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ABSTRACT 

Objectives: To investigate whether epigenetic changes can modulate monocytes to produce tissue-

inhibitor of metalloproteinase-1 (TIMP-1) via Fra2 (AP-1 family member), a novel downstream 

mediator promoting fibrogenesis. 

Methods: AP-1 transcription factors and TIMP-1 expression was measured in monocytes from 

systemic sclerosis (SSc) patients and healthy controls (HC). Involvement of Fra2 in the regulation of 

TIMP-1 following TLR8 agonist treatment was investigated using luciferase activity assay and ChIP 

analysis. Expression of TIMP-1 and Fra2 was determined in response to TLR8 treatment and different 

histone modifications including 3’deazaneplanocin (DZNep) and apicidin. HC fibroblasts were co-

cultured with DZNep plus TLR8-treated HC monocytes. 

Results: Upregulation of Fra2 was detected in bleomycin-challenged mice and SSc skin biopsies. 

Enhanced expression of Fra2 and TIMP-1 was correlated in SSc monocytes (p=0.021). The 

expression of Fra1 was significantly (p=0.037) reduced in SSc monocytes. Inhibiting AP-1 activity 

reduced TIMP-1 production in TLR8 stimulated HC and SSc monocytes. ChIP experiments revealed 

binding of Fra-2 to the TIMP-1 promoter. Combination of DZNep plus TLR8 enhanced Fra2 and 

TIMP-1 expression in HC monocytes, whereas TLR8 plus apicidin repressed Fra2 and TIMP-1 

expression. Finally, DZNep plus TLR8-treated HC monocytes induced strong production of α-SMA 

in dermal fibroblasts, which was inhibited by TIMP-1 blocking antibody.  

Conclusions: These data demonstrate a novel role of histone demethylation induced by DZNep on 

Fra2-mediated TIMP-1 production by monocytes in the presence of TLR8 agonist. This consequently 

orchestrates fibroblasts’ trans-differentiation, a key event in the pathogenesis of SSc.  
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Introduction 

Systemic sclerosis (SSc) is an autoimmune connective tissue disease characterised by accumulation of 

extra cellular matrix (ECM) proteins in skin and visceral organs, resulting in organ dysfunction and 

premature death (1). This ECM deposition, predominantly composed of collagen, is observed when 

the homeostasis between matrix metalloproteinases (MMPs) and their natural inhibitors is lost. Tissue 

inhibitor of metalloproteinases-1 (TIMP-1) is a specific inhibitor of MMPs regulating the balance of 

ECM turnover, which is mostly produced by fibroblasts, hepatic stellate cells (HSC) and monocytes. 

Serum concentrations of TIMP-1 are increased in SSc patients, thereby contributing to fibrosis 

development (2). Furthermore it has been shown that overexpression TIMP-1 is important for growth, 

proliferation and pathogenic differentiation of fibroblasts, which demonstrates an additional role of 

TIMP-1 independent of its inhibition of MMP activity (3, 4). 

Another hallmark of SSc is perivascular infiltration of immune cells, mainly monocytes, which are the 

first immune cells to infiltrate SSc skin (5). Skin infiltrating CD14+ monocytes can secrete profibrotic 

TIMP-1 in SSc patients and TIMP-1 production is enhanced upon TLR8 stimulation by ssRNA (6). 

This raises the possibility that circulating monocytes expressing TIMP-1 migrate into skin and 

contribute to increased deposition of ECM proteins. The important role of monocytes in the 

pathogenesis of fibrotic conditions is further supported by preclinical evidence in mice where 

depletion of monocytes attenuated lung fibrosis after bleomycin challenge, a fibrosis model (7, 8). 

This clearly indicates that monocytes play an important role in the pathogenesis of SSc, however the 

factors and molecular mechanisms promoting TIMP-1 expression are not yet fully defined. 

It has been shown that AP-1 (activator protein 1) family transcription factors, including Fra2 and 

JunD, play a prominent role in pathological ECM production. Studies in an animal model of liver 

fibrosis showed that the AP-1 complex plays a key role in the transcriptional regulation of TIMP-1 

and IL-6 activity. This AP-1 complex contributes to the matrix protein deposition by HSC via their 

trans-differentiation into myofibroblasts-like HSC (9). Removal of specific AP-1 binding sites located 

in the TIMP-1 promoter caused significant reduction of promoter activity in HSCs (10). Another 

study demonstrated that SSc dermal fibroblasts treated with the AP-1 inhibitor T-5224 decreased the 
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expression of collagen and fibronectin in a dose-dependent manner (11). Furthermore, Fra2 transgenic 

mice developed a proliferative vasculopathy of the lung and skin fibrosis, resembling similar disease 

manifestations seen in SSc patients (12). On the other hand, in Fra2 knockout mice, collagen 

expression upon bleomycin administration was strongly reduced, demonstrating that Fra2 is a novel 

downstream mediator for fibrosis development in SSc (13).  

