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Abstract 

As the exploration of hydrocarbons moves into more complex and deeper basinal settings the 

need to understand the effect of high temperatures and high pressures on reservoir quality and 

rock properties becomes even more important. The fluvial channel sandstone reservoirs of the 

Skagerrak Formation in the Central North Sea exhibit anomalously high porosities and 

permeabilities considering their depth of burial (> 3500 m below sea floor). Despite the 

complex depositional setting, diagenetic history, high overpressure and temperatures 

encountered in the Skagerrak Formation, hydrocarbons are currently being produced. The 

Skagerrak Formation reservoirs used in this study have encountered overpressures of >40 

MPa and temperatures up to ~185°C at present day maximum burial. To identify the role 

played by the high pressure and high temperature encountered in the reservoir sandstones a 

multidisciplinary approach involving petrographic, fluid inclusion, and burial history 

modelling studies has been adopted.  Our interpretation of the results is that the generation of 

shallow overpressure in these fields limited mechanical compaction and also played an 

important role in minimizing pressure solution in the chemical compaction regime as 

evidenced by reduced quartz cementation. Fluid inclusions found in the quartz overgrowths 

indicate late-stage development with temperatures of formation in the range 130-170°C 

coincident with late-stage deeper burial. Hydrocarbon emplacement occurred after quartz 

cementation and has had little to no effect on porosity preservation. The formation of well-

developed authigenic chlorite (>70% surface coating) and, to a lesser extent illite clay coats 

with burial had a positive effect on porosity preservation even though permeability was 

marginally reduced in the illite-rich sandstones. A schematic porosity and quartz cement 

evolution model has been developed which allows for pre-drill prediction of reservoir quality 

in the Heron Cluster and provide valuable insights for other complex high-pressure high-

temperature reservoirs. 
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Introduction 

The inclusion of reservoir quality in pre-drill assessments is of paramount importance as 

hydrocarbon companies explore deeper targets. Exploration in deeply buried, high-pressure-

high-temperature (HPHT; >65MPa and >150°C) reservoirs depends on identifying reservoir 

sandstones with sufficient porosity and permeability, especially where the reservoir has been 

exposed to elevated temperatures (>100°C) by prolonged burial.  

In normally pressured reservoirs, sediments compact mechanically during burial as the 

vertical effective stress increases, so that the porosity is reduced. Mechanical compaction in 

sandstones has been reported to be dominant to burial depths of ~2000 m below sea floor 

(>70-80°C) (Bjørlykke, 1999, 2014).  Porosity loss in sandstones can be generally predicted 

to some degree of accuracy giving rise to regional porosity-depth or porosity-temperature 

curves for many hydrocarbon basins (e.g. Ehrenberg et al., 2008).  However, occurrences of 

sandstone reservoirs with higher than expected porosity are commonly attributed to 

conditions that limit the degree of burial compaction and/or cementation, or to pre-existing 

cements and grain coatings (e.g. Bloch et al., 2002; Taylor et al., 2010; Nguyen et al., 2013; 

Taylor et al., 2015).  

Models for porosity preservation in deeply buried HPHT sandstone reservoirs (>4000 m 

below sea floor) tend to be focused on how clay (commonly chlorite) and microquartz detrital 

grain coatings can inhibit macro-quartz cementation. There are many studies where deep 

reservoir porosity is linked to early diagenetic clay or microquartz grain coats (e.g. Pittman et 

al., 1992; Ehrenberg, 1993; Aase et al., 1996; Bloch et al., 2002; Ajdukiewicz and Lander, 

2010; Ajdukiewicz and Larese, 2012; French et al., 2012; Worden et al., 2012). These studies 

have shown that quartz-rich sandstones with well-developed and continuous diagenetic clay 

or microquartz grain coats contain a much lower volume of macro-quartz cement than 

without such coatings (Ajdukiewicz and Lander, 2010). 
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Albeit controversial, early hydrocarbon emplacement into a reservoir may also play a 

crucial role in the preservation of porosity (Worden and Morad, 2000; Worden et al., 1998). 

Field-based (Marchand et al., 2002) and experimental (Sathar et al., 2012) studies have 

shown that quartz cementation is inhibited at high oil saturations. However, other studies (e.g 

Aase and Walderhaug, 2005; Molenaar et al., 2008; Saigal et al., 1992) have suggested that 

there is no correlation between hydrocarbon emplacement and porosity preservation. 

Fluid overpressure, defined as the excess pore pressure above the hydrostatic pressure for 

a given depth, reduces the effective stress acting on intergranular contacts and inhibits 

mechanical and chemical compaction (Osborne and Swarbrick, 1999). The shallow onset of 

pore fluid overpressure has been noted to enhance porosity preservation, in the Skagerrak 

Formation of the Central North Sea (Nguyen et al., 2013; Grant et al., 2014; Stricker and 

Jones 2016). 

In this study we investigate the effect of HPHT reservoir conditions on sandstone 

porosity and permeability evolution in three deeply buried, siliciclastic reservoirs (Egret, 

Heron and Skua) from the Skagerrak Formation in the Heron Cluster (Egret, Heron and Skua, 

UK Quadrant 22), Central Graben, North Sea. Pore pressures exceed 80 MPa in the reservoir 

sandstones at present-day depths of 4000-5000 m below sea floor where temperatures are 

around 170-180°C (Table 1). A multidisciplinary approach comprising petrographic, SEM, 

fluid inclusion, and burial history modelling studies has been adopted in the present study to 

understand the evolution of reservoir quality in HPHT environments, with an explicit focus: 

• How does the vertical effective stress history influence the porosity evolution of 

reservoir sandstones? 

• How do authigenic grain coatings control quartz cementation and reservoir quality in 

the HPHT settings? 
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Geological setting 

The Central Graben of the North Sea is a prolific hydrocarbon province containing more than 

20 billion barrels of discovered hydrocarbons. The Central Graben is 70-130 km wide with an 

approximate length of 550 km. It is the southern arm of a trilete rift system (i.e., an incipient 

ridge-ridge triple junction) in the North Sea with the Viking Graben as the northern arm and 

the Moray Firth Basin as the western arm. The Central Graben is divided into the West and 

East sections by the Forties-Montrose and Josephine Ridge horst blocks (Fig. 1) and is 

flanked by the Norwegian basement in the East and the UK continental shelf in the West. The 

rift system developed in at least two major extension phases, one Permian-Triassic (290-210 

Ma) and a Late Jurassic one (155-140 Ma) (Gowers and Sæbøe, 1985; Glennie, 1998). The 

geological history of the Central Graben is commonly divided into pre-rift, syn-rift and post-

rift phases. The syn-rift sediments are the mainly siliciclastic Triassic and Jurassic sediments 

with approximately 2000m thickness. The post-rift sediments from the Cretaceous to the 

Holocene are as much as 4500m in thickness and dominated by shale, sandstones, silty 

sandstones and a thick chalk section (Glennie, 1998).  

The focus of this study is on the HPHT sections at the southern end of the Forties-

Montrose High in the UK quadrant 22 (Fig. 1). Cores of Skagerrak Formation reservoirs from 

three fields Skua, Egret, and Heron fields were utilized in this study (Fig. 1)  The area is a 

part of a wider HPHT province, including the Triassic strata of the Central Graben and the 

southern Viking Graben (Goldsmith et al., 2003).   

 
Triassic Skagerrak Formation Stratigraphy 
 
The Triassic strata of the Central North Sea area are dominated by thick alluvial successions 

with no connection to a marine realm (Goldsmith et al., 2003). The Middle to Late Triassic 

Skagerrak Formation comprises deposits of 500-1000 m of predominantly continental braided 

and meandering fluvial systems and terminal fluvial fans with lacustrine facies in the Central 
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Graben, North Sea (McKie and Audretsch, 2005; De Jong et al., 2006; Kape et al., 2010). 

