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Abstract

We propose a statistical model to assess whether individuals strategically use mixed

strategies in repeated games. We formulate a hidden Markov model in which the latent

state space contains both pure and mixed strategies, and allows switching between these

states. We apply the model to data from an experiment in which human subjects

repeatedly play a normal form game against a computer that always follows its part of

the unique mixed strategy Nash equilibrium profile. Estimated results show significant

mixed strategy play and non-stationary dynamics. We also explore the ability of the

model to forecast action choice.
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1 Introduction

Game theory and the Nash equilibrium solution concept are a key framework in the social

sciences for modeling interactive behavior. The formulation of a normal form game consists

of a set of players, a set of possible actions for each player, and a payoff function for each

player that gives a real-valued payoff for any possible joint action profile – a list of actions

consisting of one for each player. A Nash equilibrium is a joint action profile such that each

player’s assigned action results in at least as high a payoff to the player as any other possible

action, assuming all other players choose their respective actions in the Nash equilibrium

profile. If players are restricted to deterministically choose an action, then there are many

games that don’t have a Nash equilibrium, such as the childhood game of Rock, Scissors,

Paper. Confronted with this problem, Von Neumann (1928) generalized a player’s decision

from choosing an action to choosing a probability distribution over his possible actions.1 This

choice of a probability distribution is called a “mixed” strategy, and a degenerate mixed

strategy which chooses a particular action with probability one is called a “pure” strategy.

The introduction of mixed strategies allows for existence of equilibrium across a broad class

of games: from minimax solutions for zero-sum games (Von Neumann, 1928; Von Neumann

and Morgenstern, 1944) to noncooperative equilibria for n-person games (Nash, 1951). While

the role of mixed strategies in defining logically consistent solution concepts is not in doubt,

the positive aspect of individuals actually playing mixed strategies is an open question of

considerable interest.

Researchers’ efforts to answer this question have naturally focused on settings where the use

of mixed strategies is most compelling: the repeated play of games which have a unique mixed

strategy Nash equilibrium. The value of “being unpredictable” is readily seen in examples

such as serves in tennis, “bluffing” in poker, and whether or not a tax authority audits a tax

payer. A common approach in this literature is to test whether the players’ action choices are

consistent with the mixed strategy equilibrium. Some studies using controlled experiments

with human subjects have the advantage of knowing the payoff functions, and test whether

choice frequencies agree with the equilibrium strategies and whether players’ sequences of

actions are serially independent (O’Neill, 1987; Binmore et al., 2001; Selten and Chmura,

2008). Other studies consider high-level sports competitions, such as soccer (Chiappori et al.,

2002; Palacios-Huerta, 2003; Bareli et al., 2007) and tennis (Walker and Wooders, 2001),

with the advantage of studying highly experienced players competing for high stakes and

the disadvantage of unknown payoff functions.2 These studies focus on testing the serial

1Along with generalizing the set of feasible actions to the set of mixed strategies, a player’s payoff function
is extended by setting its value to the expected payoff given a profile of mixed strategies, commonly referred
to as the expected utility property.

2The action sets are typically comprised of simple actions, e.g., {serve left, serve right} and {defend left,
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independence of action choice and the equilibrium implication of equal payoffs across action

choices. Some of the most prominent and recurring results for both types of studies are

that aggregated action frequencies across players agree with the equilibrium mixed strategies

but individual action frequencies do not, and for many individuals action choices are serially

correlated violating the independence prediction.

To reconcile these issues of serial correlation and heterogeneity, several studies (Ochs, 1995;

Bloomfield, 1994; Shachat, 2002; Noussair and Willinger, 2011) conduct laboratory experi-

ments using the same type of games but directly elicit mixed strategies by obligating players

to select a probability distribution over actions.3 Elicited strategies in these experiments ex-

hibit various distinct patterns. Some subjects choose pure strategies almost exclusively, some

choose strictly mixed strategies almost exclusively, and others use both types of strategies –

usually in long sequences. Also, certain mixed strategies are often quite focal, such as choosing

equal probability weight on a subset of actions rather than the Nash equilibrium proportions.

Naive interpretation of these results suggests a clear distinction between play that is purposely

unpredictable and play that is a pure best response to changing forecasts of an opponent’s

action (Nyarko and Schotter, 2002). A more cautious interpretation is that subjects may es-

chew the randomizing device provided by the experimenter and instead internally randomize,

or perhaps subjects choose strictly mixed strategies due to the experimenter effect of the novel

elicitation method. Clearly a less invasive method to detect mixed strategy play would be

valuable.

In this study we propose a hidden Markov model (HMM) to detect whether observed

action choices are the result of pure or mixed strategy play in repeated two-person finite action

games.4 There are three key ideas in our formulation: (1) we treat the strategy a player follows

as a latent state and the action played as the observable output from the latent strategy; (2)

the set of possible latent states is a discrete subset of all possible mixed strategies containing

pure strategies, Nash equilibrium or minimax strategies, and focal mixed strategies; and (3)

a player switches the latent strategy he follows according to a first order Markov process.

We then demonstrate the ability of the model by applying it to a new experimental data set

we collect. In our experiment, each human subject repeatedly plays a 2 × 2 game against

a computer player that follows its mixed strategy equilibrium. Some subjects play a zero-

sum game and others an unprofitable game.5 The estimated HMMs reveal several interesting

defend right}. The payoffs are assumed to be the probability of winning the task and these probabilities will
differ based upon both the comparative skills between players and the relative strengths a player has for each
action.

3For example, Shachat (2002) adopts a game with four actions, each identified by a different color, for each
player. Each player must fill a box with 100 cards in any combination of the four colored card types, and then
one card is selected at random to determine the action played.

4See Rabiner (1989) for a classic introduction to hidden Markov models.
5An unprofitable game is one in which the minimax and Nash equilibrium solutions are distinct but yield
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results, including: (1) significant amounts of both pure and mixed strategy play; (2) the focal

equiprobable mixed strategy is played more often than the Nash equilibrium strategy; (3) low

transition probabilities between mixed and pure latent strategies; (4) dynamic adjustments

in the types of strategies players follow over time; and (5) appreciable rates of both mixed

and pure strategy play in the limiting distributions of the HMMs (interpreted as the long run

equilibrium of play). We then extend the HMM from a statistical framework for evaluating

hypotheses to one for forecasting action choice and assess its predictive accuracy.

Two other recent studies use HMM estimation to analyze experimental data. Ansari et al.

(2012) use the HMM framework to study learning in repeated finite games. They seek to

understand how subjects follow two canonical learning models: reinforcement learning (Erev

and Roth, 1998) and experience-weighted attraction (Camerer and Ho, 1999). The models

differ in how they utilize past histories of play to determine the probabilities of choosing

different actions. The latent state space of Ansari et al. (2012) consists of these learning

models, so one can think of these states as dynamic mixed strategies. Transition between

these learning models is characterized by an individual-specific propensity which adjusts to

the relative success of the two learning models against past play. This approach successfully

addresses issues regarding the similarity of the models’ predictions of action play noted by

Shachat and Swarthout (2012).

