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Mostow’s Lattices and Cone Metrics on the Sphere
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(Communicated by )

Abstract. In his seminal paper of 1980, Mostow constructed a family of lattices in PU(2, 1), the
holomorphic isometry group of complex hyperbolic 2-space. In this paper, we use a description
of these lattices given by Thurston in terms of cone metrics on the sphere, which is equivalent to
Deligne and Mostow’s description of them using monodromy of hypergeometric functions. We
give an explicit fundamental domain for some of Mostow’s lattices, specifically those with large
phase shift. Our approach follows Parker’s approach of describing Livné’s lattices in terms of cone
metrics on the sphere. The content of this paper is based on Boadi’s PhD thesis.

1 Introduction

A (Euclidean) cone metric on the sphere is a flat Euclidean metric on the sphere with
finitely many singularities. Each singularity locally looks like the apex of a cone and may
be formed by identifying the sides of a sector. The angle between the sides of the sector,
or equivalently at the apex of the cone, is the cone angle. If the cone angle at a vertex v
is 2π − α then α is the curvature at v. In this paper we only deal with the case where the
cone angle lies in [0, 2π) and so the curvature is positive. The sum of the curvatures at all
singularities must be the total curvature of the sphere, which is 4π.

For example, a cube is a cone metric on the sphere with eight singularities. At each
vertex three squares meet and so the cone angle is 3π/2. Clearly the curvature at each
vertex is π/2 and the sum over all eight vertices gives a total curvature of 8 · π/2 = 4π.

In [14] Thurston considered the following construction. Suppose we are given a fixed
number of cone singularities with prescribed cone angles (chosen so the sum of the cur-
vatures is 4π). Keeping these angles fixed but varying the location of the singularities
gives a moduli space of cone metrics. One may move the cone points in this space along
any non-trivial closed path in the moduli space (for example by performing a Dehn twist).
In doing so one naturally obtains a modular group. The area of the cone metric is pre-
served by such a motion and so by all elements of the modular group. Thurston observed
that the area gives an indefinite Hermitian form and one may embed the (projectivised)
moduli space into complex hyperbolic space. For certain good choices of cone angle, the
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resulting group is a complex hyperbolic lattice. (See Weber [15] for an alternative point
of view.)

Thurston’s construction is an alternative point of view on the lattices constructed by
Deligne and Mostow [2] and [10] via monodromy of hypergeometric functions in several
variables. Thurston’s good choices of angles correspond to ball N -tuples satisfying the
condition ΣINT defined by Mostow in [10]. Among these groups are two families, one
constructed by Mostow in [9] and the other constructed by Livné in [8]. In [12], Parker
constructed Livné’s lattices from first principles using Thurston’s construction and he then
went on to use this explicit construction to build fundamental domains for these groups.
In his PhD thesis [1], Boadi extended Parker’s construction to include some of the lattices
constructed by Mostow in [9]. This paper is an account of the latter construction. We
refer to [1] for many of the details. Deraux, Falbel and Paupert [3] have also given a
construction of fundamental domains for Mostow’s lattices. Below we give a description
of the relationship between our constructions and those from [9] and [3].

We consider cone metrics on the sphere with five cone points with cone angles

(π − θ + 2φ, π + θ, π + θ, π + θ, 2π − 2θ − 2φ). (1)

The angles θ and φ satisfy θ > 0, φ > 0 and θ + φ < π. Specifically, we consider the
following values of θ and φ which Thurston showed yield discrete groups [14]:

θ 2π/3 2π/3 2π/3 2π/4 2π/4 2π/5 2π/5 2π/6 2π/6
φ π/4 π/5 π/6 π/3 π/4 π/2 π/3 π/2 π/3 (2)

The groups corresponding to these cone angles with θ = 2π/p for p = 3, 4, 5 are the
groups Mostow considered in [9] with large phase shift. We also consider two groups
with p = 6.

Certain automorphisms of our cone metrics yield unitary matrices R1, R2 and A1.
(The naming of these automorphisms follows Mostow, see his survey paper [11] for ex-
ample.) Our goal is to show that the group Γ generated by these automorphisms is dis-
crete. To do so, we construct a polyhedron D and use Poincaré’s polyhedron theorem to
show that Γ is discrete with fundamental polyhedron D. The vertices of D come from
degenerate cone metrics where some of the cone points have coalesced, see Section 3.3
(again we follow Mostow [9] when naming these vertices). The polyhedron D has a sim-
ple description via a list of inequalities of distances in complex hyperbolic space to the
vertices and their images under certain elements of the group generated by Γ. We state
this in terms of the Hermitian form in order to be able to include the cases where one of
these vertices lies on the boundary of complex hyperbolic space.

Theorem 1.1. Let p12, v123, v231 and v312 be the vertices defined in Section 3.3. Let
P = R1R2 and J = R1R2A1. The polyhedron D is defined by points p ∈ H2

C satisfying
the eight inequalities:∣∣〈p, p12〉

∣∣ < ∣∣〈p, J−1(p12)〉
∣∣, ∣∣〈p, v123〉

∣∣ < ∣∣〈p, P−1(v231)〉
∣∣,∣∣〈p, v312〉

∣∣ < ∣∣〈p,R−1
1 (v231)〉

∣∣, ∣∣〈p, v231〉
∣∣ < ∣∣〈p,R1(v312)〉

∣∣,∣∣〈p, v231〉
∣∣ < ∣∣〈p, P (v123)〉

∣∣, ∣∣〈p, p12〉
∣∣ < ∣∣〈p, J(p12)〉

∣∣,∣∣〈p, v123〉
∣∣ < ∣∣〈p,R−1

2 (v312)〉
∣∣, ∣∣〈p, v312〉

∣∣ < ∣∣〈p,R2(v123)〉
∣∣.
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In particular, the boundary of D is made up of sides contained in bisectors where
one of these inequalities has been replaced with an equality. Bisectors are hypersurfaces
that are equidistant from two points in complex hyperbolic space, see Section 4 for more
details. An equivalent description of D in terms of a well-chosen set of coordinates is
given in (16). It is the simplicity of these two descriptions which make it straightforward
for us to check the conditions of Poincaré’s polyhedron theorem directly without the use
of computers. The side pairing maps, which are part of the hypotheses of Poincaré’s
theorem, are given simply in terms of the maps R1, R2 and A1. In Theorem 5.1, using
Poincaré’s polyhedron theorem, we prove that the group Γ generated by the side pairings
of D is a discrete subgroup of PU(1, 2) with fundamental domain D and presentation:

Γ =
〈
J, P,R1, R2 : J3 = Rp1 = Rp2 = (P−1J)k = I,

R2 = PR1P
−1 = JR1J

−1, P = R1R2

〉
.

The integers p and k are defined by θ = 2π/p and φ = π/k where θ and φ are given in
table (2). Equivalently, in terms of R1, R2 and A1 the presentation is

Γ =
〈
R1, R2, A1 : R

p
1 = Rp2 = Ak1 = (R1R2A1)3 = I,

R1R2R1 = R2R1R2, R1A1 = A1R1

〉
.

These presentations should be compared to the discussion in Mostow [11], particularly
equation (5.3) and page 244. One may also write Γ as a two generator group. For example,
as Mostow observes, it is easy to see that R1 and J will generate Γ (which Mostow calls
Γµ) but then the presentation is not so clean.

We now discuss how our paper relates to other similar constructions in the litera-
ture. Mostow, in his 1980 paper [9], gave a construction of fundamental domains for
several complex hyperbolic lattices. These lattices were divided by him into two families,
those with small phase shift and those with large phase shift. It is the lattices with large
phase shift that are of interest to us. Mostow’s construction relied heavily on the use of
computers, and indeed his paper is a pioneering paper on the use of computers in mathe-
matical proof. Another construction of fundamental domains for these lattices was given
by Deraux, Falbel and Paupert [3], which again made use of computers in the proofs.
Most of their paper gives details in the case of small phase shift, where the fundamental
domain has more complicated combinatorics. However, [3] does contain a section giving
the outline of their construction for lattices with large phase shift. Our fundamental do-
mains have the same combinatorial structure as those constructed by Deraux, Falbel and
Paupert (compare Figure 19 of [3] with our Figure 10). However, our construction gives
a significant improvement in two ways. First, all the sides of our polyhedra are contained
in bisectors. Secondly, and more importantly, by making a good choice of coordinates we
are able to give a particularly simple description of the polyhedron, which means that the
technical conditions of Poincaré’s polyhedron theorem may be verified directly without
the use of computers. This verification reduces to a large number of elementary manipu-
lations of inequalities. We give a sample of these here and refer to Boadi’s thesis [1] for
the remainder.

In some special cases, there are further connections between our groups and some
groups for which fundamental domains have been constructed. We now summarise these.
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• The group corresponding to (θ, φ) = (2π/6, π/2) is the Eisenstein-Picard modular
group, considered by Falbel and Parker in [6].

• The group corresponding to (θ, φ) = (2π/3, π/6) is the so called “sister” of the
Eisenstein-Picard modular group, considered by Zhao in [16]. The isomorphism
between these groups is described in Proposition 6.4 of [16].

• The group corresponding to (θ, φ) = (2π/4, π/4) is an index two subgroup of the
Gauss-Picard modular group, considered by Falbel, Francsics and Parker in [5]. See
Section 9.3 of [5] for the relationship between these groups.

These three groups have parabolic maps and the fundamental domains constructed in [6],
[16] and [5] are based on Ford domains centred at the parabolic fixed points. Again,
our fundamental domain D is different from theirs. Further relationships between these
groups can be found in Parker’s survey paper [13].

0

2π−2θ−2φ

π+θ

π+θ

π+θ

π−θ+2φv0

v1

v2

v3

Figure 1. The doubled pentagon. Note that the angles indicated are the cone angles, which
are twice the internal angles of the pentagon. The octagon Π is obtained by cutting along
the bold lines.

The paper is arranged as follows: in Section 2 we consider the particular cone metrics
on the sphere of interest here; in Section 3 we consider the cone metrics where the cone
singularities coalesce, and which give rise to the vertices of our polyhedron; in Section
4 we construct the polyhedron D, which sets the stage for the final Section 5 which is a
summary of the proof that D is a fundamental polyhedron for the group. Details of the
work can be found in Boadi’s thesis [1].

