
A

P]
  2

3 
Ja

n 
20

12



2 PATRICK W. DONDL, MICHAEL SCHEUTZOW, AND SEBASTIAN THROM

F

y

x

z

u(x)

U(x, z)

R
ou
gh

p
la
te

Figure 1. Pulling sandpaper out of a glass of water.

and random positions with uniform density, i.e., the obstacle centers
are given by a 2-dimensional Poisson process. See Assumption 1.1 for
a precise statement. The constant term F is an external loading, the
fractional Laplacian models the interaction of the front with the elastic
medium in which it is immersed.

Evolution problems of this kind arise in a large number of physical
systems. A particularly simple example is that of “pulling sandpaper
out of a glass of water”. As illustrated in Figure 1, we model the
evolution of the wetting line of the water surface on a rough plate as
the plate gets pulled out of the water. Equation (1) can here formally
be derived as follows, the derivation in other physical systems (e.g.,
crack fronts) is similar. We assume the motion of the wetting line
u : R → R to be slow compared to the relaxation time of the water
surface U : R×R+ → R. The system contains an energy term stemming
from the water’s surface energy, which is given (after removing the
constant term from a completely flat surface) as∫

R×R+

−1 +

√
|∇U |2 + 1 dx
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Linearizing this energy around a nearly flat state and cancelling the
constant term we approximate this as∫

R×R+

1

2
|∇U |2 dx.

It is well known that the infimum of this energy subject to the condition
that U = u on the boundary of the domain is given by 1

2
[u]2

H1/2 , i.e.,

the H1/2-norm squared of the function setting the boundary condition.
The variation of the H1/2-norm squared yields the term containing the
square root of the Laplacian in equation (1). The constant term F
models the constant force with which the rough surface is pulled out of
the water. The roughness of the surface itself acts as an obstacle to the
evolution of the wetting line—it locally requires an additional amount
of force to overcome a grain in the sandpaper. This is modelled by the
heterogeneous force term f , yielding equation (1) as the viscous flow
with respect to the involved force terms. An experimental example
of this kind of system can be found in [MGR02]. They use a similar
model, which is also proposed by [EK94, JdG84]. The non-local term
in these articles is a mean-field version of our term.

Another important application in which a model of the above kind
arises is that of a crack front propagating in a rough medium. Exper-
iments and some modeling can be found in the work of Schmittbuhl
et. al. [SDM+03]. The derivation of the stress intensity factor for a non-
flat crack front (resulting in the fractional Laplacian) was first given by
Gao and Rice [GR89]. For simulations using the model and for more
experimental references see for example [TV04]. Nonlocal operators
that model the interaction with elastic media also arise in models for
dislocations [BM09, FIM09].

In this article, we consider a specific form of the function f which is
that of localized smooth obstacles.

Assumption 1.1 (The random field). Fix φ : R2 → [0, 1] ∈ C∞c (R2)
with

(i) φ(x, y) = 0 if ||(x, y)|| > r1,
(ii) φ(x, y) = 1 if ||(x, y)||max ≤ r0,

for r1 >
√

2r0 > 0. By ||·|| we denote here the Euclidean norm in R2,
by ||·||max the maximum-norm in R2. We consider f to be of the form

f(x, y, ω) =
∑
k∈K

fk(ω)φ(x− xk(ω), y − yk(ω)).

The random coefficients for the strength of obstacles fk are iid strictly
positive random variables. The random distribution of obstacle sites
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{(xk, yk)}k∈K is a 2-dimensional Poisson process on R × [r1,∞) with
intensity λ.

Remark 1.2. Given Assumption 1.1 it is clear that (1) admits a unique
classical solution.

Under these conditions we can state the main theorem of this article.

Theorem 1.3 (Pinning of interfaces). Assume the function f is chosen
according to Assumption 1.1 and let A := −(−∆)s with s ∈ [1/2, 1).
Then there exist a deterministic F ∗ > 0 and a C∞ random function
u : R× Ω→ [0,∞) such that

0 ≥ (Au(ω))(x)− f(x, u(x, ω), ω) + F ∗

for almost all ω ∈ Ω and all x ∈ R.

Remark 1.4. By the comparison principle, of course any random field
that can be bounded from below for a.e. ω by a field of the type of
Assumption 1.1 yields the same pinning result.

This theorem states that there is a non-trivial pinning threshold in
our model, since by the comparison principle any solution of the frac-
tional diffusion problem (1) with F ≤ F ∗ and zero initial condition
must remain below the non-negative supersolution u. Note that As-
sumption 1.1 ensures that an identically zero function is a stationary
subsolution to the evolution problem (1) for any F ≥ 0. Thus, for
0 ≤ F ≤ F ∗, the interface becomes trapped and reaches—at least
asymptotically—a stationary state.

The article is organized as follows. In Section 2 we show the exis-
tence of a non-trivial threshold for the existence of infinite percolation
clusters which contain the graph of a function that only grows logarith-
mically. This is a generalization of Lipschitz percolation [DDG+10], the
proof for our result is inspired by [GH10]. In Section 3, using the perco-
lation result, the supersolution is constructed. In contrast to [DDS11],
due to the non-local nature of the problem, a simple piecewise con-
struction is no longer sufficient. Finally, in Section 4 we present some
conclusions and open problems.

2. Flat Percolation Clusters

In this section, let ‖.‖ denote the l1−norm on Rn and denote the ith

unit vector in Rm by ei (i ≤ m).

Theorem 2.1. Consider site percolation on Zn+1 with n ≥ 1: for
given p ∈ [0, 1], each z ∈ Zn+1 is open with probability p and closed
otherwise, with different sites receiving independent states. For each
nondecreasing function H : N0 → N0 satisfying
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i) H(0) = 0
ii) H(1) ≥ 1

iii) lim infk→∞
H(k)
log k

> 0,

there exists some pH = pH(n) ∈ (0, 1) such for each p ∈ (pH , 1) and
almost every realization of the site percolation model with parameter p,
there exists a (random) function Λ : Zn → N which satisfies

a) |Λ(x)− Λ(y)| ≤ H(‖x− y‖) for all x, y ∈ Zn
b) (x,Λ(x)) is open for every x ∈ Zn.

Proof. It suffices to prove the theorem in case H(k+ 1) ≤ H(k) + 1 for
all k ∈ N0 (which implies H(1) = 1). Further, we can and will assume
without loss of generality that for all positive integers k1, ..., km, we
have H(

∑
j kj) ≤

∑
j H(kj).

For j ∈ N define

R(j) := sup{k ∈ N : H(k) = j}.

