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(Received 19 August 2015; accepted 23 September 2015; published online 7 October 2015)

We present semiclassical approximations to Green’s functions of multidimensional systems, extend-
ing Gutzwiller’s work to the classically forbidden region. Based on steepest-descent integrals over
these functions, we derive an instanton method for computing the rate of nonadiabatic reactions,
such as electron transfer, in the weak-coupling limit, where Fermi’s golden-rule can be employed.
This generalizes Marcus theory to systems for which the environment free-energy curves are not
harmonic and where nuclear tunnelling plays a role. The derivation avoids using the Im F method
or short-time approximations to real-time correlation functions. A clear physical interpretation of
the nuclear tunnelling processes involved in an electron-transfer reaction is thus provided. In Paper
II [J. O. Richardson, J. Chem. Phys. 143, 134116 (2015)], we discuss numerical evaluation of the
formulae. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4932361]

I. INTRODUCTION

Electron transfer is a key step in many important molec-
ular processes, including redox reactions in electrochemistry
and charge separation in photosynthesis and solar cells.1–3 The
electron resides initially on a donor molecule and is transferred
to an acceptor, accompanied by a reorganization of the polar
environment. This reaction can be characterized as a transi-
tion between the donor and acceptor electronic states with
potential-energy surfaces describing the reactant and product
environments. Electron transfer is the simplest example of
such a nonadiabatic reaction involving transitions between
different electronic states, requiring a theoretical treatment
beyond the Born-Oppenheimer approximation.4–6 We are thus
interested in studying a multidimensional curve-crossing prob-
lem, which, as it involves discrete states, is inherently quan-
tum mechanical. Although we pay particular attention to the
electron-transfer problem, the nonadiabatic formalism is also
relevant in other areas of science, such as defect tunnelling in
solids.7 Most formulae derived in this paper can be transferred
directly to these fields.

In this paper, we consider the golden-rule limit which oc-
curs when the transfer of the electron, rather than the rearrange-
ment of the environment, is the bottleneck to the reaction.3 This
is quite commonly the case in problems of interest, especially
if the donor and acceptor are spaced far apart. The standard
approach for treating electron-transfer problems in this limit
is Marcus theory,8 which is based on Fermi’s golden rule
with the additional approximation that the nuclei are treated
classically. The free-energy curves of the environment in the
reactant and product states are also assumed to be harmonic
with the same frequency. Although it is quite common for the
environment fluctuations to be harmonic,9,10 there is no reason

a)Electronic mail: jeremy.richardson@fau.de

for the frequencies to be exactly equal in the two cases, unless
the reaction is symmetric such that the products are equivalent
to the reactants. In some cases, the reorganization energies for
the forward and backward reaction can differ by a factor of
two,11 and it is necessary to use a more general rate expression
which allows for this asymmetry but retains the classical and
harmonic approximations.12,13

Marcus theory also neglects nuclear quantum effects,
such as tunnelling and delocalization, which have been found
to be significant in electron-transfer problems even at room
temperature.14 It is, however, possible to compute the quantum
golden-rule rate exactly for the spin-boson model,15,16 which
treats all environment modes as linearly coupled harmonic
oscillators. Extensions of this to treat non-linear couplings
are also possible.12 The multilayer multiconfigurational time-
dependent Hartree (MCTDH) method17 is in principle able
to compute the exact rate for such systems,18 but in practical
applications to large systems is usually limited to specific
forms of the Hamiltonian such as system-bath models.

Thus, for many problems in the golden-rule limit, an accu-
rate calculation of the reaction rate will require an efficient
method which includes nuclear quantum effects and treats the
potential-energy surfaces in a general way without making
global harmonic approximations. In this article, we present
a new derivation of such a method for computing the rate
approximately using a time-independent picture for the nuclear
degrees of freedom.

Our derivation is based on an exact expression for the
golden-rule rate in terms of the Green’s functions describing
the nuclear quantum dynamics of the reactant and product sys-
tems at a given energy. By extending Gutzwiller’s work,19–21

we present the semiclassical limit of these Green’s functions
in the classically forbidden region, which may also be useful
for other applications. These functions are defined in terms
of imaginary-time classical trajectories which join together
to form a periodic orbit, also known as an instanton. The
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definition of the rate is found by performing a number of
steepest-descent integrations.

Other instanton approaches are well known from adia-
batic rate22–28 and tunnelling splitting29,30 calculations, where
in both cases the Born-Oppenheimer approximation is first
applied to obtain a single-surface Hamiltonian. The Im F meth-
od31 can be used to derive the instanton approximation to the
adiabatic escape rate from metastable states in the high- or low-
temperature limit25 although its application to finite temper-
atures28 or nonadiabatic reactions32 is less well understood.
In this approach, the rate is expressed approximately as the
imaginary part of a free-energy, which is obtained by analytic
continuation of a divergent integral.33

Although instanton theory dates back many years, a nu-
merical method for its efficient application to complex multidi-
mensional systems has only been developed more recently,27,34

and it is thus experiencing a revival of interest.35–38 The present
work can be considered to belong to the same class of methods,
which treat the collective motion of the nuclear modes with
a multidimensional instanton. We note, however, that our
approach is very different from the semiclassical instanton
approach presented in Ref. 39. This was derived to recover
Marcus theory in both the normal and inverted regimes using
an instanton to describe the dynamics of the transferred elect-
ron, while treating the environment classically.

It has become common to define thermal reaction rates
using time correlation functions.40 However, our derivation
in energy-space gives us access not only to the thermal rate
but also an approximation to the energy-dependent reaction
probability. This can be combined with any continuous energy
distribution to give a nonequilibrium instanton rate, which
may be helpful for understanding scattering calculations of
large molecules or gas-phase unimolecular reactions. The
modified correlation function presented in Ref. 41, which is
used for computing nonadiabatic rates avoiding oscillatory
functions, also requires that the flux operator is biased towards
energy-conserving electron-transfers. If we are to combine this
method with an instanton approach, it will be natural to use a
formulation in energy-space rather than in time to access the
necessary variables.

An outline of the paper is as follows. We express the
formula for the golden-rule rate in terms of Green’s functions
in Sec. II and give a semiclassical approximation to these
functions in Sec. III. Using this approximation, the golden-
rule instanton rate is derived in Sec. IV in two forms which
are evaluated analytically for a system with linear potentials,
the spin-boson model, and in the classical limit for general
potentials in Sec. V. Sec. VI concludes the article. In Paper
II,42 which follows this article, we discuss how the instanton
formula can be applied numerically to complex systems and
relate it to Wolynes’ quantum instanton approach.43

II. QUANTUM GOLDEN-RULE RATE

We consider a general multidimensional system with two
electronic states, each with a nuclear Hamiltonian of the form

Ĥn =

f
j=1

p̂2
j

2m
+ Vn(x̂), (1)

where n ∈ {0,1} is the electronic-state index and x = (x1, . . . ,
x f ) are the Cartesian coordinates of f nuclear degrees of
freedom. These nuclei move on the potential-energy surface
Vn(x) with conjugate momenta p̂j = −i~ ∂

∂ x̂
j
. Without loss of

generality, the nuclear degrees of freedom have been mass-
weighted such that each has the same mass, m. The electronic
states |n⟩ are coupled by ∆(x) to give the total Hamiltonian in
the diabatic representation,4

Ĥ = Ĥ0|0⟩⟨0| + Ĥ1|1⟩⟨1| + ∆(x̂)�|0⟩⟨1| + |1⟩⟨0|�. (2)

The thermal rate, k, of transfer of reactants, defined by
the projection operator |0⟩⟨0|, to products, defined by |1⟩⟨1|,
is given exactly by

k Z0 =
1

2π~


P(E) e−βE dE, (3)

where β = 1/kBT is the reciprocal temperature and Z0 the
reactant partition function Tr

�
e−βĤ |0⟩⟨0|�. P(E) is the reaction

probability with energy E, defined as40

P(E) = 1
2 (2π~)2Tr

�
F̂δ(E − Ĥ)F̂δ(E − Ĥ)� , (4)

where the flux from reactants to products is

F̂ =
i
~
∆(x̂)�|0⟩⟨1| − |1⟩⟨0|�. (5)

Note that, although we shall not make use of it in this paper, it
would be simple to replace the canonical ensemble in Eq. (3)
with any distribution of energy to obtain non-thermal reaction
rates.