Recently epigenetic modifications including histone acetylation or methylation have been implicated 

in SSc development. Histone demethylation, induced by 3’deazaneplanocin (DZNep), is involved in 

collagen induction (14). It has been shown that DZNep inhibits, whereas Methyl-CpG binding protein 

2 (MeCP2) upregulates expression of histone 3 methyltransferase – Enhancer of zeste homologue-2 

(Ezh2) (15, 16). Ezh2 catalyzes trimethylation of lysine 27 on histone 3 (H3K27me3). Inhibition of 

H3K27me3 by DZNep induced strong expression of Fra2, CTGF and collagen in vivo and in vitro 

models (14). In contrast, inhibition of histone deacetylases (HDACs) by Trichostatin A (TSA) 

decreased collagen expression in bleomycin-treated mice (17, 18). Similarly, murine fibroblasts from 

distal pulmonary arteries treated with apicidin (selective class I HDAC inhibitor) reduced the 

expression of monocyte-attracting chemokine (MCP-1) (19). MCP-1 is a crucial chemokine for the 

recruitment of monocytes and supports a cytokine network maintaining tissue inflammation and 

fibrosis progression, since MCP-1 deficient mice have reduced carbon tetrachloride (CCL4)-induced 

fibrosis (20). Overall, this suggests that histone modifications affect fibrogenesis, which may have 

therapeutic implications. However, a clear understanding of how histone demethylation or acetylation 

can modulate TIMP-1 production in monocytes is still lacking. 

We hypothesised that Fra2 plays a key role in TLR8-mediated TIMP-1 production by SSc monocytes 

and that epigenetic changes affect TIMP-1 production by monocytes. This enhanced production of 

TIMP-1 may initiate myofibroblasts differentiation and consequently fibrosis progression.  

 

Materials and methods 

Patients, controls and bleomycin-induced mouse model 
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Blood donors: thirteen patients with SSc (mean age 61.7 years) and 18 healthy controls (HC) were 

included in the study. All patients with SSc fulfilled the American College of Rheumatology criteria 

according to LeRoy (21). Monocytes from an IRAK4-deficient patient characterised by absent 

cytokine responses to TLR ligands were also used in this study (6). Dermal HC fibroblasts were 

cultured from skin biopsies as described before (22). Skin biopsies from 5 SSc and 5 HC that had 

been formalin fixed and paraffin embedded and sectioned at 10µm were used for qRT-PCR. Briefly 

tissue was deparaffinised using xylene and then rehydrated through descending ethanols (100%-70%) 

and RNA was extracted after proteinase K digestion using the Allprep RNA FFPE kit (Qiagen). 250 

ng of RNA was then reverse transcribed to cDNA. We used bleomycin-induced skin fibrosis in mice, 

to mimic the early-inflammatory stage of SSc. Mice were anesthesised with isoflurane, their backs 

shaved and 100 µl 0.5 mg/ml bleomycin or saline (vehicle) administered via subcutaneous injection to 

an area approximately 1 cm2. Injections were repeated every other day for 4 weeks at which point 

mice were sacrificed.  

Sample collection and cell purification 

Blood was collected in EDTA-coated tubes from HC and SSc patients. Peripheral blood mononuclear 

cells were separated from whole red blood cells as described elsewhere (6).  

Compounds, reagents and in vitro cell cultures  

CD14+ monocytes from HC and SS patients, U937 monocytic cell line or HC fibroblasts were seeded 

in 24-well Costar plates at a concentration of 5×105 cells/ml and cultured for 24 h in 500 µl of RPMI 

(Invitrogen) supplemented with penicillin (100 U/ml), streptomycin (100 µg/ml), L-glutamine (2 mM) 

(all Sigma) and 10% FSC at 37°C in 5% CO2. TLR8 agonist (ssRNA40/LyoVec, InvivoGen), DZNep 

(4703, Tocris), apicidin (A8851, Sigma), TSA (T8552, Sigma), AP-1 inhibitor (SR11302, Tocris), 

recombinant TIMP-1 (PHC8024, Invitrogen), recombinant TGF-β (R&D Systems) and anti-TIMP-1 

antibody (AF970,	
  R&D Systems) were kept in sterile conditions in -20oC.  