In an application to first price sealed bid auction experiments, Shachat and Wei (2012) use

a HMM to study latent linear pricing rules and dynamic switching between these rules. They

show there is significant use of both sophisticated strategic bidding and non-strategic rules of

thumbs, and surprisingly, strategic bidding diminishes over time. Our study, along with these

two others, indicate a new and growing emphasis on modeling dynamic latent heterogeneity

in human decision experiments.

2 A HMM of switching strategies

Consider an experiment in which we observe M pairs of subjects, each playing T periods of

the same 2×2 normal form game. Often games like this are described by a two-by-two table,

and for familiarity purposes we denote one subject’s player role as Row and the other as

Column. We label each player role’s two possible actions Left (L) and Right (R), and express

a subject’s mixed strategy as the probability of playing L. Of particular interest is when

the game has a single Nash equilibrium and it is in strictly mixed strategies, although our

framework is not restricted to study only such cases. Three factors confounding the analysis

of data generated by this type of process are the latency of players’ mixed strategies, the

the same expected payoff for each player.
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heterogeneity of strategy adoption across subjects, and variation of adopted latent strategies

over the course of repeated play. In this section, we present a model that accommodates and

allows estimation of these confounds.

Consider the following HMM for a fixed player role. The state space S is an n-element

subset of the subject i’s possible mixed strategies. Denote si,t ∈ S for the strategy used by

subject i in period t, Si is the set of all possible T element sequences of mixed strategies for

i with typical element si, and let s be the collection of si for all M subjects in a given player

role. Let yi,t denote subject i’s realized action in period t, yi is the corresponding T element

sequence of i’s observable actions, and y is the collection of yi for all M subjects. View {y, s}
as the output of the HMM.

The probability structure of the HMM has three elements. First, the n-element vector

B for which the element Bj is the probability a subject chooses action Left, i.e. the mixed

strategy, if he is in state j. We will provide two analyses which differ in how we specify B. In

one approach we consider B as known a priori, and S and B are redundant notation. Usually,

in this approach, B contains the two pure strategies, other strategies suggested by theory such

as Nash equilibrium or minimax, and other focal strategies. In the second approach we treat

the elements of B as unknown parameters – the state dependent mixed strategies. The second

element of the structure, π, is the initial multinomial probability distribution over S. The

third element, P , is the n×n transition probability matrix. The element Pjk is the probability

a subject adopts strategy k in period t conditional upon having adopted strategy j in period

t− 1.

The likelihood function of (B, π, P ) is

L(B, π, P |y, s) = Pr(y, s|B, π, P ).

Rewriting this likelihood in terms of the marginal distributions of y and s gives us

L(B, π, P |y, s) = Pr(y|s, B, π, P ) · Pr(s|B, π, P ).

Next, we assume that the marginal distribution of y conditional on s is independent of π

and P . In other words, once the state is realized then the probability of a Left action relies

solely on the mixed strategy of the current state. Also, by the specification of the HMM, s is

independent of the state dependent mixed strategies B. This allows us to restate the previous

likelihood function as

L(B, π, P |y, s) = Pr(y|s, B) · Pr(s|π, P ).

Since the sequence of states for each subject is unobservable, we evaluate the likelihood by
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integrating over the set of all possible sequences

L(B, π, P |y, s) =

M∏
i=1

∑
s∈S

π(si,1)B
I〈yi,1=L〉
si,1

(1−Bsi,1)
1−I〈yi,1=L〉

T∏
t=2

Psi,t−1,si,tB
I〈yi,t=L〉
si,t

(1−Bsi,t)
1−I〈yi,t=L〉,

where I〈·〉 is an indicator function which equals one when the argument event occurs, the

action by subject i in period t is Left in this case, and zero otherwise. As T grows, the

number of calculations needed to evaluate this likelihood quickly becomes computationally

impractical. We describe the Bayesian approach we take to estimate the HMM, although one

could proceed down a frequentist path of maximizing the expected likelihood function using

some variation of the EM (expected maximum likelihood) algorithm.

In the Bayesian analysis, we first factor the joint posterior distribution of the unknown

HMM parameters and unobserved states s into the product of marginal conditional posterior

distributions. Then we evaluate these marginal conditional posteriors through an iterative

sampling procedure called the Markov Chain Monte Carlo (MCMC) method. MCMC is a

simple but powerful procedure in which the empirical distributions of the sampled parameters

converge to the true posterior distributions. After convergence, iterative sampling is continued

to construct empirical density functions. These are used to make inferences regarding the

parameters of the hidden Markov models.

Consider the posterior density function on the realized unobserved states and HMM pa-

rameters h(s, B, P, π|y). First, express this joint density as the product of the marginal density

of HMM parameters conditional on the observed action choices and unobserved states with

the marginal density of the states conditional upon action choices

h(s, B, P, π|y) = h(B,P, π|s,y)h(s|y).

We have already assumed that the transition matrix P and initial probabilities over states π

are independent of the action choices and state contingent mixed strategies B, which allows

us to state

h(s, B, P, π|y) = h(B|s,y)h(P, π|s,y)h(s|y).

This product of three conditional posteriors permits a simple Markov Chain procedure of

sequentially sampling from these distributions. We start with some initial arbitrary values for

the HMM parameters, (B(l), P (l), π(l)) where l = 0. We create s(0) by simulation using P (0) and

π(0) without conditioning on y. From these initial parameter values and the observed action

sequences y, we use a Gibbs sampling algorithm to generate an initial sample of state sequences
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s(1). Then we make a random draw P (1) from the posterior distribution of P conditional on

s(1) and y, and proceed similarly to make a random draw of π(1). We complete the iteration

by making a random draw B(1) from the posterior of B conditional on s(1) and y. The key

to the MCMC method is that as l → ∞, the joint and marginal distributions of B(l), P (l),

and π(l) converge weakly to the joint and marginal posterior distributions of these parameters

(Geman and Geman, 1987). We now describe the details of each step in an iteration of the

MCMC procedure.

Step 1: Sampling the state sequences s(l)

We begin by describing a Gibbs sampling technique for generating draws from the distribu-

tion of s(l) conditional upon y and (B(l−1), P (l−1), π(l−1)). The elements of si can be drawn

sequentially for each t conditioning on the observed action choice yi,t, the realized state in

other periods, π, and P . Let si, 6=t be the vector obtained by removing si,t from the sequence

si. Given si, 6=t, we express the conditional posterior distribution of si,t as

Pr(s
(l)
i,t |yi,t, B(l−1), P (l−1), s

(l)
i, 6=t, s

(l−1)
i, 6=t ) ∝ Pr(yi,t|s(l)i,t , B(l−1)) · Pr(s

(l)
i,t |P (l−1), s

(l)
i, 6=t, s

(l−1)
i, 6=t )

with

Pr(s
(l)
i,t |P (l−1), s

(l)
i, 6=t, s

(l−1)
i, 6=t ) = Pr(si,t = k|P (l), s

(l)
i,t−1, s

(l−1)
i,t+1 ).

