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Abstract

In this paper, we are interested in memoryless computation, a modern paradigm to compute
functions which generalises the famous XOR swap algorithm to exchange the contents of two
variables without using a buffer. In memoryless computation, programs are only allowed to update
one variable at a time. We first consider programs which do not use any memory. We study the
maximum and average number of updates required to compute functions without memory. We
then derive the exact number of instructions required to compute any manipulation of variables.
This shows that combining variables, instead of simply moving them around, not only allows for
memoryless programs, but also yields shorter programs. Second, we show that allowing programs
to use memory is also incorporated in the memoryless computation framework. We then quantify
the gains obtained by using memory: this leads to shorter programs and allows us to use only
binary instructions, which is not sufficient in general when no memory is used.

1 Introduction

How do you swap the contents of two Boolean variables x and y by updating one variable at a time?
The common approach is to use a buffer t, and to do as follows (using pseudo-code).

t← x

x← y

y ← t.

However, a famous programmer’s trick consists in using XOR, which can be viewed as addition over
a binary vector space:

x← x+ y

y ← x+ y

x← x+ y.

The swap can thus be performed without any buffer. The aim is to generalise this idea to compute
any possible function without additional memory.

Memoryless computation (MC)–referred to as closed iterative calculus in [4] and in situ programs
or computation with no memory in [7]–is a modern paradigm for computing functions, which offers
two main innovations. The first introduces a completely different view on how to compute functions.
The basic example is the XOR swap described above. Unlike traditional computing, which views the
registers as “black boxes,” MC takes advantage of the nature of the information contained in those
registers and combines the values of the different registers. Thus, it can be seen as the computing
analogue of Network Coding, a revolutionary technique to transmit data through a network which lets
the intermediate nodes combine the messages they receive [24]. In particular, the XOR swap is the
analogue of the canonical example of Network Coding, the so-called butterfly network [1].
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The second main innovation lies in the computational model used for MC, which can be briefly
described as follows. A processing unit has n registers x1, . . . , xn containing data over a finite alphabet
A and has to compute a function f : An → An which possibly modifies the values of all registers. It
is allowed any updates which only modify one register at a time (i.e., xi ← g(x1, . . . , xn) for some
g : An → A), which are called instructions. A sequence of instructions computing a given function
is a program for that function. Because an instruction is viewed as a quantum of complexity (akin
to a clock cycle), the (memoryless) complexity of a function is defined as the minimum length of a
program computing that function. For instance, the complexity of the swap of two bits is equal to
three instructions.

Although MC is still mainly treated from a theoretical point of view, it has a wide range of
possible long term applications, especially for computationally expensive problems. It can already
be show to offer several advantages over traditional computing. First, MC offers a computational
speed-up at the core level. Indeed, MC yields arbitrarily shorter programs than traditional computing
when manipulating variables (see Corollary 2 for more details). Secondly, MC does not rely on
additional buffers and hence performs computations in line. Memory management is a tedious task
which can significantly slow down computations [20] by bringing a significant overhead. This problem
is particularly important for parallel architectures with shared memory [20]. Instead, MC uses no data
memory and thus eases concurrent execution of different tasks by preventing memory conflicts.

While the XOR swap described above is folklore, MC was developed by Burckel et. al. in [4,
5, 8, 9, 10, 6] and more extensively in [7]. It is notably proved that any function can be computed
without memory. Moreover, only 2n − 1 instructions are needed to compute any bijective function
f : An → An; any function f : An → An can be computed in only 4n − 3 instructions. A survey of
these results and a striking relation between MC and switching networks [21] and provided in [7].

We would like to emphasize the novelty of the results of this paper and how they differ from those
in the literature. Firstly, many aspects considered in this paper are completely novel. These include
the study of the average memoryless complexity in Sections 3.1 and 3.3, the study of manipulations of
variables in Section 4, the use of binary instructions in Theorem 6 and the use of additional registers
in Section 5. Moreover, some of the results presented in this paper extend or generalise some of those
given in the literature. For instance, by extending a key lemma in [7], we manage to extend the
flexible approach to constructing programs of length 4n− 3 introduced in [6] and [7, Section 5] for the
Boolean case to any alphabet, thus answering part of Open problem 2 in [7]. Other results provide
some matching upper and lower bounds which are absent in the literature, e.g. in Theorem 2. Finally,
we also provide an alternative and much shorter proof to the seminal Theorem 1, which states that
any function can be computed without memory.

The rest of the paper is organised as follows. Section 2 reviews the memoryless computation
model and proves that it is universal: any function can be computed without memory. Section 3
then investigates the number of updates required to compute any function. Section 4 determines
the complexity of manipulating variables without memory and shows that memoryless computation
yields shorter programs than traditional methods. Section 5 finally proves that additional registers
(or memory) can be added into the memoryless computation model without loss of generality.

2 Model for memoryless computation

2.1 Instructions and programs

We first review the model for memoryless computation introduced in [4] and subsequently developed
in [5, 8, 9, 10, 6, 7] and surveyed in [7].

Let A be a finite set, referred to as the alphabet, of cardinality q and let n be a positive integer
(without loss, we shall usually regard A as Zq or GF(q) when q is a prime power). We refer to any
element of An as a state. We view any transformation f of An (i.e., any function f : An → An) as a
tuple of functions f = (f1, . . . , fn), where fi : An → A is referred to as the i-th coordinate function
of f . In particular, a coordinate function is trivial if it is equal to the identity, i.e. fi(x) = xi; it is
nontrivial otherwise. When considering a sequence of transformations, we shall use superscripts, e.g.
fk : An → An for all k–and hence fk shall never mean taking f to the power k.
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Definition 1 (Instruction). An instruction is a transformation g of An with at most one non-
trivial coordinate function gi. If g is not the identity, we say that the instruction updates yi for
y = (y1, . . . , yn) ∈ An and we denote it as

yi ← gi(y).

A permutation instruction is an instruction which maps An bijectively onto An (i.e. is a permutation
of An).

By definition, the identity is an instruction, which can be represented by yi ← yi for any 1 ≤ i ≤ n.
We denote the set of instructions of An as Ī(An) and the set of permutation instructions as I(An).

We shall simply write Ī and I when there is no ambiguity. For instance, if A = GF(2) and n = 2,
then I is given by

{(x1, x2), (x1 + 1, x2), (x1 + x2, x2), (x1 + x2 + 1, x2), (x1, x2 + 1), (x1, x1 + x2), (x1, x1 + x2 + 1)}.

In update form, I can be written as follows:

{y1 ← y1, y1 ← y1 + 1, y1 ← y1 + y2, y1 ← y1 + y2 + 1,
y2 ← y2, y2 ← y2 + 1, y2 ← y1 + y2, y2 ← y1 + y2 + 1},

where the identity is represented by y1 ← y1 and y2 ← y2.

Definition 2 (Program). For any transformation f of An, a program of length L computing f is a
sequence of instructions g1, . . . , gL such that

f = gL ◦ . . . ◦ g1.