Microscopic analysis of mouse skin and HC fibroblasts  
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For immunohistochemical analysis, deparaffinised, ethanol dehydrated skin sections from bleomycin 

or saline treated mice were incubated with 20 µg/ml of proteinase K (P2308, Sigma-Aldrich) for 20 

min. at 37°C and stained with rat anti-mouse pan macrophage marker F4/80 (14-4801, eBiocience,) 

and anti-mouse Fra2 (ab1827, Abcam,) primary antibodies overnight at 4°C. Incubation with 

secondary antibodies (goat anti-rabbit-PE, Santa Cruz, sc-3739 and donkey anti-rat-FITC, Jackson 

ImmunoResearch, 712-096-153) was performed for 1 h at RT. For immunocytochemical analysis, HC 

fibroblasts were seeded in 24-well glass coverslips, fixed with 4% PFA and permeabilized with 0.1% 

Triton X-100/PBS for 4  min. Following intense washing, coverslips were incubated with mouse anti-

α-SMA-FITC (A2547, Sigma-Aldrich) for 1 h at RT. Both mouse skin sections and coverslips with 

HC fibroblasts were further analysed by fluorescent microscopy Leica DM4000, using LASAF v4 

software. 

 

Semiquantitative gene expression study 

RNA from freshly isolated monocytes was obtained using TRIzol method. RNA (1000 ng) was 

reverse transcribed to cDNA with the use of random hexamers and the Moloney murine leukaemia 

virus reverse transcriptase enzyme (Invitrogen), according to the manufacturer's protocol. cDNA (20 

ng), forward and reverse primers were used for Fra2 - For-5'-ACGCCGAGTCCTACTCCA-3′, Rev-

5'-TGAGCCAGGCATATCTACCC-3′; TIMP-1 - For-5'-GACGGCCTTCTGCAATTCC-3', Rev-5'-

GTGGTCTGGTTGACTTCTG-3'; Fra1 - For-5'-ACAGATCAGCCCGGAGGAAG-3′, Rev-5'-

CTTCCAGTTTGTCAGTCTCCGC-3′; JunD - For-5'-CAGCGAGGAGCAGGAGTT-3′, Rev-5'-

GAGCTGGTTCTGCTTGTGTAAAT-3′; JunB - For-5'-CACAAGATGAACCACGTGACA-3′, Rev-

5'-GGAGTAGCTGCTGAGGTTGG-3; c-Jun - For-5'-CCAAGGATAGTGCGATGTTT-3′, Rev -5'-

CTGTCCCTCTCCACTGCAAC-3′; Ezh2 - For-5'-TGTGGATACTCCTCCAAGGAA-3′, Rev -

5’GAGGAGCCGTCCTTTTTCA-3′; HDAC3 - For-5'-GGGTGGTGGTGGTTATACTGTC-3′, Rev-

5'-ATGAAACGGGGTCTGAAGTGTGGAGTA-3’; coll 1A1 - For-5′-CAAGAGGAAGGCCAAGT 

CGAGG-3′, Rev-5′-CGTTGTCGCAGACGCAGAT-3; α-SMA - For-5'-CAGGGAGTAATGGTTGG 

AAT-3', Rev-5'-TCTCAAACATAATCTGGGTCA-3'; 18S - For-5′-CGAATGGCTCATTAAA 

TCAGTTATGG-3′, Rev-5′-TATTAGCTCTAGAATTACCACAGTTATCC-3’, MeCP2 – For-5’ 
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GATCAATCCCCAGGGAAAAGC-3’, Rev-5’-CCTCTCCCAGTTACCGTGAAG-3’. Samples 

were analysed in triplicate and normalised to the 18S housekeeping gene using the AB7500 (Applied 

Biosystems) qRT-PCR machine and programme. Expression levels relative to the average healthy 

control (arbitrarily set at 1) were calculated using the following equation: (2^Delta Delta CT)−1 all 

normalised to 18S housekeeping gene.  

Western Blot and ELISA analysis  

Lysates of 5x105 U937 cells were run on 12% SDS PAGE and transferred to membranes and probed 

using rabbit anti-H3K27me3 (SAB4800025, Sigma) or anti-H3 (SAB4500352, Sigma-Aldrich) 

followed by anti-rabbit HRP (DAKO). TIMP-1 protein concentrations in culture supernatants were 

measured by ELISA, according to the manufacturer's protocol (Human TIMP-1 DuoSet, DY970, 

R&D Systems). Signal development was performed using horseradish peroxidase/streptavidin and o-

phenylenediamine dihydrochloride substrate (Sigma-Aldrich) at RT. Fluorescence was measured with 

a plate reader (Tecan, Sunrise). Samples were run in duplicate and serial dilution was performed to 

fall within the detection limits of the assay (0–40 ng/ml). 