The stratigraphic nomenclature of the Triassic for the Central Graben was defined by 

Goldsmith et al. (1995, 2003), based on detailed biostratigraphic and lithostratigraphic 

correlation of wells from the Josephine ridge and was extended and correlated towards the 

ETAP (Eastern Trough Area Project) area by Mckie and Audretsch (2005). The Central 

Graben Triassic succession is subdivided into the Early Triassic Smith Bank Formation 

(shales, evaporites and thin sands) and the Middle to Late Skagerrak Formation (thickly 

interbedded sands and shales) (Fig. 2). The Skagerrak Formation is subdivided into three 

sand-dominated successions (Judy, Joanne and Josephine) and three mud-dominated 

successions (Julius, Jonathan and Joshua) (Fig. 2). The sand-dominated units include 

sheetflood deposits and multi-storey stacked channel sandbodies (Goldsmith et al., 1995; 

McKie and Audretsch, 2005), whereas the mud-dominated units include a variation of non-

marine, basin wide floodplain and playa lake deposits.  The thick and laterally extensive 

mud-dominated units provide the main correlative units for the Skagerrak in the Central 

Graben (McKie and Audretsch, 2005). The resultant Triassic stratigraphy in the Central 

Graben is incompletely preserved due to deep erosion during the Middle and Late Jurassic 

(Erratt et al., 1999).  

The Triassic Smith Bank and Skagerrak sediments accumulated directly on top of the 

thickly developed Late Permian Zechstein salt in a series of salt and fault controlled mini-

basins or pods. The Late Permian Zechstein salt controlled strongly the deposition by forming 

salt withdrawal mini basins due to a combination of localised loading and structural extension 

(Smith et al., 1993; Bishop, 1996; Matthews et al., 2007) within an overall rift controlled 

basin. The Smith Bank sediments represent the bulk and basal part of the pod infill, whereas 

the overlying Skagerrak is found as intra-pod sediments in the upper parts of the pods and as 

inter-pod sediments between the pods. The pod development was active throughout the 
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Triassic and mainly was responsible for the preservation of Middle to Late Skagerrak 

Formation in the study area. The thick Late Permian evaporite sediments (>2km) prevented 

grounding of pods on the underlying Rotliegend basement in the Central Graben. The salt 

tectonics created variable thicknesses between intra- and inter-pod Skagerrak sediments and 

allowed thick accumulations within the pods. Furthermore the salt pods created facies 

variability between intra- and inter-pods that influenced reservoir thickness and diagenetic 

cementation (e.g. Nguyen et al., 2013).  

The Skagerrak stratigraphy in the study area consists of the Judy Sandstone Member, and 

is bounded by regional shale markers of the Marnock and Heron Shales, representing an 

equivalent to the Julius mudstone member and the upper Smith Bank Formation (Fig. 2; 

McKie and Audretsch, 2005). The Judy Member is also further subdivided by McKie & 

Audretsch (2005) into a lower terminal splay dominated interval and an upper channelised 

interval, separated by a shale prone section. The lower terminal splay facies is characterized 

by fine-grained, planar cross-bedded and ripple-laminated sandstones. In comparison, the 

upper interval is dominated by channel-fill deposits, which are organized into fining upward 

packages with coarse lag deposits (usually with ripped-up calcrete nodules) commonly 

occurring at the base. Channel-fill deposits are characterized by well sorted cross-bedded 

sandstones and can be separated in channel and sheet-dominated sandstones (McKie and 

Audretsch, 2005; McKie, 2011). 

Methodology 

Sampling 
 
Core samples and thin sections examined in this study are from the Skagerrak Formation 

reservoirs from three fields, Egret (well 22/24d-10), Heron (well 22/29-5RE) and Skua (well 

22/24b-7). A total of 274 core samples have been taken, from the Egret field (106) (22/24d-

10) at depths between 4350 to 4570 m TVDSS (true vertical depth minus elevation above 
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mean sea level), from the Heron field (136) (22/29-5) at depths between 4300 to 4500 m 

TVDSS, and from the Skua field (32) (22/24b-7) from 3600 to 3660 m TVDSS. The depth 

intervals have been chosen to cover the main reservoir unit, the Judy Sandstone Member and 

the samples have been selected on a best expected reservoir quality strategy from the 

available core material. The focus on best reservoir quality has restricted the facies used in 

this study to confined, channelised and unconfined, sheetflood and crevasse splay 

components of the Skagerrak fluvial system (N. Meadows, 2015, personal communication).  

The Skagerrak sandstone reservoirs are currently at maximum burial depth and experience 

maximum temperatures and formation pressures (Table 1). 

 
Petrography 
 
Core sample thin sections were used to measure optical porosity, grain size and fraction of 

clay-coated grains for this study. Optical porosity was measured by using the digital image 

analysis technique, jPOR (Grove and Jerram, 2011), on blue epoxy-impregnated thin 

sections. Grain size distribution was analysed by using the Leica QWin (V. 3.5.0) software on 

thin section micrographs and the fraction of chlorite-coated grains were measured by point 

counting with 300 counts per thin section. Furthermore, additional petrographic analysis (i.e. 

intergranular volume (IGV) (Paxton et al., 2002), total cement volume (C)) were undertaken 

and measured by point counting with 300 counts per thin section using a standard 

petrographic microscope.  

Thin sections from all three fields were highly polished to 30µm and coated with carbon 

prior to analysis by a Hitachi SU-70 field emission gun scanning electron microscope (SEM) 

and equipped with an energy-dispersive detector (EDS). Scanning electron microscope 

analyses of thin section and bulk rock samples were conducted at 5 to 20kV acceleration 

voltage with beam currents of 1 and 0.6nA, respectively.  Point analyses had an average 

duration of 2 minutes, whereas line analyses were dependent on length. SEM-EDS was used 
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for rapid identification of chemical species (i.e. chlorite Fe/Mg ratio) and orientation on the 

sample. Cathodoluminescence analysis has been undertaken on selected thin sections with 

visible macro-quartz overgrowths using a Gata MonoCL system with a panchromatic 

imaging mode operated at 8 kV. 

 

Fluid inclusion analysis 

Microthermometry was conducted on double polished detached wafers to determine the 

conditions of cementation and evidence for formation water salinity. Fragments were cut 

from doubly polished rock wafers. The wafers were firstly checked under incident UV on a 

petrographic microscope to determine which contain petroleum inclusions and under 

transmitted light to determine the distribution of both aqueous and non-aqueous fluid 

inclusions for subsequent analyses. A Linkam THM600/TS90 heating – cooling stage 

connected to a Nikon petrographic microscope was used to obtain temperature data. 

Instrumental precision is +/- 0.1°C, while accuracy, dependent on the manufacturer’s stated 

accuracy for the calibration standards used (synthetic inclusions and pure organic 

compounds) is better than +/- 0.1°C, over the range of temperatures reported here. Routinely 

available measurements are homogenization temperatures (Th) and final melting temperatures 

(Tm). Homogenization is the conversion of multiphase inclusion contents to a single phase 

(usually at temperatures above room temperature). Interpreting homogenization temperatures 

in carbonates, sulphates and halides can be complicated because aqueous inclusions can 

(though not necessarily do) reset to higher temperature if they are a) overheated beyond a 

threshold which is dependent on the mineral strength and inclusion geometry (Goldstein and 

Reynolds, 1994), or b) frozen. This can occur in the laboratory as well as through geological 

processes, so care is taken in the order in which analyses are made for each rock chip. If 

resetting has occurred, larger inclusions may give higher temperatures, homogenization 

temperature distributions may show a high temperature tail and data from paragenetically 
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distinct settings may overlap. Final melting occurs at the disappearance of the last trace of 

solid in the inclusion on heating (usually after cooling an inclusion to well below room 

temperature). If ice is the final phase to melt (as in the present study) salinities are calculated 

using the equation given by Oakes et al., 1990.  

 
One dimensional basin modelling 
 
One-dimensional basin modelling provides an insight into the burial history of a reservoir and 

especially the temperature and pore fluid pressure evolution of the reservoir. Pore pressure 

built up by disequilibrium compaction and pore fluid volume expansion can be modelled with 

one-dimensional basin models such as the burial history simulation software PetroMod. 