We shall write the instructions of a program in their update form one below the other. Although
the identity is an instruction, any instruction in a program is not the identity unless specified otherwise.
Also, since the set of instructions updating a given coordinate is closed under composition, without
loss we can always assume that gk+1 updates a different coordinate than gk for all k. The cases where
q = 1 or n = 1 being trivial, we shall assume q ≥ 2 and n ≥ 2 henceforth.

We consider a processing unit which has access to a finite number n of registers and only allows
programs of the form described above. We use y = (y1, . . . , yn) to represent the state, i.e. content of the
registers, during the program, x = (x1, . . . , xn) to represent the input and f(x) = (f1(x), . . . , fn(x)) to
represent the output. Hence y = x before the first instruction, and y = f(x) after the last instruction.
Note that we will also use the shorthand notation yi ← h(x) to reflect how the content of the registers
relates with the program input. In particular, note that the last update of yi must be yi ← fi(x).

In order to illustrate the notation, let us rewrite the program computing the swap of two variables,
i.e. f : A2 → A2 where f(x1, x2) = (x2, x1). It is given as follows (all operations being done mod q):

y1 ← y1 + y2 (y1 ← x1 + x2)

y2 ← y1 − y2 (y2 ← x1)

y1 ← y1 − y2 (y1 ← x2).

Definition 3. Let B,C be two alphabets and f, g : B → C. We say g dominates f if g(x) = g(x′)⇒
f(x) = f(x′) for all x, x′ ∈ B. In other words, f = h ◦ g for some transformation h.

A program for f with instructions g1, . . . , gL induces a sequence of transformations h1, . . . , hL = f
of An where h1 is an instruction, hi and hi+1 differ in only one coordinate, and hi dominates hi+1

for all i. Indeed, simply let hi+1 = gi+1 ◦ hi; equivalently hi represents the content of y after the i-th
instruction of the program. In particular, if f is a permutation, then all intermediate transformations
must be permutations as well.

We remark that this framework only allows to compute one function. However, it may be fair to ask
the program to sequentially compute different functions. This can be incorporated in this framework
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if all the outputs are permutations. However, the case of general transformations is more troublesome:
for instance, if we ask to return f1(x1, x2) = (x1, x1 + 1) and then f2(x1, x2) = (x2, x2 + 1), then
it is clear that f2 cannot be computed after f1. In general, a program can sequentially compute
f1, . . . , fK only if f i dominates f i+1 for all 1 ≤ i ≤ K−1 (the results in this paper will show that this
is necessary and sufficient). Therefore, this program can be broken down into K shorter programs,
each computing one function. In view of these considerations, we shall only consider programs which
compute one transformation f in the remaining of this paper.

2.2 All transformations are computable without memory

We are now interested in the general case of computing any transformation of n variables. We first
give in Theorem 1 a new, more concise, proof of the seminal result of memoryless computation:
any transformation can be computed without memory, a result from [4]. This proof notably unveils
relations with combinatorics (via the Gray code) and above all algebra (via generating sets) which will
be crucial in the development of further research in the subsequent papers in memoryless computation
by Cameron, Fairbairn and Gadouleau [11, 12].

We introduce some useful notation for any states u, v ∈ An. First, the transposition of u and v,
denoted as (u, v), is the permutation of An which maps u to v, v to u, and fixes any other state in
An. Second, the assignment of u to v, denoted as (u → v), is the transformation which maps u to v
and fixes any other state in An. Third, we denote the all-zero state as e0 and the k-th unit state as
ek ∈ An, where eki = δ(i, k) and δ is the Kronecker delta function. Therefore, if v = u+ ei for some i,
the transposition (u, v) is an instruction with update form

yi ← yi + δ(y, u)− δ(y, v),

Moreover, the assignment (e0 → e1) is an instruction with update form

y1 ← y1 + δ(y, e0).

Theorem 1 (see [4]). Any transformation of An can be computed by a program which only consists
of transpositions (u, v) where v = u+ ei for some i and the assignment (e0 → e1).

Proof. If we order the states of An according to the Gray code in [19], then any two consecutive states
vj and vj+1 satisfy vj+1 = vj ± eij for some ij . The transpositions above are exactly the Coxeter
generators {(vj , vj+1) : 1 ≤ j ≤ qn − 1} corresponding to this ordering. Therefore, any permutation
of An can be computed using these instructions. Furthermore, adding any transformation with qn− 1
images to a generating set of Sym(An) yields a generating set of the transformation monoid of An [17,
Theorem 3.1.3]. Since the assignment (e0 → e1) is an instruction with qn − 1 images, we obtain the
result.

3 Memoryless complexity

Definition 4 (Memoryless complexity). The shortest length of a program computing a transformation
f of An is referred to as the memoryless complexity of f and is denoted as L(f). By convention, the
identity has memoryless complexity 0.

We have L(f ◦ g) ≤ L(f) + L(g) for any two transformations f and g. Furthermore, if f is a
permutation, then it is easy to show that L(f−1) = L(f). We then obtain that

d(f, g) := L(f ◦ g−1)

defines a metric on the symmetric group of An, which is the word metric, with generators given by all
the permutation instructions.

We believe that memoryless computation is an interesting model to evaluate the true complexity of
computations operated on cores. Indeed, such computations mostly involve manipulations of registers.
Also, the only accurate measure of complexity would be the time it takes for a processor to perform
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that computation. Because each instruction is counted equal, regardless its nature, the memoryless
complexity model only takes the number of clock cycles it takes to compute a given function. Obviously,
the model remains theoretical for it allows any possible update; the search for efficient instruction sets
is work in progress.

An intriguing relation between memoryless computation and multistage interconnection networks
[21] was discovered in [6] and developed in [7]. Remarkably, [7] shows that the 2n− 1 upper bound on
the maximum complexity of permutation is equivalent to a result in [2], while the 4n− 3 upper bound
on the complexity of any transformation is equivalent to a result in [23].

3.1 Memoryless complexity of permutations

In this section we first determine the maximum memoryless complexity of a permutation of An. It
is remarkable that the permutation which maximises the memoryless complexity is very “simple” to
describe (see Proposition 1); this highlights the difference between memoryless complexity and other
complexity measures.

Theorem 2. The maximum memoryless complexity of a permutation of An is 2n− 1 instructions.

Proof. The fact that any permutation can be computed in 2n − 1 instructions was already given in
[6]. The matching lower bound on the memoryless complexity is given in Proposition 1 below.

Proposition 1. The memoryless complexity of the transposition (a, b) of two states a, b ∈ An is 2d−1
instructions, where d is the Hamming distance between a and b: d = |{i : ai 6= bi}|.

Proof. Without loss, let a and b disagree on their d first coordinates. Denoting

vk = (b1, . . . , bk, ak+1, . . . , an)

for 1 ≤ k ≤ d, we obtain

(a, b) = (a, v1) ◦ · · · ◦ (vd−2, vd−1) ◦ (vd−1, b) ◦ · · · ◦ (v1, v2) ◦ (a, v1).