Now we explain what we mean by an admissible path. Let x, y ∈ Zn+1.
A blocking-path from x to y is a finite sequence of distinct sites x =
x0, x1, ..., xk = y in Zn+1 such that for each i = 1, ..., k the difference
xi − xi−1 takes either the value en+1 or (z,−H(‖z‖)) for some z ∈
Zn\{0}. A blocking-path is called an admissible path if in addition for
each i = 1, ..., k we have that if xi − xi−1 = en+1 then xi is closed. For
z ∈ Zn, define

Λ(z) := 1 + sup{h ∈ N0 :

there exist x ∈ Zn and an admissible path from (x, 0) to (z, h)}.

If this supremum is finite for some z, then (z,Λ(z)) is clearly open. In
this case, Λ(x) is finite for all x ∈ Zn and Λ satisfies a) in the Theorem.
All that remains to be shown is that Λ(0) is finite.

By assumption, there exist C > 0 and γ > 0 such that R(i) ≤ Ceγi

for all i ∈ N. Observe, that there exists some K such that the number
of sites in Zn with l1−norm at most k is bounded by Kkn for all k ∈ N.
Fix N ∈ N0, h ∈ N, and q := 1− p ∈ (0, 1). For x ∈ Zn with ‖x‖ = N
we estimate the expected number of admissible paths from (x, 0) to
(0, h) as follows:

for a given such admissible path, let ki be the number of steps of the
path containing a down-jump of size i ∈ N. Then the expected number
of such admissible paths which contain exactly D ∈ N0 down-steps (in

the sense that
∑k

i=1(xi − xi−1)− = D) and therefore D + h up-steps is
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at most∑((k1 + ...+ kD +D + h

k1, ..., kD, D + h

)
qD+h

D∏
i=1

(K R(i)n)ki
)

≤ qD+heγnD
∑((k1 + ...+ kD +D + h

k1, ..., kD, D + h

)
(KCn)k1+...+kD

)
≤ qD+heγnD

D∑
m=0

(
(KCn)m

∑(
m+D + h

k1, ..., kD, D + h

))
= qD+heγnD

D∑
m=0

(
(KCn)m

(
m+D + h

D + h

)∑(
m

k1, ..., kD

))
≤ qD+heγnD

D∑
m=0

(
(KCn)m2m+D+h2D

(
m+D − 1

m

))
≤ qD+heγnD22D+h((2KCn) ∨ 1)D

D∑
m=0

(
m+D − 1

m

)
= qD+heγnD22D+h((2KCn) ∨ 1)D

(
2D

D

)
≤ qD+heγnD22D+h((2KCn) ∨ 1)D22D,

where the first two sums are extended over all k1, ..., kD ∈ N0 satisfying∑D
i=1 iki = D and the fourth and sixth sums extend over all k1, ..., kD ∈

N0 which in addition satisfy
∑D

i=1 ki = m. Let

β := 16eγn((2KCn) ∨ 1).

Summing over D from H(N) to ∞, we see that, for qβ < 1, the
expected number of admissible paths from (x, 0) to (0, h) is at most
(2q)h(qβ)H(N)(1 − qβ)−1. The total expected number of admissible
paths starting from any point (x, 0), x ∈ Zn and ending at (0, h) is
bounded by

(2q)h(1− qβ)−1

∞∑
N=0

(((
K̃Nn−1

)
∨ 1
)
(qβ)H(N)

)
.

Here, K̃ is a constant chosen such that the number of x ∈ Zn such
that ‖x‖ = N is bounded by K̃Nn−1 for all N ∈ N. The sum is clearly
finite provided q > 0 is sufficiently small. Now, the first Borel-Cantelli
Lemma implies that the largest h for which there exists an admissible
path from some (x, 0) and ending at (0, h) is finite almost surely and
therefore the assertion is proved. �
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Remark 2.2. The theorem is sharp in the sense that it becomes wrong if
in iii) “inf” is dropped and “>” is replaced by “=” (this is a consequence
of the second Borel-Cantelli Lemma)

3. Construction of the supersolution

The construction of the supersolution is performed in a series of
steps. We first split up R2 into boxes large enough so that boxes that
contain an obstacle of a minimum strength percolate in the sense of
Section 2. All obstacles not necessary for the percolation cluster are
then disregarded. In each column of boxes we now have one obstacle at
position (xi, y(xi)). Starting from a periodic supersolution (assuming
obstacles at y = 0 and at periodic distance in x with period larger
than the box size), we construct a supersolution for obstacles centered
at (xi, 0) by cutting out one period and using this function locally
around obstacle sites. Finally, we can add a smooth function with less-
than-linear growth (given by the percolation cluster) in order to obtain
a supersolution that passes through the original obstacle sites.

In this section, we make frequent use of the equivalence of the in-
tegral representation and the Fourier representation of the fractional
Laplacian. Furthermore, we use the symmetry of the fractional Laplace
operator and the weak form of it by switching between applying it to a
test function and the function itself. Further information can be found
in [DNPV11]. The extension problem related to fractional Laplacians
has been treated in [CS07]

Definition 3.1. Consider thus first a, b, δ, F2 > 0 with a > 4b and
δ < min{1, b}. Let ρ := b+ δ/2. Let F1 = ρ

a−ρF2. We define

g̃(x) :=

{
F2 for x ∈ [−b− δ/2, b+ δ/2] = [−ρ, ρ]
−F1 for x ∈ [−a, a] \ [−ρ, ρ],

periodically extended to the real line. Now let

g := ηδ/2 ∗ g̃,
with ηδ/2 a standard-mollifier1 with | supp ηδ/2| = δ, i.e., radius δ/2.

Remark 3.2. Note that the following statements hold.

(i) g is periodic with period 2a,
(ii) g(x) = F2 for x ∈ (−b, b),

(iii) g(x) = −F1 for x ∈ (−2a+ b+ δ, 2a− b− δ) \ [−b− δ, b+ δ]
(iv) g̃ and g have vanishing averages.

1It is important that this standard mollifier used here is symmetric with respect
to the origin.
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Definition 3.3. In order to construct a periodic supersolution we let
ṽ be the modulo a constant unique and continuous periodic solution of

A ṽ = g̃

and set v = ηδ/2 ∗ ṽ. The constant is set so that the average of v
vanishes.

Remark 3.4. Note that A v = g.

An explicit uniformly converging Fourier series representation of ṽ
can now easily be obtained and yields L∞-bounds on ṽ and v as well
as some symmetry properties.

Lemma 3.5. We have

(i) ṽ (x) = −2a2s

(∑∞
k=1

F1+F2

π1+2s sin
(
k π
a
(b+ δ/2)

) cos(k πa x)
k1+2s

)
(ii) v(−x) = v(x) for all x ∈ R, ṽ(−x) = ṽ(x) for all x ∈ R, v and ṽ

are periodic with period 2a and v is continuous.