Schlumberger’s burial history simulation software PetroMod (V. 2012.2) was used in this 

study to model the temperature and pore pressure evolution of the Egret, Heron, and Skua 

fields. One-dimensional models are generally well suited to model pore pressure mechanisms 

such as disequilibrium compaction and pore fluid expansion but are limited in terms of 

integrating mechanisms such as lateral fluid flow or hydrocarbon charging. PetroMod is 

based on a forward modelling approach to calculate the geological evolution of a basin and 

burial history. Present-day well stratigraphy, well log lithology and lithological description 

were used to set the one-dimensional burial models (Fig. 2 & Table 2). Palaeo-basement heat 

flow was assumed according to Allen and Allen (1990) with 63 to 110 mW/m2 (average of 80 

mW/m2) during syn-rift phases and 37 to 66 mW/m2 (average 50mW/m2) during post-rift 

phases. The burial history models are calibrated against present-day RFT temperature 

measurements corrected after Andrews-Speed et al. (1984), measured Skagerrak Formation 

porosities (Fig. 3) and carefully adjusted towards present-day formation pressure 

measurments by considering late stage, high temperature overpressure mechanisms (Osborne 

and Swarbrick, 1997; Isaksen, 2004). Vitrinite reflectance data, maximum temperatures 

obtained from apatite fission-track analyses, palaeotemperatures and palaeopore pressures 
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obtained from fluid inclusions in mineral cements were used to help calibrate the model 

(Swarbrick et al., 2000; di Primio and Neumann, 2008). We also conducted new fluid 

inclusion analysis in quartz cements to further constrain palaeotemperatures. The lithological 

unit types used in the models are PetroMod default lithology types or mixed default lithology 

types, chosen on the basis of well log descriptions and core analysis reports. Exceptions are 

the Hod lithology type and the lithology type of the Triassic Skagerrak sandstone members. 

The Hod chalk unit is modified to represent the North Sea non-reservoir chalk and match the 

compaction trend and permeability trend given by Mallon and Swarbrick (2002, 2008) (Table 

3). The Triassic Skagerrak sandstone of the Judy Sandstone Members is simulated by a mix 

of PetroMod (V. 2012.2) default lithologies (80% sand, 10% silt, 10% shale) in combination 

with a regional compaction trend for shaly sandstone given by Sclater and Christie (1980). 

Petrography, burial modelling and diagenesis 

The present-day reservoir quality of the deeply buried Skagerrak Formation in the Egret, 

Heron, and Skua fields is a cumulative product of depositional attributes (e.g. facies 

architecture, grain composition, sorting, and size), mechanical compaction and diagenesis 

during shallow and deep phases of burial.  

 

Burial history modelling results 

The one-dimensional burial history models are based on well data and are calibrated with 

measured RFT pore pressure data, measured and corrected RFT temperatures and aqueous 

fluid inclusion homogenization temperatures of the Judy Sandstone Member (Table 4). The 

burial history models show the Skagerrak Formation reservoir sandstones are at maximum 

burial depth and temperatures at present day (Table 1). The Skagerrak Formation experienced 

in general a long shallow burial phase (~150 Myr) followed by a phase of rapid burial starting 

between 90-70 Ma to their present maximum burial depth (Fig. 5). The phase of rapid burial 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

was accompanied by significant temperature and pore pressure increases to their present day 

maxima. The present-day pore fluid pressure profiles of the three wells increases through the 

Chalk units (Ekofisk, Tor and Hod Formations) from hydrostatic to highly overpressured in 

the Skagerrak Formation reservoir sandstones. 

The Egret burial history model shows a burial rate increase from ~90 Ma onwards, 

leading to a present day maximum burial depth of ~4300 m below sea floor (Formation top). 

Modelled reservoir temperature and pore fluid overpressure increase constantly during the 

rapid burial phase to present day maxima of 180°C and 39 MPa, respectively (Fig. 5; Table 

1). The rapid overpressure increase in the Skagerrak Formation induces a reduction of the 

vertical effective stress (VES) accrual, which led to a maximum VES of ~24 MPa at around 

10Ma and a present day VES of 10.4 MPa. 

The Judy Sandstone Member of the Heron field have undergone a shallow burial phase 

(<1150 m below sea floor) followed by rapid burial from 90 Ma onwards to their present day 

maximum depth of around ~4300 m below sea floor (Formation top; Fig. 5). The burial 

history model shows an increase of pore fluid overpressure from 60 Ma towards a maximum 

present day overpressure of 40 MPa which leads to a decrease of the VES in the Skagerrak 

sandstone reservoirs to a maximum VES of 21.5 MPa and a present day VES of 6 MPa (Fig. 

5). The modelled temperature of the Judy Sandstone Member in the Heron field is below 

50°C for the early shallow burial phase and starts to increase during the rapid burial phase to 

a present-day maximum of 178°C for the Judy Sandstone Member. 

The Judy Member of the Skua reservoir is subjected to a phase of a rapid burial from 

around 70 Ma with an even further increased burial rate in the last 10 Myrs towards present 

day maximum burial depth of 3500 m below sea floor (Formation top) (Fig. 5). The phase of 

rapid burial is coupled with temperature and pore fluid overpressure increases, especially the 

last 10 Myrs, towards 152°C and 26.6 MPa at present-day (Fig. 5). The overpressure increase 
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with ongoing burial reduced the VES accrual significantly to a lower maximum VES of 21.5 

MPa at ~10Ma and a present-day VES of 12 MPa. 

 

Grain size, porosity and degree of compaction 

The 274 investigated samples from the Egret, Heron and Skua fields show a wide porosity 

range from <1% up to a maximum of 34% (Fig. 3). The measured optical porosity data is 

complemented by helium core plug porosities (measured after Boyle’s law, uncorrected for 

possible decompaction effect). The Skagerrak reservoir sandstones in this study cover a 

narrow range of compositions and are classified as arkosic to lithic-arkosic arenites. 

The Egret field (well 22/24d-10) data set shows optical porosities from <1% to up to 14% 

porosity, with an average of 7% and helium core plug porosities from 10% to 31%, with a 

mean around 20% (Fig. 3). The grain sizes vary from coarse silt to medium-grained sand, 

with an average grain size of 0.136 mm and the majority of the samples between very fine 

and fine-grained sand (Fig. 4). 

The Heron field (well 22/29-5RE) data set in comparison show a wider optical porosity 

range from <1% to up to 31%, with the majority of the porosity values below 15% and a 

mean of 6%. The helium core plug porosities are in general higher with a maximum of 29% 

and a mean of 20% (Fig. 3). The grain sizes vary from coarse silt to medium-grained sand, 

with a mean grain size of 0.136 mm and the majority between very fine and fine-grained sand 

(Fig. 4). 

Porosity data from the Skua field (well 22/24b-7) samples show a wide range from <1% 

to 31% for the optically measured porosities and 3% to 27% for the helium porosities. The 

mean of optical and helium porosities is around 11% and 17%, respectively (Fig. 3). The 

grain sizes vary between very fine and fine-grained sand (Fig. 4), with an average grain size 

of 0.169 mm. 
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Interestingly, grain-size variability is limited across all facies, with most of the sandstones 

being fine and very fine grained with a grain size between 0.063 and 0.25mm (Fig. 4). 

Coarser grain sizes are encountered within the lower parts of the confined channelized sands, 

with a mean grain size of 0.35 mm (medium grain size). 

The Egret, Heron, and Skua samples show features of mechanical compaction of soft 

grains, such as deformed lithic clay grains, kinked mica grains and minor chemical 

compaction features such as concavo-convex grain contacts at detrital quartz grain 

boundaries. However, the sample sets indicate under-compaction in relation to hydrostatically 

pressured sandstones at equivalent burial depth (porosity-depth relationship for 

hydrostatically pressured shaly sandstone by Sclater and Christie (1980)) to the present-day 

burial depth of the Judy Sandstone Member. The under-compaction of the Skagerrak 

sandstones is further highlighted by the general absence of strong chemical compaction 

features, such as sutured or stylolitic grain contacts.  