Transfection experiment 

HC monocytes were transfected with siFra2 (100 µM), siEzh2 (100 µM) or scramble siRNA (100 

µM) (On-target plus-SMART pool, Dharmacon, UK) using Viromer (Lipocalyx GmbH) for 48 h. 

U937 cells were transfected with DNA fragments of the TIMP-1 promoter cloned downstream of 

luciferase plasmid in a pGL2-basic vector or empty pGL2 at the final concentration of 300 ng using 

1.5 µl of Fugene HD (Promega) transfection reagent per well of a 24 well plate. Renilla plasmid at the 

final concentration of 30 ng was used to normalise transfection efficiency. 24 h after transfection, 

cells were stimulated with TLR8 agonist for an additional 6 hours. Following stimulation, assays for 

reporter gene activity were performed according to Dual-luciferase Promega’s protocol and analysed 

using Glomax multi detection system (Promega, UK). 

Chromatin immunoprecipitation experiments 
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U937 monocytic cell were cultured and stimulated with ssRNA lyovec (Invivogen) at the appropriate 

concentration and after 4 hours cells were fixed in 1% formaldehyde to cross-link chromatin, then 

lysed by sonication, cleared chromatin was then incubated with 4 µg anti Fra2 antibody (sc-604) or 4 

µg control matched isotype antibody, the complexes precipitated, washed and eluted. Crosslinks were 

reversed and cDNA was isolated. qPCR was performed for TIMP-1 promoter region using primers 

proximal For’ ATTTGAGACCCTGGCTTTGG Rev’ GCAGCAGTGGAGGGAGATAA (162bp), 

and distal promoter region For’ CACGCCTGTAATCCCAACAC Rev’ 

CCTCCGGGGTTCAAGAGATT (194bp) the values were normalised to average values of control 

antibody and expressed as fold enrichment above isotype control.  

 

Results 

Marked Fra2 expression in skin-infiltrating macrophages in bleomycin-treated mice and skin 

biopsies from SSc patients 

To confirm that skin-infiltrating macrophages express Fra2 in bleomycin-induced dermal fibrosis, 

immunohistochemical staining of mouse skin sections was performed. It can be seen that 

macrophages (defined by F4/80 antigen expression) accumulating in skin of bleomycin-treated mice 

(Figure 1B) expressed more Fra2 compared to control saline-treated animals (Figure 1A). The white 

arrows indicate the overlay images between F4/80 and Fra2 expression. Fra2 expression was also seen 

in the perivascular area, since vasculopathy is one of the manifestations of SSc progression (23). This 

is consistent with previously published data showing a positive staining of c-Jun, c-Fos (other AP-1 

family members) in fibroblasts, keratinocytes and in endothelial cells of bleomycin-challenged mice 

(11, 24). Specificity of antibodies staining was validated using negative control (Supplemental 

Figure1). Increased expression of Fra2 (p=0.0034) was also seen in skin biopsies from SSc patients 

compared to healthy controls by qPCR (Figure 1C).  

Different expression of AP-1 transcription factors in HC and SSc monocytes  
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It has been shown that Fra2, which is AP-1 family member, plays an important role in organ fibrosis 

therefore we also analysed the expression pattern of all AP-1 members and TIMP-1 in monocytes 

following TLR8 stimulation. HC and SSc monocytes were treated with TLR8 agonist (ssRNA) for 24 

h and gene expression was measured. It can be seen (Figure 2A, B) that both Fra2 (p=0.002, 2.4-fold) 

and TIMP-1 (1.6-fold) increased in TLR8-treated SSc monocytes compared to HC monocytes. In 

contrast, Fra2 and TIMP-1 were repressed in monocytes from an IRAK4-deficient patient upon TLR8 

stimulation, indicating the crucial role of the TLR signaling pathway in Fra2 and TIMP-1 induction. 