We would like to thank the referee for giving us many helpful suggestions, which have
greatly improved the paper.
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2 Construction of the Polygons and Automorphisms

2.1 The Fundamental Domain for the Cone Structures. We consider Euclidean cone
metrics on the sphere with five cone points with cone angles given by (1) where θ and φ
are given in table (2). Our goal is to find a unified construction for all these angles (and
to verify that these angles correspond to discrete groups). If we cut the sphere open along
a path through the five cone points, we obtain a Euclidean polygon Π. Conversely, if
we glue the sides of Π together, we can reconstruct our cone metric on the sphere. We
give an explicit parametrisation of such polygons in terms of three complex parameters
(z1, z2, z3). We show that, in terms of these parameters, the area of the polygon gives a
Hermitian form of signature (1, 2). Thurston [14] and Weber [15] describe different ways
of doing this. We follow Parker’s method from [12] which is different from the methods
of Thurston and Weber.

0

φφ

π−θ−φ π−θ−φ

θ θ

ψ

ψ

ψ

ψ

ψ

ψv

v

v

v v

v

v1

2

3−3
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0

0

1−1x

x

x
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z

z

z1

2
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T

T T

T

T T
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−2

−3

1

2

3

Figure 2. The octagon Π when z1, z2 and z3 are all real. Here ψ = (π − θ)/2. Note that
the arrows are zjie−iφ.

We begin by looking at the case where the cone manifold is the double of a Euclidean
pentagon. Cut the pentagon along four of its sides, as in Figure 1, with the first cut at the
cone point with angle 2π − 2θ − 2φ, then moving along the boundary of the pentagon
through the three cone points v3, v2 and v1 with cone angle π + θ, ending at the cone
point v0 with cone angle π − θ + 2φ. When we cut the double pentagon this way, we
get an octagon, which we call Π; see Figure 2. This octagon has a reflection symmetry.
Using this symmetry to identify the boundary points reconstructs the doubled pentagon
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with which we began.
We now show how to construct Π geometrically. We start with a big triangle T3 with

angles θ, π− θ− φ and φ. Recall that θ > 0, φ > 0 and θ+ φ < π. We then take off two
smaller triangles T1 with angles φ, π/2 + θ/2− φ and π/2− θ/2; and T2 with angles θ,
π/2 − θ/2 and π/2 − θ/2. The corners of the triangles T1 and T3 with angles φ are the
same. The corners of the triangles T2 and T3 with angles θ are the same. The base vectors
of T1, T2 and T3 are ie−iφz1, ie−iφz2 and ie−iφz3. The parameters z1, z2 and z3 are real
for the doubled pentagon. See Figure 2 for the construction.

The vertices of the triangle T1 are as follows:

v0 =
i sin θ

sinφ+ sin(θ − φ)
z1 −

i sin θ
sin(θ + φ)

z3,

x0 =
−i sin θ

sin(θ + φ)
z3,

v1 = ie−iφz1 −
i sin θ

sin(θ + φ)
z3.

The vertices of triangle T2 are as follows:

v2 = −ie−iφz2 +
i sinφ e−iθ−iφ

sin(θ + φ)
z3,

x1 =
i sinφ e−iθ−iφ

sin(θ + φ)
z3,

v3 = −ie−iθ−iφz2 +
i sinφ e−iθ−iφ

sin(θ + φ)
z3.

The vertices of triangle T3 are also as follows:

0,

x1 =
i sinφ e−iθ−iφ

sin(θ + φ)
z3,

x0 =
−i sin θ

sin(θ + φ)
z3.

We have constructed a pentagon whose vertices are the vertex of T3 and the two ver-
tices of each of T1 and T2 not shared by one of the other triangles. This has one edge in
common with each of T1 and T2. Consider the edge of this pentagon joining the vertices
of T1 with angle π + θ/2 − φ and the vertex of T3 with angle π − θ − φ. Reflect the
pentagon across this side to form an octagon, see Figure 2. The image of the triangle T1
under this reflection will be a new triangle T−1. Similarly, the images of T2 and T3 will
be triangles T−2 and T−3. The images of vertices v1, v2 and v3 will be v−1, v−2 and v−3
respectively. Our resulting octagon is preserved by reflection in the imaginary axis and we
label its vertices so that this reflection interchanges vj and v−j . Moreover, gluing points
of the boundary Π to their image under this reflection reconstructs the doubled pentagon
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Figure 3. The octagon Π with complex z1, z2 and z3. Again ψ = (π − θ)/2 and the
arrows are zjie−iφ.

we begun with. Below are the vertices of the octagon.

v0 =
i sin θ

sinφ+ sin(θ − φ)
z1 −

i sin θ
sin(θ + φ)

z3,

v1 = ie−iφz1 −
i sin θ

sin(θ + φ)
z3,

v2 = −ie−iφz2 +
i sinφ e−iθ−iφ

sin(θ + φ)
z3,

v3 = −ie−iθ−iφz2 +
i sinφ e−iθ−iφ

sin(θ + φ)
z3,

v−1 = ieiφz1 −
i sin θ

sin(θ + φ)
z3,

v−2 = −ieiφz2 +
i sinφ eiθ+iφ

sin(θ + φ)
z3,

v−3 = −ieiθ+iφz2 +
i sinφ eiθ+iφ

sin(θ + φ)
z3.

The vertices of T−1 are v0, x0 and v−1; the vertices of T−2 are v−2, x−1 and v−3 and the
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vertices of T3 are 0, x−1 and x−2. We remark that substituting φ = π/2 we recover the
octagon from [12].

In the above construction, the octagon was formed by cutting a doubled pentagon
along four of its edges. We now consider how to build an octagon associated with a more
general cone metric on the sphere with five cone points whose angles are given by (1). We
do this by following the above construction but allowing the parameters z1, z2, z3 to be
complex variables. A typical example of an octagon with complex parameters is shown
in Figure 3. The triangles T1, T−1, T3 and T−3 share the vertex x0, the triangles T2 and T3
share the vertex x1 and the triangles T−2 and T−3 share the vertex x−1. The base of the
triangle T1 is still v1 − x0 = ie−iφz1, the base of T2 is x1 − v2 = ie−iφz2 and the base
of T3 is x1 − x0 = ie−iφz3. In general these are no longer real multiples of each other.
Similarly, the bases of T−1, T−2 and T−3 are v−1 − x0 = ieiφz1, x−1 − v−2 = ieiφz2
and x−1 − x0 = ieiφz3 respectively. Note that v−j is no longer the image of vj under
reflection in the imaginary axis.

Simple geometry shows that the areas of the triangles are as follows:

Area(T1) =
sin θ sinφ

2(sinφ+ sin(θ − φ))
|z1|2 ,

Area(T2) =
1
2

sin θ |z2|2 ,

Area(T3) =
sin θ sinφ

2 sin(θ + φ)
|z3|2 .

When the parameters zj are real it is easy to see that the area of octagon Π is

Area(Π) = 2Area(T3)− 2Area(T1)− 2Area(T2).

When the zj are complex, one can show by a simple cut and paste argument that this
formula still holds. Therefore:

Area(Π) = 2Area(T3)− 2Area(T1)− 2Area(T2)

= sin θ
(
− sinφ

(sinφ+ sin(θ − φ))
|z1|2 − |z2|2 +

sinφ
sin(θ + φ)

|z3|2
)

= sin θ
[
z1 z2 z3

] 
− sinφ

sinφ+sin(θ−φ) 0 0
0 −1 0
0 0 sinφ

sin(θ+φ)


z1
z2
z3


= z∗Hz,

where H is the Hermitian matrix:

H = sin θ

− sinφ/
(
sinφ+ sin(θ − φ)

)
0 0

0 −1 0
0 0 sinφ/ sin(θ + φ)

 . (3)

We observe that the area gives a Hermitian form of signature (1,2) on C3. This leads to
a complex hyperbolic structure on the moduli space of such polygons. This is a special
case of Proposition 3.3 of Thurston [14].
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There is a natural way to construct a particular Euclidean cone manifold from Π. The
following, σj , are edge pairing maps of Π, which are Euclidean isometries which preserve
orientation and so are completely determined on each edge by their value on the vertices
vj ,vj+1. The maps are:

σ1(0) = 0, σ1(v3) = v−3; σ2(v3) = v−3, σ2(v2) = v−2;
σ3(v2) = v−2, σ3(v1) = v−1; σ4(v1) = v−1, σ4(v0) = v0.

LetM be the Euclidean cone manifold given by identifying the edges of Π using the maps
σj . It is clear that the underlying topological space of the orbifold M is homeomorphic to
a sphere and has five cone points corresponding to v0, v±1, v±2, v±3, 0 with cone angles
π − θ + 2φ, π + θ, π + θ, π + θ, 2π − 2θ − 2φ respectively. These are the cone angles
given in (1).

 

𝑜 

𝑣0 

𝑣1 

𝑣2 

𝑣3 

Figure 4. The cut for move R1.

2.2 Moves on the cone structure. We define automorphisms which we call moves on
such polygons in the spirit of Thurston [14]. These generalise the moves constructed by
Parker in [12] in an obvious way.

We define them as follows. Our cone manifold has five cone points. The two corre-
sponding to 0 and v0 have cone angles 2π−2θ−2φ and π+φ−θ, respectively. The other
three vertices have the same cone angle, which is π + θ. In cutting our cone manifold to
get back our octagon, there is no canonical ordering of these three vertices, hence we can
change the order of the cut. This results in the moves we will consider namely R1 and
R2. We introduce a third move A1 along the same lines as Thurston’s butterfly moves.
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• The move R1 The move R1 fixes the vertex 0, v0 and v±1 and then interchanges v±2
and v±3. This corresponds to a Dehn twist along a simple closed curve through v±2
and v±3 that does not separate the other cone points. This is described on page 242
of Mostow’s survey article [11]. When cutting open the cone manifold, one must
begin cutting from 0 and then to v±2, then to v±3, and then to v±1 and v0; see Figure
4. When we cut open the double pentagon, we obtain an octagon, shown in Figure 5.
Using cut and paste, one can obtain the new octagon from the old. The cut goes from
0 directly to v2. Then the triangle 0, v2, v3 must be glued back on along the edge 0,
v−3 according to the side identification σ1. In the same way, the triangle v−1, v−2,
v−3 must be glued by σ−1

3 to the side v1, v2; see Figure 5.
We now find the new parameters w1, w2, w3 for the new polygon by analysing the
vertices. We write the new vertices as v′j . Then: v′0 = v0, v′1 = v1, v′3 = v2. Thus:

i sin θ w1

sinφ+ sin(θ − φ)
− i sin θ w3

sin(θ + φ)
=

i sin θ z1

sinφ+ sin(θ − φ)
− i sin θ z3

sin(θ + φ)
,

ie−iφw1 −
i sin θ w3

sin(θ + φ)
= ie−iφz1 −

i sin θ z3

sin(θ + φ)
,

−ie−iθ−iφw2 +
i sinφ e−iθ−iφ w3

sin(θ + φ)
= −ie−iφz2 +

i sinφ e−iθ−iφ z3

sin θ + φ)
.