 

Diagenetic cements and grain coatings 

The complex diagenetic history of the Skagerrak Formation sandstone reservoirs has been 

described by a number of research papers (e.g. Smith et al., 1993; Weibel, 1998; Swarbrick et 

al., 2000; Kape et al., 2010; Nguyen et al., 2013). The main diagenetic cements recognised 

include quartz, localised carbonate (ferroan dolomite), feldspar, and early precipitates of 

halite cement as identified by (Nguyen et al., 2013). Detrital quartz grains were reported to be 

coated by clay minerals such as chlorite and more rarely illite in the Skagerrak Formation and 

their presence has been correlated to low quartz cement volumes (Taylor et al., 2010; Nguyen 

et al., 2013; Taylor et al., 2015). The major cement types and clay mineral coatings, 

important for reservoir quality in this study, are discussed in more detail below. 

 

Carbonate cements 
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Carbonate cements are very localised throughout the Skagerrak Formation and sourced by 

syn-depositional calcitic palaeosols in very fine grained floodplain deposits or by calcrete and 

dolocrete rip-up clast at channel bases (McKie et al., 2010). The scarce carbonate cements in 

the three data sets are mainly present as deformed carbonate-clay rip-up clasts (Fig. 7A) or as 

pore filling cements often associated with “megapores” in channel base samples. The clay 

free carbonate cements show a rhombic crystal structure with a prominent cleavage pattern 

and tend to infill the pore space completely where they are present (Fig. 7B). Fluid inclusion 

analysis on carbonate cement in the Skua sample 2 shows high aqueous and lower non-

aqueous fluid inclusions homogenization temperatures of 138°C to 144.5°C and 79°C to 

112°C, respectively (Table 4).  

 

Grain coatings 

Grain coatings and especially authigenic clay minerals are common in all of the Skagerrak 

sandstones (e.g. Nguyen et al., 2013; Taylor et al., 2015). Detailed petrography, SEM and 

SEM-EDS analysis presented in this study has identified authigenic clay mineral grain 

coatings on detrital quartz grains; consisting of mainly authigenic chlorite in the Heron and 

the Skua fields (Fig. 8B & C) and a mixture of authigenic chlorite and illite in the Egret field 

(Fig. 8A). The authigenic clay coatings are fully transformed at present-day and no prove of 

precursor clay minerals has been detected. Grain coating chlorite is analysed using SEM-EDS 

and classified according to the Fe/Mg ratio (Hillier and Velde, 1992): 

 �� ��⁄ ���	
 =
��

��� + ���
 ( 1 ) 

Chlorite coats are classified as intermediate to Fe-rich for the Egret and Heron samples, with 

Fe/Mg ratio of 0.4-0.55 (Egret) and 0.45-0.6 (Heron) and as intermediate to Mg-rich for Skua 

(0.35-0.5) (Table 5).  
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The majority of samples have measured grain coating values of more than 70% and 

several with near complete chlorite coatings (Fig. 9). The Heron and Skua data sets have high 

measured grain coating values of 79.2% and 70.1% respectively (Fig. 9). The grain coatings 

are in general continuously developed and range from 1µm to 20µm thick, with an average 

thickness of 11 µm. The chlorite coatings show a complex structural pattern, regardless of 

their thickness, with a dense root zone (Pittman et al. 1992) of laminated crystals oriented 

parallel to the detrital quartz grain surface (Fig. 8D). These are superseded by well-defined 

chlorite crystals growing normal to the root zone (Fig. 8B, C & D). In comparison, the Egret 

data set has a higher fraction of chlorite coated detrital quartz grains of 86.1% (Fig. 9). These 

chlorite coatings are better developed with an average thickness >15µm, but commonly 

coexist with illite on detrital quartz surfaces (Fig. 8A & E). Furthermore, these coating root 

zones have a more dense structure of amorphous to poorly defined chlorite and illite crystals 

(Fig. 8F) and are superseded by well-developed chlorite platelets and fibrous and flaky illite, 

which are in randomly orientation to each other, but normally oriented to the detrital grain 

surface (Fig. 8A, E & F). The observed coating structure,with a root zone and superseding 

crystals, has been described by several authors for authigenic clay mineral coatings (e.g. 

Pittman and Lumsden, 1968; Wilson and Pittman, 1977; Pittman et al., 1992; Ajdukiewicz 

and Larese, 2012; Haile et al., 2015). 

The occurrence and importance of grain coating chlorite in the Skagerrak sandstone 

reservoirs has been reported from the J-ridge area (Nguyen et al., 2013; Grant et al., 2014) 

and the Heron Cluster (McKie et al., 2010; Taylor et al., 2015). However, the mixed chlorite-

illite coatings of the Egret samples show a tendency to bridge between grain coatings and 

thereby fill the pore space and block pore throats. This is less common in the Heron and Skua 

sample sets where the overall clay mixture consists predominantly of chlorite and <5% illite. 

In general, pore-filling cements comprise smaller and less well developed chlorite crystals 
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within a denser packing arrangement than seen for the grain coatings. The optical porosity 

loss by pore filling clay cements can be up to 15% in some samples.  

 

Quartz cements 

Quartz cements can be recognised in all three sample sets in this study and two types of 

cement growth are recognised, either as very thin microquartz grain coatings (Fig. 7C, 8B & 

11A) or as a more blocky and thick macro-quartz overgrowth, present at non-coated grain 

surfaces or at breaks within the chlorite coatings (Fig. 7C, 7D & 11B). The term microquartz 

overgrowth is here used for polycrystalline growth patterns of individual micro-sized quartz 

crystals ranging from 1 to 10µm in length, which are in optical continuity or discontinuity 

with the detrital quartz grain (Aase et al., 1996; French and Worden, 2013). In comparison 

macro-quartz overgrowth is defined as syntaxial quartz overgrowth larger than 20 µm in 

optical continuity with the detrital quartz grain. The amount of quartz cement in general is 

very low in the three investigated sample sets (<5% bulk volume), but can exceed 5% bulk 

volume in single samples.  

Fluid inclusion analyses have been undertaken on selected samples with higher quantities 

of quartz overgrowths and show high homogenization temperature for the fluid inclusions. 

The aqueous homogenization temperatures range from 145°C to 171°C for the Egret sample, 

104°C to 116°C and 133°C to 163°C for the Heron samples, and 133°C to 156°C for the 

Skua samples (Table 4). The non-aqueous fluid inclusions are generally less common in the 

sample sets. Homogenization temperatures are between 70°C to 77°C for the Heron sample 1 

and are at 83°C for one inclusion in one of the Skua samples (Table 4).  

The microquartz overgrowth tends to fill small cavities in the detrital quartz grain surface 

and to infill void spaces between the detrital quartz grain surface and the chlorite mineral 

coating (Fig. 7C, 7E & 12C). Single microquartz crystals (<5µm) can be found in between 

the chlorite platelets and the illite fibres (for Egret samples), which tend to outgrow the clay 
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mineral coatings (Fig. 8B & 12C). This sublayer of microquartz precipitation beneath and in-

between chlorite grain coatings has previously been recognized in high-temperature 

experimental studies by Ajdukiewicz and Larese (2012).  

 

K-Feldspar dissolution & cementation 

K-feldspar dissolution and alteration can be observed in each of the sample sets. K-feldspar 

dissolution occurs generally during late burial stage, indicated by clay mineral coatings, 

which preserve the original K-feldspar grain shape of partly or fully dissolved grains. The 

volume of K-feldspar cement ranges from approximately <1% to a maximum of 5%. Minor 

amounts of late stage blocky authigenic K-feldspar overgrowth can be observed on uncoated 

and partly dissolved K-feldspar grains. Aqueous fluid inclusions in feldspar overgrowths in 

the Egret sample indicate cementation at high temperatures above 140°C. Non-aqueous fluid 

inclusions encountered in feldspars show significantly lower temperatures between 45°C and 

118°C across the three sample sets (Table 4).  Highly altered and dissolved K-feldspar grains 

can coexist in close proximity to unaltered grains. Variations in feldspar microtextures exertis 

control on reactivity as demonstart5ed by Parsons et al. (2005).  