In this paper, we consider only systems for which the
electronic coupling, ∆(x), is very weak such that second-order
perturbation theory, known as the golden-rule approach, can
be employed. In this limit the formulae reduce to

P(E) = 4π2Tr
�
∆(x̂)δ(E − Ĥ0)∆(x̂)δ(E − Ĥ1)� (6)

Z0 = Tr

e−βĤ0


. (7)

These equations, combined with Eq. (3), give the golden-rule
rate in the form also derived from a limit of the non-oscillatory
flux correlation function,41 and are exact to order ∆2.

Expanding the trace in Eq. (6) in the basis of reactant and
product internal (e.g., vibrational) states |µ⟩ and |ν⟩would give
the standard golden-rule formula,44

k Z0 =
2π
~


µν

|⟨ν |∆(x̂)|µ⟩|2 δ(Eµ − Eν) e−βEµ, (8)

where the sum over states should be replaced by the integral
dEµdEν for continuous systems. Considering this golden-

rule formula, we notice that the reaction occurs between in-
ternal states of equal energy. For the majority of systems of
interest (in the Marcus normal regime), at low enough temper-
atures the dominant contribution comes from low energy states
which overlap only in the classically forbidden region. In this
case, therefore, the reaction includes a nuclear tunnelling pro-
cess and requires the treatment of such quantum effects to be
described adequately.

However, unless the internal states are known, which
would be the case for instance if the potential-energy sur-
faces are assumed to be harmonic, this formulation cannot
be applied straightforwardly. In the present work, we seek a
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semiclassical approximation which allows us to evaluate the
rate in the golden-rule limit for complex systems by avoiding
the computation of the wave functions explicitly.

We introduce the Green’s functions (fixed-energy propa-
gators) describing nuclear dynamics on each of the electronic
states independently, defined equivalently by the following two
expressions:

Ĝn(E) = lim
η→0+

(E + iη − Ĥn)−1 (9)

= lim
η→0+

− i
~

 ∞

0
e−iĤnt/~ ei(E+iη)t/~ dt . (10)

The imaginary part is related to the density of states by
ImĜn(E) = −πδ(E − Ĥn). The reaction probability can thus
be written as

P(E) = 4

∆(x′)Im⟨x′|Ĝ0(E)|x′′⟩

×∆(x′′)Im⟨x′′|Ĝ1(E)|x′⟩dx′dx′′. (11)

A similar formula was derived by Miller et al.40 for adiabatic
reactions in which it was also noticed that only the imaginary
part of the Green’s function needs to be known in order to
obtain the reaction rate.

An exact evaluation of the Green’s functions will be
impossible for complex systems as this is equivalent to a
complete solution of the Schrödinger equation. Nor does the
microcanonical density operator treated in a path-integral
representation45,46 lead to a practical computational technique.
We therefore require a simpler semiclassical description of
the imaginary part of the Green’s functions in the classically
forbidden region. The derivation of this is given in Sec. III.

III. SEMICLASSICAL GREEN’S FUNCTIONS

Similar to the wave function which solves the Schrödinger
equation for the Hamiltonian in Eq. (1), the Green’s function
defined by Eq. (10) contains all information required to study
the nuclear dynamics. It would therefore be a very useful object
to obtain and apply to a wide range of problems, although it is
in general as difficult to compute exactly as the wave function
itself. However, it can easily be defined using Feynman’s path-
integral propagator,47 from which one can take a semiclassical
approximation replacing the path integral as a sum over clas-
sical trajectories.

In many previous applications, semiclassical Green’s
functions were employed to describe quantization in bound
states.20,48 This required locating periodic orbits in the clas-
sically allowed region, for which there may be numerous
possibilities, many of which are unstable, especially in large
complex systems exhibiting chaotic dynamics. However, in
this work, the most important quantum effect is that of tunnel-
ling and we neglect quantization in the reactant and product
potential wells. This means that we are interested in evaluating
the Green’s function only in the classically forbidden region.
As we shall show, this requires us to locate a single trajectory,
and is therefore expected to lead to computationally feasible
methods even in complex systems.

Gutzwiller19–21 has derived a semiclassical approxima-
tion to the Green’s function, ⟨x′|Ĝn(E)|x′′⟩, in the classically

allowed region, i.e., where Vn(x′) < E and Vn(x′′) < E. The
derivation starts from the van-Vleck propagator, a semiclas-
sical approximation to ⟨x′|e−iĤn(t′−t′′)/~|x′′⟩,19

Kn(x′,x′′, t ′ − t ′′) =


cl. traj.

√
Cn

(2πi~) f /2 eiSn/~ (12)

Cn =
�����
− ∂2Sn
∂x′∂x′′

�����
, (13)

where the full action is

Sn ≡ Sn(x′,x′′, t ′ − t ′′)
=

 t′

t′′


1
2 m

�����
∂x(t)
∂t

�����

2

− Vn

�
x(t)�


dt . (14)

Here, x(t) is a classical trajectory which travels from x′′ at time
t ′′ to x′at time t ′, and we sum over all such trajectories. To avoid
clutter, the transpose is implied on the second partial derivative
variable of Hessian matrices throughout, e.g., ∂2Sn

∂x′∂(x′′)⊤ . As the
Hamiltonian is time-independent, without loss of generality we
can set t ′′ = 0. We note that − ∂Sn

∂t′ gives the energy conserved
along the trajectory.

Using van-Vleck’s propagator in Eq. (10), Gutzwiller em-
ployed a stationary-phase evaluation of the Laplace integral.
The stationary-phase points solve

∂

∂tn
Sn(x′,x′′, tn) + E = 0, (15)

which picks out times, tn, defining trajectories with the re-
quired energy. This gives a semiclassical approximation for
the Green’s function as a sum over classical trajectories with
energy E,21,33

Gn(x′,x′′,E) =


cl. traj.

2π
 |Dn |

(2πi~)( f +1)/2
eiWn/~−iνπ/2. (16)

Now the same classical trajectories can be formally defined as
continuous paths starting at x′′ and ending at x′ and giving a
stationary value of the abbreviated action,49,50

Wn ≡ Wn(x′,x′′,E) =
 x(q)=x′

x(q)=x′′
pn dq, (17)

which is a line integral along the trajectory x(q) represented by
the generalized coordinate q. The magnitude of the momentum
at any point along the trajectory is

pn =


2m[E − Vn(x)]. (18)

The prefactor is found from the determinant of an ( f + 1)-
dimensional square matrix,

Dn = (−1) f +1

���������

∂2Wn

∂x′∂x′′
∂2Wn

∂x′∂E
∂2Wn

∂E∂x′′
∂2Wn

∂E2

���������

. (19)

Following Gutzwiller,19 we take the absolute value of this
determinant and introduce a phase term in Eq. (16) determined
by the Maslov-Morse index, ν, which is given by the number of
conjugate points along the trajectory. For our purposes, conju-
gate points occur where the trajectory encounters a turning
point, where Vn(x) = E, and comes instantaneously to rest.21

We call this a bounce.
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We now derive an equivalent semiclassical Green’s func-
tion formalism for the classically forbidden region, where
Vn(x′) > E and Vn(x′′) > E. Some work in this direction has
already been completed to describe tunnelling using imagi-
nary-time trajectories, using similar approaches to that out-
lined in this paper. Some generalization is however required as
results in the literature considered only pathways which pass
through the forbidden region but with end points outside,51,52

or treated only certain one-dimensional systems.53,54 We also
introduce a transition-state theory approximation below which
allows us to present a simple expression for the Green’s func-
tion between classically forbidden end points in the general
multidimensional case.