Each transposition involves states differing in at most one position, and hence is an instruction. For
instance, (a, v1) is the instruction

y1 ← y1 + (b1 − a1)
(
δ(y, a)− δ(y, v1)

)
.

Therefore, the memoryless complexity is at most 2d− 1 instructions.
Conversely, suppose that there exists a program computing (a, b) with fewer than 2d− 1 instruc-

tions. In that program, at least two coordinates are only updated once (say i before j). Denote the
images of a and b before the update of yj as a′ and b′, respectively. Note that a′i = bi and b′i = ai,
since yi will not be updated any further. The update of yj is given by

yj ← yj + (bj − aj)(δ(y, a′)− δ(y, b′)),

since coordinate j cannot be modified for any program input other than a or b, and it must indeed
give the correct values for these two inputs. However, this update is not bijective, for a′ and b′ differ
in coordinate i.

We can represent a program for any permutation of An as progressing around the Cayley graph
of Sym(An) with generating set I: Cay(Sym(An), I) [18]. The set of permutation instructions I ⊆
Sym(An) is described as follows. We remark that the set of permutation instructions updating a given
coordinate forms a group, isomorphic to Sym(A)q

n−1
.

Lemma 1. For any alphabet A of cardinality q and any n, we have |Ī| = nqq
n − n+ 1 and

|I| = n(q!)q
n−1 − n+ 1.
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Proof. The number of instructions is easy: there are qq
n

choices for a function An → A, and the
identity is counted n times. For any v ∈ An−1 and any 1 ≤ i ≤ n, let

A(v, i) = {u ∈ An : (u1, . . . , ui−1, ui+1, . . . , un) = v}.

Let g be the instruction yi ← gi(y). Then g is a permutation if and only if gi : An → A satisfies
gi(A(v, i)) = A for all v ∈ An−1. There are hence q! choices for the reduction of gi to each A(v, i),
and hence (q!)q

n−1
choices for a permutation instruction updating yi. We obtain n(q!)q

n−1
possible

instructions, where the identity has been counted n times, whence the result follows.

We have determined the maximum memoryless complexity in Theorem 2. We are now interested
in the average complexity. Proposition 2 gives a lower bound on that quantity.

Proposition 2. The proportion of permutations of An with memoryless complexity at least⌊
n log q − 1

q−1 log q! + q−n log n

⌋
+ 1

tends to 1 when n tends to infinity, where q = |A|.

Proof. Any transformation with memoryless complexity l can be expressed as a program of l instruc-
tions. Therefore, the number of permutations with memoryless complexity at most l is no more than
the number of l-tuples of permutation instructions, given by |I|l. By Lemma 1, we have

|I| ≤ n(q!)q
n−1

= exp(log n+ qn−1 log q!),

|Sym(An)| = qn! ≥
√

2πqnqnq
n

exp(−qn) =
√

2πqn exp(qn(n log q − 1)).

Denoting B = n log q−1
q−1 log q!+q−n logn

we obtain |Sym(An)| ≥
√

2πqn|I|B and hence the proportion of

permutations with memoryless complexity at most bBc is upper bounded by (2πqn)−1/2.

In particular, Proposition 2 shows that for n large, almost all permutations of GF(2)n have com-
putational complexity at least 2n − 2. Therefore, they are very close to the maximum of 2n − 1.
However, the bound in Proposition 2 decreases with q.

3.2 Complexity and ordered functions

We now show how the problem of determining the memoryless complexity of a given permutation can
be reduced to the case of so-called ordered permutations for nearly all permutations.

Definition 5 (Ordered function). Let A and An be ordered (say, using the lexicographic order). For
any function fi : An → A and any a ∈ A, we denote the minimum element of f−1i (a) as m(a). We say
fi is ordered if m(0) ≤ m(1) ≤ . . . ≤ m(q − 1).

Any function fi : An → A can be uniquely expressed as fi = σi ◦ f∗i where σi ∈ Sym(A) and f∗i is
ordered. In this case, we say that fi is parallel to f∗i [13].

By extension, we say that f is ordered if all its coordinate functions are ordered. Therefore, to
any permutation f , we associate the ordered permutation f∗ where fi = σi ◦ f∗i for some σ1, . . . , σn ∈
Sym(A).

Proposition 3. There exists a shortest program computing f∗ using only ordered instructions. Fur-
thermore, its length satisfies

L(f∗) ≤ L(f) ≤ L(f∗) + T (f),

where T (f) is the number of nearly trivial (parallel to the trivial coordinate function) coordinate func-
tions of f :

T (f) = |{i : f∗i = xi, fi 6= xi}|.
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Proof. We first prove that there exists a shortest program computing f∗ using only ordered instruc-
tions. Let f∗ = gL ◦ . . . g1 be a shortest program computing f∗. We can easily convert it to another
program hL ◦ . . . ◦ h1 also computing f∗ using only ordered instructions as follows. First let h1 = g1∗.
Then before gj , we can express the content of the i-th cell as yi = ρi ◦ y∗i for all 1 ≤ i ≤ n. Replace

the instruction yi ← gji (y) by

yi ← hji (y) = τgji (ρ1 ◦ y1, . . . , ρn ◦ yn),

where τ ∈ Sym(A) guarantees that the instruction hj is indeed ordered. It is easy to check that
converting all instructions in this fashion does yield a program computing f∗.

We now prove that L(f∗) ≤ L(f). Consider a shortest program gL◦. . .◦g1 computing f and convert
it as follows to compute f∗. First, replace any final update yi ← fi(x) by yi ← σ−1i ◦ fi(x) = f∗i (x).
Second, after this final update, replace any occurrence of yi by σiyi.

We finally prove that L(f) ≤ L(f∗)+T (f). Consider a shortest program hL ◦ . . .◦h1 computing f∗

(note that it may or may not update any of the coordinates yi for which fi is nearly trivial) and convert
it as follows to compute f . First, replace any final update yi ← f∗i (x) by yi ← σi ◦ f∗i (x) = fi(x).
Second, after this final update, replace any occurrence of yi by σ−1i yi. Third, update the eventual nearly
trivial coordinate functions which have not been updated yet (there are at most T (f) of them).

3.3 Program computing linear transformations

We are now concerned with the case where q is a prime power and the inputs x1, . . . , xn are elements
of a finite field A = GF(q), and we want to compute a linear transformation f of An, i.e.

f(x) = xM>

for some matrix M ∈ An×n. Each coordinate function fi of f can be viewed as the inner product of a
row of M with the input vector x. Therefore, we shall abuse notations slightly and refer to that row
as fi: fi(x) = fi · x. In this section, we restrict ourselves to linear instructions only, i.e. instructions
of the form

yi ← a · y =
n∑
j=1

ajyj ,

for some a = (a1, . . . , an) ∈ An.
Computing f is equivalent to calculating the matrix M as a product of matrices M = M1 . . .ML,

where Mi is a matrix which only modifies one row. If M is nonsingular, this is also equivalent to a
sequence of matrices N0 = In, N1, . . . , NL−1, NL = M where Ni is nonsingular and Ni and Ni+1 only
differ by one row for all i.