(iii) ‖v‖∞ ≤ ‖ṽ‖∞ ≤
2(F1+F2)

π2s ζ(2s)a2s−1 (b+ δ/2) for s > 1/2
(iv) ‖v‖∞ ≤ ‖ṽ‖∞
≤ 2

π
(F1 + F2) (b+ δ/2) (2 + log (a)− log (π (b+ δ/2))) for s = 1/2

Here, ζ denotes the Riemann zeta function.

Proof. The series representation follows from a straight-forward calcu-
lation, properties (ii)–(iii) follow directly from the representation by
bounding the absolute value of the sine and cosine functions by unity.
Property (iv) can be seen as follows. For s = 1/2 we have

|ṽ(x)| =

∣∣∣∣∣−2a
∞∑
k=1

F1 + F2

π2
sin
(
k
π

a
(b+ δ/2)

) cos
(
k π
a
x
)

k2

∣∣∣∣∣
=

2 (F1 + F2)

π2
a

∣∣∣∣∣
∞∑
k=1

sin
(
k π
a

(b+ δ/2)
)

cos
(
k π
a
x
)

k2

∣∣∣∣∣ .
With

∣∣sin (k π
a

(b+ δ/2)
)∣∣ ≤ k π

a
(b + δ/2) and

∣∣cos
(
k π
a
x
)∣∣ ≤ 1 and∣∣sin (k π

a
(b+ δ/2)

)∣∣ ≤ 1 by splitting up the sum in two parts and using
an integral estimate for each part one gets
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|ṽ(x)| ≤2 (F1 + F2)

π2
a

(
π

a
(b+ δ/2) +

∫ a
π(b+δ/2)

1

π

a
(b+ δ/2)

1

k
dk+

∫ ∞
a

π(b+δ/2)

1

k2
dk

)

=
2 (F1 + F2)

π2

(
π (b+ δ/2)

(
1 + log

(
a

π (b+ δ/2)

))
+

a
a

π(b+δ/2)

)

=
2 (F1 + F2)

π
(b+ δ/2) (2 + log (a)− log (π (b+ δ/2))) .

�

It is now necessary to establish some monotonicity properties of the
function v.

Lemma 3.6. The function ṽ strictly increases on [0, a] (and thus by
symmetry strictly decreases on [−a, 0]).

We prove this lemma as a consequence of the following two Proposi-
tions by showing positivity (respectively, negativity) of ṽ′. This prop-
erty remains valid under mollification, as shown in Lemma 3.10.

We denote by E+ :=
⋃∞
k=−∞ (2ka− b− δ/2, 2ka+ b+ δ/2) the set

where the second derivative ṽ′′ will be shown to be strictly positive and
E− := R \E+ the set where the second derivative will be shown to be
strictly negative. We also first have to show smoothness of ṽ on the
union of those two sets.

Proposition 3.7. Let p ∈ (0, 1). We have that (−∆)p g̃ (x) (given by
its integral representation) exists for all x ∈ E+ ∪ E− and one has

(−∆)p g̃ (x)

{
> 0 x ∈ E+

< 0 x ∈ E−

Proof. Take x ∈ E+, then one has (with some C > 0)

(−∆)p g̃ (x) =C P.V.

∫
R

g̃ (x)− g̃ (y)

|x− y|1+2p dy

=C P.V.

∫
R

F1 + F2

|x− y|1+2pχE+ (y) dy > 0
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where χE+ is the characteristic function of E+. For x ∈ E− the same
calculation gives

(−∆)p g̃ (x) =C P.V.

∫
R

g̃ (x)− g̃ (y)

|x− y|1+2p dy

=− C P.V.

∫
R

F1 + F2

|x− y|1+2pχE− (y) dy < 0

�

Proposition 3.8. For all x ∈ E+ ∪ E− the function ṽ is twice differ-
entiable with

ṽ′′ (x) = ∆ṽ (x) = (−∆)1−s (− (−∆)s ṽ (x)) = − (−∆)1−s g̃ (x) .

Proof. Let B := (−∆)1−s

For B given by the integral representation B g̃ is continous on (−ρ, ρ)
and [−a, a] \ [−ρ, ρ]. For [−β, β] ⊂ (−ρ, ρ) take ε > 0 so small that
[−β − 2ε, β + 2ε] ⊂ (−ρ, ρ).

Take a standard mollifier ηε with radius ε. Define ṽε := ṽ ∗ ηε and
take a test function ψ ∈ C∞c with support suppψ ⊂ [−β, β]. Then one
has for x ∈ [−β, β]

ṽ′′ε (x) = ∆ṽε(x) = −B(A ṽε(x)) = −B(A(ṽ ∗ ηε(x)))

= −B((A ṽ) ∗ ηε(x)) = −B(g̃ ∗ ηε(x))

As g̃ ∗ ηε is smooth and bounded one has

〈−B(g̃ ∗ ηε), ψ〉 = 〈g̃ ∗ ηε, −Bψ〉 = 〈g̃, −(Bψ) ∗ ηε〉
= 〈g̃, −B(ψ ∗ ηε)〉

Using this together with the integral representation of B one gets up
to some constant

2 〈g̃, B(ψ ∗ ηε)〉

=

∫
R
g̃(x)

(∫
R

ψ ∗ ηε(x)− ψ ∗ ηε(y)

|x− y|1+2(1−s) dy

)
dx

−
∫
R
g̃(y)

(∫
R

ψ ∗ ηε(x)− ψ ∗ ηε(y)

|x− y|1+2(1−s) dx

)
dy

=

∫
R

∫
R

g̃(x)− g̃(y)

|x− y|3−2s (ψ ∗ ηε(x)− ψ ∗ ηε(y))dxdy

=

∫
R

∫
R

g̃(x)− g̃(y)

|x− y|3−2s ψ ∗ ηε(x)dydx−
∫
R

∫
R

g̃(x)− g̃(y)

|x− y|3−2s ψ ∗ ηε(y)dxdy
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=

∫ β+ε

−β−ε

(∫
R

g̃(x)− g̃(y)

|x− y|3−2s dy

)
ψ ∗ ηε(x)dx

−
∫ β+ε

−β−ε

(∫
R

g̃(x)− g̃(y)

|x− y|3−2s dx

)
ψ ∗ ηε(y)dy

= 2 〈B g̃, ψ ∗ ηε〉
From the choice of [−β, β], ε as well as suppψ ⊂ [−β, β] one has

〈B g̃, ψ ∗ ηε〉 =

∫ β+ε

−β−ε
B g̃(x)

∫ β

β

ψ(y)ηε(x− y)dydx

=

∫ β+ε

−β−ε

∫ β

−β
B g̃(x)ψ(y)ηε(x− y)dydx

=

∫ β+ε

−β−ε

∫ β

−β
B g̃(x)ψ(y)ηε(y − x)dydx

=

∫ β

−β
ψ(y)