Solving these simultaneous equations gives the following:

w1 = z1, w2 = eiθz2, w3 = z3.

In matrix form, R1 is:

R1 =

1 0 0
0 eiθ 0
0 0 1

 . (4)

Since R1 preserves the area of the octagon, it is unitary with respect to the Hermitian
form H , that is R∗1HR1 = H . This can also be verified directly. (Recall H is given
in equation (3).)

• The move R2 The move R2 is, in principle, very similar to R1. However, in terms of
coordinates it is more complicated. This move fixes 0, v0 and v±3 but interchanges
v±1 and v±2. This corresponds to a Dehn twist along a simple closed curve through
v±1 and v±2 that does not separate the other cone points. We obtain the octagon by
cutting from 0 to v±3, then to v±1, to v±2 and finally to v0; see Figure 6.
Using cut and paste to obtain the new octagon from the old, we proceed as follows.
The slit goes from 0 to v3 and then directly to v1. Hence the triangle v1, v2, v3 should
be glued by σ2 to v−2, v−3. We also analyse the vertices to find the new coordinates;
v′0 = v0, v′2 = v1, v′3 = v3 as before:
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𝑣1 

0 

 

𝑣−1 

𝑣0 

𝑣2 

𝑣3 𝑣−3 

𝑣−2 

Figure 5. The octagon obtained after performing move R1.

i sin θ w1

sinφ+ sin(θ − φ)
− i sin θ w3

sin(θ + φ)
=

i sin θ z1

sinφ+ sin(θ − φ)
− i sin θ z3

sin(θ + φ)
,

−ie−iφw2 +
i sinφ e−iθ−iφ w3

sin θ + φ)
= ie−iφz1 −

i sin θ z3

sin(θ + φ)
,

−ie−iθ−iφw2 +
i sinφ e−iθ−iφ w3

sin(θ + φ)
= −ie−iθ−iφz2 +

i sinφ e−iθ−iφ z3

sin(θ + φ)

Solving these simultaneously results in the following matrix R2 as the solution:

(1− e−iθ) sin(φ)R2

=

− sin(θ)e−iφ − sin(φ)− sin(θ − φ) sin(φ) + sin(θ − φ)
− sin(φ) − sin(φ)e−iθ sin(φ)
− sin(θ + φ) − sin(θ + φ) sin(φ) + sin(θ)eiφ

 . (5)

Again, R2 preserves area and so is unitary with respect to H .
• The moveA1 The third move is similar to the ‘butterfly’ move discussed by Thurston

[14] and generalises the move I1 in Parker [12]. In terms of monodromy, it is defined
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𝑣0 

𝑣1 

𝑣2 

𝑣3 

𝑜 

Figure 6. The cut for move R2

in equations (5.2) and (5.3) and illustrated in Figure 1.5 of Mostow [11]. Thurston’s
butterfly operation moves one edge of the pentagon across a butterfly-shaped quadri-
lateral of zero signed area, yielding a new polygon of the same area. In our case, fix
v±2, v±3 and we rotate the triangle T1 so that v′1 = v−1. The resulting octagon has a
point of self intersection, but by using signed area we still preserve H . The move A1
preserves the triangles T2 and T3 and so it fixes z2 and z3. The triangle T1 is rotated
by 2φ and so z1 is sent to e2iφz1. That is, as a matrix, A1 is given by:

A1 =

e2iφ 0 0
0 1 0
0 0 1

 . (6)

Our goal will be to consider the group Γ = 〈R1, R2, A1〉 generated by the moves
R1, R2 and A1. We view these moves as the matrices given in (4), (5) and (6). All these
moves preserve the (signed) area of Π and so the matrices are all unitary with respect to
the Hermitian form given by the matrix H given in (3). We will show that Γ is discrete
for the various values of θ and φ given in table (2).
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Figure 7. The octagon obtained after performing move R2.

3 Coordinates and Special Points in the Space of Cone Metrics

3.1 Introduction. A key feature of our construction will be a good choice of coordi-
nates on the space of polygons Π, that is the space of cone metrics on the sphere with our
chosen cone angles. The initial set of coordinates are the parameters z1, z2 and z3 used
to describe the triangles T1, T2 and T3 in the previous section. We have seen that with re-
spect to these coordinates the automorphisms R1 and A1 are given by diagonal matrices.
We shall give a second set of coordinates, called w1, w2 and w3, with respect to which
R2 is given by a diagonal matrix. The interplay between these two sets of coordinates
will help us construct the polyhedron D in the Section 4. Therefore we give the formulae
for changing between the zj and wj coordinates. We will also be interested in certain de-
generate cone metrics where two or more cone singularities come together to form a new
one. These degenerate structures will be the vertices of our polyhedron. We conclude this
section by describing these degenerate structures and giving then in terms of the zj and
wj coordinates. This section is a transition from the cone metrics on the sphere discussed
in Section 2 to the complex hyperbolic polyhedron and automorphisms discussed in the
rest of the paper.

3.2 New Coordinates. Complex hyperbolic space can be defined to be the projectivi-
sation of those points in the space of polygons with positive area. Since the area is given
by a Hermitian form H of signature (1, 2), this is equivalent to the space of polygons for
which the Hermitian H form is positive. We achieve the projectivisation by considering
the section for which z3 = 1. Using the definition of H in (3), we see that our model of
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Figure 8. The octagon obtained after performing move A1.

complex hyperbolic space is defined as

H2
C =

z =

z1
z2
1

 : z∗Hz =
− |z1|2 sin θ sinφ(
sinφ+ sin(θ − φ)

) − |z2|2 sin θ +
sin θ sinφ
sin(θ + φ)

> 0

 .

(7)
There will be two elements of the group Γ = 〈R1, R2, A1〉 that are of particular

interest to us, namely P = R1R2 and J = PA1 = R1R2A1. Using the matrices for R1,
R2 and A1 in equations (4), (5) and (6), we find the following matrices for P and J :

(1− e−iθ) sin(φ)P

=

− sin(θ)e−iφ − sin(φ)− sin(θ − φ) sin(φ) + sin(θ − φ)
− sin(φ)eiθ − sin(φ) sin(φ)eiθ

− sin(θ + φ) − sin(θ + φ) sin(φ) + sin(θ)eiφ

 , (8)

(1− e−iθ) sin(φ) J

=

 − sin(θ)eiφ − sin(φ)− sin(θ − φ) sin(φ) + sin(θ − φ)
− sin(φ)ei(2φ+θ) − sin(φ) sin(φ)eiθ

− sin(θ + φ)e2iφ − sin(θ + φ) sin(φ) + sin(θ)eiφ

 . (9)



Mostow’s Lattices and Cone Metrics on the Sphere 15

Note that tr(J) = 0 and so, using Goldman’s classification of elements of SU(1, 2) by
trace in Section 6.2.3 of [7], we see that J has order 3. Also, we have put the scalar factor
of (1− e−iθ) sin(φ) (which comes from R2) on the left hand side of the equation. In our
application we are only interested in projective classes of matrices. Therefore this factor
may be dropped. We denote projective equality by ∼.

We remark that, using the action of R1 and R2 on the cone points, as discussed above,
we can summarise the action of P on the cone points as follows:

Lemma 3.1. The map P = R1R2 fixes the cone points 0 and v0 and maps the other cone
points as follows:

P : v±1 7−→ v±3, P : v±2 7−→ v±1, P : v±3 7−→ v±2.

We now define our second set of coordinates denoted by w, which is the preimage
under P of the first set of coordinates. Geometrically, the wj-parameters have the fol-
lowing meaning. Before cutting the sphere to form an octagon, cyclically permute the
cone points v±j as described in Lemma 3.1. The resulting octagon may be built up from
three triangles in just the same way that Π was built up from the triangles T1, T2 and T3.
The coordinates w1, w2 and w3 are then the bases of the new triangles. We consider the
section with w3 = 1.

In terms of parameters, the new coordinates are given by:

w =

w1
w2
1

 =
[
P−1(z)

]

∼

 − sin(θ)eiφ −
(
sin(φ) + sin(θ − φ)

)
e−iθ sin(φ) + sin(θ − φ)

− sin(φ) − sin(φ) sin(φ)
− sin(θ + φ) − sin(θ + φ)e−iθ sin(φ) + sin(θ)e−iφ

z1
z2
1

 .
Hence finding w1 and w2 as rational functions of z1 and z2, we obtain

w1 =
− sin(θ)eiφz1 −

(
sin(φ) + sin(θ − φ)

)
e−iθz2 + sin(φ) + sin(θ − φ)

− sin(θ + φ)z1 − sin(θ + φ)e−iθz2 + sin(φ) + sin(θ)e−iφ
,(10)

w2 =
− sin(φ)z1 − sin(φ)z2 + sin(φ)

− sin(θ + φ)z1 − sin(θ + φ)e−iθz2 + sin(φ) + sin(θ)e−iφ
. (11)

By a similar procedure, we obtain z1 and z2 in terms of w1 and w2:

z =

z1
z2
1

 =
[
P (w)

]

∼

− sin(θ)e−iφ − sin(φ)− sin(θ − φ) sin(φ) + sin(θ − φ)
− sin(φ)eiθ − sin(φ) sin(φ)eiθ

− sin(θ + φ) − sin(θ + φ) sin(φ) + sin(θ)eiφ

w1
w2
1

 .
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and hence

z1 =
− sin(θ)e−iφw1 −

(
sin(φ) + sin(θ − φ)

)
w2 + sin(φ) + sin(θ − φ)

− sin(θ + φ)w1 − sin(θ + φ)w2 + sin(φ) + sin(θ)eiφ
, (12)

z2 =
− sin(φ)eiθw1 − sin(φ)w2 + sin(φ)eiθ

− sin(θ + φ)w1 − sin(θ + φ)w2 + sin(φ) + sin(θ)eiφ
. (13)

Our reason of keeping track of two coordinates is that it gives a simple description of the
polyhedron D in terms of the arguments of z1, z2, w1 and w2.