 

Paragenetic sequence 

The diagenetic development of the Skagerrak Formation in the investigated reservoirs is 

similar and therefore can be linked into a general relative sequence by their observed 

petrographic features (Fig. 6 & 7). 

Evidence of mechanical compaction throughout the whole burial process is present in 

Egret, Heron and Skua sample sets and despite the overall shallow overpressure initiation and 

associated VES reduction mechanical compaction is still the main driver of porosity 

reduction during the first 2500 m of burial (Fig. 5). Nevertheless, the reduced VES accrual 

limited the effect of mechanical compaction significantly in the Skagerrak sandstones. 
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Therefore, mechanical compaction is lower than in equivalent hydrostatically pressured 

sandstones (represented by the porosity-depth relationship for hydrostatically pressured shaly 

sandstone by Sclater and Christie (1980) at equivalent depth (Fig. 3).  

Diagenesis started at shallow burial with localised carbonate cementation (ferroan 

dolomite), mainly internally sourced by dissolution of reworked calcrete or dolocrete 

fragments (Fig. 7A; McKie and Audretsch, 2005). Shallow carbonate precipitation is 

indicated by high IGVs, close to the assumed initial sandstone porosity of 45%, in the 

cemented channel base samples. High fluid inclusion homogenization temperatures in the 

Skua sample set and large single crystals indicate further diagenetic changes at higher 

temperatures (Table 4 & Fig. 7B). 

Authigenic clay mineral coatings developed after shallow carbonate cementation and 

prior to major quartz cementation (Fig. 7C & D). SEM and SEM-EDS analysis identified 

chlorite as the main coating clay mineral, alongside with a minor amounts illite. 

Feldspar dissolution occurs after the beginning but generally alongside continuous 

precipitation of authigenic chlorite and illite clay minerals, which is indicated by clay mineral 

coated feldspar grains where chlorite and illite tend to infill and overgrow dissolution cavities 

of partly dissolved feldspars (Fig. 7F)   

Fluid inclusions from blocky quartz overgrowth indicated late occurrence of quartz 

cementation at high temperatures of ~130-170°C in the Skagerrak Formation. Quartz cement 

can be recognised as either very thin microquartz grain coatings (e.g. Fig. 7C, 8B & 11A) or 

blocky and thick macro-quartz overgrowth, present at non-coated grain surfaces or at breaks 

within chlorite coatings (e.g. Fig. 7C, 7D & 11B). Several precipitation events can be 

observed for microquartz, indicated by various growth stages in cathodoluminescence images 

(Fig. 10A & C). High homogenization temperatures of up to 170°C for aqueous fluid 
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inclusions in blocky macroquartz overgrowth indicate very late quartz cementation in the 

Judy sandstone Member (Fig. 6). 

The non-aqueous fluid inclusions suggest that hydrocarbon emplacement occurred late in 

the burial history of the Egret, Heron and Skua fields. The microthermometry results from the 

coexisting hydrocarbon and aqueous inclusions reveales a temperature of ~60-120°C for  

hydrocarbon inclusions and ~130-170°C for aqueous fluid inclusions (Table 4). However, the 

homogenization temperature for the aqueous inclusions (i.e. 130-170°C) represents the 

trapping temperature for both fluids as the oil was undersaturated with gas for the trapping 

pressure and temperature (Munz et al., 1999; Munz, 2001). The fluid inclusion results concur 

with the commencement of hydrocarbon generation  from the end of the Cretaceous  and was 

completed by mid-Miocene times (Lines and Auld, 2004).  

Furthermore, feldspathic cementation can be observed and is identified as late stage 

cement by aqueous fluid inclusion homogenization temperatures (Table 4).  

 

Porosity loss by mechanical compaction vs. cementation 

Additional petrographic data such as intergranular volume (IGV) (Paxton et al., 2002) and 

total cement volume (C) can be used to calculate the porosity loss due to mechanical 

compaction (COPL) and cementation (CEPL) after Lundegard (1992): 

  ( 2 ) 

 
 ( 3 ) 

where Pi is the initial or depositional porosity (here assumed with 45%; Beard and Weyl, 

1973) and Pmc is the intergranular volume or minus-cement porosity calculated by subtracting 

the total cement volume (C) from the optical primary porosity. The calculated COPL and 

CEPL are only accurate if three conditions are met. First, the assumed initial porosity Pi is 
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correct. Second, the amount of cement derived by local grain dissolution is negligible or 

known. And third, the amount of framework mass exported by grain dissolution is negligible 

or known (Lundegard, 1992). The calculated porosity losses by mechanical compaction 

(COPL) and by cementation (CEPL) show a similar pattern for Egret, Heron and Skua fields 

(Fig. 11). The Average values of COPL and CEPL are 26.8% and 9.2%, with 29.1% and 

8.8% for Egret, 24.8% and 9.6% for Heron and 26.4% and 9.1 % for Skua sample sets.  This 

identifies that the main porosity loss in the Egret, Heron and Skua is mainly due to 

mechanical compaction rather than cementation (Fig. 11).  

 

Discussion 

 

Vertical effective stress and porosity evolution 

The positive effect of pore fluid pressure and low VES on porosity preservation is well 

known since Therzagie’s effective stress concept and therefore overpressured reservoirs are 

often associated with good reservoir quality. However, a combination of magnitude and 

timing of onset of overpressure needs to be considered for enhanced porosity preservation in 

siliciclastic reservoirs. Pore fluid overpressure can slow down or arrest mechanical 

compaction by reducing the vertical effective stress during ongoing burial, but cannot 

increase porosity. Therefore, overpressure developed during (shallow) initial burial is crucial 

for maintaining primary porosity and good reservoir quality to depth (e.g. Ramm and 

Bjørlykke, 1994; Osborne and Swarbrick, 1999; Schneider and Hay, 2001). Furthermore, 

overpressured reservoirs have no fluid exchange (i.e. fluid influx) with less overpressured 

areas, which allows them to evolve within their very own fluids (Jeans, 1994). This reduces 

the overall number of diagenetic processes that may affect the overall reservoir quality. 

 The pore fluid overpressure in the Skagerrak sandstone reservoirs initiate (0.01 MPa) at 

around 60 Ma (Egret & Heron) and 50 Ma (Skua) at shallow burial and increases with 
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ongoing burial to the present-day maximum. The very shallow onset and rapid increase of 

overpressure enabled the pore fluids to reduce the load borne by intergranular and cement-

grain contacts within the sandstones (Fig. 12).  It is to be noted that late development and 

deeper onset of overpressure would have had a much smaller to negligible effect on porosity 

preservation in the reservoir sandstones. The reduced stress on the grain framework causes a 

reduction in mechanical compaction and chemical compaction (pressure dissolution) at grain 

contacts (Osborne and Swarbrick, 1999). The reduced mechanical compaction rate can be 

easily observed in the datasets, where a predominance of point, long or concavo-convex grain 

contacts occurs compared to sutured or stylolitic quartz grain contacts which would be 

expected in deeply buried hydrostatic reservoirs. The effect of overpressure on reservoir 

quality is the highest with initiation depths above 1500m because at this depth range porosity 

or intergranular volume reduction in hydrostatic pressured sandstones is particularly strong 

(from 42% to 28% on average, Paxton et al., 2002). Nevertheless, low VES can still have an 

impact on compaction processes beyond 1500m burial depth due to the lower limit of 

physical grain compaction of approximately 26% porosity or IGV at 2500m (Paxton et al., 

2002), and late stage chemical compaction. 

Significant porosity preservation is commonly suggested to occur during later stage 

chemical compaction due to of the occurrence authigenic chlorite grain coatings (e.g. Bloch 

et al., 2002; Ajdukiewicz and Larese, 2012; this study). However, it has been recognized that 

the rate of quartz cementation increases as an exponential function of temperature during 

burial and estimated that the rate may increase by a factor of 1.7 for every 10oC temperature 

increase (Walderhaug, 1996). Temperature has been considered by far the most important 

control on the rate of quartz precipitation in deeply buried sandstones (Walderhaug, 1996; 

Bjorkum, 1996; Lander et al., 2008). The amount of quartz cementation and porosity can be 

modeled as an exponential function (Arrhenius equation) of the temperature integrated over 
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time and forms the basis of many commercially available reservoir quality predictive 

programs. The occurrence of minerals at grain contacts are also thought to be important and 

dissolution is considered to be enhanced by mica or clay minerals at quartz grain contacts 

(Bjorkum, 1996).  

