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ABSTRACT
We estimate the rate of dark matter scattering in collapsed structures throughout the history
of the Universe. If the scattering cross-section is velocity independent, then the canonical
picture is correct that scatterings occur mainly at late times. The scattering rate peaks slightly
at redshift z ∼ 6, and remains significant today. Half the scatterings occur after z ∼ 1, in
structures more massive than 1012 M�. Within a factor of 2, these numbers are robust to
changes in the assumed astrophysics, and the scatterings would be captured in cosmological
simulations. However, for particle physics models with a velocity-dependent cross-section (as
for Yukawa potential interactions via a massive mediator), the scattering rate peaks before z ∼
20, in objects with mass �104 M�. These precise values are sensitive to the redshift-dependent
mass–concentration relation and the small-scale cut-off in the matter power spectrum. In
extreme cases, the qualitative effect of early interactions may be reminiscent of warm dark
matter and strongly affect the subsequent growth of structure. However, these scatterings are
being missed in existing cosmological simulations with limited mass resolution.
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1 IN T RO D U C T I O N

The cold dark matter and cosmological constant model (�CDM)
has been successful at describing the observed large-scale structure.
However, reported differences on smaller physical scales between
simulations and observations (for a review see Weinberg et al. 2015)
have raised the exciting question of whether one of the two main
assumptions about the dark matter (DM), namely that it is cold
with low thermal velocities and that it is collisionless, could need
revising.

Self-interacting dark matter (SIDM) removes the collisionless
assumption, such that DM particles have a cross-section for inter-
acting that is sufficient to produce observable astrophysical effects.
In the simplest model, originally proposed by Spergel & Steinhardt
(2000), these interactions are elastic scatterings with an interaction
cross-section that is independent of velocity. The DM particle col-
lisions decrease the central density of DM haloes and tend to make
the DM velocity distribution isotropic, leading to more spherical
haloes (Burkert 2000; Yoshida et al. 2000; Davé et al. 2001).

Initial excitement about SIDM was related to its ability to pro-
duce constant density cores in dwarf galaxies (Yoshida et al. 2000;
Davé et al. 2001), as well as to reduce the amount of substructure
in DM haloes. Constraints placed on the SIDM cross-section imply
that DM collisions are unlikely to produce significant evaporation
of subhaloes, though self-interactions can still have a noticeable ef-
fect on halo density profiles (Rocha et al. 2013). This could explain

� E-mail: andrew.robertson@durham.ac.uk

the results of a detailed comparison between local dwarf galaxies
and simulations made by Boylan-Kolchin, Bullock & Kaplinghat
(2011), who found that the most massive DM substructures around
simulated Milky Way-like haloes were considerably more massive
than estimated dwarf galaxy masses made from line-of-sight ve-
locity measurements (Walker et al. 2009; Wolf et al. 2010). If the
results from the collisionless N-body simulations are representative
of the real Universe, then there must be a significant number of
massive dark subhaloes around the Milky Way. These subhaloes
that do not contain stars despite their large mass have been dubbed
‘too big to fail’. An alternative explanation is that the most massive
subhaloes do form stars, but that their circular velocities are below
that seen in the collisionless DM simulations. This can be achieved
in SIDM, where the constant density cores formed through DM
collisions reduce the circular velocities of subhaloes.

Since SIDM was first proposed as an alternative to collisionless
CDM, work has been done to constrain the self-interaction cross-
section. Astrophysical considerations have included the core sizes
of clusters (Yoshida et al. 2000), the ellipticity of clusters (Miralda-
Escudé 2002), evaporation of galaxy haloes in clusters (Gnedin &
Ostriker 2001) and the dynamics and mass-to-light ratios of merging
systems such as the Bullet Cluster (Markevitch et al. 2004; Randall
et al. 2008; Harvey et al. 2015).

The tightest constraints come from galaxy cluster scales, where
the relative velocity between DM particles is high. Meanwhile
SIDM’s ability to solve the ‘too big to fail’ problem is on the dwarf
galaxy scale. This was recently noted by Fry et al. (2015) who
found that cross-sections consistent with cluster-scale constraints
could not significantly reduce the central density of haloes with peak
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circular velocities below 30 km s−1. For this reason, as well as the
fact that many particle physics models give rise to them, there has
been increased interest in SIDM with a velocity-dependent cross-
section. A DM particle with a cross-section that decreases with
increasing relative particle velocity (see e.g. Khoze & Ro 2014)
could have an effect on dwarf galaxy scales where velocity disper-
sions are low, while leaving galaxy clusters relatively untouched.
For this reason, we look at a well-motivated particle model that
gives rise to a velocity-dependent scattering cross-section.