T T

T

T

T

T

1

1

1

2

2

2
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T T

−1

−1

−2

−2 −2
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t
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t
13

p
12

v
231

v
312

v
123

Figure 9. Degenerate octagons corresponding to to vertices of D.

3.3 Vertices. In this section, we obtain some distinguished points of H2
C which will be

the vertices of our polyhedron. It will be useful to give these points in the two sets of
coordinates w and z constructed in the previous section. The distinguished points (cone
structures) are obtained by letting some of the cone points approach each other until in the
limit they coalesce, and then result in a new point. The complementary angle (curvature)
of this new cone point (that is 2π minus the cone angle) is the sum of the complementary
angles of the cone points that have coalesced. Considering this from the view point of the
octagon Π considered in Section 2, obtaining the new cone points is the same as either
expanding or contracting the triangles T1 and T2 till some of the vertices become the
same point. If such vertices are adjacent to each other then the edge between them has
degenerated to a point. We define the following degenerate structures in terms of which
cone points coalesce, and we give the cone angle at the resulting new vertex. The notation
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we use follows the notation established by Mostow in [9] and used by Deraux, Falbel and
Paupert in [3].

Point Cone Points Angle Cone Points Angle
t32 v0, v±1 2φ v±2, v±3 2θ
t13 v0, v±3 2φ v±1, v±2 2θ
p12 v±1, v±2, v±3 3θ − π
v123 v0, v±2, v±3 θ + 2φ− π
v231 v0, v±1, v±2 θ + 2φ− π
v312 v0, v±1, v±3 θ + 2φ− π

One can notice from the above table that 3θ ≥ π and θ+2φ ≥ π. This will be the case for
all the angles we are interested in; see Table (2). When 3θ = π the vertex p12 will be on
the boundary of complex hyperbolic space. Likewise, when θ+ 2φ = π the vertices v312,
v123 and v231 will be on the boundary of complex hyperbolic space. We now describe the
corresponding degenerate octagons in detail; see Figure 9.

t32: (See page 226 of Mostow [9] or page 174 of Deraux, Falbel, Paupert [3].) When v0
and v±1 coalesce, the triangle T1 shrinks to a point and so z1 = 0. Likewise, when
v±2 and v±3 coalesce then T2 also shrinks to a point and so z2 = 0. Thus t32 is given
by z1 = z2 = 0. This is the origin in the z-coordinates. Putting z1 = z2 = 0 into (10)
and (11) gives:

w1 =
sinφ+ sin(θ − φ)
sinφ+ sin θe−iφ

, w2 =
sinφ

sinφ+ sin θe−iφ
.

t13: When v0 and v3 coalesce and v1 and v2 coalesce, the triangles T1 and T2 share an
edge. Also T−1 and T−2 share the vertex v−1 = v−2. Alternatively, applying the
map P permutes the cone points as in Lemma 3.1. This has the effect of making us
use the w-coordinates. Therefore, we can repeat our argument for t32 to see that t13
corresponds to w1 = w2 = 0. Putting this into equations (12) and (13) gives:

z1 =
sinφ+ sin(θ − φ)

sinφ+ sin θeiφ
, z2 =

sinφeiφ

sinφ+ sin θeiφ
.

Note that (using z3 = 1) when v±1 and v±2 coalesce we have z1 + z2 = 1. Likewise,
when v0 and v3 coalesce we have

ie−iφ =
i sin θ

sinφ+ sin(θ − φ)
z1 + ie−iθ−iφz2. (14)

These two equations yield the same solution for z1 and z2.
p12: (See page 218 of Mostow [9] or page 166 of Deraux, Falbel, Paupert [3].) In this

case, the cone points v±1, v±2 and v±3 coalesce. Once again, as v±1 and v±2 coalesce
we have z1 + z2 = z3 = 1. Also, since v±2 and v±3 coalesce, the triangle T2 shrinks
to a point and we have z2 = 0. Hence z1 = 1. Either using Lemma 3.1 or substituting
directly, we see that w1 = 1 and w2 = 0.
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v123: (See page 216 of Mostow [9] or page 170 of Deraux, Falbel, Paupert [3].) In this
case v0, v±2 and v±3 coalesce. Once again, when v±2 and v±3 coalesce we obtain
z2 = 0 and when v0, v3 coalesce we have equation (14). Putting this together gives

z1 =
sinφ+ sin(θ − φ)

sin θeiφ
, z2 = 0.

In terms of the w-coordinates, when v0 and v3 coalesce then w1 = 0 and when v2 and
v3 coalesce we get w1 + e−iθw2 = 1. Hence w1 = 0 and w2 = eiθ.

v231: Here v0, v±1 and v±2 coalesce. Arguing as before, we have z1 = 0 and z1 +z2 = 1.
Hence z2 = 1. In terms of w-coordinates, (10) and (11) yield w2 = 0 and

w1 =
(sinφ+ sin(θ − φ))(1− e−iθ)

sinφ+ sin θe−iφ − sin(θ + φ)e−iθ
.

Expanding, we see that sinφ − sin(θ + φ)e−iθ = − sin θe−iθe−iφ. So cancelling
(1− e−iθ) from the top and bottom gives

w1 =
sinφ+ sin(θ − φ)

sin θe−iφ
.

v312: Here v0, v±1 and v±3 coalesce. The above arguments yield z1 = 0 and z1+z2 = eiθ.
Thus z2 = eiθ. Also, w1 = 0 and w1 + w2 = 1. Hence w2 = 1.
In coordinates (normalising so z3 = w3 = 1) we have

Point z1 z2 w1 w2

t32 0 0 sinφ+sin(θ−φ)
sinφ+sin θe−iφ

sinφ
sinφ+sin θe−iφ

t13
sinφ+sin(θ−φ)
sinφ+sin θeiφ

sinφeiθ

sinφ+sin θeiφ
0 0

p12 1 0 1 0
v123

sinφ+sin(θ−φ)
sin θ e−iφ 0 0 eiθ

v231 0 1 sinφ+sin(θ−φ)
sin θ eiφ 0

v312 0 eiθ 0 1

In concluding this section, we show that the collection of vertices described above is
symmetric with respect to an involution. The polyhedron D will also exhibit this symme-
try when we get to Section 4. Let us consider the antiholomorphic isometry ι given by
ι(z) = R1R2R1(z), which is the same as ι(z) = PR1(z). In coordinates:

ι

z1
z2
1

 ∼

 w1

w2e
iθ

1

 . (15)

Notice that ∼ refers to projective equality. The following lemma deduced from the above
equation can be verified using the vertices obtained in the above table of vertices.

Lemma 3.2. The isometry ι has order 2 and acts on the vertices by

ι(t32) = t13, ι(p12) = p12, ι(v123) = v231, ι(v312) = v312.
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Proof. This follows by direct calculation. For example to see that ι fixes p12 observe

ι

1
0
1

 =
1

(1− e−iθ) sin(φ)

− sin(θ)e−iφ + sin(φ) + sin(θ − φ)
− sin(φ)eiθ + sin(φ)eiθ

− sin(θ + φ) + sin(φ) + sin(θ)eiφ

 ∼
1

0
1

 .
where we have used

sin(θ − φ)− sin θe−iφ = − cos θ sinφ+ i sin θ sinφ = − sin(θ + φ) + sin θeiφ.

Similarly to see that ι(v231) = v123 observe

ι

0
1
1

 =
1

(1− e−iθ) sin(φ)

 (1− eiθ)(sinφ+ sin(θ − φ))
0

sinφ+ sin θeiφ − sin(θ + φ)eiθ

 ∼
 sinφ+sin(θ−φ)

sin θeiφ

0
1


where we have used

sinφ+ sin θeiφ − sin(θ + φ)eiθ = sin θeiφ(1− eiθ).

The other identities follow similarly by substituting and then simplifying using trigono-
metric formulae.

4 Construction of the Complex Hyperbolic Polyhedron D

4.1 Introduction. In this section we construct a polyhedron D in complex hyperbolic
space. In the next section we will use Poincaré’s polyhedron theorem to demonstrate that
this is a fundamental polyhedron for Γ = 〈R1, R2, A1〉. In particular, in Section 4.2 we
prove Theorem 1.1 from the introduction.

The vertices of D will be the six special cone manifolds t32, t13, p12, v123, v231 and
v312 constructed above in Section 3.3. Combinatorially, D is almost as simple as it can
be: it will be the union of two four-simplices. The vertices of the first simplex are all the
vertices except t13 and the vertices of the second are all except t32.

The co-dimension 1 sides ofD will be contained in bisectors. A bisectorB is the locus
of points equidistant from a given pair of points. They have been studied extensively and
we will briefly summarise their properties. For more detail see Mostow [9] or Goldman
[7]. If the bisectorB is equidistant from points q1 and q2 then the complex line Σ = Σ(B)
spanned by q1 and q2 is called the complex spine of B. The geodesic σ = σ(B) in Σ
equidistant from q1 and q2 is called the spine of B. Bisectors are not totally geodesic but
are foliated by totally geodesic subspaces in two different ways. First, if ΠΣ is orthogonal
projection onto Σ then B = Π−1

Σ (σ). For each point s on σ, the fibre Π−1
Σ ({s}) is a

complex line, called a slice of Σ; see Mostow [9]. The slices foliateB. Secondly, B is the
union of all totally real Lagrangian planes containing σ. Such a plane is called a meridian;
see Goldman [7]. One property we will use is that each codimension 1 side of D will be a
3-simplex in a bisector with one edge in σ, two faces in meridians and one face in a slice.
We will see, in Proposition 4.8, this has the consequence that the 1-skeleton of D is made
up of geodesic arcs.
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4.2 The polyhedron D. We define the polyhedron D to be those points of H2
C for

which the arguments of z1, z2, w1 and w2 lie in the following intervals (compare Equation
(17) of Parker [12]):

D =
{
z = P (w) :

arg(z1) ∈ (−φ, 0), arg(z2) ∈ (0, θ),
arg(w1) ∈ (0, φ), arg(w2) ∈ (0, θ)

}
. (16)

We want to characterise D in terms of inequalities involving the Hermitian form. The
following lemma generalises Lemmas 4.4 and 4.6 of [12].