Gaussian elimination indicates that any matrix can be computed by linear instructions involving
only two rows. The number of such instructions required to compute any matrix is on the order of n2.
However, since we allow any linear instruction involving all n rows, we can obtain shorter programs.
In [6, 7], it is proved that all matrices can be computed in 2n − 1 linear instructions; in fact, their
result holds not only for finite fields but for a much larger class of rings. In [12], the bound is lowered
to b3n/2c for matrices over finite fields only; Corollary 1 gives a matching upper bound.

Let us characterise the set M(GF(q)n) of invertible linear instructions. It is given by the set of
nonsingular matrices with at most one nontrivial row: M = {S(i, v) : 1 ≤ i ≤ n, v ∈ An(i)}, where

An(i) = {v ∈ An, vi 6= 0} for all 1 ≤ i ≤ n,

S(i, v) =

 Ii−1 0

v

0 In−i

 ∈ An×n.
Remark that S(i, v)−1 = S(i,−v−1i v) for all i, v and |M| = nqn−1(q − 1) − n + 1. Computing a non-
singular matrix is hence equivalent to progressing around the Cayley graph G := Cay(GL(n, q),M).

The following are equivalent:
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1. M and N are adjacent in G.

2. M = S(i, v)N and N = S(i,−v−1i v)M for some i and v ∈ An(i).

3. M and N only differ in one row.

Therefore, G is the subgraph of the Hamming graph H(n, qn) induced by GL(n, q).
When the field A is large, then almost all n×n matrices can be computed in no more than n linear

instructions. The result below should be compared to the average memoryless complexity result of
Proposition 2.

Proposition 4. There are exactly

(q − 1)nqn(n−1) =

(
1− 1

q

)n
qn

2

n × n nonsingular matrices over GF(q) which can be computed simply by updating their rows from 1
to n in increasing order.

Proof. Let us count such matrices M with rows fi. After the first instruction, we obtain the matrix
whose first row is equal to f1, while the last n−1 rows do not depend on the matrix we are computing
and are equal to (0|In−1). Then f1 can be chosen as any vector not in the span of the last n− 1 rows:
there are hence (q− 1)qn−1 choices for f1. Once f1 is fixed, similarly there are (q− 1)qn−1 choices for
f2, and so on.

Similar to the general case, we can reduce the problem of determining the complexity of nearly any
nonsingular matrix to the case of so-called scaled matrices. Note that this concept is not necessarily
consistent with the concept of ordered permutations; however, it can be viewed as an analogue. For
any matrix M , we denote the minimum length of a linear program computing this matrix as L′(M).

Definition 6. A nonzero vector whose leading nonzero coefficient is equal to 1 is said to be scaled. A
nonsingular matrix is scaled if all its rows are scaled.

For instance, the identity matrix is the only scaled diagonal matrix. For any nonzero vector v ∈
GF(q)n with leading nonzero coordinate vj , then v∗ := v−1j v∗ is a scaled vector. For any nonsingular
matrix M with rows fi, let M∗ be the corresponding scaled matrix with rows f∗i . We obtain the linear
analogue of Proposition 3.

Proposition 5. There exists a shortest linear program computing M∗ with only scaled instructions.
Its length satisfies

L′(M∗) ≤ L′(M) ≤ L′(M∗) + T ′(M),

where T ′(M) is the number of nearly trivial (equal to multiples of the corresponding unit vectors) rows
of M :

T ′(M) = |{i : fi = µie
i, µi ∈ GF(q)\{0, 1}}| = |{i : fi 6= ei, f∗i = ei}|.

3.4 Memoryless complexity of all transformations

We have seen that any permutation of An can be computed in 2n − 1 memoryless instructions.
Moreover, any transformation can be computed in 4n− 3 memoryless instructions. This a result first
given in [6] for the Boolean case and then generalised to any alphabet in [7]. However, as noted in [7],
this result can already be found in much earlier networks literature; [7] offers an explicit construction
of the program computing any transformation in 4n− 3 instructions. In this section, we generalise a
key lemma of [7] to answer part of Open Problem 2 in [7]; the rest of our proof follows exactly that of
[6] for the Boolean case (also given in [7, Section 5]) and is only given to make the paper self-contained.

It is worth noting that although the 2n− 1 bound for permutations is tight, the 4n− 3 bound for
general transformations is not: it is easy to check that for q = 2 and n = 2, any transformation of
{0, 1}2 can be computed in at most three instructions.
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Definition 7 (Lexicographic ordering). For any a = (a1, . . . , an) ∈ An (A = Zq), the lexicographic
index of a is the integer

∑n
i=1 aiq

i−1. For the sake of conciseness, we shall abuse notation and identify
a with its lexicographic index. An interval of An is any subset of the form

[b, c) := {x ∈ An : b ≤ x < c}

for any 0 ≤ b ≤ c ≤ qn− 1. For any 0 ≤ i ≤ n and 0 ≤ j < qn−i, the j-th block of level i is the interval

Bi,j := [jqi, (j + 1)qi).

We let λ be an integer partition of qn, i.e. λ : An → Z, where λa ≥ 0 for all a ∈ An and∑
a∈An λa = qn.

Definition 8 (Extension of Definition 16 in [7]). We say λ is proper if for all 0 ≤ i ≤ n and all
0 ≤ j < qn−i, ∑

a∈Bi,j

λa = 0 mod qi.

Lemma 2. [Generalisation of [7, Lemma 17]] Any integer partition λ of qn can be sorted properly,
i.e. there exists h ∈ Sym(An) such that λ ◦ h is proper.

Proof. We first prove the following claim. Any sequence of rq elements a0, . . . , arq−1 of Zq satisfying
a0 + . . .+ arq−1 = 0 can be re-ordered such that

a0 + . . .+ aq−1 = aq + . . .+ a2q−1 = . . . = a(r−1)q + . . .+ arq−1 = 0.

The proof easily follows from the following theorem due to Erdös, Ginzburg and Ziv [16]: any sequence
b0, . . . , b2q−2 of 2q − 1 elements of Zq can be re-ordered such that b0 + . . .+ bq−1 = 0.

We now build the ordering recursively (we shall follow the construction in [6]). Begin at level
i = 0 with qn blocks of size 1 having each value in the sequence λ0, . . . , λqn−1. At level i + 1, gather
the elements of the sequence into groups of q elements, whose values sum up to a multiple of q (this
is possible due to our claim), say kq. Define the value of this new block as k. This defines a new
sequence of qn−i−1 non-negative integers whose sum is qn−i. We finish at level n.