This patient has a genetic lesion in IRAK-4 that leads to no IRAK-4 protein production. Interestingly, 

there was also a positive correlation between Fra2 and TIMP-1 expression in SSc monocytes (p=0.02) 

upon TLR8 stimulation (Supplemental Figure 2), but not in HC (p=0.38), which corroborates Fra2-

mediated TIMP-1 expression in diseased monocytes. Surprisingly, the basal level of TLR8 was 2.1-

fold lower (p=0.037) in SSc monocytes compared to HC monocytes (Figure 2C). The same tendency 

was observed following ssRNA stimulation showing 1.6-fold lower expression of TLR8 in SSc 

monocytes compared to HC. This suggests that diseased monocytes may have an altered downstream 

signaling pathway maintaining strong Fra2 and TIMP-1 expression despite reduced expression of 

TLR8.  

We also analysed the expression of other AP-1 members in HC and SSc monocytes. As expected, 

Fra1 was significantly downregulated in TLR8-treated (p=0.03) and untreated (p=0.01) SSc 

monocytes compared to HC (Figure 2D). The expression of other AP-1 family members including 

JunD (Figure 2G) and JunB (Figure 2E) did not differ significantly between HC and SSc monocytes 

apart from the basal level of c-Jun, which was significantly downregulated (p=0.04) in SSc monocytes 

(Figure 2F). This indicates that only Fra2 plays a pivotal role during TLR8 stimulation in SSc 

monocytes.  

TLR8 agonist induces TIMP-1 expression via AP-1 family member - Fra2  

To test that TIMP-1 production is Fra2 dependent, HC and SSc monocytes were pre-treated with an 

AP-1 inhibitor prior to TLR8 stimulation. It can be seen (Figure 3A) that pre-treatment for 2 h with an 

AP-1 chemical inhibitor (SR 11302) significantly reduced TIMP-1 production in HC (p=0.03) and 
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SSc (p=0.02) monocytes stimulated with the TLR8 ligand. We used a different dilutions of AP-1 

inhibitor (data not shown) and the concentration of 20 µM of AP-1 inhibitor was the most optimal for 

TIMP-1 inhibition and also did not affect cell viability, as determined by MTS assay (Figure 3B). In 

order to exclude off-target effects from AP-1 chemical inhibitor we performed Fra2 silencing in TLR8 

stimulated primary HC monocytes. It can be seen in Figure 3C that genetic inactivation of Fra2 

significantly (p=0.0068) reduced TIMP-1 expression. In contrast, TLR8 stimulated monocytes 

transfected with scramble siRNA did not display reduced TIMP-1 expression. To confirm Fra2 

knockdown, Fra2 expression also was measured in primary monocytes (Supplemental Figure 3). We 

next measured the TIMP-1 promoter activity in the presence of TLR8 agonist in the human monocytic 

U397 cell line, since primary monocytes are difficult to transfect. U397 cells were transfected with a 

plasmid where TIMP-1 promoter was cloned downstream of firefly luciferase gene. We used renilla 

plasmid to normalise TIMP-1 plasmid expression in untreated, TLR8-treated or empty pGL-2 vector 

transfected cells. As seen in Figure 3D, TIMP-1 promoter activity was significantly increased in 

TLR8-treated cells compared to untreated (p=0.01) and cells transfected with empty vector (p=0.001), 

respectively. This suggests that both gene expression and promoter activity of TIMP-1 are increased 

upon TLR8 stimulation in monocytes. In order to determine whether TIMP-1 could be 

transcriptionally regulated by Fra-2, we performed ChIP analysis in TLR8 stimulated U937 cells 

(Figure 3E). We found that Fra2 was able to bind the TIMP-1 promotor in the proximal rather than a 

distal region (7-fold enrichment, p	
  < 0.0001) suggesting a direct transcriptional activation of TIMP-1 

by Fra-2.  

TLR8 -mediated TIMP-1 production and its regulation by histone modification in U937 cells 

Since epigenetic modifications are important in regulating fibrosis, we investigated the role of histone 

modification on Fra2 and TIMP-1 expression upon 24 h DZNep or TSA-treatment in U937 cells, a 

monocytoid cell line. It can be seen that DZNep (reducing H3K27me3) treatment significantly 

increased Fra2 expression (Figure 4A, p=0.01), while TIMP-1 expression was only moderately 

elevated (Figure 4B). In contrast, TSA (inducing histone acetylation) treatment significantly reduced 

the expression of Fra2 (p<0.001) and TIMP-1 (p=0.01). Western blot analysis confirmed the specific 
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activity of DZNep, because the level of H3K27me3 was reduced in DZNep-treated compared to 

untreated cells (Figure 4C). The total histone 3 (H3) was used as a loading control across groups. The 

MTS test showed no significant changes in U937 cell viability upon TSA or DZNep treatment (Figure 

4D).  