Consequently, the conditional posterior probability of si,t = k and t > 1 is

Pr(s
(l)
i,t = k|·) =

Pr(yi,t|si,t = k,B
(l−1)
k ) · Pr(si,t = k|P (l−1), s

(l)
i,t−1, s

(l−1)
i,t+1 )

n∑
j=1

Pr(yi,t|si,t = j, B
(l−1)
j ) · Pr(si,t = j|P (l−1), s

(l)
i,t−1, s

(l−1)
i,t+1 )

,

and for t = 1

Pr(s
(l)
i,1 = k|·) =

Pr(yi,1|si,1 = k,B
(l−1)
k ) · Pr(si,1 = k|π(l−1), s

(l−1)
i,2 )

n∑
j=1

Pr(yi,1|si,1 = j, B
(l−1)
j ) · Pr(si,1 = j|π(l−1), s

(l−1)
i,2 )

.

The state s
(l)
i,t is determined by making a random draw from the uniform distribution on the

unit interval, and comparing this draw to the calculated conditional probability of s
(l)
i,t .

Step 2: Sampling the transition matrix P (l) and π(l)

The posterior distributions of Pjk and π depend only upon s(l) and the priors. We specify the

prior of π as a Dirichlet distribution h(π;α1, . . . , αn) where αj = 1, for 1 ≤ j ≤ n. Similarly,
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we specify the prior of the jth row of P as a Dirichlet distribution h(pj1, . . . , pjn|ηj1, . . . , ηjn).

In an experiment, we record the data from the true start of the HMM process, so we assume

that the joint posterior is simply the product of these two marginal posteriors. The respective

posteriors of π(l) and P (l) are

h(π|s) ∝ Pr(s|π)h(π;α1, . . . , αn),

and

h(Pj1, . . . , Pjn|s) ∝ Pr(s|Pj1, . . . , Pjn)h(Pj1, . . . , Pjn; ηj1, . . . , ηjn).

If ν0j is the number incidences of s
(l)
i,1 = j in s(l), and νjk is the count of transitions from

state j to k in s(l), then the conditional probabilities in the two posterior calculations are

multinomial distributions

h(π|s) ∝ πν011 . . . π
ν0n−1

n−1 ·
(

1−
n−1∑
k=1

πk

)ν0n
h(π;α1, . . . , αn)

and

h(Pj1, . . . , Pjn|s) ∝ P
νj1
j1 . . . P

νjn−1

jn−1 ·
(

1−
n−1∑
k=1

Pjk

)νjn
h(Pj1, . . . , Pjn; η1, . . . , ηn).

Since the Dirichlet distribution is the conjugate prior for the multinomial distribution, these

posterior distributions are also Dirichlet distributions for which each shape parameter is the

sum of its prior value and the respective count

h(π|s) = h(π;α1 + ν01, . . . , αn + ν0n)

and

h(Pj1, . . . , Pjn|s) = h(Pj1, . . . , Pjn; η1 + νj1, . . . , ηn + νjn).

Hence, we select π(l) and P (l) be taking random draws from these distributions.

Step 3: Sampling the state dependent mixed strategies B

For our initial approach to modeling the state dependent mixed strategies, we assume B

corresponds to a known subset of S. In our Bayesian analysis this is equivalent to assuming a

point prior on these strategies, and therefore there is no updating. So in our Gibbs sampling

procedure we skip this step, and proceed to next iteration of the Gibbs sampler. Of course

this is a rather strong prior to assume, and we should evaluate whether it is appropriate.
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Accordingly, we conduct an auxiliary analysis in which we assume a uniform prior of the set

of all mixed strategies.

In the auxiliary analysis we proceed as follows. The priors of state dependent mixed strate-

gies B1, . . . , Bn are assumed independent of each other and of the Markov process governing

the states. Given these assumptions, we can think of each Bj as a Bernoulli probability,

and each Left (Right) action as a success (failure) when occurring in state j. The likelihood

function is calculated as a binomial trial. Since it is the conjugate prior of the binomial, we

assume the prior is a Beta distribution, denoted β(Bj; ζj; γj). We want a uniform prior as

well, and that corresponds to setting the shape parameters ζj and γj to one.

The posterior distribution is simply

h(Bj|y, s(l)) = β(Bj; ζj + κL,j, γj + κR,j),

where κL,j and κR,j are the number of times the actions Left and Right, respectively, are chosen

when in state j according to s(l). The state conditional mixed strategies B
(l)
j , j = 1, . . . , n,

are randomly drawn from these Beta posterior distributions, completing an iteration of the

Gibbs sampler.

The Gibbs sampler is run for a large number of iterations until the empirical distribution

of all the parameters has converged (Geweke, 1991). Then the sampling procedure is allowed

to continue to run for another number of iterations to build up an empirical distribution that

corresponds to the posterior distribution of the HMM parameters. It is from this empirical

distribution that we conduct statistical inferences.

3 The experiment

We apply our HMM framework to a new experimental data set that provides a likely setting

for mixed strategies, and particulary Nash equilibrium strategies, to be adopted. Additionally,

our procedures allow us to estimate for one player role without the need to also simultaneously

model the opposing role, because each human subject repeatedly plays against a computer

player that follows its mixed strategy equilibrium. Each subject is informed that his opponent

is a computer but is given no information regarding the computer’s strategy. We adopt two

different games in our experimental design, with each subject playing only one of the two

games. One game is zero-sum and the other game is unprofitable.
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Pursue-Evade Game Gamble-Safe Game
  

Column Player 

 Left Right 

R
ow

 P
la

ye
r Left 1 , -1 0 , 0 

Right 0 , 0 2 , -2 

 

  
Column Player 

 Left Right 

R
ow

 P
la

ye
r Left 2 , 0 0 , 1 

Right 1 , 2 1 , 1 

 

Figure 1: The experimental games

3.1 The games

Our first game is a zero-sum asymmetric matching pennies game introduced by Rosenthal et al.

(2003). The normal form representation of this game is presented on the left side of Figure 1.

The game is called Pursue-Evade because the Row player “captures” points from the Column

player when the actions of the two players match, and the Column player “evades” a loss when

the players’ actions differ. In the game each player can move either Left or Right, and the

game has a unique Nash equilibrium in which each player chooses Left with probability two-

thirds. In equilibrium, Row’s expected payoff is two-thirds, and correspondingly Column’s

expected payoff is negative two-thirds.