Example 1 (Illustration of Lemma 2). Let q = n = 3 and λ = (5, 4, 4, 3, 3, 2, 2, 1, 1, 1, 1, 0, . . . , 0) with
16 zeros. We obtain the following, where the subscripts denote the value of the block in the next level:

[5, 4, 3]4[4, 3, 2]3[2, 1, 0]1[1, 1, 1]1[0, 0, 0]0[0, 0, 0]0[0, 0, 0]0[0, 0, 0]0[0, 0, 0]0

[4, 1, 1]2[3, 0, 0]1[0, 0, 0]0

[2, 1, 0]1

Therefore, the corresponding proper partition is (5, 4, 3, 2, 1, 0, 1, 1, 1, 4, 3, 2, 0, . . . , 0) with 15 zeros at
the end.

Now that we have the key arithmetic property of Lemma 2, the rest of the proof follows [6]. It is
given here in detail in order to make the paper complete and self-contained.

Definition 9. For any proper integer partition λ of qn, Λ is the transformation of An such that

Λ

([
a−1∑
b=0

λb,

a∑
b=0

λb

))
= a

for all a ∈ An.

Lemma 3. [Extension of [7, Lemma 21]] For any proper λ, the transformation Λ satisfies the following
property: if a, b ∈ An agree on coordinates i to n for some i, then so do Λ(a) and Λ(b).
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Proof. First, we prove the following claim. For every i, j as above, there exist 0 ≤ k, k′ < qn−i such
that Λ−1(Bi,j) =

⋃
k≤l≤k′ Bi,l.

Proof of claim: We remark that the pre-image by p of an interval is an interval itself. By definition
of Λ, we have

|Λ−1(Bi,j)| =
∑
a∈Bi,j

λa = 0 mod qi,

since λ is proper.
For a fixed i we prove the claim by induction on j. If j = 0 then |Λ−1(Bi,0)| = kqi for some k: it

is either empty or is the interval [0, kqi) =
⋃

0≤l≤k Bi,l.

If the property is true for all l with 0 ≤ l < j, then Λ−1(
⋃

0≤l<j Bi,l) =
⋃

0≤l≤k′ Bi,l for some k′.

Again, since |Λ−1(Bi,j)| = kqi for some k, we have Λ−1(Bi,j) =
⋃
k′<l≤k+k′ Bi,l.

We now prove the lemma itself. Suppose a, b ∈ An satisfy (ai, . . . , an) = (bi, . . . , bn), then a, b ∈
Bi−1,j where j =

∑n
l=i al. By our claim, Λ(Bi−1,j) is an interval contained in a block Bi−1,k for some

k. Hence Λ(a)l = Λ(b)l for all l ≥ i.

Lemma 4. [Extension of [7, Proposition 23]] Let f be a permutation of An which can be computed
as a product of n instructions updating y1 to yn. Then for any proper integer partition λ of qn, the
transformation g = f ◦ Λ can also be computed as a product of n instructions updating y1 to yn.

Proof. Let f = fn◦· · ·◦f1, where f i is an instruction updating yi for all i. Let gi be the transformation
obtained after the instructions ym ← gm(y) for m from 1 to i; we have

gi(x) = (g1(x), . . . , gi(x), xi+1, . . . , xn).

Then we only need to prove that for all 1 ≤ i ≤ n− 1 and all a ≥ b ∈ An, gi(a) = gi(b)⇒ g(a) = g(b).
For any m ≤ i, we have gim = gm = (f ◦ Λ)m = fm ◦ p. Therefore, gi(a) = gi(b) if and only if

fm(Λ(a)) = fm(Λ(b)) for all m ≤ i and al = bl for all l ≥ i+ 1. By Lemma 3, we obtain Λ(a)l = Λ(b)l
for all l ≥ i+ 1. Thus gi(a) = gi(b) implies h(Λ(a)) = h(Λ(b)), where

h(x) = (f i ◦ · · · ◦ f1)(x) = (f1(x), . . . , fi(x), xi+1, . . . , xn).

Since h is a permutation, we obtain Λ(a) = Λ(b) and hence g(a) = g(b).

We can now extend the particular method invented in [6] and [7, Section 5] to produce programs
for arbitrary transformations of {0, 1}n → {0, 1}n to the case of general, non-necessarily Boolean
alphabets. However, the result we obtain is not new, for it already appears in the switching network
literature (see [7] and references therein).

Theorem 3. [Extension of [7, Theorem 25]] Any transformation of An can be computed by a program
with at most 4n− 3 instructions.

Proof. Let f be a transformation of An and consider the integer partition µ of qn with µa = |f−1(a)|
for all a ∈ An. Sort µ properly: we obtain λa = |f−1(h(a))| for some permutation h of An. Then f
can be expressed as f = h ◦ Λ ◦ g, where g is a permutation of An satisfying

g(f−1(h(a))) =

[
a−1∑
b=0

λb,

a∑
b=0

λb

)
,

for all a ∈ An.
By Theorem 2, g and h can be computed as follows, where the superscript indicates which coor-

dinate is updated by each instruction:

g = ḡ1 ◦ · · · ◦ ḡn−1 ◦ gn ◦ · · · ◦ g1,
h = h̄1 ◦ · · · ◦ h̄n−1 ◦ hn ◦ · · · ◦ h1.

By Lemma 4, the transformation hn ◦ · · · ◦ h1 ◦ Λ can be computed in n instructions Λn ◦ · · · ◦ Λ1.
Furthermore, Λ1 and ḡ1 being instructions updating y1, their product q1 = Λ1◦ḡ1 is another instruction
updating y1. Thus, f can be computed by the following program of length 4n− 3:

f = h̄1 ◦ · · · ◦ h̄n−1 ◦ Λn ◦ · · · ◦ Λ2 ◦ q1 ◦ ḡ2 ◦ · · · ◦ ḡn−1 ◦ gn ◦ · · · ◦ g1.
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Figure 1: Representing a transformation via a graph.

4 Manipulating variables

We generalise the XOR swap by considering what we call manipulations of variables. We distinguish
between a transformation φ of [n] (where we denote [n] = {1, . . . , n}) which represents the formal
movement of variables and the transformation fφ of An it induces on all the possible values of the
variables. We remark that fφ ∈ Sym(An) if and only if φ ∈ Sym(n). We always use the postfix
notation for φ, i.e. the image of i under φ is denoted as iφ. For φ : [n] → [n], φk does represent the
k-th power of φ according to composition.

Definition 10. A manipulation of variables is a transformation fφ of An of the form

fφ(x1, . . . , xn) = (x1φ, . . . , xnφ)

for some transformation φ of [n].

The transformation φ can be represented using a directed graph on [n] with n arcs (i, iφ) (see [17]
for a detailed review of this representation of transformations). This directed graph has cycles of two
kinds:

• A cycle (i, iφ, . . . , iφk−1) (where iφk = i) is detached if for all 0 ≤ l ≤ k−1, there is no jl 6= iφl−1

such that jlφ = iφl. Equivalently, the cycle is an entire connected component of the graph.

• A cycle (i, iφ, . . . , iφk−1) is attached otherwise, i.e. if there exists 0 ≤ l ≤ k − 1 and j ∈ [n], j 6=
iφl−1 such that jφ = iφl.