This study has provided evidence from the Skagerrak Formation sandstones that shallow 

onset of pore fluid pressure can arrest the rate of quartz cementation and maintain an 

enhanced porosity to greater burial depths than normally would be expected under hydrostatic 

conditions and as a function of temperature alone (Fig. 12). Quartz cementation is far more 

sensitive to pore fluid overpressure than has previous been attributed. This in part is due to 

the  significant role low VES plays in limiting and forestalling the onset of intergranular 

pressure solution at grain contacts (e.g. Osborne and Swarbrick, 1999; Swarbrick et al., 2000; 

Sheldon et al., 2003; Becker et al., 2010 Stricker and Jones 2016). Quartz cementation and 

especially quartz overgrowths on detrital quartz grains are a widely reported diagenetic and 

porosity reducing processes in deeply buried quartz rich sandstones (e.g. McBride, 1989; 

Walderhaug, 1990; Vagle et al., 1994; Walderhaug, 1994b; Worden and Morad, 2000). 

Stylolitisation and dissolution at intergranular grain contacts is often reported as main internal 

source of quartz cement in many siliciclastic reservoirs (e.g. Houseknecht, 1988; Bjorkum et 

al., 1993; Walderhaug, 1994a, b). The low VES halted stylolitisation in the Skagerrak 

Formation sandstones and reduced stress on the grain framework and grain contacts (Fig. 12). 

The supply of dissolved silica towards the pore fluid is thereby reduced which leads to a 

lower silica saturation of the pore fluid and finally to lower and later quartz cement 

precipitation (Osborne and Swarbrick, 1999; Stricker and Jones, 2016).  

 

Authigenic clay coatings and reservoir quality 
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The development of clay mineral coatings is often reported to be closely linked to the 

absence of extensive quartz cementation. The role played by clay mineral coatings in 

siliciclastic reservoirs is of significant interest for the maintenance of exceptional reservoir 

quality (e.g. Taylor et al., 2010; Ajdukiewicz and Larese, 2012).  

Clay mineral coatings in the Skagerrak Formation are generally well-developed and 

consist mainly of authigenic chlorite, with minor amounts of authigenic illite (especially in 

the Egret field). SEM-EDS analysis of the chlorite coatings classify them as intermediate to 

Fe-rich for the Egret and Heron samples, with Fe/Mg ratio of 0.4-0.55 (Egret) and 0.45-0.6 

(Heron) and as intermediate to Mg-rich for Skua (0.35-0.5) (Table 5) (Hillier and Velde, 

1992).  The observed Fe/Mg ratios correlate well with reported ratios between 0.25–0.65 for 

terrestrial sediments (Downey et al., 2011). The SEM-EDS analysis also showed that the 

authigenic chlorite and illite is fully transformed without any remnant precursor clay 

composition. Downey et al. (2011) reported three possible building mechanisms for chlorite 

grain coatings in fluvial environments; firstly grain coating Fe-rich clay minerals, secondly 

the mechanical infiltration of precursor clay minerals (e.g. smectite) and, thirdly the alteration 

of detrital grains. The chloritization and illitization of smectite is the most likely diagenetic 

pathway for authigenic chlorite and illite grain coatings in the Skagerrak formation. 

Mechanical infiltrated smectite has been probably attached flatly to the detrital grains during 

or shortly after deposition (Matlack et al., 1989) (Fig. 12).  The chloritization of smectite 

requires a source of aluminum (e.g. Hillier, 1994; Humphreys et al. 1994) and takes place at 

temperatures between 60-100°C (e.g. Worden and Morad, 2003). Illitization of smectite also 

requires a source of aluminum and potassium and is reported to occur at temperatures above 

90°C (e.g. Worden and Morad, 2003). Detrital smectite coatings have been continuously 

transformed into authigenic chlorite with increasing temperatures and dissolution of detrital 

k-feldspar (Fig. 7F & 12).  
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The authigenic chlorite grain coatings in the Heron Cluster fields are well-developed 

and cover more than 70% of the detrital grain surfaces (Fig. 9 & 12). Nevertheless, there are 

differences in composition and appearance. The coatings in the Heron and Skua sample sets 

are typical edge to edge chlorite coatings with a platy crystal structure similar to those 

observed by Pittman et al. (1992). The clay mineral coatings in the Egret field are generally 

thicker and contain a higher amount of fibrous illite (Fig. 8A & F). The Egret field coatings 

are structurally more variable in their morphology, compared with the Heron and Skua 

coatings. The general coating structure, described by Pittman et al. (1992), is consistent in all 

three sample sets, with a flatly attached root zone and superseding chlorite and/or illite 

crystals (Fig. 8 D). Where high amounts fibrous illite occur, the root zone is structurally less 

well developed and amorphous in comparison with a pure chlorite grain coatings (Fig. 8F)     

Ajdukiewicz and Larese (2012) observed quartz nucleation below the root zone and 

in-between the crystals of the chlorite coatings at temperatures above 115°C and concluded 

that chlorite coatings may retard quartz nucleation at moderate temperatures, but permit 

quartz nucleation at high temperatures similar to those encountered in the Skagerrak 

Formation. This quartz tends to infill the microporosity of the chlorite coatings and produces 

a sub-layer beneath chlorite coatings. Intact chlorite coatings provide an effective barrier for 

potential quartz crystal growth from the detrital surface into the pore space, due to the high 

crystal interconnection (Pittman et al., 1992; Ajdukiewicz and Larese, 2012; Haile et al., 

2015). Illite coatings on the other hand are in respect to chlorite coatings less able to prevent 

quartz outgrowth due to the normally oriented, fibrous crystals and the low degree of crystal 

interconnection (Guven et al., 1980; Storvoll et al., 2002; Wilson et al., 2014). The mixed 

clay coatings in the Egret field have a very high surface coverage (>85%; Fig. 9). 

High homogenization temperatures for the aqueous fluid inclusions in the quartz 

overgrowth (Table 4; 145°C to 171°C) indicate the importance of clay mineral coatings and 
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vertical effective stress for retardation of quartz precipitation (Fig. 12). Mixed chlorite/illite 

coatings (Fig. 8F) provide a more effective barrier to quartz nucleation than chlorite coatings 

alone.   

 

Microquartz grain coatings 

Microquartz grain coatings are polycrystalline growth patterns of individual micro-sized 

quartz crystals ranging from 1 to 10µm in length, which are in optical continuity or 

discontinuity with the detrital quartz grain (Aase et al., 1996; French and Worden, 2013) and 

often reported to be closely linked to the absence of extensive macroquartz cementation. 

Microquartz coatings have been described as a layer of random oriented, micro-sized quartz 

crystals crystallographiclly misoriented with respect to the host grain (e.g. French et al., 

2012; French and Worden, 2013). Microquartz can be observed in several appearances in the 

Skagerrak sandstones, such as a coating layer below clay coatings (Fig 7C & E) or as single 

crystals, outgrowing clay mineral coatings (Fig. 8B). Cathodoluminescence analysis of the 

microquartz in the three sample sets indicated multiple precipitation and growth events (Fig. 

10A & C) mainly below the chlorite grain coatings and in between the chlorite crystals (Fig. 

7E, 8E, 10C & 8B). The microquartz is likely to be precipitated at higher temperatures 

(>115°C) as demonstrated by Ajdukiewicz and Larese (2012). 

However, the contribution of the microquartz coatings towards the preservation of 

reservoir quality is minor to negligible in the Skagerrak Formation.  The presence of well-

developed chlorite grain coatings and high pore fluid pressures have played a more 

significant role to inhibit extensive macroquartz cementation. 