Synergistic effect of TLR8 agonist and DZNep on Fra2 and TIMP-1 expression in HC 

monocytes 

As seen before (Figure 4A), DZNep alone induces only a 2-fold upregulation of Fra2 in U937 cells, 

therefore we asked if combination of TLR8 agonist and DZNep can synergistically enhance Fra2 and 

TIMP-1 expression in primary HC monocytes. To test this hypothesis, HC monocytes were pre-

treated with DZNep for 4 h and then stimulated with TLR8 agonist. The level of Fra2 and TIMP-1 

was significantly increased in DZNep+TLR8-treated monocytes compared to monocytes stimulated 

with TLR8 or DZNep alone (Figure 5A, B). Furthermore, combined DZNep+TLR8 activation altered 

monocytes morphology, displayed as cell aggregations and elongated shape formation (Supplemental 

Figure 4). This suggests that DZNep+TLR8 synergistically induce strong Fra2 and TIMP-1 

expression, which mirrors the changes seen in cell morphology. In contrast, pre-treatment with 

apicidin, which is more specific HDAC inhibitor than TSA, repressed the expression of Fra2 and 

TIMP-1 upon TLR8 stimulation. Also the morphology of apicidin+TLR8-treated monocytes remained 

as untreated (Supplemental Figure 4). The results from ELISA showed a similar pattern of 

DZNep+TLR8-mediated upregulation and apicidin+TLR8-mediated reduction of secreted TIMP-1 

(Figure 5C). The MTS test showed no changes in cell viability in DZNep or apicidin-treated HC 

monocytes indicating that these concentrations are not toxic (Figure 5D).  

We then investigated if the expression level of Ezh2, the enzyme involved in H3K27me3 modification 

and part of the polycomb repressive complex 2, is altered in HC and SSc monocytes upon TLR8 

stimulation. DZNep is also involved in Ezh2 inhibition. The constitutive basal level of Ezh2 was 

significantly higher in SSc monocytes compared to HC monocytes (p=0.01) and was even more 

increased upon TLR8 stimulation in both HC and SSc monocytes (Figure 5E). We also measured the 

expression level of HDAC3, which can be specifically inhibited by apicidin. Although the basal level 
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of HDAC3 was higher in SSc monocytes than in HC (p=0.01), TLR8 stimulation did not change the 

HDAC3 expression in SSc monocytes. Only in TLR8-stimulated HC monocytes, HDAC3 expression 

was significantly increased compared to untreated (Figure 5F).  

TLR8 agonist and DZNep treatment of HC monocytes induces fibroblasts trans-differentiation 

via TIMP-1 

Finally, to evaluate the functional effect of monocytes-derived TIMP-1 on HC fibroblasts trans-

differentiation, HC monocytes were stimulated with TLR8 agonist and different histone modifiers. To 

test this, HC monocytes were pre-treated for 4 h with DZNep or apicidin or transfected with siEzh2 

for 24 h and vigorously washed in order to remove residual histone modifiers, since they could have a 

direct effect on collagen production in fibroblasts. Next, HC monocytes were additionally treated with 

TLR8 agonist to induce enhanced TIMP-1 production and inserted into trans-wells physically 

separating monocytes population from adherent HC fibroblasts. 48 h later, profibrotic markers 

including α-SMA (Figure 6A) and collagen (Figure 6B) were determined in HC fibroblasts co-

cultured with TIMP-1-producting monocytes. DZNep+TLR8 or siEzh2+TLR8 treatment of HC 

monocytes induced significant upregulation of collagen and α-SMA genes in HC fibroblasts 

compared to untreated or apicidin+TLR8-treated HC monocytes. In addition using 

immunocytochemistry, HC fibroblasts showed a positive staining for α-SMA in the presence of 

monocytes stimulated with DZNep+TLR8 (Figure 6C). To confirm that α-SMA expression is induced 

by TIMP-1-producing monocytes, HC fibroblasts were also directly stimulated with human 

recombinant TIMP-1. Figures 6D and 6E have shown that HC fibroblasts stimulated with TIMP-1 

significantly upregulated the expression α-SMA but not collagen. However, pre-treatment HC 

fibroblasts with a TIMP-1 neutralising antibody 2 h prior TIMP-1 treatment significantly reduced the 

expression level of α-SMA compared to fibroblasts treated only with TIMP-1 (Figure 6F). Isotype 

control antibody did not have any effect on the α-SMA production. As a positive control for α-SMA 

induction, HC fibroblasts were stimulated with TGF-β a known inducer.  
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Discussion 

Previous results from our group have shown that monocytes from SSc patients contribute to the 

imbalance between TIMP-1 and MMPs upon TLR8 agonist stimulation (ssRNA) (6), but the role of 

the Fra2 transcription factor in TIMP-1 regulation is unknown. Fra2 is involved in several biological 

processes including differentiation, proliferation and oncogene transformation, but also is a 

downstream mediator promoting fibrogenesis (13, 24). 