Lemma 4.1. Let 〈·, ·〉 be the Hermitian form given by H . Using the coordinates z and w
we have:
• Im (z1e

iφ) > 0 if and only if
∣∣〈z, p12〉

∣∣ < ∣∣〈z, J−1(p12)〉
∣∣;

• Im (z1) < 0 if and only if
∣∣〈z, v123〉

∣∣ < ∣∣〈z, P−1(v231)〉
∣∣;

• Im (z2) > 0 if and only if
∣∣〈z, v312〉

∣∣ < ∣∣〈z, R−1
1 (v231)〉

∣∣;
• Im (z2e

−iθ) < 0 if and only if
∣∣〈z, v231〉

∣∣ < ∣∣〈z, R1(v312)〉
∣∣;

• Im (w1) > 0 if and only if
∣∣〈w, v231〉

∣∣ < ∣∣〈w, P (v123)〉
∣∣;

• Im (w1e
−iφ) < 0 if and only if

∣∣〈w, p12〉
∣∣ < ∣∣〈w, J(p12)〉

∣∣;
• Im (w2) > 0 if and only if

∣∣〈w, v123〉
∣∣ < ∣∣〈w, R−1

2 (v312)〉
∣∣;

• Im (w2e
−iθ) < 0 if and only if

∣∣〈w, v312〉
∣∣ < ∣∣〈w, R2(v123)〉

∣∣.
Proof. We illustrate one case of this theorem. In z-coordinates

p12 =

1
0
1

 , J−1(p12) =

e−2iφ

0
1

 .
Therefore

〈z, p12〉 =
− sinφ

sinφ+ sin(θ − φ)
z1 +

sinφ
sin(θ + φ)

,

〈z, J−1(p12)〉 =
− sinφ

sinφ+ sin(θ − φ)
e2iφz1 +

sinφ
sin(θ + φ)

.

Hence
∣∣〈z, p12〉

∣∣ < ∣∣〈z, J−1(p12)〉
∣∣ if and only if −2Re (z1) < −2Re (z1e

2iφ). This is
true if and only if Im (z1e

iφ) > 0. This is the first part. The other parts are all similar.

In order to prove Theorem 1.1 stated in the introduction, we simply combine the
description (16) of D and Lemma 4.1. For example, arg(z1) ∈ (−φ, 0) is equivalent to
Im (z1e

iφ) > 0 and Im (z1) < 0. These two criteria are equivalent to p ∈ H2
C satisfying∣∣〈p, p12〉

∣∣ < ∣∣〈p, J−1(p12)〉
∣∣ and

∣∣〈p, v123〉
∣∣ < ∣∣〈p, P−1(v231)〉

∣∣.
We refer to the codimension 1 facets of D as sides. Each side corresponds to one

of the eight inequalities in Lemma 4.1 (or Theorem 1.1) being replaced with equality.
Therefore each of the eight sides of D is contained in a bisector. Moreover, for each of of
these bisectors B, we have:
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(i) either the point t32 or t13 lies on B;
(ii) three of the four points p12, v123, v231 and v312 lie on B;
(iii) the fourth of these points lies on the complex spine Σ of B but not on B;
(iv) the spine σ of B passes through one of t32 and t13 and one of p12, v123, v231 or v312.
We name the bisectors B(X) where X is one of J , P , R1, R2 or their inverses so that the
isometry X will send B(X) to B(X−1). For example, B(R1) is given by the equality∣∣〈p, v312〉

∣∣ =
∣∣〈p,R−1

1 (v231)〉
∣∣.

Applying R1 sends v312 to R1(v312) and sends R−1
1 (v231) to v231. Therefore R1 sends

B(R1) to the bisector defined by∣∣〈p,R1(v312)〉
∣∣ =

∣∣〈p, v231〉
∣∣.

This is B(R−1
1 ).

The summary is:

Bisector Definition Equidistant from Points on spine Other points
B(J) Im (z1e

iφ) = 0 p12, J
−1(p12) t32, v123 v231, v312

B(J−1) Im (w1e
−iφ) = 0 p12, J(p12) t13, v231 v312, v123

B(P ) Im (z1) = 0 v123, P
−1(v231) t32, p12 v231, v312

B(P−1) Im (w1) = 0 v231, P (v123) t13, p12 v312, v123

B(R1) Im (z2) = 0 v312, R
−1
1 (v231) t32, v231 v123, p12

B(R−1
1 ) Im (z2e

−iθ) = 0 v231, R1(v312) t32, v312 v123, p12

B(R2) Im (w2) = 0 v123, R
−1
2 (v312) t13, v312 v231, p12

B(R−1
2 ) Im (w2e

−iθ) = 0 v312, R2(v123) t13, v123 v231, p12

We go through these properties in two cases. The others are similar; see Boadi [1] for
details.
(1) Consider B(J). Then z1e

iφ is real, so we write z1 = x1e
−iφ for x1 ∈ R. In z-

coordinates B(J) is given by

B(J) =
{

(x1e
−iφ, z2) ∈ H2

C : x1 ∈ R, z2 ∈ C
}
.

The spine σ(J) of B(J) has z-coordinates

σ(J) =
{

(x1e
−iφ, 0) ∈ H2

C : x1 ∈ R
}
.

The complex spine Σ(J) of B(J) has z-coordinates

Σ(J) =
{

(z1, 0) ∈ H2
C : z1 ∈ C

}
.

• t32 is given by (z1, z2) = (0, 0). This clearly lies in B(J) and σ(J).
• p12 is given by (z1, z2) = (1, 0) and J−1(p12) is given by (z1, z2) = (e−2iφ, 0).

These points clearly do not lie onB(J) but do lie on Σ(J), andB(J) is equidis-
tant from them.
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• v123 is given by

(z1, z2) =
(

sinφ+ sin(θ − φ)
sin θ

e−iφ, 0
)
.

Since
(
sinφ+ sin(θ − φ)

)
/ sin θ is real, this lies on B(J) and σ(J).

• v231 is given by (z1, z2) = (0, 1). This clearly lies on B(J) but does not lie on
σ(J).

• v312 is given by (z1, z2) = (0, eiθ). This clearly lies on B(J) but does not lie on
σ(J).

(2) Next, consider B(R2). Here w2 is real, so in w-coordinates B(R2) is given by

B(R2) =
{

(w1, y2) ∈ H2
C : w1 ∈ C, y2 ∈ R

}
.

The spine σ(R2) of B(R2) has w coordinates

σ(R2) =
{

(0, y2) ∈ H2
C : y2 ∈ R

}
.

The complex spine Σ(R2) of B(R2) has w coordinates

Σ(R2) =
{

(0, w2) ∈ H2
C : w2 ∈ C

}
.

• t13 is given by (w1, w2) = (0, 0). This clearly lies in B(R2) and σ(R2).
• p12 is given by (w1, w2) = (1, 0). This clearly lies in B(R2) but not in σ(R2).
• v231 is given by

(w1, w2) =
(

sinφ+ sin(θ − φ)
sin θ

eiφ, 0
)
.

This clearly lies on B(R2) but not on σ(R2).
• v312 is given by (w1, w2) = (0, 1). This lies on both B(R2) and σ(R2).
• v123 is given by (w1, w2) = (0, eiθ) and R−1

2 (v312) is given by (w1, w2) =
(0, e−iθ). These points clearly do not lie on B(R2). However, they do lie on
Σ(R2), and B(R2) is equidistant from them.

4.3 Some useful inequalities. When we give details of the faces of D we will need to
use the following lemmas which give inequalities satisfied by all points of H2

C.

Lemma 4.2. If z ∈ H2
C then

|z1| <
sinφ+ sin(θ − φ)

sin(θ + φ)
, |w1| <

sinφ+ sin(θ − φ)
sin(θ + φ)

.
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Proof. We prove this by contradiction. If |z1| ≥
(
sinφ+ sin(θ − φ)

)
/ sin(θ + φ) then

z∗Hz =
− sinφ

sinφ+ sin(θ − φ)
|z1|2 − |z2|2 +

sinφ
sin(θ + φ)

≤
− sinφ

(
sinφ+ sin(θ − φ)

)
sin2(θ + φ)

− |z2|2 +
sinφ

sin(θ + φ)

≤
sin2 φ

(
2 cos θ − 1

)
sin2(θ + φ)

− |z2|2 ≤ 0,

where we have used cos θ ≤ 1/2 on the last line. Thus z is not in H2
C. A similar argument

holds for w.

Lemma 4.3. If z ∈ H2
C then

|z1|, |w1| <
sin θ

sin(θ + φ)
, |z2|, |w2| <

sinφ
sin(θ + φ)

,

Proof. In order to prove the lemma, first observe from the combination of φ and θ in
Table (2) that we have θ + 2φ ≥ π and hence

π − (θ + φ) ≤ φ ≤ θ + φ.

Therefore sin(φ) ≥ sin(θ + φ).
Now we prove the inequality for z1. If |z1| ≥ sin(θ)/ sin(θ + φ) then from the area

z∗Hz =
− sinφ

sinφ+ sin(θ − φ)
|z1|2 − |z2|2 +

sinφ
sin(θ + φ)

≤ sinφ
sin(θ + φ)

sin(θ + φ)
(
sinφ+ sin(θ − φ)

)
− sin2 θ

sin(θ + φ)
(
sinφ+ sin(θ − φ)

) − |z2|2

=
sinφ

sin(θ + φ)
sin(θ + φ) sinφ+ sin2 θ cos2 φ− cos2 θ sin2 φ− sin2 θ

sin(θ + φ)
(
sinφ+ sin(θ − φ)

) − |z2|2

=
sinφ

sin(θ + φ)
sin(θ + φ) sinφ− sin2 φ

sin(θ + φ)
(
sinφ+ sin(θ − φ)

) − |z2|2

= − sin2 φ

sin2(θ + φ)
sinφ− sin(θ + φ)
sinφ+ sin(θ − φ)

− |z2|2 ≤ 0.