Our second game is an unprofitable game introduced by Shachat and Swarthout (2004)

called Gamble-Safe. Each player has a Gamble action (Left for each player) which yields a

payoff of either two or zero, and a Safe action (Right for each player) which guarantees a

payoff of one. The normal form representation of this game is presented on the right side of

Figure 1. The Gamble-Safe game has a unique Nash equilibrium in which each player chooses

the Left action with probability one-half, and each player earns an expected equilibrium

payoff of one. Right is the minimax strategy for both players with a guaranteed payoff of

one. Aumann (1985) argues that the Nash equilibrium prediction is not plausible in such an

unprofitable game because its adoption assumes unnecessary risk to achieve the corresponding

Nash equilibrium payoff. For example, imagine Row has Nash equilibrium beliefs and best

responds by playing the Nash strategy. Row’s expected payoff is one. However, suppose

Column instead adopts his minimax strategy Right. This reduces Row’s expected payoff to

one-half. Row could avoid this risk by simply playing the minimax strategy. This aspect

makes the Gamble-Safe game a more challenging test for the hypothesis of mixed strategy

play than the zero-sum Pursue-Evade game.
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3.2 Subject recruitment and experiment protocol

We conducted six experiment sessions in the Finance and Economics Experimental Laboratory

(FEEL) at Xiamen University during December 2011. A total of 110 undergraduate and

masters students participated in the experiment, with each session containing between 12 and

22 subjects. 54 subjects were assigned to the Persue-Evade game treatment, and 56 subjects

were assigned to the Gamble-Safe game treatment. Subjects were evenly divided into Row and

Column player roles within each treatment. FEEL uses the ORSEE online recruitment system

for subject recruitment (Greiner, 2004), and at the time of the experiment approximately 1400

students were in the subject pool. A subset of students from the subject pool were invited to

attend each specific session, and these students were informed that they would receive a 10

Yuan show-up payment and have the opportunity to earn more money during the experiment.

Further, the invitation stated that the session would last no more than two hours.

Upon arrival at the laboratory, each subject was seated at a computer workstation such

that no subject could observe another subject’s screen. Subjects first read instructions de-

tailing how to enter decisions and how earnings were determined.6 Then, 200 repetitions of

the game were played. For the Pursue-Evade game, Column subjects were initially endowed

with a balance of 260 tokens each, and Row subjects none. Each token was worth one-third

of a Yuan. Each subject’s total earnings consisted of the 10 Yuan show-up payment plus

the monetary value of his token balance after the 200th repetition. While a mathematical

possibility, no Column subjects in the Pursue-Evade game went bankrupt.

The experiment was conducted with a Java software application created at the Georgia

State University Experimental Economics Center (ExCEN) that allows humans to play normal

form games against computerized algorithms. At the beginning of each repetition, each subject

saw a graphical representation of the game on the screen. Each Column subject’s game display

was transformed so that he appeared to be a Row player. Thus, each subject selected an action

by clicking on a row, and then confirmed his choice. After the repetition was complete, each

subject saw the outcome highlighted on the game display, as well as a text message stating

both players’ actions and his own earnings for that repetition. Finally, each subject’s current

token balance and a history of past play were displayed at all times. The history consisted of

an ordered list with each row displaying the repetition number, the actions selected by both

players, and the subject’s payoff from the specific repetition.

6The instructions are available at http://www.excen.gsu.edu/swarthout/HMM/
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3.3 Data summary

We begin the summary of the experimental data by providing views of the joint distribution

of the proportion of Left play for each subject-computer pair, while conditioning on whether

the data are from the first 100 or last 100 repetitions. Figures 2 and 3 present these views

for the Pursue-Evade and Gamble-Safe treatments, respectively. In each of these figures, the

x-axis is the proportion of Left play for the Column player and the y-axis is the proportion

of Left play for the Row player. Each arrow in the figures represents the play of a single

human-computer pair, with the arrow tail representing the joint frequency of Left play in the

first 100 repetitions and the arrow head representing the joint frequency of Left play in the

final 100 repetitions. These arrows show the adjustments subjects make from the first half to

the second half of play. We see that many arrows suggest substantial change in the human

player frequency, but the changes do not trend in any one direction or uniformly towards

the Nash equilibrium. Human play also displays greater dispersion and displacement from

the Nash equilibrium than the computer opponents, suggesting nonconformity with the Nash

equilibrium predictions.

Human Row vs. NE Column NE Row vs. Human Column

Computer Column Proportion Left
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Figure 2: Pursue-Evade joint Left frequencies. The Nash equilibrium is represented by the
intersection of the two dashed lines.

Table 1 presents the means and standard deviations of subjects’ frequencies of Left play

by treatment and role. Recall that we have 2700 observations for the each role in the Pursue-

Evade treatment and 2800 observations for each role in the Gamble-Safe treatment. Although

the Row player mean is close to the Nash equilibrium proportion in both game treatments, the
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Figure 3: Gamble-Safe joint Left frequencies. The Nash equilibrium is represented by the
intersection of the two dashed lines.

Nash equilibrium proportion is rejected for all four cases at any reasonable level of significance.

In each of the four cases, subjects’ proportions of Left play display too much variance to have

been generated by a common binomial process. In unreported χ2 tests, we soundly reject this

notion of homogeneity for all cases.

Table 1: Aggregate Summary Statistics

Statistic P-E Row P-E Col G-S Row G-S Col

Average Left frequency 0.63 0.51 0.48 0.30
Standard deviation Left frequency 0.11 0.15 0.15 0.20
Nash equilibrium z-test statistic −6.54 −25.06 −3.18 −30.20

Rejecting the hypothesis of a single mixed strategy for each game and role, we present in

Table 2 summary statistics for individual Pursue-Evade subjects and find evidence of hetero-

geneity and a lack of serial independence in choices. First, we present the number of times

the Left action is played in the first and second 100 repetitions. A two-tailed binomial test

of the Nash equilibrium at the 95 percent level of confidence gives us critical regions of less

than 58 and more than 76. We reject the Nash proportion of Left play for 13 (12) of the Row

subjects during the initial (final) 100 repetitions, and we reject the Nash proportion for 21

(20) of the Column subjects during the initial (final) 100 repetitions.

Next, we evaluate whether the subjects’ sequences of action choices are serially independent
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Table 2: Pursue-Evade individual subject summary data.