Using the semiclassical van-Vleck propagator in Eq. (10)
gives stationary-phase points which again solve Eq. (15). As
before, solutions correspond to classical trajectories travelling
from x′′ to x′ in a given time. However, classical dynamics in
the forbidden region is only possible in imaginary time, as it is
well-known that this is equivalent to real-time dynamics on an
upside-down potential-energy surface.55 Therefore, whereas in
the classically allowed region these stationary points lay on
the real-time axis, for the forbidden region they are on the
imaginary-time axis. The action for these trajectories is purely
imaginary.

Let us consider the nature of these imaginary-time trajec-
tories. In the f -dimensional coordinate space, there will be
an ( f − 1)-dimensional “turning” surface on which Vn(x)
= E. This surface is a generalization of the turning point,
which separates the allowed from the forbidden region,
and imaginary-time trajectories can bounce off it. Possible
solutions therefore correspond to trajectories which travel
directly from one end point to the other or those which bounce
off the surface in-between. Because the dynamics are time
reversible, a bouncing trajectory will always travel along the
same pathway before and after the bounce, which always
occurs normal to the turning surface. The direct trajectory
corresponds to td = −iτd, and the bounce to tb = −iτb, where
τb > τd > 0. The stationary point of the former is a maximum
along the imaginary axis but a minimum along the real axis,
whereas the latter is vice versa. Note that the reverse of these
trajectories also exist with Im t > 0 but occur in the wrong
part of the complex plane to be of interest for the contour
integration which we shall perform.

For the simplest cases of tunnelling into an unbound
potential, such as the one-dimensional linear Vn(x) = κnx, only
these two classical trajectories can exist at a given energy.
However, a bound potential, such as the one-dimensional har-
monic oscillator, also supports trajectories which pass through
the turning surface into the classically allowed region where
it bounces any odd number of times, before returning to the
forbidden region.54 These correspond to complex times with
Re t > 0 and contribute a phase factor of eiERe t/~ to the Green’s
function. When we perform the integral in Eq. (3), these phases
will make an otherwise positive-definite integrand oscillatory
such that the value of the integral is reduced and becomes
subdominant to that of the non-oscillatory term with Re t
= 0.56 We shall therefore ignore the stationary points with
Re t > 0 and compute a steepest-descent integration along
the contour γd + γb + γ∞ shown in Fig. 1 such that it passes

FIG. 1. Representation of the deformed contour for the Laplace integral in
the classically forbidden region. The two marked stationary-phase points
correspond to the direct and bounce trajectories.

through the two dominant stationary points. A small positive
value of η causes the function to decay with Re t and ensures
that the integral along γ∞ is 0.

In this way, we are restricting the information needed
about the system to the classically forbidden region. Our
approximation is a form of quantum transition-state theory
(TST) as we are effectively ignoring coherence effects at
long times. The coherences are responsible for the discrete
energy levels of a finite bound system,20,48 and the zero-point
energy of an infinite system.16 However, we are ultimately
interested in condensed-phase systems where the potentials
are multidimensional and give rise to chaotic dynamics.21 In
these cases, these effects do not play an important role and can
often be neglected. Only at very low energies will we find a
serious error due to the discrete nature of states in the wells
which cannot be described using this approach.

More complex potential forms may support many bounce
or direct trajectories as well as those which bounce more than
once. In such cases, one can either sum over all possibilities
or turn to a path-integral sampling scheme which avoids the
steepest-descent integration in position variables. In this work,
we derive only a semiclassical steepest-descent rate theory
and shall assume the simplest case that only one trajectory of
each type exists, but still without specifying the exact form of
the surface. We shall show in Paper II42 how Wolynes’ quan-
tum instanton method,14,43,57 which can be used for systems
with rough potentials, is related to our golden-rule instanton
approach.

We can then follow a very similar derivation to that of
Gutzwiller’s in the allowed region performing steepest-descent
integrations about the points td/b. One must take particular
note that our integration along γb passes over only half of the
Gaussian peak centred at tb. This gives the following semiclas-
sical approximation to the Green’s function:

Ḡn(x′,x′′,E) = Γd
n(x′,x′′,E) + 1

2Γ
b
n(x′,x′′,E), (20)
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where the functions Γd/b
n are defined either by the direct or

bounce imaginary-time trajectory as appropriate. These trajec-
tories are continuous paths starting at x′′ and ending at x′which
give a stationary value of the imaginary abbreviated action,

W̄n ≡ W̄n(x′,x′′,E) =
 x(q)=x′

x(q)=x′′
p̄n dq, (21)

p̄n =


2m[Vn(x) − E], (22)

Γ
d/b
n (x′,x′′,E) = − 2π

 |D̄n |
(2π~)( f +1)/2

e−W̄n/~−iνπ/2, (23)

D̄n = (−1) f +1

���������

∂2W̄n

∂x′∂x′′
∂2W̄n

∂x′∂E
∂2W̄n

∂E∂x′′
∂2W̄n

∂E2

���������

. (24)

We use the notation of a bar over all variables related to
imaginary-time propagation. Note that the imaginary action
W̄n is so called because it is defined as−iWn. In this region, like
p̄n = −ipn, it is always real and positive. Unlike the Green’s
functions in the classically allowed region, which were oscil-
latory, these decay exponentially with W̄n.

The direct trajectory, with ν = 0, therefore contributes to
the real part, and the bounce, with ν = 1, to the imaginary part
of the semiclassical Green’s function. Even if trajectories exist
with more than one bounce, they can normally be ignored as
their large actions will ensure that they do not dominate either
the real or imaginary parts.

The semiclassical formulae suffer in the same way as
the Wentzel-Kramers-Brillouin (WKB) approximation58 from
poles at the turning points of a trajectory. That is, at a turning
point where Vn(x) = E, the prefactor D̄n goes to infinity, as
can be seen by transforming to a coordinate basis parallel and
perpendicular to the trajectory.20 However, we have found them
to be a good approximation to the exact Green’s functions when
x′ and x′′ are far from the turning points, which as we shall
show is all that is required for a steepest-descent evaluation of
the golden-rule rate constant.

We have shown that the Green’s function is not just a
simple analytic continuation of Gutzwiller’s formula because
a factor of a half appears in the imaginary part. This is in
agreement with previous work53,54 which explains the one-
dimensional WKB connection formulae.58 Interestingly, the
factor also appears in the Im F approach where it is argued
that only half of the imaginary barrier partition function is
required.24,33 The derivation given here based on the con-
tour integral used to compute the Laplace transform of the
van-Vleck propagator is more direct and requires no analytic
continuation.

For illustration, we shall give a simple example of the
semiclassical Green’s function for the one-dimensional linear
potential-energy surface Vn(x) = κnx. The semiclassical ap-
proximation in the classically allowed region, κnx ′, κnx ′′ < E,
is given by

Gn(x ′, x ′′,E) = −1
~


m2

pn(x ′)pn(x ′′)

ieiW d

n/~ + eiW b
n/~


, (25)

with

W d
n =

�����
pn(x ′′)3 − pn(x ′)3

3mκn

�����
, (26a)

W b
n =

pn(x ′′)3 + pn(x ′)3
|3mκn | , (26b)

or in the forbidden region, κnx ′, κnx ′′ > E,

Ḡn(x ′, x ′′,E) = −1
~


m2

p̄n(x ′)p̄n(x ′′)

e−W̄

d
n/~ +

i
2

e−W̄
b
n/~


,

(27)

with W̄ d/b
n defined as Eqs. (26) with bars added over the vari-

ables and momenta defined as in Eqs. (18) and (22). This is the
same semiclassical result as found in Ref. 54.

The wave functions for this linear potential are known to
be ψn(x; E) = √αAi (z(x; E)), where α = |4m2/~4κn |1/3 and
z(x; E) = (2m/κ2

n~
2)1/3(κnx − E). The exact Green’s function

for this linear potential can be found using the procedure
outlined in Ref. 59 from the Wronskian, w. It is

⟨x ′|Ĝn(E)|x ′′⟩ = 2mα
~2w

Ai (z>)Ai
�
e2iπ/3z<

�
, (28)

w = m
−1 + i/

√
3

~2/3 Γ
� 1

3

�
Γ
� 2

3

� , (29)

where z< and z> are the lesser and greater of z(x ′; E) and
z(x ′′; E).