∫ β+ε

−β−ε
B g̃(x)ηε(y − x)dxdy = 〈B g̃ ∗ ηε, ψ〉

Finally this shows that

ṽ′′ε (x) = −B(g̃ ∗ ηε(x)) = (−B g̃) ∗ ηε(x)

for all x ∈ [−β, β].
In the same way one can show that

ṽ′′ε (x) = −B(g̃ ∗ ηε(x)) = (−B g̃) ∗ ηε(x)

for all x ∈ [−β, β] \ [−ρ, ρ] with [−β, β] \ [−ρ, ρ] ⊂ [−a, a] \ [−ρ, ρ]
From the continuity of−B g̃ on [−β, β] one gets that ṽ′′ε = (−B g̃)∗ηε

converges uniformly to −B g̃ on [−β, β].
Furthermore one has

(i) ṽε → ṽ uniformly on [−β, β]
(ii) ṽ ∈ H1([−β, β]) and therefore ṽ′′ = ∆ṽ ∈ H−1 ([−β, β])

Then one has for any test function ψ ∈ C∞c with support in [−β, β]

〈ṽ, ψ′′〉 = lim
ε→0
〈ṽε, ψ′′〉 = lim

ε→0
〈ṽ′′ε , ψ〉 = 〈−B g̃, ψ〉

This shows that ṽ′′ = −B g̃ in H−1([−β, β]) and in the sense of
distributions. As −B g̃ is continuous on [−β, β] this proves that ṽ ∈
C2 ([−β, β]).

As [−β, β] ⊂ (−ρ, ρ) was arbitrary one gets

ṽ′′(x) = −B g̃(x) = −(−∆)1−sg̃(x)

for all x ∈ (−ρ, ρ).
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In the same way one shows the assertion for x ∈ [−a, a] \ [−ρ, ρ] and
from periodicity the statement follows. �

Remark 3.9. For symmetry reasons we have ṽ′(0) = ṽ′(a) = 0.

Proof of Lemma 3.6. According to Proposition 3.8, ṽ′′ exists on E+ ∪
E− and is strictly positive on E+ and strictly negative on E−. Be-
cause of ṽ′ (0) = 0 = ṽ′ (a) we get for x ∈ [0, a] \ {b+ δ/2} by the
fundamental theorem of calculus

ṽ′ (x) =

{∫ x
0

(−∆)1−s g̃ (y) dy x ∈ [0, b+ δ/2)

−
∫ a
x

(−∆)1−s g̃ (y) dy x ∈ (b+ δ/2, a]

> 0

where in the last step Proposition 3.7 was used. �

Lemma 3.10. The function v strictly increases on [0, a] (and therefore
by symmetry strictly decreases on [−a, 0]).

Proof. Note first that ṽ′ ∈ L2
loc as a weak derivative. Since

v′ =
d

dx
(ṽ ∗ ηδ) ≡

(
d

dx
ṽ

)
∗ ηδ

one gets

v′ (x) =

((
d

dx
ṽ

)
∗ ηδ

)
(x) > 0

for all x ∈ (0, a) according to Lemma 3.6 and because the convolution
preserves positivity in this case due to the symmetry properties of ṽ
and the mollifier.

�

We now split R2 into boxes large enough so that the percolation the-
orem from Section 2 can be applied to boxes that contain an obstacle.

Definition 3.11. For k ∈ Z, j ∈ N and l, d, h > 0, l > 2r1 let

Qk :=[k(l + d)− l/2, k(l + d) + l/2]

Q̃k :=[k(l + d)− l/2 + r1, k(l + d) + l/2− r1]

Q̃kj :=Q̃k × [(j − 1)h, jh]

The following is a direct result from Section 2 and Assumption 1.1.

Proposition 3.12. Let 0 < α < 1, H(k) := bkαc (i.e., the integer
floor of kα) and let V := (l − 2r1)h > 0, q > 0 such that

1− exp{−λV ·P{f1 ≥ q}} > pH(1)
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from Theorem 2.1. Then, almost surely, there exist a random function
Λ: Z → N with |Λ(x)− Λ(y)| ≤ H(|x− y|) for all x, y ∈ Z and a
mapping I : Z→ K with

(xI(k), yI(k)) ∈ Q̃k,Λ(k), fI(k) ≥ q

for all k ∈ Z. In the following we denote by I the set I(Z).

Definition 3.13. Let now d ≥ l, 2a ≥ d+ 2l and define for i ∈ I

ui(x) :=

{
v(x− xi) for x ∈ [xi − l − d/2, xi + l + d/2]
+∞ otherwise.

vi(x) := v(x− xi)
uflat(x) := min

i∈I
vi(x),

where the 2a-periodic function v : R→ R is given in Definition 3.3.

Remark 3.14. Note that due to the monotonicity and periodicity prop-
erties2 of v from Lemma 3.10, we have that on any interval of the form
(b, b+2a] two functions vi, vj, i, j ∈ I intersect each other exactly twice
or they are identical. The points of intersection have distance a.

Proposition 3.15. With the definitions above we have that

(i) uflat is bounded and continuous,
(ii) given xi ∈ Qk, we have that uflat(x) = vi(x) for all x ∈ Qk.

Proof. (i) is obvious by construction. In order to see (ii), note that the
spacing d between two boxes Qj is larger than the length l of a box
and the period of the function v is larger than d/2 + l. �

In the following, we prove that the function uflat constructed above is
a supersolution to a modified problem where the obstacles are extended
from −∞ to +∞ in the y-direction. We thus fix ξ ∈ R and calculate
the effect of the fractional Laplacian A on uflat evaluated at ξ. In the
case that ξ is a point where uflat is smooth, i.e., not a point where
the minimizing vi in Definition 3.13 changes, we can directly apply the
integral representation of A. The points of discontinuity (of the first
derivative) of uflat will have to be smoothed in order to construct a C∞

supersolution.

Definition 3.16. Given ξ ∈ R, let i0 ∈ I such that uflat(ξ) = vi0(ξ) =
ui0(ξ). If vj(ξ) = vi(ξ) = uflat(ξ) we take i0 = max{i, j}. Further-
more, we recursively define the points of intersection of the periodic

2The function v admits one maximum and one minimum in each period and it
is strictly monotone in between.
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supersolution ui0 with uflat. Let

a1 := min

{
y ≥ 0 : ∃κ > 0 with

ui0 > uflat on (ξ − y − κ, ξ − y)
ui0 ≤ uflat on (ξ − y, ξ − y + κ)

}
,

b1 := min

{
y ≥ a1 : ∃κ > 0 with

ui0 < uflat on (ξ − y − κ, ξ − y)
ui0 > uflat on (ξ − y, ξ − y + κ)

}
,

ak+1 := min

{
y ≥ bk : ∃κ > 0 with

ui0 > uflat on (ξ − y − κ, ξ − y)
ui0 < uflat on (ξ − y, ξ − y + κ)

}
,

bk+1 := min

{
y ≥ ak+1 : ∃κ > 0 with

ui0 < uflat on (ξ − y − κ, ξ − y)
ui0 > uflat on (ξ − y, ξ − y + κ)

}
.