Row Player Column Player

Rounds 1-100 Rounds 101-200 Rounds 1-100 Rounds 101-200

Left Runs Left Runs Left Runs Left Runs
Pair Count Stat Count Stat Count Stat Count Stat

1 77n,e −2.40i 71e 0.20 59n −4.44i 45n −3.35i

2 67e 1.32 66e −0.20 50n 6.23i 53n 3.47i

3 77n,e −0.12 85e −0.60 51n 1.01 71e 0.69
4 49n −1.60 65n,e −1.22 22n,e −2.45i 13n,e −2.08i

5 59 1.17 63e −0.35 56n −1.28 44n −0.26
6 39n,e 0.93 37n,e 1.81 53n 1.85 40n 1.47
7 62e 1.04 68e −0.58 41n −0.49 76e −2.35i

8 47n 0.44 48n −0.19 54n −3.58i 52n 0.22
9 51n −4.82i 84n,e 1.18 63n,e −1.64 76e −2.35i

10 65e −4.53i 55n −1.73 39n,e −3.08i 29n,e −3.96i

11 48n 2.63i 55n −1.12 46n −2.16i 31n,e 1.70
12 63e −2.29i 75e 0.94 54n −2.57i 54n −3.78i

13 60 −1.26 59 0.96 61e 0.72 48n −1.39
14 64e −1.11 73e −0.36 54n −2.16i 37n,e −1.64
15 78n,e 0.79 66e −1.09 45n −3.76i 41n −5.90i

16 68e 2.19i 88n,e 1.39 50n −2.01i 54n −1.55
17 70e 0.72 73e −1.64 50n −2.61i 20n,e −3.16i

18 46n −2.16i 40n −2.51i 70e −0.72 52n −1.39
19 51n 2.02i 65e 1.00 41n −0.08 22n,e 0.49
20 80n,e 2.21i 78n,e −0.09 45n −3.15i 25n,e −6.86i

21 51n 0.61 64e −0.45 50n 0.40 62e 1.47
22 68e −0.12 84n,e −0.33 70e −1.68 47n 0.64
23 64e −0.24 60 2.09i 58 −1.39 78n,e −1.86
24 64e 0.42 64e −0.24 58 1.71 66e −1.54
25 42n −0.97 43n −2.67i 87n,e −2.98i 100n,e — z

26 76e 0.42 57n −0.82 62e 1.04 59 1.58
27 45n −6.19i 75e −2.55i 41n −2.57i 27n,e −1.90

n Two-sided binomial test rejection of the NE proportion of 2/3 at the 5% level of significance.
e Two-sided binomial test rejection of equiprobable proportion at the 5% level of significance.
i Runs test rejection of serial independence at the 5% level of significance.
z Missing values due to inapplicability of test on data with zero variation.

via a nonparametric runs test. The z-test statistic has a distribution approximate to the

standard normal and is a function of the sequence length R, and the number of Left and

Right sequences, rL and rR, respectively. Its value is

z =
rL + rR − 2rLrR

R
− 1

2√(
2rLrR(2rLrR−R)

R2(R−1)

) .
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The null hypothesis of the test is that a subject’s choices are independent realizations of a

Bernoulli random variable. We conduct a two-tailed test. Rejections from larger values of

the test statistic indicate too many runs, and are symptomatic of negative serial correlation.

Rejections from smaller values indicate too few runs, and are symptomatic of positive serial

correlation. For the Row players, we reject serial independence for 10 subjects in the first half

of the sample, and only 4 subject in the second half. For the Column players, the number

of rejections is 14 and 10 for the first and second half, respectively. There is a notable bias

with respect to the Column players; 22 out of 24 of the rejections come from z scores that are

too negative and indicate strong positive serial correlation. This is consistent with the results

found by Rosenthal et al. (2003) in the original study of the Pursue-Evade game, but atypical

for other studies which often find negative serial correlation.

Table 3 presents a similar data summary for the individual subjects of the Gamble-Safe

treatment. In this case, the Nash equilibrium mixed strategy is equiprobable, and the critical

regions of the two-sided binomial tests are 39 or less and 60 or more Left action choices. For

the Row players, the Nash hypothesis is rejected for 16 subjects in the first 100 repetitions

and 15 in the second 100 repetitions. Correspondingly for the Column players, the Nash

hypothesis is rejected for 25 subjects in the first half of repetitions and 21 players in the

second half of repetitions. Also, we see that 9 Column player subjects almost exclusively play

the pure minimax strategy (over 90 times) in the last 100 repetitions, while there is only one

such Row player. Further, we find evidence of serial correlation in many individuals’ choice

sequences. For the Row players, we reject serial independence for 12 and 9 subjects in the first

and last 100 repetitions, respectively. For the Column players, serial independence is rejected

for 12 subjects in the first half of repetitions and 5 subjects in the second half of repetitions.

4 Results of the HMM statistical analysis

In this section we present the estimated HMMs for the Pursue-Evade and Gamble-Safe treat-

ments. First we report the means and variances of the posterior distributions of the transition

probability matrices and the initial distributions over states. The estimates reflect adoption of

both pure and mixed strategies and characterize the switching between latent strategies. We

then use these estimates to generate a description of the dynamics of the latent mixed strategy

evolution. Finally, we provide an assessment of the robustness of some of our assumed priors.

We conduct HMM estimation conducted using the MCMCpack package within version 2.12.2

of the R statistical computing environment.7

7For more information about R, see http://www.r-project.org/. For more information about
MCMCpack, see http://cran.r-project.org/web/packages/MCMCpack/index.html. Also our R-code,
complete data files, and experimental instructions are publicly accessible from the Research Data Center
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Table 3: Gamble-Safe individual subject summary data.

Row Player Column Player

Rounds 1-100 Rounds 101-200 Rounds 1-100 Rounds 101-200

Left Runs Left Runs Left Runs Left Runs
Pair Count Stat Count Stat Count Stat Count Stat

1 43 0.61 39m 3.26 24m −2.07i 14m −0.88
2 43 −3.29i 51 1.21 19m −0.91 12m 0.42
3 60m −0.63 56 −1.08 36m −3.29i 44 −5.36i

4 40 −1.05 44 −0.06 3m −1.54 0m — z

5 72m 0.17 76m 0.97 26m 0.66 31m 2.41i

6 50 −1.81 41m −2.57i 70m −4.80i 59 −0.49
7 41 0.13 63m −1.43 15m 1.39 9m −0.24
8 60m −3.77i 56 −2.50i 63m −1.86 65m −0.77
9 16m −2.22i 26m −6.41i 33m −2.78i 19m −3.54i

10 39m −0.12 77m −3.25i 36m −1.33 29m −1.27
11 72m 3.42i 76m −1.24 62m −1.73 52 1.02
12 64m 3.48i 53 4.27i 24m 0.70 24m −0.69
13 33m −3.46i 15m −2.59i 41 −1.33 19m 1.06
14 32m −0.81 44 2.19i 51 −4.42i 49 −0.20
15 56 −1.89 44 −0.47 14m 1.23 8m 0.90
16 44 0.96 41 0.13 11m 0.22 9m 1.02
17 41 1.17 50 1.81 73m −2.15i 59 −0.08
18 35m −4.75i 4m −6.50i 34m −0.87 8m 0.90
19 31m −0.89 28m −1.58 54 2.09i 62m 0.83
20 56 −2.10i 38m −0.67 4m −2.33i 2m 0.24
21 68m −0.35 59 0.96 8m −3.30i 4m 0.44
22 46 −2.77i 37m −1.64 2m 0.24 0m — z

23 20m −2.21i 20m −0.32 20m 0.00 32m −1.28
24 69m 0.05 59 −0.70 12m 0.42 32m 1.04
25 46 −0.74 49 1.01 65m −2.10i 40 −2.51i

26 68m 2.42i 63m 0.30 39m −0.12 31m −1.60
27 80m −4.74i 24m −2.62i 38m −2.37i 44 −1.49
28 63m −0.13 60m 0.21 30m −2.64i 6m −3.03i

m Two-sided binomial test rejection of equiprobable proportion at the 5% level.
i Runs test rejection of serial independence at the 5% level of significance.
z Missing values due to inapplicability of test on data with zero variation.