The semiclassical approximation is compared to the exact
Green’s functions in Fig. 2, showing good agreement every-
where except near the classical turning point z = 0. In fact,
the imaginary part of the semiclassical Green’s function ap-
proaches the exact result asymptotically as can be proved using
Im⟨x ′|Ĝn(E)|x ′′⟩ = −πψn(x ′; E)ψn(x ′′; E) and the leading-
order terms of the asymptotic expansion of the Airy function,
which are,56,60 accurate for |z | → ∞, given by,

Ai(z) ≈



exp
�
− 2

3 z3/2�

2
√
πz1/4

z > 0

sin
� 2

3 (−z)3/2 + π
4

�
√
π(−z)1/4

z < 0

. (30)

FIG. 2. The diagonal elements of the Green’s function for a linear potential
and plotted with real and imaginary parts in red and black against a dimen-
sionless function of position and energy. The exact form, Eq. (28), is shown
with solid lines compared to the semiclassical approximations, Eqs. (25) and
(27), with dashed lines.
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Note again that the factor of half appearing in Eq. (20) was
necessary for this equivalence.

IV. GOLDEN-RULE INSTANTON FORMULATION

In this section, we shall derive an approximate formula
for the golden-rule rate using two semiclassical Green’s func-
tions in the classically forbidden region. We shall perform
this derivation using a steepest-descent integral first over the
positions and then over energy in the exact expression for the
rate. This picks out two imaginary-time classical trajectories,
which when joined together are known as the instanton.

The usual procedure for performing steepest-descent inte-
grals assumes that pre-exponential terms are approximately
constant over the range in which the exponential dominates.
That is, for functions A(q) and B(q) of a d-dimensional vari-
able q, 

SD
B(q) e−A(q)/~ dq = (2π~)d/2B(q‡)

×
�����
∂2A
∂q∂q

�����

− 1
2

q=q‡
e−A(q

‡)/~, (31)

where q‡ is defined such that A(q‡) is a minimum.56 This is also
known as the semiclassical approximation because, as long as
B(q‡) , 0, it gives the term with lowest order of ~ correctly.
The error in the approximation is always an order of ~ higher
and thus becomes exact if ~ → 0.

This steepest-descent approach requires that only one
minimum of the function A(q) exists, but is easily extended
to treat multiple well-separated minima by summing over the
contributions. However, like other instanton approaches,22,26,27

the resulting formulation will not be able to treat the rough
potential surfaces found for reactions in liquids where many
local minima exist whose steepest-descent integrands would
overlap. Such problems are better treated using path-integral
Monte Carlo or molecular dynamics approaches,43,61,62 which
we discuss in Paper II.42 The instanton approach derived here is
only directly applicable to solid7 or gas-phase systems as well
as system-bath models of condensed-phase electron transfer.16

However, it is the derivation and physical interpretation of a
rate formula which is the focus of the present work, and so we
will assume for now that the potentials are sufficiently smooth.

As already pointed out above, for the calculation of elect-
ron-transfer rates it is the classically forbidden region which
dominates the result. We note that the Green’s function will
be much simpler to work with numerically in this region,
where except for phases originating from the conjugate points,
there is a real exponent, and it is thus not an oscillatory
function. By a similar principle, other imaginary-time path-
integral calculations63 are numerically tractable, including, for
instance, instanton calculations of adiabatic reaction rates and
ring-polymer transition-state theory (RPTST).27,64

In Sec. IV B, we transform our rate expression from
the language of the Hamilton-Jacobi formalism, where the
trajectories are defined by their energy, to the language of
Lagrangian dynamics, where they are defined by the elapsed
time.

As our formula for the rate will be derived from a steepest-
descent integration over the position coordinates, a consistent
calculation of the reactant partition function is

Z0 ≈
f

j=1

1
2 sinh 1

2 β~ω j

, (32)

where ω j are the normal-mode frequencies at the minimum
of V0(x). This form assumes that there are no translation or
rotational degrees of freedom but can be easily modified to
treat gas-phase problems by projecting out such modes in the
usual manner. In this case, the steepest-descent approximation
is equivalent to a local harmonic approximation for the region
near the bottom of the reactant well. However, this is only a
minor approximation, and in what follows, we do not assume
that this harmonic approximation holds for the whole reactant
potential.

A. Hamilton-Jacobi formalism

We insert our semiclassical approximation for the Green’s
functions into Eq. (11). This requires only the imaginary parts
which are, according to our approximate formula, Eq. (20),
given by trajectories with a conjugate point, i.e., those which
bounce. Note also that the energies of the Green’s functions on
each electronic state are equal. We thus obtain the semiclassical
reaction probability

PSC(E) =


SD

∆(x′)∆(x′′)
~2


D̄0D̄1

(2π~) f −1 e−W̄ /~ dx′dx′′, (33)

where the combined action is W̄ = W̄0 + W̄1 and the trajectories
considered are those which bounce once between the end
points x′ and x′′ as shown in Fig. 3. We have assumed that there
is only one such trajectory on each surface. If more than one
exists, one should either take only the dominant trajectory with
the smallest value of W̄ or sum over all possibilities. Note that
the integral in Eq. (33) shall be computed using the method of
steepest descent which avoids including the spurious poles of
D̄n.

FIG. 3. Schematic showing the two imaginary-time bounce trajectories with
energy E near the crossing point in a one-dimensional, two-state system. The
blue trajectory is on |0⟩ and the red on |1⟩. The steepest-descent integration
of positions will be taken about the crossing point x′= x′′= x‡ at which
V0(x‡)=V1(x‡)=V ‡.
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The steepest-descent integration is taken about the point
x′ = x′′ = x‡, at which

∂W̄
∂x′ = p̄′0 − p̄′1 = 0, (34a)

∂W̄
∂x′′ = −p̄′′0 + p̄′′1 = 0, (34b)

where p̄′n (or its equivalent with double primes) is the imag-
inary momentum of the trajectory on surface n at x′; it has
magnitude p̄n(x′) and direction pointing along the trajectory.
As classical mechanics is time-reversible, the direction chosen
is immaterial, but should be consistent.

The fact that the energy E is equal for both trajectories
by construction implies that x‡ lies on the crossing seam. This
has physical significance showing that although the bounc-
ing instanton trajectory is delocalized, the hop between elec-
tronic states occurs dominantly on the crossing seam. For a
one-dimensional system this point is uniquely defined, but in
general, the seam is an ( f − 1)-dimensional surface and the
hopping point x‡ varies for trajectories of different energy.
Because the imaginary momenta on each surface cancel at the
hopping point, the trajectories must join smoothly into each
other to form a periodic orbit. This, along with the constraint
that both trajectories must reach a turning point defines the
hopping point x‡ for energy E. Note, however, that this does not
imply that the momentum at this point is necessarily normal to
the V0(x) = V1(x) surface.

In the following, all terms shall be evaluated at this hopping
point x′ = x′′ = x‡. This includes the electronic coupling for
which we, therefore, need only one value, denoted ∆ = ∆(x‡).
The semiclassical reaction probability is thus defined as

PSC(E) = 2π
~
∆

2


D̄0D̄1

���������

∂2W̄
∂x′∂x′

∂2W̄
∂x′∂x′′

∂2W̄
∂x′′∂x′

∂2W̄
∂x′′∂x′′

���������

− 1
2

e−W̄ /~. (35)

This is the form given for a system in the so-called normal
regime where the reactant and product minima lie on oppo-
site sides of the crossing seam. When they lie on the same
side, known as the Marcus inverted regime, it is clear that
a different ansatz would be required to define the instanton
because Eqs. (34) no longer define the stationary point.