Define ãk, b̃k in the same way by substituting −y by +y

Lemma 3.17. We have

bk − ak ≥ a and ak+1 − bk ≤ a

for all k ∈ N.

Proof. Take k ∈ N arbitarily and i1, i2 ∈ I such that vi1(ξ − ak) =
uflat(ξ − ak), vi2(ξ − bk) = uflat(ξ − bk) (it is clear by constrcution that
i1 and i2 are unique).

Because of Remark 3.14 and the construction of uflat one has

uflat ≤ ui1 on [ξ − ak − a, ξ − ak] .

The definition of ak and Remark 3.14 yield

ui0(ξ−ak) = ui1(ξ−ak) and ui0(x) > ui1(x) for x ∈ (ξ−ak−a, ξ−ak).

Altogether one has

ui0(x) > ui1(x) ≥ uflat(x) for all x ∈ (ξ − ak − a, ξ − ak).

Furthermore

uflat ≤ ui0 on [ξ − bk, ξ − ak]
and by the choice of ak and bk there exists no larger interval J ⊇
[ξ − bk, ξ − ak] with uflat ≤ ui0 on J . Using this one gets

(ξ − ak − a, ξ − ak) ⊂ [ξ − bk, ξ − ak]

and therefore

bk − ak ≥ a.

The other inequality is shown by an explicit calculation. By construc-
tion of uflat it is obvious that for I 3 i3 := min {i ∈ I|i < i2} one
has vi3(ξ − ak+1) = uflat(ξ − ak+1). Define r := 2 (xi2 − (ξ − bk)) and
z0 := xi2 − r. Then by the periodicity property of ui0 and ui2 it is clear
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xi3+xi2
2

r
ξ, x0

vi3

vi2

ui0

xi3 ξ − ak+1 z0 ξ − bk

xi2

Figure 2. Illustration to estimate the distances be-
tween intersection points of local supersolutions with the
periodic supersolution vi0 centered around x0.

that z0 is a minimum of ui0 . Furthermore from the proof of Propo-

sition 3.15 one knows that vi3 and vi2 intersect in
xi3+xi2

2
. The same

argument also shows for the intersection of ui0 and vi3

ξ − ak+1 =
xi3 + z0

2
=
xi3 + xi2 − r

2
=
xi3 + xi2

2
− r

2
.

By the choice of the Qk it follows |xi2 − xi3| = xi2 − xi3 ≤ d+ 2l− 2r1

and therefore
|xi2−xi3|

2
≤ d/2 + l− r1 < a. Putting everything together

one gets

ak+1 − bk = (ξ − bk)− (ξ − ak+1) =
xi2 + z0

2
− xi3 + z0

2
=
xi2 − xi3

2
< a

See Figure 2 for an illustration.
�

Lemma 3.18. Assume that ξ is not a point of discontinuity of the first
derivative of uflat. We then have∫

R

uflat(y)− uflat(ξ)

|y − ξ|1+2s dy ≤
∫
R

ui0(y)− ui0(ξ)

|y − ξ|1+2s dy.

Proof. We only consider the part of the integral to the left of ξ. With
the definition of ãk, b̃k, the estimate for the other part of the integral
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follows accordingly. Using the same notation as in Lemma 3.17, one
has uflat ≤ ui0 on [ξ − bk, ξ − ak] and so the definition of uflat together
with Lemma 3.17 yields∫ ξ−ak

ξ−bk
uflat (y)− ui0 (y)dy

≤ min

{∫ ξ−bk+a

ξ−bk
ui2(y)− ui0(y)dy,

∫ ξ−ak

ξ−ak−a
ui1(y)− ui0(y)dy

}
≤
∫ ξ−bk+a

ξ−bk
ui2(y)− ui0(y)dy ≤ 0.

In the same way using ui0 ≤ uflat on [ξ − ak+1, ξ − bk] one gets

0 ≤
∫ ξ−bk

ξ−ak+1

uflat (y)− ui0(y)dy

≤ min

{∫ ξ−ak+1+a

ξ−ak+1

ui3(y)− ui0(y)dy,

∫ ξ−bk

ξ−bk−a
ui2(y)− ui0(y)dy

}

≤
∫ ξ−bk

ξ−bk−a
ui2(y)− ui0(y)dy.

Using this one can split up
∫ ξ−ak
ξ−ak+1

uflat(y)−ui0 (y)

|y−ξ|1+2s dy in two parts where

the integrand is negative and positive, respectively. Noticing that
1

|y−ξ|1+2s ≤ 1
b1+2s
k

on [ξ − ak+1, ξ − bk] and 1
b1+2s
k

≤ 1
|y−ξ|1+2s on [ξ − bk, ξ − ak]

one gets∫ ξ−ak

ξ−ak+1

uflat (y)− ui0(y)

|y − ξ|1+2s dy ≤ 1

b1+2s
k

∫ ξ−bk

ξ−ak+1

uflat (y)− ui0(y)dy

+
1

b1+2s
k

∫ ξ−ak

ξ−bk
uflat (y)− ui0(y)dy

≤ 1

b1+2s
k

∫ ξ−bk+a

ξ−bk−a
ui2(y)− ui0(y)dy = 0,

where in the last step the peridicity of ui0 and ui2 was used. See Figure 3
for an illustration. Inserting a zero in the form −ui0 (ξ) + ui0 (ξ) one
gets

0 ≥
∫ ξ−ak

ξ−ak+1

uflat (y)− ui0(ξ)

|y − ξ|1+2s dy −
∫ ξ−ak

ξ−ak+1

ui0(y)− ui0(ξ)

|y − ξ|1+2s dy.
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x0 − a2

x0

ui0

vi0
vi1

vi2

vi3

x0 − a1

x0 − b1

ξ

Figure 3.

Using now ui0 (ξ) = uflat (ξ) and summing up for all k in N it follows
that ∫ ξ−a1

−∞

uflat (y)− uflat (ξ)

|y − ξ|1+2s dy ≤
∫ ξ−a1

−∞

ui0 (y)− ui0 (ξ)

|y − ξ|1+2s dy.

Furthermore an analogous calculation shows that∫ ∞
ξ+ã1

uflat (y)− uflat (ξ)

|y − ξ|1+2s dy ≤
∫ ∞
ξ+ã1

ui0 (y)− ui0 (ξ)

|y − ξ|1+2s dy,

which together with uflat = ui0 on (ξ − a1, ξ + ã1) yields∫
R

uflat (y)− uflat (ξ)

|y − ξ|1+2s dy ≤
∫
R

ui0 (y)− ui0 (ξ)

|y − ξ|1+2s dy.