This a contradiction. Hence |z1| < sin(θ)/ sin(θ + φ). Proving the inequality for w1 is
identical.
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Similarly, to prove the inequality for z2 assume that |z2| ≥ sinφ/ sin(θ + φ). Then

z∗Hz =
− sinφ

sinφ+ sin(θ − φ)
|z1|2 − |z2|2 +

sinφ
sin(θ + φ)

≤ − sinφ
sinφ+ sin(θ − φ)

|z1|2 −
sin2 φ

sin2(θ + φ)
+

sinφ
sin(θ + φ)

≤ − sinφ
sinφ+ sin(θ − φ)

|z1|2 −
sinφ

sin(θ + φ)

(
sinφ

sin(θ + φ)
− 1
)

≤ 0,

as sinφ/ sin(θ + φ) ≥ 1. The inequality for w2 is similar.

4.4 Faces of the polyhedron. We refer to codimension 2 facets of the polyhedronD as
faces. Each face is contained in the intersection of two of the bisectors defining the sides
ofD. The other bisectors determine further inequalities defining the edges bounding each
face so that the face becomes a triangle in this bisector intersection. The faces come
in three types: (a) faces contained in a common slice of two of the bisectors; (b) faces
contained in a common meridian of two bisectors or (c) faces that are not contained in
either a complex line or a Lagrangian plane. In fact the intersections of type (c) the
two bisectors are coequidistant and so their intersection is contained in a Giraud disc,
which is a particularly nice type of bisector intersection; see Theorem 8.3.3 of Goldman
[7]. Specifically, for each of the four intersections contained in a Giraud disc, one of the
vertices p12, v123, v231 or v312 is not contained in either bisector, but is contained in the
intersection of their complex spines; see the table in Section 4.2.

We give representative examples of each type of bisector intersection. In Proposition
4.4 we give details of a face in a common slice, in Proposition 4.5 consider a face in a
common meridian and in Propositions 4.6 and 4.7 we give two faces each in a Giraud
disc. For the complete list, see Boadi’s thesis [1].

First we give a face contained in a complex line that is a common slice of the two
bisectors.

Proposition 4.4. A point in the face of D contained in B(J) ∩ B(P ) has coordinates
z = (0, x+ yeiθ) and w = (w1, w2) with

w1 =
(sin(φ) + sin(θ − φ))(1− e−iθx− y)

sinφ+ sin θe−iφ − sin(θ + φ)(e−iθx+ y)
,

w2 =
sinφ(1− x− eiθy)

sinφ+ sin θe−iφ − sin(θ + φ)(e−iθx+ y)
,

where x, y are non-negative real numbers satisfying

0 ≤ sinφ(1− x− y)− sin(θ + φ)(x+ y − x2 − y2 − 2xy cos θ).

Proof. Since the point is on B(J) we have Im (z1e
iφ) = 0 and as it is on B(P ) we have

Im (z1) = 0. Hence the intersection of these bisectors is the complex line z1 = 0, which
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is a common slice. The conditions Im (z2) ≥ 0 and Im (z2e
−iθ) ≤ 0 mean that if we

write z2 = x + yeiθ then x ≥ 0 and y ≥ 0. The expressions for w1 and w2 follow by
substituting these values of z1 and z2 into (10) and (11).

It is not hard to check that Im (w1e
−iφ) ≤ 0 if and only if Im (w2) ≥ 0 if and only if

0 ≤ sinφ(1− x− y)− sin(θ + φ)(x+ y − x2 − y2 − 2xy cos θ).

Note that the curve given by equality in this expression intersects the line y = 0 (re-
spectively x = 0) at x = 1 and x = sinφ/ sin(θ + φ) (respectively y = 1 and
y = sinφ/ sin(θ + φ)). The latter points are outside complex hyperbolic space, by
Lemma 4.3. Therefore this curve and the lines x = 0, y = 0 bound a triangle with
vertices (x, y) = (0, 0), (1, 0) and (0, 1).

Finally, we must check that Im (w1) ≥ 0 and Im (w2e
−iθ) ≤ 0. It is easy to check

that Im (w1) ≥ 0 if and only if

0 ≤ 1− y + x− 2 cos θx.

If y = 1 + x− 2 cos θ then

0 ≤ sinφ(1− x− y)− sin(θ + φ)(x+ y − x2 − y2 − 2xy cos θ)
= −2(1− cos θ)x(sinφ− sin(θ + φ)x).

Using Lemma 4.3 we see that sinφ > sin(θ + φ)x and so this expression is negative.
Hence Im (w1e

−iφ) ≤ 0 implies Im (w1) ≥ 0.
Also, Im (w2e

−iθ) ≤ 0 if and only if

0 ≤ (sinφ+ sin(θ − φ))(1− x+ y)− 2 cos θ sinφy.

A similar argument shows that Im (w2) ≥ 0 implies Im (w2e
−iθ) ≤ 0. We leave this to

the reader.

Now we give a face contained in a Lagrangian plane, which is a common meridian of
the two bisectors.

Proposition 4.5. A point in the face of D contained in B(J) ∩ B(R1) has coordinates
z = (xe−iφ, y) and w = (w1, w2) with

w1 =
− sin(θ)x−

(
sin(φ) + sin(θ − φ)

)
e−iθy + sin(φ) + sin(θ − φ)

− sin(θ + φ)e−iφx− sin(θ + φ)e−iθy + sin(φ) + sin(θ)e−iφ
,

w2 =
− sin(φ)e−iφx− sin(φ)y + sin(φ)

− sin(θ + φ)e−iφx− sin(θ + φ)e−iθy + sin(φ) + sin(θ)e−iφ
,

where x and y are non-negative real numbers satisfying

0 ≤ (sinφ+ sin(θ − φ))(1− y)− sin θx.
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Proof. Since the point is on B(J) we have Im (z1e
iφ) = 0 and as it is on B(R1) we have

Im (z2) = 0. Hence the intersection of these bisectors is on the Lagrangian plane where
(z1, z2) = (xe−iφ, y) for real x and y. The conditions Im (z1) ≤ 0 and Im (z2e

−iθ) ≤ 0
imply x ≥ 0 and y ≥ 0. The expressions for w1 and w2 follow from (10) and (11).

It is not hard to check that Im (w1e
−iφ) ≤ 0 if and only if

0 ≤ (sinφ− sin(θ + φ)y)
(
(sinφ+ sin(θ − φ))(1− y)− sin θx

)
.

Similarly Im (w2e
−iθ) ≤ 0 if and only if

0 ≤ (sin θ − sin(θ + φ)x)
(
(sinφ+ sin(θ − φ))(1− y)− sin θx

)
.

Using Lemma 4.3 we see that sin θ − sin(θ + φ)x > 0 and sinφ − sin(θ + φ)y > 0.
Finally, we must check Im (w1) ≥ 0 and Im (w2) ≥ 0. We leave this to the reader.

We now give details for a face contained in a Giraud disc. This disc is the intersection
of B(J), which is equidistant from p12 and J(p12), and of B(J−1), which is equidistant
from p12 and J(p12).

Proposition 4.6. A point on the face of D contained in z ∈ B(J) ∩B(J−1) has coordi-
nates z = (xe−iφ, z2) and w = (ueiφ, w2) where

z2 = eiθ
xu sin(θ + φ)− u(eiφ sinφ+ sin θ)− x sin θ + sinφ+ sin(θ − φ)

sinφ+ sin(θ − φ)− ueiφ sin(θ + φ)
,

w2 =
xu sin(θ + φ)− x(e−iφ sinφ+ sin θ)− u sin θ + sinφ+ sin(θ − φ)

sinφ+ sin(θ − φ)− x sin(θ + φ)e−iφ
,

where x and u are non-negative real numbers satisfying

0 ≤ (x sin θ − sinφ− sin(θ + φ))(u sin θ − sinφ− sin(θ + φ))− xu sin2 φ.

Proof. Arguing as before, since the point is on B(J) we have z1 = xe−iφ and as it is on
B(J) we have w1 = ueiφ for real x and u. Since Im (z1) ≤ 0 and Im (w1) ≥ 0 we have
x ≥ 0 and y ≥ 0. Substituting these in (12) and (10) gives:

xe−iφ =
−u sin θ − (sinφ+ sin(θ − φ))w2 + sinφ+ sin(θ − φ)
−u sin(θ + φ)eiφ − sin(θ + φ)w2 + sinφ+ sin θeiφ

,

ueiφ =
−x sin θ − e−iθ(sinφ+ sin(θ − φ))z2 + sinφ+ sin(θ − φ)
−x sin(θ + φ)e−iφ − sin(θ + φ)e−iθz2 + sinφ+ e−iφ sin θ

.

Solving for w2 and z2 gives the expressions in the statement of the proposition. The
condition Im (z2) ≥ 0 is equivalent to

0 ≤
(
sin θ − u sin(θ + φ)

)
p(u, x)

where

p(u, x) = (x sin θ − sinφ− sin(θ + φ))(u sin θ − sinφ− sin(θ + φ))− xu sin2 φ.
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The condition that Im (w2e
−iθ) ≤ 0 is equivalent to

0 ≤
(
sin θ − x sin(θ + φ)

)
p(u, x).

From Lemma 4.3 we see that sin θ − u sin(θ + φ) > 0 and sin θ − x sin(θ + φ) > 0,
thus we must have p(u, x) ≥ 0 as claimed. Finally we must check Im (z2e

−iθ) ≤ 0 and
Im (w2) ≥ 0. We leave this to the reader.

A similar method proves the following result, which describes another Giraud disc.
This is the face in the intersection ofB(P ), which is equidistant from v123 and P−1(v231),
and of B(R2), which is equidistant from v123 and R−1

2 (v312).

Proposition 4.7. A point on the face of D contained in z ∈ B(P ) ∩ B(R2) has coordi-
nates z = (x, z2) and w = (w1, u) where

z2 =
sin(φ)(1− x)− (sinφ+ sin θe−iφ)u+ sin(θ + φ)xu

sinφ− sin(θ + φ)e−iθu
,

w1 =
(sinφ+ sin(θ − φ))(1− u)− (sinφ+ sin θeiφ)x+ sin(θ + φ)xu

sin θe−iφ − sin(θ + φ)x
,

where x and u are non-negative real numbers satisfying u+ x ≤ 1.