The result in Eq. (35) could be used directly to compute
approximate microcanonical reaction rates.65 The approxima-
tion is only valid for energies lower than the activation energy
V ‡, and due to the transition-state theory assumption, cannot
describe a discrete spectrum. It will also deviate strongly from
the exact result at very low energies in condensed-phase sys-
tems, by ignoring the true density of states in the reactant well
and neglecting its zero-point energy. We concentrate, however,
on computing the thermal rate which is found by integration
over all energies weighted by the Boltzmann distribution. The
transition-state theory assumption made in Sec. III to ignore
trajectories with Re t > 0 is now a valid semiclassical approxi-
mation, asymptotically correct in the ~ → 0 limit. It would also
be possible to extend the theory to use other continuous energy
distributions and describe certain nonequilibrium effects.

Inserting the approximation for the reaction probability
into Eq. (3) and performing a steepest descent integral over E

gives the semiclassical result that we seek,

kSCZ0 =
√

2π~
∆2

~2


D̄0D̄1

���������

∂2W̄
∂x′∂x′

∂2W̄
∂x′∂x′′

∂2W̄
∂x′′∂x′

∂2W̄
∂x′′∂x′′

���������

− 1
2

×
(

d2W̄
dE2

)− 1
2
e−W̄ /~−βE, (36)

where the value is given at energy E which solves ∂W̄
∂E
+ β~

= 0 for a given temperature. The full derivative implies that x′
and x′′ are not held fixed but are moved to the appropriate value
of x‡, which is the stationary point of W̄ for each given energy.
Of course in one-dimensional systems where the hopping point
is always the same, there is no difference here between the full
and partial derivative with respect to E.

Because τn = − ∂W̄n
∂E

gives the imaginary time of the trajec-
tory, the energy is chosen by the steepest-descent integration
is that which ensures that the total imaginary time taken by
the orbit is τ0 + τ1 = β~. We have therefore obtained a formula
similar to the semiclassical description of the quantum Boltz-
mann distribution,55 which also leads to the usual derivations
of adiabatic instantons in terms of imaginary-time periodic
orbits.22,27 The golden-rule instanton is thus a periodic orbit
of constant energy and total imaginary time β~. It follows
a continuous path on the V0(x) surface from x‡ to a turning
point before retracing its steps back to x‡. Here, it hops to
the V1(x) surface, without needing to modify its momentum
as the potentials are equal, and performs a similar bounce
before returning. The periodic orbit must retrace itself after the
bounce because it must approach and depart from a turning

FIG. 4. Schematic showing three instanton paths (blue and red) in a two-
dimensional system at different temperatures. The shortest path corresponds
to the highest temperature which tunnels at high energy, whereas at low
temperature, the tunnelling pathway is longer and at low energy. Contours are
shown for both potential-energy surfaces such that one contour level is chosen
to be the energy E of each of the instantons. In each case, this contour level
surrounds the classically allowed region where the imaginary-time trajectory
cannot enter and the instanton bounces normal to this surface. The hop occurs
at x‡ without affecting the momentum of the orbit and is represented by the
change in colour of the pathway. These points vary with temperature but are
always located on the crossing seam V0(x)=V1(x), shown by the dotted line.
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point, at which it comes to rest, along the potential gradient.
In Fig. 4, we show how the periodic orbit and the hopping
point x‡ are affected by the temperature parameter β. Higher
temperatures lead to shorter instantons and thus a less de-
localized and more “classical” reaction where tunnelling is
less pronounced. Lower temperatures allow more freedom for
the instanton pathway to become curved, an effect known as
corner-cutting.26,66

Equation (36) is only one of the many possible ways to
formulate the golden-rule instanton rate and we consider now
transforming it to an alternative form. Applying the chain rule
at the stationary point defined by Eqs. (34) gives

d2W̄
dE2 =

∂2W̄
∂E2 +

∂2W̄
∂E∂x′

dx′
dE
+

∂2W̄
∂E∂x′′

dx′′
dE

(37)

and, using Eqs. (34),

*
,

0
0
+
-
=

d
dE

*...
,

∂W̄
∂x′
∂W̄
∂x′′

+///
-

=
*...
,

∂2W̄
∂x′∂E
∂2W̄
∂x′′∂E

+///
-

+
*...
,

∂2W̄
∂x′∂x′

∂2W̄
∂x′∂x′′

∂2W̄
∂x′′∂x′

∂2W̄
∂x′′∂x′′

+///
-

*...
,

dx′
dE
dx′′
dE

+///
-

. (38)

Solving these linear equations leads to the following relationship between full and partial derivatives:

d2W̄
dE2 =

∂2W̄
∂E2 −

(
∂2W̄
∂E∂x′

∂2W̄
∂E∂x′′

) *...
,

∂2W̄
∂x′∂x′

∂2W̄
∂x′∂x′′

∂2W̄
∂x′′∂x′

∂2W̄
∂x′′∂x′′

+///
-

−1

*...
,

∂2W̄
∂x′∂E
∂2W̄
∂x′′∂E

+///
-

, (39)

such that the semiclassical rate can be written equivalently as

kSCZ0 =
√

2π~
∆2

~2


D̄0D̄1

��������������

∂2W̄
∂x′∂x′

∂2W̄
∂x′∂x′′

∂2W̄
∂x′∂E

∂2W̄
∂x′′∂x′

∂2W̄
∂x′′∂x′′

∂2W̄
∂x′′∂E

∂2W̄
∂E∂x′

∂2W̄
∂E∂x′′

∂2W̄
∂E2

��������������

− 1
2

e−W̄ /~−βE, (40)

which is of course what would have been found by performing the steepest-descent integral over positions and energy in one step.

Equation (36), or equivalently Eq. (40), which gives a
semiclassical approximation to the golden-rule rate is the main
result of this work. If the instanton trajectory can be located
and derivatives of its action evaluated, the expression can be
applied directly to complex systems. We describe numerical
methods for doing this in Paper II based on optimizing discrete
pathways.

We consider our derivation to be simpler and more rig-
orous than previous golden-rule instanton approaches based
on an extension of the Im F approach.31 This procedure was
applied by Cao and Voth32 to describe nonadiabatic transi-
tions, although there appears to be no physical argument to
explain the use of the Im F premise in this case. Here, no
saddle point was found in the spatial degrees of freedom but
instead the imaginary part came from an analytic continuation
of the divergent integral along an imaginary time coordinate.
We shall, however, find that the formulae they obtained are
very similar to that derived in this work. This shows more
clearly that these instanton approaches are a form of TST, i.e.,
real-time dynamical effects are ignored. This would be harder
to understand from the Im F approach where time does not
appear.

Our derivation was performed using the Hamilton-Jacobi
formulation to define the classical trajectories, which was the

natural choice for treating trajectories which were required
to have equal energies. However, there also exists an alterna-
tive formulation of classical dynamics using the Lagrangian
picture, i.e., with a given imaginary time rather than energy.
In Sec. IV B we perform a Legendre transformation to find an
equivalent definition of the semiclassical rate formula.

B. Lagrangian formalism

The Lagrangian formulation of classical mechanics is
based on Hamilton’s principle function, Eq. (14). The imag-
inary time-version of this gives the Euclidean action55

S̄n ≡ S̄n(x′,x′′, τn) =
 τn

0


1
2 m

�����
∂x(τ)
∂τ

�����

2

+ Vn

�
x(τ)�


dτ (41)

= W̄n(x′,x′′,E) + Eτn, (42)

where the trajectory,x(τ), travels through the classically forbid-
den region from x(0) = x′′ to x(τn) = x′with energy E = ∂S̄n

∂τn
.

Because τ0 + τ1 = β~, the exponent of Eq. (40) is simply S̄
= S̄0 + S̄1, which is the total action of the periodic orbit.
Because the energies of the two trajectories are equal by
construction, our values for τn must also obey ∂S̄0

∂τ0
=

∂S̄1
∂τ1

or
∂S̄
∂τ
= 0, where τ0 = β~ − τ, τ1 = τ and thus ∂

∂τ
= ∂

∂τ1
− ∂

∂τ0
.
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The hopping points are as before x′ = x′′ = x‡. Note that such
trajectories with equal end points are forced to bounce as long
as τn is not zero, i.e., 0 < τ < β~.