Note that if φ is a permutation, then all its cycles are detached.
For instance, consider φ : [6] → [6] defined as 1φ = 2, 2φ = 3, 3φ = 1, 4φ = 2, 5φ = 6, 6φ = 5.

Then the cycle (1, 2, 3) is attached to 4, while the cycle (5, 6) is detached, as seen on Figure 1.
Let us first consider the case of a cyclic shift of variables. A similar result to Proposition 6 below

is given in [7].

Proposition 6. Let κ = (1, 2, . . . , n). Then the cyclic shift of n variables fκ : An → An can be com-
puted in n+1 instructions if and only if the order of updates (up to starting point) is y1, yn, . . . , y2, y1.

Proof. Let us prove that if the order is correct, then we can compute the cyclic shift. This is done via
the following program:

y1 ←
n∑
i=1

yi

yn ← y1 −
n∑
j=2

yj

...

y1 ← y1 −
n∑
j=2

yj .
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We prove the correctness of this program by induction: we claim that after the update of yn−i, all
variables yn, yn−1, . . . , yn−i have the correct values x1, xn, . . . , xn−i+1 for i from 0 to n− 1. For i = 0,
we have

yn ← y1 −
n∑
j=2

yj =

n∑
i=1

xi −
n∑
j=2

xj = x1.

Now suppose it holds for up to i− 1, we then have

yn−i ← y1 −
n−i∑
j=2

yj −
n∑

j=n−i+1

yj =
n∑
i=1

xi −
n−i∑
j=2

xj −
n∑

k=n−i+2

xk − x1 = xn−i+1.

We now prove the reverse implication. Consider a program computing the shift of variables with
n+1 instructions, and let y1 be updated first. Then, suppose yi is updated before yi+1. After yi ← xi+1,
the content of (yi, yi+1) is (xi+1, xi+1) and the resulting transformation is not a permutation. Thus,
for any 1 ≤ i ≤ n − 1, the update of yi must occur after that of yi+1 and the only possible order of
updates is y1, yn, . . . , y1.

We can then determine the memoryless complexity of any manipulation of variables. The case of
a permutation of variables is also given in [7] and [14].

Theorem 4. Let φ : [n] → [n] have F fixed points and D detached cycles. Then the memoryless
complexity of the manipulation of variables fφ : An → An is exactly

• n− F +D instructions if φ is a permutation;

• n− F + 1 instructions if φ is not a permutation and D > 0;

• n− F instructions otherwise.

Proof. Let us first suppose that φ is a permutation. Then computing one cycle after the other yields a
program of length n−F +D by Proposition 6. Conversely, assume that there is a program computing
fφ in fewer than n − F + D instructions. For this program there must be at least one cycle of φ
such that each coordinate in the cycle is updated only once; denote the first update for that cycle as
yi ← xiφ. Then after the update, we have yi = yiφ = xiφ and hence the resulting transformation is
not a permutation.

Let us now suppose that φ is not a permutation. Let m denote the number of variables which are
not fixed and do not belong to any cycle. The subgraph induced on these vertices is acyclic, hence
we can order them as a1, . . . , am such that ai = ajφ only if i > j [3]. The first part of the program
consists in updating all these vertices but the last in the correct order: for i from 1 to m− 1, do

yai ← yaiφ.

The second part is to perform the cycles by using yam as memory. Let {ic : 1 ≤ c ≤ C} denote a
member of each (detached or attached) cycle of length lc, then do the following instruction:

yam ←
C∑
c=1

yic .

Then for all c from 1 to C do

yic ← yicφ
...

yicφlc−2 ← yicφlc−2

yicφlc−1 ← yam −
c−1∑
b=1

yibφlb−1 −
C∑

b=c+1

yib .
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It can be easily proved by induction on c that this program does compute all cycles. Eventually, we
need the final update of yam . Note that amφ is either a fixed point or it belongs to a cycle; therefore
xamφ is contained in yamφL , where L = 0 if amφ is a fixed point and L = lc − 1 if it belongs to the
cycle c. Thus, the final update is given by

yam ← yamφL . (1)

Since yam is the only coordinate updated twice, this program has length n− F + 1.
We now simplify this program when φ has no detached cycles. This time, for i from 1 to m, do

yai ← yaiφ.

Then for all c from 1 to C, there exists αc ∈ {a1, . . . , am} such that αcφ = ic, therefore do

yic ← yicφ
...

yicφlc−2 ← yicφlc−2

yicφlc−1 ← yαc .

Since yam already contains xamφ, there is no need to include the final update in (1).
Conversely, it is clear that at least n − F instructions are needed to compute fφ. Furthermore,

assume D > 0 and that there is a program computing fφ in exactly n− F instructions. Let i in the
cycle c be the first coordinate belonging to a detached cycle to be updated. Then the program first
does yi ← xiφ and the value of xi is lost; therefore, the update yiφlc−1 ← xi cannot occur.

Theorem 4 indicates that disjoint cycles of a permutation cannot be computed “concurrently,” for
the shortest program which computes two cycles exactly consists of computing one before the other.

Corollary 1. If n = 2m, then computing m disjoint transpositions of variables (e.g. (1, 2) (3, 4)
· · · (2m − 1, 2m)) takes exactly 3m instructions. If n = 2m + 1, then computing m − 1 disjoint
transpositions and a cycle of length 3, (e.g. (1, 2)(3, 4) · · · (2m− 3, 2m− 2)(2m− 1, 2m, 2m+ 1)) takes
exactly 3m + 1 instructions. This is the maximum number of instructions for any manipulation of
variables.

In particular, if x1, . . . , xm2 are the entries of an m × m matrix over A, then transposing that
matrix takes exactly 3m(m− 1)/2 instructions.

Another consequence of Theorem 4 is that when φ is not a permutation, we can obtain shorter
programs by combining registers than by adopting the “black box” approach used for the swap of
two variables described in the very beginning of the paper. Figure 2 shows the smallest example:
computing fφ takes 6 instructions when using the program described in the proof of Theorem 4, while
it takes 7 instructions when we do not combine variables. Clearly, this example can be generalized by
adding more cycles, thus yielding an arbitrarily large gap between the two approaches. The results
are summarised in Proposition 7 and Corollary 2. We say an instruction is a black box instruction if
it is of the form yi ← yj for i, j ∈ [n].

Proposition 7. Let φ be a transformation of [n] with F fixed points and D detached cycles. Then the
manipulation of variables fφ can be computed without memory by black box instructions if and only if
φ is not a permutation (or is the identity). In that case, the shortest length of a black box program is
n− F +D.

Proof. The proof calls arguments similar to those used above; as such, we use the same notation. We
further enforce that the last D − C elements ai are attached to different cycles, i.e. am−D+C+c is
attached to the cycle c.