�

Next we show that the function uflat is a weak supersolution to the
above mentioned modified problem.

Lemma 3.19. Let 0 < ε < r0
4

, b + δ < r0 − 2ε, F2 < q and let
gflat : R→ [0,∞) be given as

gflat(x) :=

{
q for x ∈

⋃
i∈I [xi − r0 + 3

2
ε, xi + r0 − 3

2
ε]

0 for x /∈
⋃
i∈I(xi − r0 + 3

2
ε, xi + r0 − 3

2
ε).
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Then for all ψ ∈ C∞c (R), ψ ≥ 0 we have

〈uflat, Aψ〉+〈−gflat + F, ψ〉 :=

∫
R
uflat (Aψ) dx+

∫
R
(−gflat+F )ψ dx ≤ 0,

for any F ≤ min{q − F2, F1}.

Proof. If the support of ψ does not contain any points of discontinuity
of u′flat, the statement is clear from Lemma 3.18 by noting that the
integral representation of Auflat is well defined and finite on the whole
support of ψ and one can thus apply the fractional Laplacian directly
to uflat. A calculation then yields∫

R

uflat (y)− uflat (x)

|y − x|1+2s dy − gflat (x)

≤
∫
R

ui(x) (y)− ui(x) (x)

|y − x|1+2s dy − gflat (x)

≤

{
F2 − gflat (x) for x ∈

[
xi(x) − b− δ, xi(x) + b+ δ

]
−F1 − gflat (x) for x ∈ [−a, a] \

[
xi(x) − b− δ, xi(x) + b+ δ

]
≤ −min {q − F2, F1} .

Using a partition of unity, one can isolate any points of discontinuity. It
is possible to locally split uflat into a piecewise affine function with the
same jump and a C1 ∩H2

loc-function with bounded second derivatives.
Noting that the first derivative of uflat always admits a negative jump,
the integral operator A applied to those two parts yields a strongly
negative term near the jump for the piecewise affine function and a
bounded term for the C1 ∩H2

loc-function. The statement in the lemma
is thus proved for all test functions ψ. �

It is now possible to mollify the function uflat by a standard mollifier
of radius ε to obtain a smooth classical supersolution to the modified
(flat) problem.

Corollary 3.20. Let usmooth := ηε ∗ uflat ∈ C∞ and gsmooth := ηε ∗ gflat.
We then have

Ausmooth − gsmooth + F ≤ 0

for all F ≤ min{q − F2, F1}.

Proposition 3.21. Let h > 0, d > 0, l > 0, s ∈ [1/2, 1). For Λ : Z→
R such that |Λ (z1)− Λ (z2)| ≤ 2h |z1 − z2|α with 0 < α < 1 there exist
a smooth function ustep : R → R and constants C0, C1 and C2, that
only depend on s and α such that

(i) ustep(x) = Λ(k) for any x ∈ Qk, k ∈ Z
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(ii) ‖∂2
xustep‖∞ ≤ C0

h
d2

(iii) |(−∆)s ustep(x)| ≤ C1
(d/2+l/2)2−2s

d2 h+ C2
h

(d/2+l/2)2s .

Proof. Parts (i)-(ii) are immediate by mollifying a piecewise constant
function. Part (iii) can be seen as follows. Without loss of generality
one can assume x ∈ [−d/2− l/2, d/2 + l/2].
Let Π := (−3 (d/2 + l/2) , 3 (d/2 + l/2)), then one has from the as-
sumptions on Λ and from (i) for all y ∈ R\Π

|ustep (x)− ustep (y)| ≤ 6h
|x− y|α

(l + d)α
.(2)

because

|ustep (x)− ustep (y)| ≤ 2h
|x− y|α

(l + d)α
+ 4h

but as y ∈ R\Π one has |x−y|
α

(l+d)α
≥ 1 and therefore 4h ≤ 4h |x−y|

α

(l+d)α
.

Using that ustep is smooth and grows less than linear, (−∆)s ustep

can be a represented as

(−∆)s ustep (x) =
1

2

∫
R

ustep (x− y) + ustep (x+ y)− 2ustep (x)

|y|1+2s dy

by applying some standard estimates [DNPV11] one gets

|(−∆)s ustep(x)| = 1

2

∣∣∣∣∫
R

ustep (x− y) + ustep (x+ y)− 2ustep (x)

|y|1+2s dy

∣∣∣∣
≤
‖∂2

xustep‖∞
2

∫
Π

1

|y|2s−1 dy

+
1

2

∫
R\Π

|ustep (x− y)− ustep (x)|+ |ustep (x+ y)− ustep (x)|
|y|1+2s dy.
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Putting in estimate (2) for ustep and calculating the resulting integals
it follows that

|(−∆)s ustep(x)|

≤
∥∥∂2

xustep

∥∥
∞

∫ 3(d/2+l/2)

0

1

y2s−1
dy +

6h

(l + d)α

∫
R\Π

1

|y|1+2s−αdy

≤
‖∂2

xustep‖∞
2− 2s

32−2s (d/2 + l/2)2−2s +
12h

(l + d)α

∫ ∞
3(d/2+l/2)

y−1−2s+αdy

≤
‖∂2

xustep‖∞
2− 2s

32−2s (d/2 + l/2)2−2s +
12h

2s− α
32s−α (d/2 + l/2)−2s+α

(d+ l)α

≤ 32−2s

2− 2s
C0

h

d2
(d/2 + l/2)2−2s +

12

2s− α
32s−α

2α
h (d/2 + l/2)−2s

where in the last step ‖∂2
xustep‖∞ ≤ C0

h
d2 was used. For

C1 =
32−2s

2− 2s
C0 and C2 =

12

2s− α
32s−α

2α

one obtains the estimate. �

Lemma 3.22. Let s > 1/2 and take C∞ := 2
π2s ζ (2s) and 0 < Cδ < 1,

Ca > 5.
Take q > 0 and V > 0 as in Proposition 3.12. Choose 0 < F2 < q and
take F1 > 0 as in Definition 3.1. Choose now l > 0 such that

l > max

{
4r1,

(
(C1 + C2)V

r1 (q − F2)

)1/(2s)

, (12 (C1 + C2)V r0)1/(2s) ,

1 + 2F2r0r1 + 12F2 (C1 + C2)V C∞C
2s
a

F2r0

,
1(

C∞
(

2
3

)2s−1
F2

)1/(2s−1)


. Take d = l, 3

2
l = d

2
+ l ≤ a ≤ Cal, b = 1

6
ar0

(C∞F2a2s+r0)
, 0 < δ < Cδb

and h = V
l−2r1

. Choose 0 < ε < r0
4

such that b + δ < r0 − 2ε (possible

due to item (i)). Then we have

(i) ρ = b+ δ/2 < r0
3
< a

18
,

(ii) (C1 + C2)V 1
l2s

1
l−2r1

< q−F2

2
,

(iii) (C1 + C2)V 1
l2s

1
l−2r1

< 1
12

r0
(C∞C2s

a F2l2s+r0)
,

(iv) ‖v‖∞ ≤
2(F1+F2)