 

Macroquartz cementation and reservoir quality 

Quartz cementation is generally scarce in the Skagerrak Formation but can be observed as 

micro and macro quartz cement at non-coated detrital grain surfaces in all three sample sets. 
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Quartz cementation starts generally at temperatures around 70-80°C (e.g. McBride, 1989; 

Walderhaug, 1994b, a; Worden and Morad, 2000) with very slow precipitation rates, which 

increase with increasing temperatures (Walderhaug, 1994b). Walderhaug (1994b) expressed 

the temperature dependence of macroquartz precipitation r mathematically: 

  (4 ) 

where r is precipitation rate in moles per square centimetre and T  is temperature in degree 

Celsius. The quartz precipitation rate can be converted into a linear outwards growth rate for 

quartz cement in cm/s by multiplying r by the molar mass of quartz (60.08g/mol) and 

dividing by the density of quartz (2.65g/cm3). This leads to linear quartz cement outgrowth 

rates as a function of temperature, e.g. 0.04908µm/Ma at 70°C or 1.70210µm/Ma at 140°C 

(Table 6). The calculated linear quartz growth rates can be used to estimate time necessary to 

enclose a small fluid inclusion (4µm) at certain temperatures (Table 6).  

The comparison of the quartz growth rates for overgrowth and the rapid burial rates 

for the Triassic Skagerrak shows that fluid inclusions are unlikely to form at temperatures 

below 100°C to 110°C due to the slow quartz growth rates (Table 6) and the rapid burial rates 

of the Skagerrak Formation (Fig. 5). The lowest aqueous homogenization temperatures from 

quartz cements are consistent with this observation (Heron; Table 4), but the majority of the 

aqueous homogenization temperatures are beyond 130°C.   

However, we have already argued for potential inhabitation of quartz cementation by 

clay coatings, microquartz coatings and particularly overpressure, and suggest that the 

combined effect of all these processes produce predominantly high temperature quartz 

overgrowths.  

  

Tr *022.022 10*10*98.1 −=
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Conclusions 

1. The HPHT Skagerrak Formation sandstone reservoirs of the Egret, Heron and Skua 

fields (UK quadrant 22) have total enhanced porosities in the range of 18-35%, despite 

their depth of burial and elevated high temperatures. 

2. Porosity in the Skagerrak Formation was preserved through a combination of shallow 

onset of pore fluid pressures reducing mechanical compaction and well developed 

chlorite and mixed chlorite/illite grain coatings inhibiting quartz cementation. 

3. The shallow onset of high pore fluid pressure (at end of Cretaceous) and maintenance 

to present day contributed towards the inhibition of macroquartz overgrowths by 

reducing pressure solution at detrital quartz grain contacts. 

4. Authigenic chlorite and mixed chlorite/illite coat most detrital quartz grain surfaces 

(>70% surface coating) and restricted the development of abundant pore-filling quartz 

cement despite elevated temperatures (up to ~180°C at present day). The abundance of 

quartz cement correlates well with grain coat coverage and shows no relationship to 

the presence of hydrocarbon pore fluids. 

5. Burial history modeling using detailed fluid inclusion analyses and quantitative 

petrography of the Skagerrak Formation reservoir sandstones has revealed that 

macroquartz overgrowths have been inhibited up to very high burial temperatures 

(~185°C) by low vertical effective stress and well developed clay mineral coatings. 

The results indicate that the range of porosities preserved provide potential for 

exploration in the deeper (>5500 m below sea floor) and HPHT portions of the Central 

Graben, North Sea. 
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Figures: 

Figure 1 - Map of the southern part of the UK quadrant 22 with important regional structural 

features indicated. 

Figure 2 - Stratigraphy of the Heron Cluster fields: Egret (well 22/24d-10), Heron (well 

22/29-5) and Skua (well 22/24b-7). 

Figure 3 - Optical and helium porosities of the Heron Cluster sample sets with a regional 

Central North Sea porosity-depth relationship for hydrostatically pressured shaly sandstone 

(Sclater and Christie, 1980) and the modelled sandstone porosities (circles). 

Figure 4 - Grain size distribution of the Egret, Heron and Skua sample sets, with average 

grain size (Av.). 

Figure 5 - Modelled vertical effective stress (VES) evolution, overpressure (OP) evolution, 

temperature evolution and burial depth for the Triassic Judy sandstone member of the Egret, 

Heron and Skua fields, including aqueous quartz overgrowth fluid inclusion homogenization 

temperatures (FI QTZ OG).  

Figure 6 – Paragenetic sequence of the main diagenetic processes  for the Egret, Heron, and 

Skua fields, based on petrographic relationships and basin modelling, with fluid inclusion 

homogenization temperatures for aqueous carbonate, feldspar and quartz inclusions. 

Figure 7 – Micrographs of A) calcrete/dolocrete fragments (Heron); B) a single dolomite 

crystal next to a deformed mica grain (Heron); C) a detrital quartz grain with macroquartz 

(blocky) and microquartz overgrowth (Skua); D) a detrital non-coated quartz grains with 

macroquartz overgrowth and fluid inclusions at the boundary between detrital grain and 

overgrowth (Heron); and SEM images of E) a detrital grain with chlorite coating and 

microquartz between the coating and the detrital grain (Heron); F) a partial dissolved feldspar 

with chlorite coating (Egret).      
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Figure 8 - SEM images of A) chlorite (chl) and illite mixed clay mineral coats (Egret); B) 

chlorite (chl) coatings with single outgrowing microquartz crystals (MQtz) (Heron); C) well 

developed authigenic chlorite (chl) grain coating (Skua); D) well developed authigenic 

chlorite (chl) coatings with a structured root zone (sRZ) (Skua); E) a detrital grain with 

microquartz overgrowth (MQtz) between mixed clay mineral coating (chl/illite) (Egret); F) 

amorphous root zone (aRZ) underlying illite grain coating (Egret). 

Figure 9 - Fraction of clay coated detrital grains in Egret, Heron, and Skua sample sets, with 

the average of coated grains (Av.).   

Figure 10 - SEM and CL images of A) microquartz growing on an detrital quartz grain 

(Egret); B) macroquartz overgrowth on an detrital quartz grain next to an clay mineral coated 

grain without quartz overgrowth (Egret); C) a fully chlorite coated grain with minor 

microquartz between the detrital grain and the chlorite coating (Skua). 

 Figure 11 - Compactional porosity loss (COPL) and cementational porosity loss (CEPL) for 

Egret, Skua, and Heron data sets, calculated according to Lundegard (1992). 

Figure 12 – Schematic diagram for the comparison of A) a theoretical representation for a 

deeply buried siliciclastic reservoir of same starting composition and grain size as the 

Skagerrak sandstone reservoirs and B) the HPHT Skagerrak sandstones from the Egret, 

Heron and Skua fields.  
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Tables: 

Table 1 – Present-day formation tops (Skagerrak Formation and Judy Member), formation 

pressure, temperature of the Egret, Heron and Skua fields. 

Table 2 - Lithology thickness and type of the modelled layers for the Egret, Heron, Skua 

fields, with Sh: Shale, Sst: Sandstone, Non-Res.: Non-Reservoir Chalk and Res. Sst.: 

Reservoir Sandstone (80% Sand, 10% Silt and 10% Clay). 