The following program computes fφ in n− F +D instructions. First, for i from 1 to m−D + C
do

yai ← yaiφ.
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(a) φ

With combinations Black box

y6 ← y1 + y3 (= x1 + x3) y6 ← y1 (= x1)
y1 ← y2 (= x2) y1 ← y2 (= x2)
y2 ← y6 − y3 (= x1) y2 ← y6 (= x1)
y3 ← y4 (= x4) y6 ← y3 (= x3)
y4 ← y6 − y2 (= x3) y3 ← y4 (= x4)
y6 ← y5 (= x5) y4 ← y6 (= x3)

y6 ← y5 (= x5)

(b) Programs for fφ

Figure 2: The simplest manipulation of variables using a shorter program with arithmetic

Second, compute all detached cycles using yam as memory. For the detached cycle {i, iφ, . . . , iφl−1},
do

yam ← yi

yi ← yiφ
...

yiφl−2 ← yiφl−1

yiφl−1 ← yam .

This uses one extra instruction per detached cycle, i.e. D extra instructions in total. Third, compute
all the attached cycles, using am−D−C+c as memory for the cycle c (similar as above). This does not
add any extra instruction.

It is clear that computing a detached cycle using instructions of the form yi ← yj requires using
another variable as memory, and hence an extra instruction. However, since this variable gets a value
from only one detached cycle, it cannot be re-used for the computation of any other detached cycle.
Thus, we need at least D extra instructions.

It is worth noting that the proof of Proposition 7 does not use the fact that we are computing
without memory. Therefore, the black-box computation will always take n − F + D instructions,
regardless of how much memory is used.

Corollary 2. If φ is not a permutation, then the ratio between the memoryless complexity of fφ over
the minimum length of a black box program computing fφ is always greater than 2/3. Conversely, for
any ε > 0, there exists φ for which that ratio is lower than 2/3 + ε.

Proof. It takes at least n − F instructions to compute fφ without memory, and exactly n − F + D
instructions to do it using black box instructions. Since n−F ≥ 2D, we easily obtain the lower bound
of 2/3.

Conversely, for any k ≥ 1, let n = 2k + 2 and φ : [n]→ [n] be defined as

φ = (1, 2) · · · (2k − 1, 2k)(2k + 2→ 2k + 1).

Then for any A, fφ can be computed in n instructions, but takes 3n/2 − 2 instructions of the form
yi ← yj .

5 Using additional registers

In this section, we consider the case of computing f a function of n registers, when n + m registers
are available to manipulate and the additional m registers can be updated as we wish. In order to
differentiate them, we shall refer to these additional registers as memory cells.

By convention, we shall denote the content of the m memory cells as yn+1, . . . , yn+m; we still
use y = (y1, . . . , yn). Then computing f using m memory cells is equivalent to computing some
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transformation h(x1, . . . , xn+m) of An+m such that the first n coordinate functions of h coincide with
those of f . Let us denote the set of such transformations as D(f,m). The shortest length of a program
computing f using m memory cells is hence given by

L(f |m) := min
h∈D(f,m)

L(h).

Therefore, there exists h such that L(h) = L(f |m) but it may be difficult to characterise that trans-
formation h. However, Proposition 8 shows that there is a deterministically (and easily) described
transformation h ∈ D(f,m) for which L(h) and L(f |m) are in bijection. Therefore, the memoryless
computation framework also considers the case of using memory.

Proposition 8. For any transformation f of An and any e = (e1, . . . , em) ∈ Am, let he ∈ D(f,m)
and hen+i = ei for 1 ≤ i ≤ m. Then

L(he) = L(f |m) +m.

Proof. Let g ∈ D(f,m) such that L(g) = L(f |m), then the shortest program computing g appended
with the suffix yn+i ← ei for i from 1 to m has length L(f |m) + m and computes he. Therefore,
L(he) ≤ L(f |m) +m.

Conversely, consider the shortest program computing he. It contains m final updates yn+i ← ei
which, without loss, appear for i from m down to 1. Then any instruction yj ← g(y) occurring after
yn+k ← ek (hence j ≤ n+ k − 1) can be replaced by yj ← g′(y1, . . . , yn+k−1) where g′ : An+k−1 → A
is defined as

g′(y1, . . . , yn+k−1) = g(y1, . . . , yn+k−1, ek, . . . , em).

Now remove all the yn+i ← ei updates; we are left with a program computing some transformation in
D(f,m) of length L(he)−m. Thus L(f |m) ≤ L(he)−m.

There is a linear analogue to Proposition 8. Namely, if M ∈ GF(q)n×n, let N ∈ GF(q)n+m×n =
(N, 0). Then it is easily shown that, when limiting ourselves to linear instructions, the memoryless
complexity of N is equal to m plus the minimum length of a program computing M with m memory
cells.

5.1 Shorter programs

We have shown in Theorem 1 that one need not use memory to compute any transformation. However,
we shall prove that one may want to use memory in order to use shorter programs.

We have shown in Theorem 2 that any permutation can be computed without memory in at most
2n − 1 instructions. On the other hand, using one memory cell necessarily yields a program with
length at least n+ 1. Propositions 1 and 9 show that these two results are simultaneously tight: there
exists a permutation f ∈ Sym(An) for which L(f) = 2n− 1 while L(f |1) = n+ 1.

Proposition 9. The transposition (a, b) of two states a, b ∈ An at Hamming distance d can be com-
puted with one memory cell in d+ 1 instructions: L((a, b)|1) = d+ 1.

Proof. Without loss, let a and b disagree on their first d coordinates. Then the following program
computes (a, b):

yn+1 ← δ(y, a)− δ(y, b)
y1 ← y1 + (b1 − a1)yn+1

...

yd ← yd + (bd − ad)yn+1.
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In Theorem 3, we have given an upper bound on the complexity of any transformation which only
depends on the number of variables. This upper bound is larger than 2n−1 obtained for permutations;
however, using memory cells yields a program using 2n− 1 instructions, as seen below.

Proposition 10. Any transformation f of An can be computed with n− 1 memory cells and no more
than 2n− 1 instructions: L(f |n− 1) ≤ 2n− 1.

Proof. The following program computes f using n− 1 memory cells and 2n− 1 instructions:

yn+1 ← y1
...

y2n−1 ← yn−1

y1 ← f1(yn+1, . . . , y2n−1, yn)

...

yn ← fn(yn+1, . . . , y2n−1, yn).

Proposition 10 indicates that we do not need any more than n− 1 memory cells. Indeed, if we use
n memory cells, then the program will have at least 2n instructions (unless some memory cells are not
updated, which is equivalent to not using them). Therefore, L(f |m) = L(f |n− 1) for any m ≥ n− 1.

We remark that this upper bound on the amount of memory needed follows from the fact that we
allow any instruction. In practice, using a large amount of memory is the price paid for using only a
restricted number of basic instructions.

The ideas behind [6, Theorem 3.1] (i.e. any permutation has memoryless complexity at most 2n−1)
can be adapted to the case of using memory to yield a refinement of Proposition 10 for permutations.

Theorem 5. If n = 2m is even, then any permutation of An can be computed in at most 3m instruc-
tions with m memory cells. If n = 2m+ 1 is odd, then any permutation of Am can be computed in at
most 3m+ 3 instructions with m+ 2 memory cells.