Assessing the effects of DM particle phenomenology on structure
formation is usually done using cosmological simulations. How-
ever, these simulations can only access a finite range of objects due
to their limited resolution. An alternative to simulations, originally
pioneered by Press & Schechter (1974, hereafter PS) and later ex-
tended by the use of Excursion Set Theory (Bond et al. 1991) and
consideration of ellipsoidal collapse (Sheth, Mo & Tormen 2001), is
used to calculate ‘analytical’ mass functions. This is done using lin-
ear theory to evolve the density field, and assuming a simple model
for gravitational collapse in which regions denser than some density
threshold collapse to form virialized objects. Using the PS formal-
ism is attractive as it allows us to look at all scales and redshifts
simultaneously, while we can easily separate the contribution from
haloes of different masses to quantities such as the mean scattering
rate for SIDM particles through cosmic time.

This work follows a similar procedure to Cirelli, Iocco & Panci
(2009), who estimated the DM annihilation rate through cosmic
time. The rate of interactions in a DM halo can be calculated given
a particle model and the density profile of the halo. Then with a
mass function (from PS theory or equivalent) it is possible to work
out the total rate of scattering in the Universe. For the simplest
model of particle annihilation the DM cross-section, σ , multiplied
by the relative velocity of particles, v, is constant. As the rate of
interactions is proportional to 〈σv〉 this simplifies the calculation
relative to a case where σ has some other velocity dependence. In
this work we use DM models that have interaction cross-sections
that differ from σ ∝ 1/v, first using the simplest model for particle
scattering in which σ is a constant.

Our study is aimed at estimating the rate of scattering in DM
haloes of different masses through cosmic time. The high-redshift
Universe is very dense, and were it to turn out that the scattering
rate was therefore high, the survival of the first seeds of structure
formation could provide a useful constraint on the self-interaction
cross-section of DM. This work should also be helpful when assess-
ing the importance of resolution in N-body simulations of SIDM,
because they can only resolve objects above a certain mass. While
only the resolved objects from simulations are usually of interest,
objects build up in a hierarchical fashion, such that resolved objects
at some epoch, are made from the merging of smaller (potentially
unresolved) objects from an earlier time. It is therefore important
to assess whether these small objects that merged should have been
affected by DM self-interactions.

The paper is organized as follows. In Section 2, we discuss the
calculation of the DM interaction rate through cosmic time for a
velocity-independent scattering cross-section, while in Section 3
we show the effects of changing the models and parameters that
went into our original calculation. In Section 4, we perform the
same calculation with velocity-dependent cross-sections, focusing
in particular on two models recently simulated by Vogelsberger
& Zavala (2013). Finally, we give our conclusions in Section 5.
Throughout the paper we assume a Planck 2013 cosmology (Planck
Collaboration XVI 2014) unless stated otherwise, and also assume
that self-interactions do not effect large-scale structure formation.

2 IN T E R AC T I O N R AT E OV E R C O S M I C T I M E

In this section, we first discuss the number density of DM haloes of
different masses and how this evolves with redshift. By then looking
at the scattering rate of DM particles in the haloes that exist at a
particular redshift we can calculate the rate of DM particle scattering
at that epoch. This calculation assumes that DM scattering is only
between particles within the same DM halo, and neglects the fact
that scattering rates would be enhanced during the merging of DM
haloes, when the relative velocities between particles can be larger.
As haloes only spend a small fraction of time undergoing major
mergers, the contribution of mergers to the integrated number of
scatterings should not be too significant.

2.1 Mass function of collapsed structures

We initially calculate the number of structures of a given mass using
PS theory, considering alternative formulations in Section 3.2. The
primordial fluctuations δ = (ρ − 〈ρ〉)/〈ρ〉 in the Universe’s matter
density field ρ, are evolved using linear theory. The spherical col-
lapse model (e.g. Lacey & Cole 1993) shows that volumes of radius
R in which the mean overdensity δR exceeds a critical threshold
δR > δc = 1.686 will collapse under their own gravity. We assume
gravitational collapse to be immediate leading to a virialized halo
with mass M = 4

3 πR3〈ρ〉.
To find these volumes, consider smoothing the density distribu-

tion on a scale R. Assuming the density fluctuations form a Gaussian
random field, the fraction of the Universe in regions with an over-
density greater than δc is

F (δR > δc) =
∫ ∞

δc

1√
2πσ 2

R

exp

(
− δ2

R

2σ 2
R

)
dδR. (1)

This depends only on σ 2
R , the variance of δR on this scale. Because

δR has zero mean,

σ 2
R = 〈

δ2
R

〉 = D2(z)
∫

k2P (k)W̃ 2
R(k) dk, (2)

where the linear growth factor D(z) governs the amplitude of per-
turbations at redshift z, and W̃R(k) is the Fourier Transform of a
real-space spherical top hat filter of radius R.