Table 3 - Non-reservoir North Sea chalk model parameters after Mallon and Swarbrick (2002 

& 2008) 

Table 4 - Homogenization temperatures of aqueous (Aqueous) and non-aqueous (Non) fluid 

inclusions in quartz overgrowth, feldspar and carbonate cements 

Table 5 –Fe/Mg-ratio from SEM-EDS measurements of chlorite coats of the Egret, Heron 

and Skua samples 

Table 6 - Calculated, temperature dependent quartz precipitation rates, with T for 

temperature, r for precipitation rate, gl for linear outgrowth rate and tc for critical time to 

enclose a fluid inclusion of 4 µm. 
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Field  Egret Heron Skua 

Well  22/24d-10 22/29-5RE 22/24b-7 

Top Skagerrak Formation  [m TVDSS] 4310 4289 3557 

Top Judy Member  [m TVDSS] 4368 4312 3557 

Judy Member     

RFT Formation pressure [MPa] 85.6 - 86.8 86.8 63.7 - 66.8 

RFT Temperature [°C] 175 - 183 176 - 178 160 

Fluid inclusion sample [m TVDSS] 4565 4412 3608 

   4419 3615 
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Group/ 
Formation 

Egret Heron Skua 

Thick. Lithology Thick. Lithology Thick. Lithology 

[m] [-] [m] [-] [m] [-] 

Water 91 Water 93 Water 97 Water 

Nordland 1409 Shale 1407 Shale 1762 Shale 

Lark/Horda 1341 Shale 1396 Shale 957 Shale 

Tay 45 Shale 15 Sandy Sh.   
Balder 13 Shale 18 Shale 12 Shale 

Sele 25 Sandy Sh. 31 Sandy Sh. 21 Shale 

Forties 168 Sandstone 187 Sandstone 79 Sandstone 

Lista 60 Silty Sh. 49 Silty Sh.   
Andrew   51 Siltstone 81 Siltstone 

Maureen 142 Marl 82 Marl 54 Marl 

Ekofisk 76 Chalk 94 Chalk 76 Marl 

Tor 446 Chalk 459 Chalk 300 Chalk 

Hod 293 Non-Res. 335 Non-Res. 98 Non-Res. 

Herring 30 Chalk 9 Marl   
Hidra 10 Shale     

Valhall 92 Chalk 63 Marl 19 Marl 

Kimeridge Clay 4 Shale 0 Shale 0 Shale 

Heather 33 Shale 0 Shale 0 Shale 

Pentland 33 Shale     

Joshua 0 Silty Shale 0 Silty Shale 0 Silty Sh. 

Josephine 0 Res. Sst 0 Res. Sst 0 Res. Sst 

Jonathan 0 Silty Sh. 0 Silty Sh. 0 Silty Sh. 

Joanne 0 Res. Sst 23 Res. Sst 0 Res. Sst 

Julius 58 Silty Sh. 41 Silty Sh. 0 Silty Sh. 

Judy 302 Res. Sst 339 Res. Sst 468 Res. Sst 

Smith Bank 230 Silty Sh. 200 Silty Sh. 118 Silty Sh. 

Zechstein 200 Salt 208 Salt 207 Salt 
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Model Parameter (Hod Formation) 

Mechanical compaction Permeability 

Porosity Depth Porosity Permeability 

[%] [m] [%] [log(mD)] 

70.00 0 70.00 1.00 

18.00 1300 30.00 -1.00 

12.50 2100 25.00 -3.00 

8.00 3100 20.00 -5.50 

5.00 4500 12.50 -7.20 

 
9.00 -7.20 

5.00 -7.20 
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 Egret Heron Skua 

FI Host Sample 1 Sample 1 Sample 2 Sample 1 Sample 2 

 Aqueous Non Aqueous Non Aqueous Non Aqueous Non Aqueous Non 

 
[°C] [°C] [°C] [°C] [°C] [°C] [°C] [°C] [°C] [°C] 

Quartz OG 145.4  104.0 69.8 133.7  133.4  132.6 83.3 

Quartz OG 146.0  106.0 72.1 141.5  135.8  133.1  

Quartz OG 147.9  111.0 75.3 143.1  135.9  133.3  

Quartz OG 149.0  116.0 76.1 143.6  137.1  133.5  

Quartz OG 149.4  
 

76.3 144.4  137.3  136.1  

Quartz OG 150.2  
 

 145.4  137.3  137.3  

Quartz OG 150.2  
 

 162.2  139.3  138.6  

Quartz OG 150.7  
 

 163.3  139.9  139.9  

Quartz OG 151.6  
 

 
 

 140.4  
 

 

Quartz OG 152.2  
 

 
 

 140.8  
 

 

Quartz OG 152.3  
 

 
 

 140.8  
 

 

Quartz OG 153.4  
 

 
 

 141.5  
 

 

Quartz OG 154.4  
 

 
 

 142.3  
 

 

Quartz OG 155.0  
 

 
 

 143.0  
 

 

Quartz OG 155.8  
 

 
 

 144.0  
 

 

Quartz OG 160.1  
 

 
 

 144.2  
 

 

Quartz OG 166.5  
 

 
 

 144.6  
 

 

Quartz OG 166.6  
 

 
 

 145.7  
 

 

Quartz OG 171.0  
 

 
 

 146.8  
 

 

Quartz OG 
 

 
 

 
 

 154.5  
 

 

Quartz OG 
 

 
 

 
 

 156.2  
 

 

Feldspar 145.7  
 

60.0 
 

44.8 
 

81.6 
 

83.6 

Feldspar 147.0  
 

61.4 
 

66.7 
 

85.6 
 

88.1 

Feldspar 148.2  
 

61.9 
 

67.0 
 

85.7 
 

 

Feldspar    62.3  70.8  87.9   

Feldspar    75.4  74.4  88.6   

Feldspar    75.5  75.4  88.7   

Feldspar    77.0  75.5  88.9   

Feldspar    77.3  75.8  91.0   

Feldspar    77.8  75.9  91.7   

Feldspar    78.9  76.4  100.1   

Feldspar    87.9  77.1  100.5   

Feldspar      81.4  118.2   

Carbonate         138.5 79.4 

Carbonate 
 

 
 

 
 

 
 

 140.0 80.4 

Carbonate 
 

 
 

 
 

 
 

 140.4 84.0 

Carbonate 
 

 
 

 
 

 
 

 141.5 87.2 

Carbonate 
 

 
 

 
 

 
 

 141.8 87.4 

Carbonate 
 

 
 

 
 

 
 

 142.1 88.0 

Carbonate 
 

 
 

 
 

 
 

 142.3 107.3 

Carbonate 
 

 
 

 
 

 
 

 142.4 111.6 

Carbonate 
 

 
 

 
 

 
 

 142.7  

Carbonate 
 

 
 

 
 

 
 

 143.4  

Carbonate 
 

 
 

 
 

 
 

 144.5  
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Fe/Mg-ratio 

Egret Heron Skua 

0.49 0.49 0.52 

0.49 0.59 0.49 

0.48 0.45 0.39 

0.49 0.54 0.35 

0.48 0.51 0.37 

0.48 0.49 0.37 

0.45 0.52 0.38 

0.45 0.52 0.38 

0.48 0.51 0.45 

0.50 0.50 0.50 

0.49 0.49 0.47 

0.48 0.49 0.47 

0.46 0.47 0.47 

0.44 0.50 0.50 

0.47 0.51 0.47 

0.46 0.54 0.51 

0.46 0.56 0.40 

0.47 0.62 0.47 

0.48 0.58 0.44 

0.44 0.61 0.41 

0.47 0.52 0.49 

0.49 0.49 0.45 

0.52 0.46 0.51 

0.50 0.44 0.50 

0.46 0.47 0.48 

0.50 0.47 0.51 

0.54 0.50 0.49 

0.55 0.50 0.51 

0.59 0.52 0.53 

0.55 0.56 0.48 

0.41 0.50 0.51 

0.48 0.47 0.49 

0.46 
  

0.47 
  

0.44 
  

0.46 
  

0.44 
  

0.42 
  

   
0.48 0.51 0.46 
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Temperature Precipitation rate [r] Linear outgrowth  [gl] 
Critical time [t c] 

for 4µm 
[°C] [mol/cm2] [cm/s] [µm/Ma] [Ma] 

70 6.86539E-21 1.55661E-19 0.049089 81.48414 

80 1.13937E-20 2.58333E-19 0.081468 49.09905 

90 1.89089E-20 4.28726E-19 0.135203 29.5851 

100 3.13809E-20 7.11509E-19 0.224381 17.82679 

110 5.20793E-20 1.18081E-18 0.37238 10.7417 

120 8.64301E-20 1.95966E-18 0.617998 6.472515 

130 1.43438E-19 3.25222E-18 1.025621 3.900076 

140 2.38048E-19 5.39735E-18 1.702107 2.350028 

150 3.95062E-19 8.95737E-18 2.824795 1.416032 

160 6.5564E-19 1.48655E-17 4.687993 0.853244 

170 1.08809E-18 2.46706E-17 7.780131 0.51413 
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