Proof. The main tool of the proof of [6, Theorem 3.1] is that for any two functions f, g : B×C → B such
that the pre-image of each element of B has cardinality |C| under f or g, there exists h : B ×C → C
such that (f, h), (g, h) : B × C → B × C are bother permutations of B → C.

Suppose n = 2m and let f ∈ Sym(An). By the result above, there exist m functions g1, . . . , gm :
An → A such that

(f1, . . . , fm, g1, . . . , gm) and (xm+1, . . . , xn, g1, . . . , gm)

both form permutations of An. The program goes as follows:

• Step 1 (m instructions). For i from 1 to m, do yn+i ← gi(x).

• Step 2 (m instructions). For i from 1 to m, do yi ← fi(x). This is possible since

(xm+1, . . . , xn, g1, . . . , gm)

form a permutation of An, and hence fi(x) can be expressed as a function of

(ym+1, . . . , yn, yn+1, . . . , yn+m).

• Step 3 (m instructions). For i from m + 1 to n, do yi ← fi(x). This is possible since
(f1, . . . , fm, g1, . . . , gm) form a permutation of An, and hence fi(x) can be expressed as a function
of (y1, . . . , ym, yn+1, . . . , yn+m).
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Now let n = 2m + 1 be odd. Then add one memory cell and consider the extended permutation
g ∈ D(f, 1) such that g2m+2(x) = x2m+2. Then g can be computed in 3m+ 3 instructions and m+ 1
memory cells.

Therefore, we do not want more than around n/2 memory cells to compute any permutation;
adding any more would be superfluous. There is a linear analogue to Theorem 5.

Proposition 11. If n = 2m is even, then any linear permutation of An can be computed in at most
3m linear instructions with m memory cells. If n = 2m+ 1 is odd, then any linear permutation of An

can be computed in at most 3m+ 3 linear instructions with m+ 2 memory cells.

Proof. Suppose n = 2m. Let f(x) = xM> and denote the first m rows of M as M1 and the matrix
J = (0|Im) ∈ Am×n. We claim that there exists a matrix N ∈ Am×n such that (M>1 , N

>) and
(J>, N>), both in An×n, are nonsingular. Then the algorithm simply places N in the memory, then
replaces the first m rows by M1, and finally updates the last m rows to those of M .

We now justify our claim. This is equivalent to showing that for any two subspaces in the Grass-
mannian G(q, 2m,m) of m-dimensional subspaces of GF(q)2m, there exists a third subspace in the
same Grassmannian at subspace distance 2m from both [22] (where the subspace distance between
U, V ∈ G(q, 2m,m) is given by 2 dim(U + V ) − 2m). Since the Grassmannian endowed with the
subspace distance forms an association scheme [15], we only have to check for the row space of J and
one subspace at distance 2d for each 0 ≤ d ≤ m. Let us then assume M1 = (0m−d|Im|0d) whose row
space is at subspace distance 2d from that of J . Then it is easily checked that the row space of

N =

(
Im 0d

0m−d
Im−d

)
is at distance 2m from the row spaces of M1 and J .

The case n = 2m+ 1 is settled by considering M ′ ∈ An+1×n+1 given by

M ′ =

(
M 0

0 1

)
.

For manipulations of variables, we can completely determine the gain offered by using memory. In
particular, using only one memory cell is optimal to compute any manipulation of variables.

Proposition 12. Any manipulation of n variables with F fixed points can be computed with one
memory cell in at most n− F + 1 instructions.

Proof. By Theorem 4, we only need to prove the case where φ is a permutation of [n]. Let π be the
transformation of [n+ 1] defined as iπ = iφ for all i ∈ [n] and (n+ 1)π = 1. Then by Theorem 4, we
can compute fπ in n−F + 2 instructions, where the last instruction updates yn+1. By removing that
last instruction, we compute fφ in n− F + 1 instructions while using one memory cell yn+1.

By comparing with Theorem 4, we see that using only one memory cell reduces the length of the
program from n − F + D to n − F + 1 for permutations. In particular, for a disjoint product of m
transpositions, the complexity goes down from 3m to only 2m+ 1.

Example 2. Let π = (1, 2)(3, 4) ∈ Sym([4]) and let fπ : A4 → A4 be the corresponding permutation
of variables. By Corollary 1, two disjoint transpositions of variables must be computed in at least 6
instructions when no memory is used. However, adjoining one memory cell y5 leads to a program with
only 5 instructions, as seen below.

y5 ← y1 + y3 (y5 = x1 + x3)
y1 ← y2 (y1 = x2)
y2 ← y5 − y3 (y2 = x1)
y3 ← y4 (y3 = x4)
y4 ← y5 − y2 (y4 = x3)
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5.2 Binary instructions

Since the number of instructions |Ī| is very large (see Lemma 1), one may want to use only a subset
of instructions to compute any transformation. A natural choice is that of binary instructions, since
any function can be computed as a composition of binary operations.

Definition 11. An instruction yi ← gi(y) is binary if g only involves at most two variables: gi(y) =
gi(yj , yk) for some j, k ∈ [n].

Using binary instructions is not sufficient when computing without memory; however, it is sufficient
when only one memory cell is used.

Theorem 6. If A = GF(2), then the set of all permutations of An which can be computed using
binary instructions is the affine group Aff(n, 2). On the other hand, when using one memory cell, any
transformation over any alphabet can be computed by binary instructions.

Proof. Note that any binary permutation instruction is of the form yi ← gi(yi, yj) for some j ∈ [n].
If A = GF(2) and n = 2, then it is well known that Sym(GF(2)2) = Aff(2, 2). If n > 2, then
any instruction of the form yi ← g(yi, yj) must correspond to a binary instruction for GF(2)2 acting
on the coordinates yi, yj : it is also affine. Therefore, the group generated by binary permutation
instructions is affine. Conversely, extending Gaussian elimination to the affine case shows that any
affine permutation can be computed via binary instructions.

If one memory cell is used, we claim that the instructions in Theorem 1 can be computed by binary
instructions. For the sake of simplicity, let us assume i = 1. For any u ∈ An and v = u + e1, we can
decompose

δ(y, u) = δ(y1, u1)δ(y2, u2) · · · δ(yn, un),

δ(y, u)− δ(y, v) = (δ(y1, u1)− δ(y1, v1))δ(y2, u2) · · · δ(yn, un).

Then the transposition (u, v) is computed as follows:

yn+1 ← δ(y1, u1)− δ(y1, v1)
yn+1 ← yn+1δ(y2, u2)

...

yn+1 ← yn+1δ(yn, un)

y1 ← y1 + yn+1

and the assignment (e0 → e1) is computed as:

yn+1 ← δ(y1, 0)

yn+1 ← yn+1δ(y2, 0)

...

yn+1 ← yn+1δ(yn, 0)

y1 ← y1 + yn+1.

Since any transformation can be computed using these two types of instructions, it can be computed
with binary instructions.
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