Equation (42) is a Legendre transformation and expresses
the relationship between the two equivalent dynamical formal-
isms. Therefore, if the derivatives of S̄n are known, it is a simple
matter to identify all derivatives of W̄n. Using the definitions
in Appendix B, we re-express Eq. (40) as

kSCZ0 =
√

2π~
∆2

~2


C̄0C̄1

−Σ
e−S̄/~, (43)

or following a similar transformation to that of Eq. (39), with
W̄ and E replaced by S̄ and τ, as

kSCZ0 =
√

2π~
∆2

~2


C̄0C̄1

C̄

(
−d2S̄

dτ2

)− 1
2

e−S̄/~, (44)

C̄ =

����������

∂2S̄
∂x′∂x′

∂2S̄
∂x′∂x′′

∂2S̄
∂x′′∂x′

∂2S̄
∂x′′∂x′′

����������

. (45)

This is very similar to the golden-rule instanton formulation
of Cao and Voth32 which was derived from an extension to
Im F theory. The only difference is that an extra approximation
to the prefactor was made, valid only for the spin-boson model
(see Sec. V B), that the determinants cancel with the partition
function to give

kC&V =
√

2π~
∆2

~2

(
−d2S̄

dτ2

)− 1
2
e−S̄/~, (46)

where again τ is given as the value which solves ∂S̄
∂τ
= 0.

However, had this approximation not been taken, the two ap-
proaches would have given exactly equivalent results. It is
interesting to see that the current approach gives the same result
as an Im F formulation which was applied to nonadiabatic
problems without rigorous derivation. The work presented in
this paper, which gives an equivalent result, thus provides
an explanation of why the golden-rule instanton formulation
of Cao and Voth recovered the semiclassical result for the
spin-boson model,32 and would also apply to more general
systems if the extra approximation had not been made. In fact,
this shows that the Im F approach works remarkably well in
the golden-rule limit. However, the new derivation based on
semiclassical Green’s functions is simpler as it does not involve
analytic continuation of divergent integrals and starts from a
rigorous energy-space picture of the reaction.

Generalizations of this nonadiabatic instanton approach
have been proposed which interpolate the electron-transfer rate
between the weak- and strong-coupling limits.67,68 However,
they were also based on extensions of the Im F approach,
which does not appear to lead to a unique formulation. In one
case, the instanton was projected onto pure diabatic states,
which causes errors in the adiabatic limit,67 whereas in the
other, all electronic configurations were allowed giving a
mean-field approach which would fail to describe the high-
temperature golden-rule rate,68 where the instanton shrinks.

V. ANALYTIC SOLUTION IN SPECIAL CASES

It is possible to find a closed-form expression of the
golden-rule instanton rate in a few special cases. In particular,
we treat a system with linear potentials, the spin-boson model
and the classical limit for a general condensed-phase electron
transfer.

A. One-dimensional linear potentials

The simplest description of a nonadiabatic curve-crossing
problem is that of two linear potentials,

Vn(x) = V ‡ + κnx (47)

with κ0 > 0 > κ1 and a constant coupling, ∆. This is similar to
the famous Landau-Zener model69 but without the constraint
that the particle travels at a constant speed along the x coor-
dinate. In order to define a rate, we assume that the potential
only has this linear form near the crossing point and flattens
out at extreme values of x without affecting the transmission
probability for relevant values of energy. The reactant parti-
tion function Z0 could then be defined using the translational
invariance of incoming scattering states.

Using the wave functions given in Sec. III, and noting that
the integrals over the Airy functions can be performed analyt-
ically using Ref. 70, gives the exact transmission probability

P(E) = 4π2
∆

2
(

−4m2

~4κ0(κ0 − κ1)2κ1

)1/3

×Ai2

*
,

2m(κ0 − κ1)2
~2κ2

0κ
2
1

+
-

1/3

(V ‡ − E)

. (48)

The golden-rule instanton approach, Eq. (35), gives for E
< V ‡,

PSC(E) = π∆2

~|κ0 − κ1|


2m
V ‡ − E

× exp
4
√

2m(V ‡ − E)3/2|κ0 − κ1|
3~κ0κ1

. (49)

Using the asymptotic limit, Eq. (30), shows that this tends to
the exact result as E → −∞. It diverges, however, at E = V ‡

and is not applicable for higher energies.
For the thermal rate, defined by Eq. (43), we obtain

kSC = kcl exp
β3~2κ2

0κ
2
1

24m(κ0 − κ1)2 , (50)

where the classical rate is41

kclZ0 =


2πm
β~2

∆2

~|κ0 − κ1| e−βV
‡
. (51)

We plot these results in Fig. 5 for the symmetrical case κ ≡ κ0
= −κ1. As expected, the semiclassical results deviate from
the exact transmission probability when the energy nears the
diabatic crossing V ‡. Interestingly however, there appears to be
a cancellation of errors as the thermal rate gives the true value
perfectly. This is confirmed formally using the integral iden-
tity

 ∞
−∞Ai2(−aE) e−βE dE = eβ

3/12a3
/


4πaβ, for a, β > 0.
The same result is of course obtained using the golden-rule
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FIG. 5. Transmission coefficient and thermal rate constant for the one-
dimensional linear model. Solid lines are exact results and dashed from
instanton approximation. Energies and temperatures are weighted by ζ
= (2m/κ2~2)1/3 to give dimensionless units.

flux correlation function40,41 and the exact path-integral prop-
agator.47,71

The figure shows that tunnelling changes the rate by orders
of magnitude at low temperature but that the classical result
is correct in the high-temperature limit. This simple example
could be used to give a rough estimate of the importance of nu-
clear tunnelling in more complex systems if a one-dimensional
reaction coordinate is known. However, this is not generally the
case and the full-dimensional instanton pathway will normally
need to be found for accurate predictions.

B. Spin-boson model

The standard model for electron-transfer reactions in the
condensed phase is the spin-boson model.15,16 The potentials

of reactants and products are given by sets of shifted harmonic
oscillators,

V0(x) =
f

j=1

1
2 mω2

j(x j + ξ j)2, (52a)

V1(x) =
f

j=1

1
2 mω2

j(x j − ξ j)2 − ϵ, (52b)

and the electronic coupling, ∆, is taken to be a constant. The
frequencies and couplings of the modes are determined accord-
ing to a given spectral density, which we write in the discretized

form, J(ω) = π
2


j

c2
j

mω j
δ(ω − ω j), where cj = mω2

jξ j.
The exact quantum golden-rule rate for this system can be

calculated numerically using16

kQM =
∆2

~2

 ∞−iτ

−∞−iτ
e−φ(t)/~ dt, (53)

φ(t) = −iϵt +
4
π


J(ω)
ω2



1 − cosωt
tanh 1

2 β~ω
+ i sinωt


dω, (54)

where τ can be chosen to simplify the numerical integral over
t as much as possible but has no effect on the result.