4.1 Pursue-Evade game

For the Pursue-Evade game, we restrict the latent state space S to contain four elements. We

treat the corresponding vector of state dependent mixed strategies B as fixed and known, and

the four elements are the pure Right strategy (PR), the focal equiprobable mixed strategy

of Humboldt University at http://sfb649.wiwi.hu-berlin.de/fedc/database_new/useDB.php?id=43.
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(EM), the Nash equilibrium strategy (NE) of two-thirds, and the pure Left strategy (PL).

Specifically, we assume a point prior of B = (0, 0.5, 0.67, 1). Using this point prior we estimate

the HMM using the MCMC method.

We run the the Gibbs sampler for 10,000 iterations. Using the last 5000 iterations, we

establish that the empirical density functions have converged by applying the Geweke test

(Geweke, 1991). Then we use these last 5000 iterations to make statistical inferences. Table 4

presents the estimated means and standard deviations of the transition probabilities between

states, the same for the initial probabilities over state posteriors, and the calculated limiting

distributions of the Markov chains for both Row and Column.

Table 4: Estimated transition matrices, initial and limiting distributions of Pursue-Evade
game

Row Player Column Player

PRt+1 EMt+1 NEt+1 PLt+1 PRt+1 EMt+1 NEt+1 PLt+1

PRt
0.75 0.145 0.051 0.054 0.752 0.204 0.025 0.018

(0.038) (0.037) (0.024) (0.024) (0.029) (0.03) (0.015) (0.01)

EMt
0.025 0.95 0.013 0.013 0.095 0.879 0.019 0.007

(0.009) (0.012) (0.006) (0.006) (0.028) (0.033) (0.012) (0.005)

NEt
0.005 0.007 0.939 0.05 0.012 0.021 0.96 0.007

(0.002) (0.003) (0.014) (0.013) (0.008) (0.014) (0.022) (0.005)

PLt
0.022 0.023 0.218 0.737 0.039 0.034 0.031 0.896

(0.011) (0.011) (0.035) (0.034) (0.017) (0.016) (0.015) (0.026)

π
0.082 0.614 0.193 0.111 0.043 0.161 0.735 0.061

(0.063) (0.13) (0.12) (0.08) (0.040) (0.127) (0.141) (0.057)
Limiting

0.050 0.274 0.548 0.128 0.178 0.385 0.356 0.080
Distribution

Note: standard deviations are in parentheses.

Our estimation of the initial distribution over states is presented in the the fifth numeric

row of Table 4. For both roles we find initial play has a high rate of mixed strategy play.

Row players predominately follow the EM (61%), while the Column players predominantly

follow the NE (74%). Interestingly, this is quite different from the limiting distribution of

the estimated transition matrices, which we can interpret as the long run steady state of the

HMM. For the Row player, the mode of the limiting distribution is the NE (55%), while for

the Column player both EM and NE are roughly equally likely, with probabilities of 39%

and 36%, respectively. Clearly there is movement of strategy adoption over time.

Some aspects of these dynamics can be seen by inspection of the estimated transition

probabilities, given in the first four numeric rows of Table 4. Large values on the main diag-

onals and corresponding small values on the off-diagonals indicate strong inertia in strategy
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adoption. There are some interesting patterns when there is a transition between strategies.

Consider the Row players first. When switching away from PR a player is almost three times

as likely to switch to EM than either of the other two strategies. Likewise, when switching

away from EM a player is twice as likely to switch to PR than either of the other strate-

gies. There’s a similar probabilistic cycle between NE and PL with much larger switching

probabilities between them. The dynamic effects of these cycling tendencies can be seen in

Figure 4, which presents time series of the estimated proportion of subjects using each of the

four strategies.8 The PL and the NE series tend to mirror one another, as do the PR and

EM strategies – albeit with more noise.

The results for the Column players in the right hand side of Figure 4 are quite different.

The use of NE steadily declines while the adoption of EM rises in the first 50 repetitions. Fur-

thermore, we see a slow emergence of PR over the course of the experiment. The probabilistic

cycle between the EM and PR strategies is evident by their sharp mirroring pattern.

Row Column
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Figure 4: Strategy dynamics in Pursue-Evade game

Next we assess the appropriateness of our degenerate prior on B by conducting the MCMC

estimation using a uniform Beta prior, β(Bj; 1, 1), for each of the state dependent mixed

strategies. We then sample from the posterior distributions to construct an empirical density

function for each of the state dependent mixed strategies. In Figure 5 we present kernel

smoothed plots of these approximations to posterior densities. Inspection reveals for the Row

player the posteriors are sharply peaked and closely centered on our assumed four strategies,

except for the NE and the posterior with a mode close to 3/4 instead of 2/3. For the Column

player we see three out of four posteriors coincide with our assumed set. The one difference

is the PR and the posterior with a mode of about 0.15.

8For strategy j the estimated proportion of subjects using that strategy in a given round t is ĵt =
1

27·5000
∑10000

l=5001

∑27
i=1 I〈s

(l)
i,t = j〉.
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Figure 5: Posterior distribution of B in Pursue-Evade game

4.2 The Gamble-Safe game

We now turn our attention to the Gamble-Safe game. Here, we restrict the latent state space

S to contain three elements. In our estimation we treat B as fixed and consisting of the

elements PR (the minimax strategy), EM (which is also the NE strategy), and PL. We use

the same parameters for the Gibbs Sampler as we used in analyzing the PE data.

For both the Row and Column player data sets we ran the Gibbs Sampler for 10,000

iterations, using the last 5000 iterations for inference after testing for convergence of the

empirical densities with the Geweke test. The posterior means and standard deviations are

reported in Table 5. Comparing the estimated initial distribution π to the limiting distribution

suggests that an initial high probability of the mixed Nash strategy play reduces over time

for both player roles. The change for the Column player is more dramatic as EM goes from

60% to 40%, and that reduction corresponds to a rise in the minimax strategy PR from 34%

to 53%.

In contrast to the PE game, there is a segregation between mixed strategy and pure

strategy followers. Evidence of this is found in the estimated Markov transition matrices as

we can see they almost fail to be irreducibile (roughly meaning we can always reach one state

from another, even if it takes multiple transitions). The probability of continuing in the EM

state is nearly one, indicating that once a subject follows the mixed strategy he is likely to do

so for a large number of repetitions. Pure strategy adopters exhibit quite different patterns

depending upon whether they are in the Row or Column role, in particular with respect to

switching tendencies in the PL state. From the PL state, Row players transition to PR with

26% probability, while this transition probability is 79% for Column players. Perhaps these

transition probabilities associated with pure strategies are the reason we see many rejections
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of serial independence of play in Table 3.