We conclude this section by listing all the faces. We use the notation that F (X,Y )
is the face of D contained in the intersections of the bisectors B(X) and B(Y ). In the
following table, the letters S, M, G in the last column indicate whether the face is in a
slice, a meridian or a Giraud disc.

Face Vertices Coordinates
F (J, J−1) v312, v123, v231 Im (z1e

iφ) = Im (w1e
−iφ) = 0 G

F (J, P ) t32, v231, v312 Im (z1e
iφ) = Im (z1) = 0 S

F (J,R1) t32, v231, v123 Im (z1e
iφ) = Im (z2) = 0 M

F (J,R−1
1 ) t32, v312, v123 Im (z1e

iφ) = Im (z2e
−iθ) = 0 M

F (J−1, P−1) t13, v312, v123 Im (w1e
−iφ) = Im (w1) = 0 S

F (J−1, R2) t13, v231, v312 Im (w1e
−iφ) = Im (w2) = 0 M

F (J−1, R−1
2 ) t13, v231, v123 Im (w1e

−iφ) = Im (w2e
−iθ) = 0 M

F (P,R1) t32, v231, p12 Im (z1) = Im (z2) = 0 M
F (P,R−1

1 ) t32, v312, p12 Im (z1) = Im (z2e
−iθ) = 0 M

F (P,R2) v312, v231, p12 Im (z1) = Im (w2) = 0 G
F (P−1, R−1

1 ) v312, v123, p12 Im (w1) = Im (z2e
−iθ) = 0 G

F (P−1, R2) t13, v312, p12 Im (w1) = Im (w2) = 0 M
F (P−1, R−1

2 ) t13, v123, p12 Im (w1) = Im (w2e
−iθ) = 0 M

F (R1, R
−1
1 ) t32, v123, p12 Im (z2) = Im (z2e

−iθ) = 0 S
F (R1, R

−1
2 ) v123, v231, p12 Im (z2) = Im (w2e

−iθ) = 0 G
F (R2, R

−1
2 ) t13, v231, p12 Im (w2) = Im (w2e

−iθ) = 0 S
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4.5 Other facets of D. We have discussed the vertices and faces ofD, that is the facets
of dimension 0 and 2. In this section we discuss the rest of the facets of D, that is the
edges and sides of dimension 1 and 3 respectively. Figures 10 and 11 show the sides of
D and their 1-skeletons. We begin with the edges, that is facets of dimension 1. We refer
to the edge joining vertices a and b as γ(a, b).

Proposition 4.8. Each edge γ(a, b) of D is a geodesic segment joining a pair of the
vertices a and b.

Proof. Each edge will be contained in either three or four of the faces listed in the previous
section. We refer to faces contained in a common slice or a common meridian as S-faces
or M-faces respectively. We now list the edges together with the faces containing them.

Edge S-face M-face M-face
γ(t32, v312) F (J, P ) F (J,R−1

1 ) F (P,R−1
1 )

γ(t32, v123) F (R1, R
−1
1 ) F (J,R1) F (J,R−1

1 )
γ(t32, v231) F (J, P ) F (J,R1) F (P,R1)
γ(t32, p12) F (R1, R

−1
1 ) F (P,R1) F (P,R−1

1 )
γ(t13, v312) F (J−1, P−1) F (J−1, R2) F (P−1, R2)
γ(t13, v123) F (J−1, P−1) F (J−1, R−1

2 ) F (P−1, R−1
2 )

γ(t13, v231) F (R2, R
−1
2 ) F (J−1, R2) F (J−1, R−1

2 )
γ(t13, p12) F (R2, R

−1
2 ) F (P−1, R2) F (P−1, R−1

2 )
γ(p12, v312) F (P,R−1

1 ) F (P−1, R2)
γ(p12, v123) F (R1, R

−1
1 ) F (P−1, R−1

2 )
γ(p12, v231) F (R2, R

−1
2 ) F (P,R1)

γ(v312, v123) F (J−1, P−1) F (J,R−1
1 )

γ(v123, v231) F (J,R1) F (J−1, R−1
2 )

γ(v231, v312) F (J, P ) F (J−1, R2)

Each edge is contained in at least two totally geodesic faces, that is either a complex line
or Lagrangian plane. This means that the edge is a geodesic segment. In particular:
(1) Each edge ending at either t32 or t13 is on one S-face and two M-faces. Moreover, the

two M-faces are contained in meridians of the same bisector. Therefore this edge is a
geodesic segment contained in the spine of this bisector.

(2) Each edge of the other edges is either in two M-faces or an S-face and an M-face (as
well as two faces in Giraud discs that we do not list here).

This completes the proof.

Let S(X) denote the side (that is codimension 1 facet) of D contained in the bisector
B(X). A consequence of the analysis we have done is:

Proposition 4.9. Each side S(X) ofD is a 3-simplex (solid tetrahedron) contained in the
bisector B(X). It has one face contained in a slice of B(X) and two faces contained in
meridians ofB(X), intersecting in an arc of the spine σ(X). The fourth face is contained
in a Giraud disc.
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We also have a proposition describing the faces more precisely:

Proposition 4.10. Each face F (X,Y ) of D is a 2-simplex (solid triangle) homeomor-
phic to an closed disc in R2 and the boundary of F (X,Y ) is made up of three geodesic
segments joining the vertices.

Note that in Section 4.4 there were some pairs of sides whose intersections we did not
consider. Each of these pairs of sides intersect in and edge. For completeness, we now
list them.

Side Side Edge
S(J) S(P−1) γ(v123, v312)
S(J) S(R2) γ(v231, v312)
S(J) S(R−1

2 ) γ(v123, v231)
S(J−1) S(P ) γ(v231, v312)
S(J−1) S(R1) γ(v123, v231)
S(J−1) S(R−1

1 ) γ(v123, v312)
S(P ) S(P−1) γ(p12, v312)
S(P ) S(R−1

2 ) γ(p12, v231)
S(P−1) S(R1) γ(p12, v123)
S(R1) S(R2) γ(p12, v231)
S(R−1

1 ) S(R2) γ(p12, v312)
S(R−1

1 ) S(R−1
2 ) γ(p12, v123)

In order to see that these intersections are one dimensional, we follow a similar method
to the one used to prove Propositions 4.4 to 4.6. For example, consider S(P ) ∩ S(P−1).
By definition, we have z1 = x and w1 = u where x and u are positive real numbers. It is
not hard to see that for such a point

Im (z2e
−iθ) =

sin θ sinφ(u− x)
sinφ+ sin(θ − φ)− sin(θ + φ)u

,

Im (w2) =
sin θ sinφ(u− x)

sinφ+ sin(θ − φ)− sin(θ + φ)x
.

Since Im (z2e
−iθ) ≤ 0 and Im (w2) ≥ 0 we must have u = x. Substituting this back into

the expressions for z2 and w2, it is not hard to see that we must have 0 ≤ x ≤ 1.

5 Proof that D is a fundamental Polyhedron for the Group

5.1 Introduction. In this section we show that the group Γ generated byR1,R2 andA1
is discrete group with fundamental polyhedronD. To do so, we use Poincaré’s polyhedron
theorem. For accounts of Poincaré’s polyhedron theorem see Parker [12] or Mostow [9].
An account of Poincaré’s theorem in the constant curvature setting is given by Epstein and
Petronio [4]. Our proof is based on Parker’s proof of a similar result for Livné’s lattices.
In particular, we use the statement of Poincaré’s theorem as given in Section 4.1 of Parker
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Figure 10. The side pairing maps J and P . The solid lines denote edges in the spine of
the relevant bisector.

[12]. We will indicate how the proof goes and give sufficient details for the reader to
be able to reconstruct out arguments, but we do not give full details, which are given in
Boadi’s thesis [1].

Our main theorem is

Theorem 5.1. Let R1, R2, P and J be given by (4), (5), (8) and (9) respectively. The
subgroup Γ of PU(H) generated by these maps is discrete and the polyhedron D con-
structed in Section 4 is a fundamental polyhedron for Γ. Moreover, Γ has the following
presentation:

Γ =
〈
J, P,R1, R2 : J3 = Rp1 = Rp2 = (P−1J)k = I,

R2 = PR1P
−1 = JR1J

−1, P = R1R2

〉
(17)

where the values of p and k are given by:

p 3 3 3 4 4 5 5 6 6
k 4 5 6 3 4 2 3 2 3

We remark that, since P = R1R2 and J = R1R2A1 the group Γ is the same as
〈R1, R2, A1〉. Substituting this into the presentation (17) gives:

Γ =
〈
R1, R2, A1 : R

p
1 = Rp2 = Ak1 = (R1R2A1)3 = I,

R1R2R1 = R2R1R2, R1A1 = A1R1

〉
.

5.2 The side pairing maps. In this section we verify the side pairing conditions. There
are eight sides of D, namely S(J±1), S(P±1), S(R±1

1 ) and S(R±1
2 ) as constructed in



Mostow’s Lattices and Cone Metrics on the Sphere 31

R1

R2

1

−1

2

−1

p

p

1

2

S(R )

S(R )

p
12

t
32

v
123

v
312

12

t
32

v
312

v
231

t
13

12
p
12

v
231

v
231

v
123

t
13

123
v

S(R   )

S(R   )

Figure 11. The side pairing maps R1 and R2. The solid lines denote edges in the spine of
the relevant bisector.

Section 4. These sides are paired by the maps J , P , R1 and R2 as described in the
following proposition. Recall that D, as defined in (16), is an open polyhedron. We use
the convention that that sides, faces, edges and vertices are closed sets.

Proposition 5.2. Let X be one of J±1, P±1, R±1
1 or R±1

2 . Then:
(i) X sends S(X) bijectively to S(X−1) sending vertices, edges and faces to vertices,

edges and faces respectively.
(ii) X−1(D) ∩D = ∅ and X−1(D) ∩D = S(X).

Proof. For each X the side S(X) is contained in a bisector B(X). By the construction
of B(X) in Section 4, for each X there are vertices a and b (possibly equal) so that a is
not on B(X) and B(X) is equidistant from a and X−1(b). Moreover, D is contained in
the half-space closer to a than to X−1(b).