π2s ζ (2s) a2s−1 (b+ δ/2)
= C∞ (F1 + F2) a2s−1 (b+ δ/2) < r0

2
,

(v) −F1 ≤ −1
6

r0F2

(C∞C2s
a F2l2s+r0)

.
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Proof. (i) The choice of b, δ, a and l yields

b+ δ/2 ≤ 2b =
1

3

ar0

C∞F2a2s + r0

<
1

3

r0

C∞F2a2s−1

≤ 1

3

r0

C∞F2

(
2
3

)2s−1
l2s−1

<
r0

3

1

C∞F2

(
2
3

)2s−1
(

1

C∞F2( 2
3)

2s−1

)
=
r0

3

from the conditions on r0, r1 and the choice of l one also gets

r0

3
<
r1

3
<

l

12
≤ 2

3

a

12
=

a

18
.

(ii) From the conditions on l we get

l >

(
2 (C1 + C2)V

2r1 (q − F2)

) 1
2s

l2s >
2 (C1 + C2)V

2r1 (q − F2)

l2s (l − 2r1) > 2r1l
2s >

2 (C1 + C2)V

q − F2

where in the last step l > 4r1 was used. This gives

q − F2

2
> (C1 + C2)V

1

l2s
1

l − 2r1

(iii) From the condition

l >
1 + 2F2r0r1 + 12F2 (C1 + C2)V C∞C

2s
a

F2r0

,

on l we get

r0F2l − 2F2r0r1 − 12F2 (C1 + C2)V C∞C
2s
a > 1.(3)

By rearranging some terms we get from the condition

(12 (C1 + C2)V r0)
1
2s < l
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on l that

12 (C1 + C2)V r0 < l2s

<
(3)
l2s
(
r0F2l − 2F2r0r1 − 12F2 (C1 + C2)V C∞C

2s
a

)
12 (C1 + C2)V r0 < r0F2l

1+2s − 2F2

(
r0r1 + 6 (C1 + C2)V C∞C

2s
a

)
l2s

l1+2sr0F2 − 2r0r1F2l
2s > 12 (C1 + C2)V C∞F2C

2s
a l

2s + 12 (C1 + C2)V r0

(C1 + C2)V
1

l2s
1

l − 2r1

<
1

12

r0F2

(C∞C2s
a F2l2s + r0)

(iv) From Definition 3.1 we know

F1 + F2 =

(
ρ

a− ρ
+ 1

)
F2 =

a

a− ρ
F2.

Furthermore from Lemma 3.5 one has

‖v‖∞ ≤
2 (F1 + F2)

π2s
ζ (2s) a2s−1 (b+ δ)

Putting this together and using item (i) one gets

‖v‖∞ ≤ C∞
a

a− (b+ δ/2)
F2a

2s−1 (b+ δ/2)

< C∞
a

17
18
a
F2a

2s−1 (b+ δ/2)

<
18

17
C∞F2a

2s−12b

<
18

17
C∞F2a

2s−12
1

6

ar0

(C∞F2a2s + r0)

<
18

17
C∞F2a

2s−12
ar0

6C∞F2a2s

=
6

17
r0

<
r0

2

(v) Because F1 is as in Definition 3.1 one has

−F1 = − ρ

a− ρ
F2 = − b+ δ/2

a− (b+ δ/2)
F2 ≤ −

b

a− b
F2 < −

b

a
F2

= −1

a

r0a

6 (C∞F2a2s + r0)
F2 = −1

6

r0

(C∞C2s
a F2l2s + r0)

F2

�
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Take now u := usmooth+ustep. Choose the parameters as in Lemma 3.22
and

F ∗ :=
1

2
min

{
q − F2,

r0

6 (C∞C2s
a F2l2s + r0)

F2

}
.

then one has u ≥ 0 as just seen and we can now give the

Proof of Theorem 1.3 for s > 1/2. Let the parameters be as in Lemma 3.22
and take ustep (xi) = yi for all i ∈ I which, due to Propositions 3.12
and 3.21, is (almost surely) possible. From the choice of gflat and ηε we
have

−
∑
i∈I

fi (ω)φ (x− xi, usmooth (x) + ustep (x)− yi) ≤ −gflat ∗ ηε (x)

Using this we have for F < F ∗

Au (x)− f (x, u (x, ω) , ω) + F

≤ Ausmooth (x)−
∑
i∈I

fi (ω)φ (x− xi, usmooth (x) + ustep (x)− yi)

+ F + Austep (x)

≤ Ausmooth (x)− gflat ∗ ηε (x) + F + Austep (x) .

With the results of Corollary 3.20 and Propositions 3.12 and 3.21 it
follows that

Au (x)− f (x, u (x, ω) , ω) + F

≤ −min {q − F2, F1}+ F + C1
(d/2 + l/2)2−2s

d2
h+ C2

h

(d/2 + l/2)2s

≤ −min {q − F2, F1}+ F + (C1 + C2)
h

l2s
,

where in the last step d = l was used. Applying now the estimates of
Lemma 3.22 and h = V

l−2r1
we get

Au (x)− f (x, u (x, ω) , ω) + F

≤ −min

{
q − F2,

r0

6 (C∞C2s
a F2l2s + r0)

F2

}
+ F + (C1 + C2)V

1

l2s
1

l − 2r1

< −1

2
min

{
q − F2,

r0

6 (C∞C2s
a F2s2s + r0)

F2

}
+ F ∗

= 0,

which finally concludes the proof for s > 1/2. �
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For the case s = 1/2 some changes in the choice of parameters have
to be performed due to the worse L∞ estimate on v in Lemma 3.5 in
this case.

Lemma 3.23. Let Cρ = 1
2

√
πr3

0

48e2( 36F2
17π )

3
C3
a

and choose 0 < Cδ < 1,

Ca > 5.
Take q > 0 and V > 0 as in Proposition 3.12. Let 0 < F2 < q and
choose F1 > 0 as in Lemma 3.5. Choose now l > 0 such that

l >max

{(
(C1 + C2)V

r1 (q − F2)

)
,

(
2V (C1 + C2)

F2Cρ

)2

+ 4r1,

12
(C1 + C2)Ca

r0

V + 2r1

}

Take d = l and 3
2
l = d

2
+l ≤ a ≤ Cal, b = 1

2
min

{√
πr3

0

48e2( 36F2
17π )

3
1√
a
, r0

3

}
,

0 < δ < Cδb und h = V
l−2r1

. Finally choose 0 < ε < r0
4

such that

b < r0 − 2ε (possible due to item (ii)). Then we have

(i) l > 4r1,
(ii) ρ = b+ δ/2 < b+ δ < r0

3
< a

18
,

(iii) (C1 + C2)V 1
l1+2ε

1
l−2r1

< q−F2

2
,

(iv) (C1 + C2)V 1
l1+2ε

1
l−2r1

< 1
2
F2 min

{
1
2

√
πr3

0

48e2( 36F2
17π )

3
C3
a

1
l3/2

, r0
6Cal

}
,

(v) ‖v‖∞ < r0
2

,

(vi) −F1 ≤ −F2 min

{
1
2

√
πr3

0

48e2( 36F2
17π )

3
C3
a

, 1
l3/2

, r0
6Cal

}
.