The power spectrum P(k) is obtained by multiplying the power
spectrum of fluctuations generated by inflation by the transfer func-
tion T(k), which accounts for the different behaviour of fluctuations
that are smaller than and larger than the horizon during the radi-
ation and then matter-dominated eras. For simplicity we use the
Eisenstein & Hu (1998) zero-baryon CDM model in which

T (q) = L0

L0 + C0 q2
,

L0(q) = ln(2e + 1.8q),

C0(q) = 14.2 + 731

1 + 62.5q
(3)

and q is related to k by

q = k

�m h2 Mpc−1 �2
2.7 , (4)

where TCMB = 2.7 �2.7 K. We look at the effect of changes to the
high-k power spectrum by integrating the mass function down to
different minimum masses, as explained in Section 2.3.

PS theory then interprets the fraction of the Universe’s volume
for which δR > δc as the fraction of the Universe’s mass that has col-
lapsed to form objects with mass M ≥ 4

3 πR3 〈ρ〉. In this transition
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from smoothing over volumes to mass scales, it is also convenient
to eliminate time dependence from the rms density fluctuations, i.e.
we define the rms mass fluctuations on scale M as σ M ≡ σ R(z)/D(z),
such that D(z = 0) = 1. Thus the fraction of the mass in the Universe
in collapsed objects with mass greater than M, at redshift z, is

F (M, z) =
∫ ∞

δc/σMD(z)

1√
2π

exp

(
− ξ 2

2

)
dξ, (5)

where ξ = δM/σ MD(z). This depends only on the rms density fluc-
tuations (in the lower limit of integration) and the linear growth
factor. Differentiating it with respect to mass yields the multiplicity
function

dF

d ln M
(z) =

√
2

π

∣∣∣∣d ln σM

d ln M

∣∣∣∣ ν exp

(
−ν2

2

)
, (6)

where we have introduced ν = δc/σ MD(z) and multiplied by a factor
of 2 to account for mass that is initially in underdense regions.1 This
describes how the mass in the Universe is divided amongst objects
of different mass and is plotted in the top panel of Fig. 1.

2.2 Interaction rates in collapsed structures

The scattering rate of an individual DM particle i, with velocity vi ,
is

�i =
∫

f (v′) ρ
σ

m
|vi − v′| d3v′, (7)

where f is the velocity distribution function,2 ρ the local density
and (σ/m) the cross-section for DM–DM scattering (which could
depend on |vi − v′| ≡ vpair) divided by the DM particle mass. Inte-
grating over the velocity distribution function gives the scattering
rate for a particle at position r ,

�i(r) = 〈σ vpair〉(r)ρ(r)

m
. (8)

For a halo of mass M containing N particles, the mean scattering
rate per particle is

�halo(M) = 1

N

N∑
i=1

�i. (9)

Integrating over radius r gives

�halo(M) = 1

M

∫ ∞

0
4πr2ρ(r)�i(r) dr (10)

= 1

M

∫ ∞

0
4πr2ρ2(r)

〈σ vpair〉(r)

m
dr. (11)

1 Consider what happens when we take M → 0 in equation (5). On small
scales the rms fluctuations are very large, and the lower limit in the integra-
tion tends to zero. This implies F (0, z) = 1

2 , and only half of the mass in the
Universe is in collapsed objects. On small enough scales the density field is
always non-linear, and so we would expect all mass in the Universe to be
in collapsed objects if we take M → 0. The missing half of the Universe
corresponds to regions that are below the collapse threshold when smoothed
on a scale M, but would be above the collapse threshold if smoothed on some
larger scale. For more information, see the discussion of the ‘cloud-in-cloud’
problem in Bond et al. (1991).
2 Here, f is normalized such that

∫
f (v1) d3v1 = 1.

Figure 1. Top panel: the multiplicity function, which shows how mass in
the Universe is split between objects of different mass, as described by
PS theory. Different coloured lines show different redshifts. Middle panel:
the interaction rate per particle as a function of halo mass, assuming NFW
density profiles and the Duffy et al. (2008) concentration–mass relation,
with a velocity-independent cross-section of 1 cm2 g−1. Circles highlight
the mass at which the multiplicity function peaks, illustrating a relatively
constant interaction rate per unit mass in the Universe’s most typical haloes.
Bottom panel: the product of curves in the two upper panels, illustrating the
relative contribution of haloes in different logarithmic mass bins to the total
interaction rate per particle. In this scenario, the main location for scatterings
gradually transitions to more and more massive structures.