Applying X we see that X
(
B(X)

)
is equidistant from X(a) and b. In other words,

X
(
B(X)

)
= B(X−1). Moreover X(D) is contained in the half-space closer to X(a)

than to b. This is the opposite half-space to D. Thus X(D) ∩D = ∅ and X(D) ∩D ⊂
B(X−1).

The rest of the proposition follows from the fact that D ∩ B(X) = S(X), which
comes out of our construction using the inequalities from Theorem 1.1.

The side pairing conditions (S.1), (S.2), (S.3) and (S.4) of Poincaré’s theorem as given
in Section 4.1 of Parker [12] follow directly from Proposition 5.2. The condition (S.5)
sayingD has finitely many faces, each with finite combinatorics follows from Proposition
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4.9. Finally, the condition (S.6) is vacuous in this case, since every pair of sides intersects
in at least an edge. Thus we have verified the side pairing conditions.

5.3 Face cycles. In this section we verify the face conditions of Poincaré’s theorem.
For each face F (X,Y −1) = S(X)∩S(Y −1) we construct an element of Γ called a cycle
transformation as follows. Let X = X1. We know from Proposition 5.2 that X = X1
sends faces of S(X1) to faces of S(X−1

1 ). Suppose that

X1
(
F (X1, Y

−1)
)

= F (X2, X
−1
1 ) = S(X2) ∩ S(X−1

1 ),

a face of S(X−1
1 ). We can repeat this process, and consider X2

(
F (X2, X

−1
1 )
)
, which

is a face F (X3, X
−1
2 ) of S(X−1

2 ). Eventually, we will find an n so that Xn = Y and
Y
(
F (Y,X−1

n−1)
)

= F (X,Y −1), the first face we considered. In other words we have

F (X1, X
−1
n ) X1−→ F (X2, X

−1
1 ) X2−→ · · · Xn−1−→ F (Xn, Xn−1) Xn−→ F (X1, X

−1
n ).

The collection of faces F (Xi, X
−1
i−1), for i = 1 to nwithX0 = Xn, is called the face cycle

associated to F (X1, X
−1
n ) = F (X,Y −1) and the composition T = Xn ◦ · · · ◦X2 ◦X1 is

called the cycle transformation associated to F (X,Y −1).

Proposition 5.3. Let F (X1, X
−1
n ) be a face of D with associated cycle transformation

T = Xn ◦ · · · ◦X2 ◦X1. Then:

(i) There is an integer ` so that the restriction of T ` to F (X1, X
−1
n ) is the identity.

(ii) There is an integer m so that T `m = (T `)m is the identity on the whole space.
(iii) For i = 0, . . . , n−1 and j = 0, . . . , `m−1 the images T−j ◦X−1

1 ◦ · · · ◦X
−1
i (D)

are disjoint. (Here i = 0 means the identity and so T−j ◦X−1
1 ◦ · · · ◦X

−1
i (D) = D

when i = j = 0.)
(iv) The union over i = 0, . . . , n− 1 and j = 0, . . . , `m− 1⋃

i,j

T−j ◦X−1
1 ◦ · · · ◦X−1

i (D)

covers a neighbourhood of the interior of F (X1, X
−1
n ).

Proof. We list the face cycles and the cycle transformation associated to the first face in
the cycle and the integers l and m.

Face cycle Transformation ` m
F (J, J−1) J 3 1
F (J, P ) F (P−1, J−1) P−1J 1 k

F (J,R1) F (R2, J
−1) F (J−1, R−1

2 ) F (R−1
1 , J) R−1

1 J−1R2J 1 1
F (P,R1) F (R2, P

−1) F (P−1, R−1
2 ) F (R−1

1 , P ) R−1
1 P−1R2P 1 1

F (R1, R
−1
1 ) R1 1 p

F (R2, R
−1
2 ) R2 1 p

F (R1, R
−1
2 ) F (P−1, R−1

1 ) F (R2, P ) R2P
−1R1 1 1
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This proves (i) and (ii). We now prove (iii) and (iv) in the cases where F (X1, X
−1
n ) is

contained in a Giraud disc, a slice and a meridian. We do a single example in each case.
First consider faces contained in Giraud discs. We will give the details for the face

F (J, J−1). It is defined by∣∣〈p, p12〉
∣∣ =

∣∣〈p, J−1(p12)〉
∣∣ =

∣∣〈p, J(p12〉
∣∣.

There are three sectors around this face, each where one of these quantities is smallest.
First, using Theorem 1.1, D is contained in the sector with∣∣〈p, p12〉

∣∣ < ∣∣〈p, J−1(p12)〉
∣∣, ∣∣〈p, p12〉

∣∣ < ∣∣〈p, J(p12)〉
∣∣.

Thus J(D) is contained in the sector where∣∣〈p, J(p12)〉
∣∣ < ∣∣〈p, p12〉

∣∣, ∣∣〈p, J(p12)〉
∣∣ < ∣∣〈p, J2(p12)〉

∣∣.
As J has order 3 we see that J2 = J−1. Likewise J−1(D) is contained in the sector
where ∣∣〈p, J−1(p12)〉

∣∣ < ∣∣〈p, J(p12)〉
∣∣, ∣∣〈p, J−1(p12)〉

∣∣ < ∣∣〈p, p12〉
∣∣.

It is easy to see that these three sectors are disjoint and that their closures cover a neigh-
bourhood of B(J) ∩ B(J−1). Adding the extra inequalities defining the boundary of
F (J, J−1), we see that D, J(D) and J−1(D) cover a neighbourhood of the interior of
F (J, J−1). This works because p12 is the intersection of the complex spines Σ(J) and
Σ(J−1) of B(J) and B(J−1). For the other faces in Giraud discs we must modify the
inequalities in Theorem 1.1 accordingly.

Now consider the face F (J, P ) contained in the complex line z1 = 0. The polyhedron
D is contained in the sector where arg(z1) ∈ (−φ, 0). Also note that D is contained in
the sector 0 < arg(w1) < φ. since w = P−1(z), we see P−1(D) is contained in the
sector arg(z1) < (0, φ). Since P−1J = A1, which multiplies z1 by e2iφ we see that
J−1(D) = (P−1J)−1P−1(D) is contained in the sector with arg(z1) < (−2φ,−φ).
Continuing in this way we see see:

Image of D Sector containing arg(z1)
(P−1J)−j(D) (−2j − 1)φ < arg(z1) < −2jφ
(P−1J)−jJ−1(D) (−2j − 2)φ < arg(z1) < (−2j − 1)φ

Since φ = 2π/k, clearly these sectors are disjoint and the union as j varies from 0 to
k − 1 of their closures covers a neighbourhood of B(J) ∩ B(P ). Adding in the other
inequalities shows that a neighbourhood of the interior of F (J, P ) is covered by

k−1⋃
j=0

(
(P−1J)−j(D) ∪ (P−1J)−jJ−1(D)

)
.

Consider the face F (J,R1) contained in the Lagrangian plane where Im (z1e
iφ) = 0

and Im (z2) = 0. Similar arguments to those given above show that D is contained in the
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quadrant where Im (z1e
iφ) > 0 and Im (z2) > 0; J−1(D) is contained in the quadrant

where Im (z1e
iφ) < 0 and Im (z2) > 0; J−1R−1

2 (D) is contained in the quadrant where
Im (z1e

iφ) < 0 and Im (z2) < 0 and J−1R−1
2 J(D) is contained in the quadrant where

Im (z1e
iφ) > 0 and Im (z2) < 0. Arguing as above, we see that these images of D are

disjoint and their closures cover a neighbourhood of the interior of F (J,R1). (Compare
this to Proposition 4.8 of Parker [12].)

Therefore we have proved the face conditions (F.1), (F.2) and (F.3) given in Section
4.1 of Parker [12]. Condition (F.1) was verified in Proposition 4.10, and conditions (F.2)
and (F.3) are verified in Proposition 5.3.

We also have to be careful in the case where one of the vertices is on the ideal bound-
ary. In this case, we must show that there is a consistent horosphere about this point;
see Epstein and Petronio [4] or Section 5.1 of Falbel-Parker [6]. (This was not necessary
for the groups considered in [12] as the lattices were cocompact.) In other words, there
is a horosphere based at this point that is preserved under its stabiliser and mapped off
itself by all other group elements. We show that the stabiliser of any of the vertices of
D is generated by elliptic maps. Thus, when this vertex lies on the boundary of complex
hyperbolic space, the stabiliser preserves all horospheres centred at this point. Since D
has finitely many faces, we may shrink such a horosphere until it is disjoint from all its
images.
(1) It is clear that t32 and t13 are never on the ideal boundary.
(2) The vertex p12 is on the ideal boundary exactly when θ = 2π/p = π/3 and so p = 6.

The stabiliser of p12 is generated by R1 and R2. Since these maps are elliptic they
preserve all horospheres centred at p12.

(3) The vertices v312, v123 and v231 lie on the ideal boundary exactly when

θ + 2φ = 2π/p+ 2π/k = π

and so (p, k) is one of (3, 6), (4, 4) or (6, 3). The stabiliser of v231 is generated by R2
and A1. Since these maps are elliptic they preserve all horospheres centred at p12.

We have verified the hypotheses of Poincaré’s polyhedron theorem. Our only omis-
sion is that we have not fully proved the details of the intersection of D with the eight
bisectors and the the intersections of each pair of sides and we have not proved all the
details of face cycles and tessellation around faces. In Section 4.4 and in Proposition 5.3
we have given full details of the methods we use to analyse these sides, their intersections,
and face cycles. We have given the details in representative cases. In all other cases, the
details are straightforward to verify along the lines we have indicated.

Therefore the group generated by the side pairing transformations J , P , R1 and R2
is discrete, D is a fundamental polyhedron and the relations are generated by the cycle
relations T `m = I for each face F (X,Y −1) (there are no reflection relations in this case).
Therefore the relations are generated by

J3 = (P−1J)k = R−1
1 J−1R2J = R−1

1 P−1R2P = Rp1 = Rp2 = R2P
−1R1 = I.

It is clear that these may be rewritten to give the relations in (17). Therefore we have
proved Theorem 5.1.
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