A common approximation to the quantum golden-rule rate
takes a stationary-phase integral about the point t = −iτ such
that φ′(−iτ) = 0. This gives16

kSP =
∆2

~2


2π~

φ′′(−iτ) e−φ(−iτ)/~. (55)

Similar formulations exist for generalizations of the spin-
boson model to include anharmonicities,72 although practical
expressions are limited to system-bath problems of a partic-
ular form where the bath can be represented by an effective
harmonic form.73

We now proceed to compute the golden-rule instanton rate
for this system. The Euclidean actions for classical trajectories
in this harmonic system are33,47

S̄0(x′,x′′, τ0) =
f

j=1

mω j

2 sinhω jτ0

�(x ′j + ξ j)2 + (x ′′j + ξ j)2
�

coshω jτ0 − 2(x ′j + ξ j)(x ′′j + ξ j)

, (56a)

S̄1(x′,x′′, τ1) =
f

j=1

mω j

2 sinhω jτ1

�(x ′j − ξ j)2 + (x ′′j − ξ j)2
�

coshω jτ1 − 2(x ′j − ξ j)(x ′′j − ξ j)

− ϵτ1. (56b)

Solving ∂S̄
∂x′ =

∂S̄
∂x′′ = 0, we find that

x‡j = −ξ j
sinh 1

2ω j(β~ − 2τ)
sinh u j

, (57)

where u j = β~ω j/2. Therefore, the periodic orbit which hops
at this point has action

S̄(τ) = −ϵτ +
f

j=1

2mω jξ
2
j


1 − coshω jτ

tanh u j
+ sinhω jτ


, (58)

which is simply φ(−iτ) for an f -dimensional system. We must
in general choose τ numerically to solve ∂S̄(τ)

∂τ
= 0 to ensure

that the energy of the two Green’s functions is equal. In the
unbiased case where ϵ = 0, symmetry considerations give τ
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= 1
2 β~. However, we continue with the proof in the general

case.
The second derivatives are

∂2S̄n
∂x ′j∂x ′

k

= δ jk
mω j

tanhω jτn
, (59a)

∂2S̄n
∂x ′j∂x ′′

k

= −δ jk
mω j

sinhω jτn
, (59b)

and their equivalents with all single and double primes ex-
changed. This gives

C̄n =

f
j=1

mω j

sinhω jτn
, (60)

C̄ =
f

j=1

m2ω2
j
*
,
2 +

tanh 1
2ω jτ0

tanh 1
2ω jτ1

+
tanh 1

2ω jτ1

tanh 1
2ω jτ0

+
-

(61)

=
C̄0C̄1

Z2
0

, (62)

where we have used Eq. (A3) as well as a number of trigo-
nometric relations. For this case of the spin-boson model, the
determinants in Eq. (44) cancel with the partition function,
Eq. (32), and we may proceed with the formula of Cao and
Voth, Eq. (46), without approximation. It is then seen that
our instanton approach gives the same result as the stationary-
phase approximation, Eq. (55), for the spin-boson model. Note
that for this harmonic system, the fluctuations about the instan-
ton pathway are treated exactly and so, as shown in Paper II, the
same result would also be obtained by the quantum instanton
method of Wolynes.43

It was shown, for example, in Ref. 14 that this stationary-
phase approximation introduces an error of about 20% for
a model of aqueous ferrous-ferric electron transfer. Such an
error is quite acceptable as often only the order of magnitude
of the rate is required. The stationary-phase approximation,
and thus the golden-rule instanton, is not equivalent to the
“semiclassical” method described in Ref. 74. In the latter case,
an extra approximation was made that Ĥ0 and Ĥ1 commute and
thus give inferior results at low temperatures.14

The stationary-phase approximation to the golden-rule
rate in the spin-boson model becomes exact in the classical
(high-temperature) limit and recovers Marcus theory.8,16 It is
interesting to note that adiabatic instantons tend to an asymp-
totic low-temperature limit but break down at a certain cross-
over temperature and a different form is needed in the high
temperature regime.75 This does not occur in the instanton
approximation for the golden-rule rate, not just for the spin-
boson model, but for any system as we shall show in Sec. V C,
which deals with the high-temperature limit more generally.

C. Classical limit

We now consider a limit which has not been previously
well studied, which is the classical limit for the golden-rule rate
of a generic anharmonic system. We recently derived a general
formula for the classical golden-rule rate41 and we will show
here that the semiclassical instanton method tends to a steepest-
descent version of it.

To achieve the classical, high-temperature limit, we let
β → 0 which forces the periodic orbit to become an infinites-
imally short line. As before, we require that the hop occurs
at x′ = x′′ = x‡ where the potentials are equal, and the trajec-
tories must bounce along the direction of the gradient and be
continuous at the hop. It is therefore possible to conclude that
at the hopping point, x‡, the directions of the two gradients
are exactly opposite and it is thus the minimum on the cross-
ing seam, V0(x) = V1(x). We are therefore allowed to describe
the potentials using the following series expansion about this
point:

Vn(x) ≈ V ‡ + g⊤n(x − x‡) + 1
2 m(x − x‡)⊤Ωn(x − x‡). (63)

We choose an orthogonal coordinate system such that the
degree of freedom j = 1 is normal to the crossing seam at
the hopping point, x‡. All other modes are at their minimum
positions here such that gn = (κn,0, . . . ,0). Note that this local
expansion is by no means equivalent to the global harmonic
approximation employed by the spin-boson model and Marcus
theory. Here, for instance, the frequencies at the crossing point
are allowed to differ on each electronic surface as well as in
the reactant well. As the instanton method is derived by per-
forming steepest-descent integrations, including higher order
terms in the expansion would not change the following results.
We thus expect to obtain the correct activation energy even
when the reorganization energy of the reactants and products
is unequal.

In the short-time limit,

S̄n(x′,x′′, τn) = m
2τn

|x′ − x′′|2 + Vn

� 1
2 (x′ + x′′)� τn, (64)

and we find that in order for the total action to be stationary
with respect to x‡,

τ0 = β~
κ1

κ1 − κ0
, τ1 = β~

κ0

κ0 − κ1
. (65)

The fluctuation terms tend to

C̄n =

(
m
τn

) f

, (66)

and due to symmetry between x′ and x′′ we can simplify
the determinant by rotating the axes to (x′′ + x′)/√2 and
(x′′ − x′)/√2. This is equivalent to using Eq. (A2), and gives

Σ =

���������������

2m
(

1
τ0
+

1
τ1

)
1 0 0

0 1
2 β~mΩ̃

1
√

2
(g1 − g0)

0⊤ 1
√

2
(g1 − g0)⊤ 0

���������������

(67)

=


2m
β~

(κ0 − κ1)2
−κ0κ1

 f � 1
2 β~mΩ̃

�

×
(
− 1
β~m

(g1 − g0)⊤Ω̃−1(g1 − g0)
)

(68)

= −

m2 (κ0 − κ1)2
−κ0κ1

 f (κ1 − κ0)2
β~m

|Ω̃|11, (69)
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where Ω̃ = κ0Ω1−κ1Ω0
κ0−κ1

and the minor |Ω̃|11 is formed by remov-
ing the first row and column of the matrix and taking the
determinant; it is defined to be equal to 1 in the case that f = 1.
Therefore, the golden-rule instanton method approaches the
following form in the classical limit:

kcl,hTST =


2πm
β~2

∆2

~|κ0 − κ1|
Z‡

Z0
e−βV

‡
, (70)

Z‡ = |β2~2
Ω̃|−1/2

11 . (71)

For a one-dimensional system, Z‡ = 1 and the formula is obvi-
ously equal to the classical golden-rule TST rate.2,41,72 Equa-
tion (70) is proportional to this one-dimensional formula eval-
uated along a particular reaction coordinate, which is defined
as being normal to the crossing seam. This rate is simply multi-
plied by classical fluctuations (vibrational partition functions
in the harmonic approximation) along perpendicular coordi-
nates, as expressed by the minor of the matrix. We name this
harmonic classical golden-rule TST and note that it recovers
Marcus theory when applied to the spin-boson model. It there-
fore makes the same assumption that the reaction coordinate
can be separated as is used in Born-Oppenheimer classical
TST,76 and is therefore the golden-rule equivalent of this. A
simple extension would give the equivalent to Eyring TST77

by replacing the classical partition functions in Z‡ by their
quantum versions. However, such a method is not as accurate
as the instanton approach as it still treats motion along the
reaction coordinate with classical dynamics.

It is a major success of the golden-rule instanton the-
ory presented here that we recover the classical limit for
high temperatures. This is, however, not unexpected as we
have started from the exact golden-rule expression and per-
formed a semiclassical approximation, thus preserving the
term of lowest order in ~, which of course gives the cor-
rect steepest-descent classical result. Semiclassical instanton
methods developed to study single-surface reactions22,27 break
down at a particular crossover temperature where the instanton
collapses to a singularity and require a different formula for
the high-temperature limit. This occurs because the potential
at the barrier tends to a parabola with finite curvature which
cannot support short periodic orbits above a certain cross-over
temperature.26,27 However, the golden-rule instanton never
collapses completely because the potentials become approx-
imately linear near the activation energy forming a cusp, and
at least a small amount of tunnelling occurs at all temperatures.