Table 5: Estimated transition matrices, initial and limiting distributions of Gamble-Safe game

Row Player Column Player

PRt+1 EMt+1 PLt+1 PRt+1 EMt+1 PLt+1

PRt
0.815 0.010 0.175 0.891 0.006 0.103

(0.027) (0.020) (0.016) (0.010) (0.010) (0.007)

EMt
0.003 0.988 0.009 0.007 0.985 0.008

(0.011) (0.021) (0.011) (0.013) (0.019) (0.008)

PLt
0.260 0.043 0.697 0.791 0.042 0.167

(0.031) (0.031) (0.037) (0.031) (0.031) (0.044)

π
0.169 0.779 0.052 0.337 0.596 0.067

(0.084) (0.094) (0.046) (0.098) (0.103) (0.052)
Limiting

0.203 0.660 0.137 0.527 0.404 0.059
Distribution

Note: standard deviations are in parentheses.

Figure 6 presents the time series of the estimated proportion of subjects using each of the

three latent strategies. Here we see the impact of the Markov transition probabilities that

lead to inertia of the mixed strategy state and also the strong cycling tendencies of players

between the Left and Right pure strategies. In the Row player figure, we see the EM strategy

proportion has a smooth path that drops quickly from its initial level to its limiting value

within the first 50 repetitions, after which it remains relatively constant. We also see the

ragged mirroring pattern, indicating switching between the PR and PL strategies. We see

similar features in the Column figure except that the EM shows a more gradual decline,

and PR shows a corresponding gradual increase. This leads to the separation of the PR

and PL strategies and allows us to see the clear short run switching between these strategies

characterized by the jagged mirror relationship between their respective series.

We test the robustness of our point prior B = [0, 0.5, 1], by estimating a HMM for which

these state conditional strategies each have a uniform Beta prior. The kernel smoothed em-

pirical density functions of the posteriors are presented in Figure 7 for both Row and Column

players. For the Row player, the lower and middle posteriors are closer together than our as-

sumed sets. For the Column player, the posteriors of the lower two state dependent strategies

are shifted to the right of our assumed ones. We conjecture these shifts could come from erro-

neously assumed homogeneity of the strictly mixed strategy used by subjects. An alternative

would be to increase the number of elements in S or to model the individuals’ strictly mixed

strategies coming from a hierarchical process.
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Figure 6: Strategy dynamics in Gamble-Safe game
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Figure 7: Posterior distribution of B in Gamble-Safe game

4.3 Forecasting realized actions

Until now our primary concern has been the estimation of when subjects adopt pure and

mixed strategies, and our HMM’s function has been to provide a statistical framework to test

theories about latent strategy choice. Now we explore the potential of the HMM to predict

actions taken; a valuable capability in widespread applications from strategic maneuvers in

military engagements, to knowing when a poker player is bluffing.

We first consider how well the estimated HMMs coincide with the observed proportions of

Left play in our experimental data set. For this forecasting exercise of the experimental panel

data set we calculate, for each game and role, the predicted proportion of Left play by the M
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subjects in period t, L̂eftt, by

L̂eftt =
1

M · L

L∑
l=1

M∑
d=1

N∑
j=1

I〈s(l)d,t = j〉Bj.

Here L is the length of sequence of the Gibbs sampler we use for statistical inference. For

our data sets this sequence is iterations 5001 to 10000. Figure 8 presents plots of the time

series of the predicted and actual proportions of Left play. In all four settings the predictions

track the trends in the actual data. Admittedly this is an in-sample forecasting exercise, but

nonetheless still impressive, as minimizing forecast error is not the objective of our statistical

inference exercise.
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Figure 8: Actual and forecasted proportions of Left play

Out-of-sample forecasting is of more practical use and we can use the HMM for this purpose

as well. We estimate, with 10,000 iterations of the Gibbs sampler, the HMM for both point
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and uniform Beta priors on B for the first 100 repetitions and use these estimates to make

one-step-ahead forecasts of the last 100 repetitions. Let Ψ = (P, π,B, si,t)
10000
j=5001 denote the

realized draws of the Gibbs sampler for the last 5000 iterations of the MCMC algorithm that

are used for statistical inference for the uniform Beta prior HMM. The predictive density of

si,t is obtained by simulation from the joint posterior sample Ψ as follows:

ŝ
(l)
i,t ∼ p(si,t|P (l), s̃

(l)
i,t−1), j = 5001, . . . , 10000. (1)

We can use these sampled states for subject i to generate the following 5000 draws from

the following marginal posterior sample

ŷ
(l)
i,t ∼ p(yi,t|ŝ(l)i,t , B(l)), j = 5001, . . . , 10000. (2)

The average of the 5000 draws made according to Equation 2, denoted ŷi,t, is the prediction of

yi,t. Next we use yi,t to generate the posterior density s̃i,t by Bayes’ Rule. This is substituted

into Equation 1 to start the process of generating the prediction of yi,t+1. To assess the

accuracy of our forecast of the holdout sample, we calculate and report the Log-likehood

statistic

LL(y|Ψ) =
200∑
t=101

M∑
i=1

ln[I〈yi,t = L〉p(ŷi,t) + (1− I〈yi,t = L〉)(1− p(ŷi,t))].

We also report the Akaike information criterion statistic, which is AIC(y, ŷ) = −2 · (LL−
number of model parameters).

In order to evaluate the ability of alternative models to predict the future actions in

games, we compare the performances of one-step-ahead forecasting of the HMMs of point and

uniform Beta priors (UHMM) on B against the alternatives of the Nash equilibrium strategy

and individual-specific mixed strategies (IM) which are estimated by each subject’s proportion

of Left play in the first 100 repetitions.

We summarize the out-of-sample forecasting performance for each of the four models in

Table 6. First, for the Row players in both game treatments the two HMMs outperform the

two other models when we do and do not penalize for the number of parameters. For the

hold out sample of the Column players and not penalizing for the number of parameters,

the IM model performs comparable to the two HMM models in the Pursue-Evade game,

and the IM model performs comparable to the UHMM model (both of which outperform

the HMM) in the Gamble-Safe game. However, when we penalize for increasing numbers of

parameters we see the UHMM clearly outperforms the IM model. This suggests that our

homogeneous dynamic model performs well on forecasting a population of game players, but
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also suggests that allowing for more individual heterogeneity could lead to even better out of

sample forecasting performance.

Table 6: Out of sample forecasting performance

Row Player Column Player

Treatment Statistic NE IM HMM UHMM NE IM HMM UHMM

P-E Game
Loglik −1748 −1736 −1723 −1710 −2058 −1775 −1776 −1771
AIC 3497 3526 3475 3458 4117 3605 3583 3580

G-S Game
Loglik −1941 −1916 −1887 −1865 −1941 −1429 −1517 −1436
AIC 3884 3887 3789 3751 3885 2915 3050 2894

5 Discussion

We have introduced a HMM for the detection of pure and mixed strategy play in repeated

games. We then applied this model to data from a new experiment in which human subjects

repeatedly play against computer opponents that were programmed to play their part of

the mixed strategy Nash equilibrium. We find that subjects do play both pure and mixed

strategies, and switch between these over the course of play. Further, we find there is non-

stationarity in the distribution of latent strategies over time. We observe a large movement

from the initial distribution over strategies to those of the limiting distribution of the HMM.