In this study we demonstrate that TLR8-mediated overexpression of TIMP-1 in SSc monocytes is 

mediated via Fra2. In addition, histone demethylation due to DZNep treatment enhances Fra2 and 

TIMP-1 expression in monocytes in the presence of TLR8 agonist and consequently induces 

fibroblasts trans-differentiation to myofibroblasts; the cell type responsible for excess ECM. In 

particular, we showed that Fra2 was upregulated in skin infiltrating macrophages in bleomycin-

induced skin fibrosis, mimicking the early-inflammatory stage of SSc progression (25) and in skin 

biopsies from SSc patients. Furthermore, we showed a positive correlation between Fra2 and TIMP-1 

expression induced by TLR8 stimulation in SSc monocytes, but not in HC monocytes, whereas TLR8 

stimulation of an IRAK-4-deficient patient did not induce neither Fra2 nor TIMP-1 expression. Also, 

activation of Fra2 via TLR8 agonist was crucial for TIMP-1 induction, since an AP-1 inhibitor 

prevented TIMP-1 secretion in SSc monocytes. Similarly ChIP analysis confirmed direct in vivo 

activation of the TIMP-1 promoter by Fra2 in TLR8 stimulated U937 cells. Taken together these 

results confirm that Fra2 acts as a positive regulator of TIMP-1 production upon TLR8 stimulation by 

transactivating TIMP-1. In contrast, Fra1 expression was significantly reduced in SSc monocytes. The 

effect of Fra1 has been previously reported in Fra1 knockout mice, where Fra1 depletion resulted in 

exaggerated pulmonary fibrosis due to increased TIMP-1, collagen and TGF-β expression (26), while 

overexpression of Fra-1 in mice reduced proinflammatory cytokine production (27). On the other 

hand some studies have shown that Fra1 transgenic mice spontaneously developed biliary fibrosis 

(28). Further studies are needed to confirm whether Fra1 is a faithful biomarker in SSc.  

To further investigate the role of TLR8 in TIMP-1 induction, U937 monocytic cells were transfected 

with a plasmid encoding the TIMP-1 promoter, which was cloned downstream of firefly luciferase 
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gene. The luciferase activity was significantly increased in the presence of TLR8 agonists, but not in 

untreated cells, confirming TIMP-1 activity is governed by TLR8 signaling.  

Furthermore, DZNep-treated U937 cells increased the expression of Fra2 and TIMP-1, in contrast to 

TSA-treated cells. Western blot analysis corroborates the specificity of DZNep treatment, as the 

activity of H3K27me3 was reduced in DZNep-stimulated U937 cells. Histones in the chromatin 

undergo multiple post translational modifications that regulate gene expression and include 

acetylation and deacetylation by HDACs. A similar result of DZNep-dependent Fra2 induction has 

been previously shown in dermal HC fibroblasts (14). Interestingly, administration of DZNep to 

bleomycin-treated mice (inducing skin fibrosis) even further increased the number of fibroblasts 

expressing Fra2, a transcription factor regulating TIMP-1 (14). In contrast, administration of DZNep 

to mice during acute CCL4-induced injury (inducing liver fibrosis) decreased the expression of 

collagen and TIMP-1 (15). This suggests that DZNep may have the opposite effect on profibrotic 

genes expression due to organ specificity.  

To further elucidate the role of histone modification(s) and TLR8 agonist on Fra2 and TIMP-1 

expression, HC monocytes were stimulated with DZNep or apicidin alone or in combination with 

TLR8 agonist. Enhanced expression of Fra2 and TIMP-1 was observed when HC monocytes were 

stimulated with both DZNep and TLR8, than DZNep or TLR8 alone. This suggests that initial 

epigenetic changes included by DZNep dynamically modifies chromatin architecture allowing the 

TLR8 agonist to be a powerful stimulator of Fra2 transcription factor, which consequently enhances 

TIMP-1 production. In contrast chromatin alterations induced by apicidin may prevent TLR8 

stimulation to activate Fra2, thereby repressing TIMP-1. Interestingly, blockade of HDACs through 

HDAC class I inhibitors supresses angiotension II-mediated cardiac fibrosis, a model of heart fibrosis 

in the mouse. This was demonstrated by inhibiting ‘activation’ of cardiac fibroblasts and also by 

differentiation of fibrocytes from bone marrow cells (29). This is important as fibrocytes can develop 

from bone marrow-originated monocytes (30). 