We also note that the extra approximation taken by Cao
and Voth32 gives a method, Eq. (46), which assumes that the
normal modes at the minimum of the reactant potential are
equal to those at the transition state on each surface. This,
therefore, only gives the correct classical limit for the case of
the spin-boson model.

VI. CONCLUSIONS

In this paper, we have derived a semiclassical instanton
method for computing the rate of an electron-transfer reac-
tion in the nonadiabatic limit. Our derivation starts from an
exact expression for the golden-rule rate written in terms of

Green’s functions, which are themselves approximated by a
semiclassical limit based on classical trajectories. The remain-
ing integrals are evaluated within the steepest-descent method.
This procedure defines two imaginary-time trajectories which
contribute to the rate, one on each of the reactant and product
potential-energy surfaces, both of which have the same energy
and must encounter a bounce. The hop between the surfaces
occurs at a point where the potentials are equal and the trajec-
tories join together smoothly to make a periodic instanton orbit
with imaginary time β~.

In this way, we have derived four equivalent formulae
to define the golden-rule instanton rate: Eqs. (36), (40), (43),
and (44), which use either a Hamilton-Jacobi or Lagrangian
formulation and either full or partial derivatives with respect
to energy or imaginary time. In Paper II, which follows this
article, we shall show how these formulae can be evaluated
numerically for a complex multidimensional system.

In our opinion, this derivation makes clear the assumptions
and approximations being made and provides physical insight
into the electron-transfer process, showing that the dominant
contribution comes from an instanton of constant energy which
hops on the diabatic crossing seam. Previous golden-rule in-
stanton formulae were based on the Im F approach32 and it is
interesting to see how closely the methods relate to each other,
considering that their derivations are apparently so different.

The golden-rule instanton approach gives the exact ther-
mal rate for a system with linear potentials and, for the case of
the spin-boson model, reproduces the well-known stationary-
phase evaluation of the quantum golden-rule formula, Eq. (55).
Note that although the steepest-descent approach uses only
harmonic fluctuations about the dominant instanton pathway,
the important integral along the instanton path is evaluated
exactly. The remaining approximation is equivalent only to a
local rather than a global harmonic approximation. In other
words, the harmonic frequencies are allowed to vary along
the instanton pathway and the method should also give good
results for anharmonic systems, including problems where the
reorganization energies of products and reactants are different.

In the high-temperature classical limit, it reduces in gen-
eral to a steepest-descent form of classical golden-rule TST41

and thus to Marcus theory for the spin-boson model. It can
therefore be seen as an extension of classical golden-rule
TST to the quantum regime. However, unlike the adiabatic
instantons there is some tunnelling at all temperatures and
no crossover from the deep to shallow-tunnelling regimes.
This shows that nuclear quantum effects are always apparent
when computing the golden-rule rate and therefore that such
methods will be necessary for the accurate simulation of
electron transfer.

The method is valid for any system with a simple potential-
energy landscape, where either only one instanton exists or
there are multiple instantons which are well separated. How-
ever, all instanton approaches will fail when the environment
is fluxional, as is the case for electron-transfer in solution.
Nonetheless, a semiclassical instanton analysis can often be
used to better understand the approximations involved in
related methods. An example is the link between adiabatic
instantons and RPTST,27 which has been shown to be exact in
the absence of recrossing.64,78 A related semiclassical study of
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electron-transfer pathways39 has also helped improve attempts
to describe nonadiabatic dynamics.79,80 In Paper II,42 we show
how Wolynes’ quantum instanton method43 is related to our
approach.

When computing the semiclassical Green’s functions, we
only considered imaginary-time trajectories and have there-
fore ignored real-time effects. For this reason, the instanton
approach should be considered to be a (quantum) transition-
state theory. In the study of adiabatic reaction rates, it has been
shown that ring-polymer molecular dynamics (RPMD)81,82

generalizes RPTST and hence the adiabatic instanton.27 Taking
inspiration from this, it may be possible to combine such TST
instanton methods with nonadiabatic RPMD83,84 to compute
recrossing effects.

The semiclassical Green’s function formalism is not
limited to treating golden-rule rate problems. In forthcoming
publications, we will show how similar approaches can be
applied to the Marcus inverted regime and to compute the rate
constant in the adiabatic, large ∆ limit.
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APPENDIX A: PROPERTIES OF DETERMINANTS

We shall make frequent use of the following expansions
of the determinant of a block matrix:

������

A B
C D

������
= |D| �A − BD−1C

�
= |A| �D − CA−1B

�
, (A1)

which are valid as long as the inverses of D or A exist.
When certain blocks in the determinant are equal, and A,

B, and 0 are square matrices of the same size, C and 0 are
vectors of the same length and D is a scalar, the following
simplifications are found by rotating the basis set:

���������

A B C
B A C
C⊤ C⊤ D

���������

=

���������

A − B 0 0
0 A + B

√
2C

0⊤
√

2C⊤ D

���������

, (A2)

and also
������

A B
B A

������
= |A − B| |A + B| . (A3)

APPENDIX B: LEGENDRE TRANSFORMATION

Following Ref. 33 and taking derivatives of Eq. (42), we
obtain the relations

∂2W̄n

∂E2 = −
(
∂2S̄n
∂τ2

n

)−1

, (B1a)

∂2W̄n

∂x′∂E
=

∂2S̄n
∂x′∂τn

(
∂2S̄n
∂τ2

n

)−1

, (B1b)

∂2W̄n

∂x′∂x′′ =
∂2S̄n
∂x′∂x′′ −

∂2S̄n
∂x′∂τn

(
∂2S̄n
∂τ2

n

)−1
∂2S̄n
∂τn∂x′′ , (B1c)

and the equivalents with any exchange of x′ and x′′.
Using Eqs. (B1) and standard properties of determinants,

Eq. (A1), some simple but laborious algebra gives

D̄n = (−1) f +1∂
2W̄n

∂E2

������

∂2W̄n

∂x′∂x′′ −
∂2W̄n

∂x′∂E

(
∂2W̄n

∂E2

)−1
∂2W̄n

∂E∂x′′
������

(B2)

=

(
∂2S̄n
∂τ2

n

)−1

C̄n, (B3)

C̄n =
�����
− ∂2S̄n
∂x′∂x′′

�����
(B4)

and
��������������

∂2W̄
∂x′∂x′

∂2W̄
∂x′∂x′′

∂2W̄
∂x′∂E

∂2W̄
∂x′′∂x′

∂2W̄
∂x′′∂x′′

∂2W̄
∂x′′∂E

∂2W̄
∂E∂x′

∂2W̄
∂E∂x′′

∂2W̄
∂E2

��������������

= −*
,

∂2S̄0

∂τ2
0

∂2S̄1

∂τ2
1

+
-

−1

Σ,

(B5)

where

Σ =

(
∂2S̄0

∂τ0
2 +

∂2S̄1

∂τ1
2

) ���������
1

n,n′=0

*...
,

∂2S̄n
∂x′∂x′

∂2S̄n
∂x′∂x′′

∂2S̄n
∂x′′∂x′

∂2S̄n
∂x′′∂x′′

+///
-

− εnn′
*....
,

∂2S̄n
∂x′∂τn
∂2S̄n
∂x′′∂τn

+////
-

(
∂2S̄0

∂τ0
2 +

∂2S̄1

∂τ1
2

)−1(
∂2S̄n′
∂τn′∂x′

∂2S̄n′
∂τn′∂x′′

) ����������
(B6)

=

��������������

∂2S̄
∂x′∂x′

∂2S̄
∂x′∂x′′

∂2S̄
∂x′∂τ

∂2S̄
∂x′′∂x′

∂2S̄
∂x′′∂x′′

∂2S̄
∂x′′∂τ

∂2S̄
∂τ∂x′

∂2S̄
∂τ∂x′′

∂2S̄
∂τ2

��������������

, (B7)

and εnn′ = 2δnn′ − 1 is a permutation symbol taking values±1.
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