However, while the limiting distribution assigns probability to the subjects’ NE strategy, the

assigned probability is less than 1. Thus, for our data, we show that a mixed strategy Nash

equilibrium is only partially self-enforcing. This is a new result in behavioral game theory, as

previous studies have only considered the composite hypothesis that mixed strategy equilibria

are both self-enforcing and also the limit point of the subjects’ learning process.

Our primary interest has been modeling a population of players interacting in a game with

known payoffs, however there are several natural extensions to our approach. First, we could

focus on the modeling and forecasting of a single subject from the population. To do this,

we likely need to allow more individual heterogeneity in the HMM. A first step would be to

allow each player to have a set of individual-specific strict mixed strategies to follow. This

could done by allowing individual state dependent mixed strategies Bis, or by modeling these

Bis as coming from a hierarchal structure characterized by a small set of hyperparameters. A

second extension is to model strategic situations in the field, in which the game payoffs are not

known because of unobserved individual heterogeneity. For example, soccer players making

penalty kicks may vary in their strength of kicking left or right, and similarly goalies also may

have unobservable differences in defending kicks to the left and right. In such cases, the HMM
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can help identify such payoffs and also describe the players’ learning process regarding these

latent payoff types.

The HMM as presented in this paper is currently more of a statistical description than a

behavioral model derived from optimizing behavior. To become such a behavioral model, the

transition probabilities must become an endogenous function of a player’s expected payoffs for

the differing latent strategy choices. One possible approach is to allow a player to form beliefs

about an opponent’s action and then best respond. The issue here is that in an expected utility

world a mixed strategy is never a strict best response. However, if one takes the approach

that uncertainty about an opponent’s action is ambiguous – i.e., a player doesn’t have the

ability to form a unique prior – then an ambiguity-averse player may strictly prefer a mixed

strategy over pure strategies.

References

Ansari, Asim, Ricardo Montoya, and Oded Netzer (2012), “Dynamic learning in behavioral

games: A hidden markov mixture of experts approach.” Quantitative Marketing and Eco-

nomics, 10, 475–503.

Aumann, Robert J. (1985), “On the non-transferable utility value: A comment on the Roth-

Shafer examples.” Econometrica, 53, 667–678.

Bareli, M, O Azar, I Ritov, Y Keidarlevin, and G Schein (2007), “Action bias among elite

soccer goalkeepers: The case of penalty kicks.” Journal of Economic Psychology, 28, 606–

621.

Binmore, Ken, Joe Swierzbinski, and Chris Proulx (2001), “Does minimax work? an experi-

mental study.” Economic Journal, 111, 445–64.

Bloomfield, Robert (1994), “Learning a mixed strategy equilibrium in the laboratory.” Journal

of Economic Behavior & Organization, 25, 411–436.

Camerer, Colin F. and Teck-Hau Ho (1999), “Experience-weighted attraction in games.”

Econometrica, 67, 827–874.

Chiappori, Pierre, Steven Levitt, and T. Groseclose (2002), “Testing mixed-strategy equilibria

when players are heterogeneous: The case of penalty kicks in soccer.” American Economic

Review, 92, 1138–1151.

25



Erev, Ido and Alvin E. Roth (1998), “Predicting how people play games: Reinforcement

learning in experimental games with unique, mixed strategy equilibria.” The American

Economic Review, 88, 848–881.

Geman, Stuart and Donald Geman (1987), “Stochastic relaxation, Gibbs distributions, and

the Bayesian restoration of images.” In Readings in computer vision: issues, problems,

principles, and paradigms (Martin A. Fischler and Oscar Firschein, eds.), 564–584, Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA.

Geweke, John (1991), “Evaluating the accuracy of sampling-based approaches to the calcula-

tion of posterior moments.” Staff Report 148, Federal Reserve Bank of Minneapolis.

Greiner, Ben (2004), “An online recruitment system for economic experiments.” In Forschung

und wissenschaftliches Rechnen (Kurt Kremer and Volker Macho, eds.), volume 63 of Ges.

fur Wiss. Datenverarbeitung, 79–93, GWDG Bericht.

Nash, John (1951), “Non-Cooperative Games.” The Annals of Mathematics, 54, 286–295.

Noussair, Charles and Marc Willinger (2011), “Mixed strategies in an unprofitable game: an

experiment.” Working papers, LAMETA, Universtiy of Montpellier.

Nyarko, Yaw and Andrew Schotter (2002), “An experimental study of belief learning using

elicited beliefs.” Econometrica, 70, 971–1005.

Ochs, Jack (1995), “Games with unique, mixed strategy equilibria: An experimental study.”

Games and Economic Behavior, 10, 202–217.

O’Neill, Barry (1987), “Nonmetric test of the minimax theory of two-person zero-sum games.”

Proceedings of the National Academy of Sciences, U.S.A., 84, 2106–2109.

Palacios-Huerta, Ignacio (2003), “Professionals play minimax.” Review of Economic Studies,

70, 395–415.

Rabiner, Lawrence R. (1989), “A tutorial on hidden markov models and selected applications

in speech recognition.” Proceedings of the IEEE, 77, 257–286.

Rosenthal, Robert W., Jason Shachat, and Mark Walker (2003), “Hide and seek in arizona.”

International Journal of Game Theory, 32, 273–293.

Selten, Reinhard and Thorsten Chmura (2008), “Stationary concepts for experimental 2x2-

games.” American Economic Review, 98, 938–966.

26



Shachat, Jason (2002), “Mixed strategy play and the minimax hypothesis.” Journal of Eco-

nomic Theory, 104, 189–226.

Shachat, Jason and J. Todd Swarthout (2004), “Do we detect and exploit mixed strategy play

by opponents?” Mathematical Methods of Operations Research, 59, 359–373.

Shachat, Jason and J. Todd Swarthout (2012), “Learning about learning in games through

experimental control of strategic interdependence.” Journal of Economic Dynamics and

Control, 36, 383 – 402.

Shachat, Jason and Lijia Wei (2012), “Procuring commodities: First-price sealed-bid or english

auctions?” Marketing Science, 31, 317–333.

Von Neumann, John (1928), “Zur theorie der gesellschaftsspiele.” Mathematische Annalen,

100, 295–320.

Von Neumann, John and Oskar Morgenstern (1944), Theory of Games and Economic Behav-

ior. Princeton University Press.

Walker, Mark and John Wooders (2001), “Minimax play at Wimbledon.” American Economic

Review, 91, 1521–1538.

27