Proof. (i) This is clear because l >
(

2V (C1+C2)
F2Cρ

)2

+4r1 and
(

2V (C1+C2)
F2Cρ

)2

≥
0

(ii) From the choice of δ and b it is clear that b+ δ ≤ 2b ≤ r0
3

. From
the conditions on r0, r1 and the choice of l we further have

r0

3
<
r1

3
<

l

12
≤ 2

3

a

12
=

a

18
.
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(iii) From the condition on l some calculation gives

l >
2 (C1 + C2)V

2r1 (q − F2)

l (l − 2r1) > 2r1l >
2 (C1 + C2)V

q − F2

q − F2

2
> (C1 + C2)V

1

l

1

l − 2r1

.

(iv) From the condition

l >

(
2V (C1 + C2)

F2Cρ

)2

+ 4r1

on l one obtains(
2V (C1 + C2)

F2Cρ

)2

< l − 4r1 < l − 4r1 +
4r1

l

=
l2 − 4r1l + 4r2

1

l
=

(l − 2r1)2

l
.

Therefore taking the square root and expanding by l one gets

2V (C1 + C2)

F2Cρ
<
l − 2r1

l1/2
=
l (l − 2r1)

l3/2
,

which finally, after rearranging and putting in Cρ, yields

(C1 + C2)V
1

l

1

l − 2r1

<
1

2
F2Cρ

1

l3/2
=

1

2
F2

1

2

√
πr3

0

48e2
(

36F2

17π

)3
C3
a

1

l3/2
.

The second part simply follows by rearranging the condition

l > 12
(C1 + C2)Ca

r0

V + 2r1

on l such that

l − 2r1 > 12
(C1 + C2)Ca

r0

V

and finally

(C1 + C2)V
1

l

1

l − 2r1

<
1

2

r0

6Ca

1

l
.

(v) From Lemma 3.5 we have

‖v‖∞ ≤ 2
F1 + F2

π
ρ (2 + log (a)− log (πρ)) .
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The choice of F1 from Definition 3.1 together with item (ii) yields

F1 + F2 =

(
ρ

a− ρ
+ 1

)
F2 =

a

a− ρ
F2 ≤

a
17
18
a
F2 =

18

17
F2.

Taking both together one gets

‖v‖∞ ≤
(

36F2

17π

)
ρ (2 + log (a)− log (πρ)) .

From the choice of b and δ we further get

ρ ≤ 2b ≤ min

{√
πr3

0

48e2
(

36F2

17π

)3

1√
a
,
r0

3

}
and therefore by squaring

ρ2 ≤ min

{
πr3

0

48e2
(

36F2

17π

)3

1

a
,
r2

0

9

}
,

so in particular

ρ2 ≤ πr3
0

48e2
(

36F2

17π

)3

1

a
.

Using this by rearranging and adding additional terms we get

ae2

π
≤ 1

48

r3
0(

36F2

17π

)3
ρ2

< ρ

1 +
r0

2
(

36F2

17π

)
ρ

+
1

2

(
r0

2
(

36F2

17π

)
ρ

)2

+
1

6

(
r0

2
(

36F2

17π

)
ρ

)3


< ρ exp

(
r0

2
(

36F2

17π

)
ρ

)
.

where in the last step the standard estimate for the exponential
function was applied. This shows that we have

ae2 < πρ exp

(
r0

2
(

36F2

17π

)
ρ

)
.

Applying the logarithm gives

2 + log (a) < log (πρ) +
r0

2
(

36F2

17π

)
ρ
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and this finally yields(
36F2

17π

)
ρ (2 + log (a)− log (πρ)) <

r2

2
.

(vi) The choice of F1 from Definiton 3.1 and the definition of ρ give

−F1 = − ρ

a− ρ
F2 < −

b

a
F2 = −1

2

F2

a
min

{√
πr3

0

48e2
(

36F2

17π

)3

1√
a
,
r0

3

}

= −F2

2
min

{√
πr3

0

48e2
(

36F2

17π

)3

1

a3/2
,
r0

3a

}
.

As a ≤ Cal we have − 1
a
≤ − 1

Cal
and therefore

−F1 < −
1

2

F2

a
min

{√
πr3

0

48e2
(

36F2

17π

)3

1√
a
,
r0

3

}

≤ −F2

2
min

{√
πr3

0

48e2
(

36F2

17π

)3
C3
a

1

l3/2
,
r0

3Cal

}
.

�

Proof of Theorem 1.3 for s = 1/2. Choose the parameters as in Lemma 3.23
and define u := usmooth + ustep. Then Lemma 3.23 shows u ≥ 0 and for

F ∗ =
1

2
min

{
q − F2, F2 min

{
1

2

√
πr3

0

48e2
(

36F2

17π

)3
C3
a

1

l3/2
,
r0

6Cal

}}
using the estimates of Corallary 3.20, Proposition 3.21 and Lemma 3.23
we can show analogously to the proof of the case s > 1/2 that

Au (x)− f (x, u (x, ω) , ω) + F ≤ 0

for all F < F ∗. �

4. Conclusions

In this article we have shown existence of a non-trivial pinning thresh-
old for interfaces in elastic media with local obstacles. Models of the
kind discussed frequently arise in physics, for example in the propaga-
tion of crack fronts in heterogeneous media. Assuming free propagation
of such an interface for large enough driving force (which is trivial to
obtain under some conditions on the heterogeneity), we have shown the
transition of a microscopically viscous kinetic relation (force=velocity)
for interfaces in elastic media with random obstacles to a stick-slip be-
havior on larger scales. The construction of the supersolution has been
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constrained to the 1+1 dimensional case, i.e., that of a 1-dimensional
interface propagating in a 2-dimensional plane. In many cases, this is
the physically relevant situation. The n-dimensional case is still open
due to technical difficulties concerning mostly the compensation of er-
rors arising from modifying a periodic solution.

Furthermore, we have shown a percolation result, namely a non-
trivial percolation threshold for the existence of an infinite cluster in
next-nearest neighbor site percolation that is the graph of an only log-
arithmically growing function.
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