Surprisingly, the level of Ezh2 was 4.8-fold higher in SSc monocytes than HC basally and TLR8 

stimulation even further enhanced Ezh2 expression. Ezh2 is part of the polycomb repressive complex 
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important in mediating chromatin modifications. Ezh2 is overexpressed in many cancers (31, 32). 

Similar data were previously published by Kramer et at, showing the upregulation of H3K27me3 due 

to Ezh2 activity in fibroblasts from SSc patients compared to HC fibroblasts. These results were 

explained by potential compensatory mechanism that regulates the profibrotic genes in SSc patients 

(14). In addition, MeCP2 has been shown to upregulates Ezh2 expression (24). We found high 

expression of MeCP2 in SSc skin biopsies compared to HC (data not shown). Therefore, the higher 

expression of Ezh2 in our system may be due to the elevated MeCP2 levels in SSc patients. 

Interestingly MeCP2 has been identified as a SNP conferring risk in SSc in a genome wide 

association study [27]. 

Although the expression of HDAC3, an example of class I HDACs repressed by apicidin, was 

significantly upregulated in HC monocytes upon TLR8 stimulation, it was not changed in TLR8-

treated SSc monocytes. This suggests that HDAC3-dependent deacetylation does not play a 

significant role in SSc pathogenesis, or at least during TLR8 stimulation. Finally, we assessed the 

functional effect of DZNep+TLR8-treated monocytes on fibroblasts differentiation. Co-culture of 

DZNep+TLR8-treated or siEzh2+TLR8-treated monocytes with HC fibroblasts significantly 

upregulated the expression of α-SMA and collagen genes in fibroblasts. Furthermore, HC fibroblasts 

exhibited a positive staining for α-SMA, which is considered to be the marker for myofibroblasts (the 

effector cells in fibrosis). This confirms that DZNep+TLR8, but not apicidin+TLR8-treated 

monocytes induce production of TIMP-1, which has the ability to trans-differentiate fibroblasts 

toward pathogenic myofibroblasts. We have also demonstrated that HC fibroblasts directly stimulated 

with recombinant TIMP-1 upregulate α-SMA but not collagen expression. Neutralising anti-TIMP-1 

antibody inhibited α-SMA expression, confirming an additional role of TIMP-1 as a growth factor 

regulating fibroblasts differentiation. This further shows the link between inflammatory cells and 

fibrosis in SSc and underpins a complex sequence of events beginning with innate immune activation. 

Our observations are consistent with previous findings showing that adenovirus-mediated 

overexpression of TIMP-1 significantly increased α-SMA in cardiac fibroblasts but had no effect on 

collagen production (3). Although in this study we demonstrated DZNep+TLR8-dependent TIMP-1 
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production, we cannot exclude the possibility that other factors promoting fibroblasts differentiation 

may also be induced following DZNep+TLR8 stimulation including TGF-β. This needs to be tested in 

the further experiments.  

Overall, these results showed that selective, epigenetic modification of monocytes can either promote 

or repress myofibrogenic differentiation, and hence impact on the pathogenesis of SSc. A growing 

appreciation of the role of epigenetics in SSc and fibrosis is garnered and currently there are 

epigenetic drugs in use clinically for other indications (33).  
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Supplemental Figure 1. Negative control (no primary) of Fra2 and F4/80 staining of mice skin section.
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Supplemental Figure 2. HC (n=13) and SSc monocytes (n=14) were stimulated with 2 µg/ml TLR8 agonist (ssRNA) for 
24 h and correlation between TIMP-1 and Fra2 gene expression in HC and SSc monocytes was measured. 



Supplemental Figure 3. HC monocytes (n=4) were transfected with Fra2 siRNA or scramble siRNA and 48 h 
later Fra2  expression was measured. 
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Supplemental Figure 4. The effect of TLR8 stimulation and histone modifications on morphological changes in HC monocytes.
HC monocytes were treated with TLR8 alone or in combination with DZNep or Apicidin for 24 h and morphological changes 
were observed using light microscope. Black arrows indicate cells aggregation and white arrow indicates elongated shape. 

untreated

TLR8 agonist

DZNep+TLR8 agonist

Apicidin Apicidin+TLR8 agonist

DZNep


	17470201602_Ciechomska_et_al_Arth_Rhem
	17470201602_Ciechomska_et_al_Arth_Rhem_FIGURES