We assume that the collapsed haloes from PS theory have spher-
ically symmetric Navarro, Frenk & White (1997, hereafter NFW)
density profiles,

ρ(r)

ρcrit
= δNFW

(r/rs)(1 + r/rs)2
, (12)

where rs is a scale radius, δNFW a dimensionless characteristic den-
sity and ρcrit = 3H 2/8πG is the critical density. We assume that the
mass of a halo fills a spherical region of radius r200, within which
the mean density is 200 ρcrit and the total mass is M200. Outside this
region we assume the density to be zero. For brevity we will also
refer to r200 as rv and M200 as M. The concentration parameter is
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defined as c ≡ r200/rs and can be related to the characteristic density
by

δNFW = 200

3

c3

ln(1 + c) − c/(1 + c)
. (13)

Note that the NFW profile is obtained from non-interacting DM
simulations. DM scattering reduces the density in the centre of DM
haloes, producing a constant density core (Burkert 2000; Yoshida
et al. 2000; Davé et al. 2001; Colı́n et al. 2002; Rocha et al. 2013;
Zavala & Vogelsberger 2013). Assuming an NFW profile, the aver-
age radius at which interactions take place (assuming an isotropic
velocity dispersion) is 0.32 rs independent of halo concentration.
This is similar to the radius for which the radial density profiles
seen in the simulations of Rocha et al. (2013) first drop below the
NFW prediction. These simulations used the maximum allowed
velocity-independent cross-section, and so cores in other models
would likely be smaller. Also, while the density in the centres of
haloes decreases, DM scattering increases the velocity dispersion
in halo centres, which should cancel some of the effect. Neverthe-
less, we acknowledge that these DM interactions are moderately
self-regulating because they form cores that will tend to decrease
the interaction rate, but proceed assuming an NFW profile for the
DM density. If we relax this assumption then the scattering rates
calculated would be lower, but a full treatment of the effect that
scattering has on the phase space distribution of haloes, and so the
subsequent scattering rates, requires full N-body simulations that
are beyond the scope of this paper.

To calculate the mean pairwise velocity of particles, we integrate
over the velocity distribution functions of particle pairs. Assuming
that their velocities are isotropic and follow a Maxwell–Boltzmann
distribution3 with one-dimensional velocity dispersion σ 1D, this
gives 〈vpair〉 = (4/

√
π) σ1D. For an NFW halo, the velocity disper-

sion of particles is (Łokas & Mamon 2001)

σ 2
1D(s, c) = 1

2
c2 g(c)s(1 + cs)2 GM

rv

[
π2 − ln(cs) − 1

cs

− 1

(1 + cs)2
− 6

1 + cs
+

(
1 + 1

c2s2
− 4

cs
− 2

1 + cs

)

× ln(1 + cs) + 3 ln2(1 + cs) + 6Li2(−cs)

]
, (14)

where s ≡ r/r200, g(c) ≡ [ln (1 + c) − c/(1 + c)]−1, and Li2(x) is the
dilogarithm (commonly referred to as Spence’s function), defined
by

Li2(x) =
∫ 0

x

ln(1 − u)

u
du. (15)

Returning to equation (11), and changing integration variable
from r to s, we find

�halo(M, rv, c) = 16
√

π
r3

v

M

σ

m

∫ 1

0
s2ρ2(s, c) σ1D(s, c) ds, (16)

where we have now assumed that the DM–DM cross-section is
velocity-independent (this restriction is relaxed in Section 4). Both
ρ(s, c) and σ 1D(s, c) depend on the virial mass and radius of a halo,
and can be written as dimensionless functions of s and c multiplied

3 High-resolution simulations of CDM report departures from Gaussianity
for the distribution of velocity components along the principal axes of the
velocity dispersion tensor (Vogelsberger et al. 2009), but this approximation
is sufficient for our work.

by the dimensional quantities M/r3
v and

√
GM/rv, respectively. We

can then see that �halo will be a function of the halo concentration
scaled by power laws in M and rv. Specifically, at fixed cross-section
and halo concentration, �halo ∝ M3/2 r−7/2

v .
At a particular cosmic time, M ≡ M200 and rv ≡ r200 are not

independent, because M200/r
3
200 ∝ ρcrit(z) by definition. Using this,

we find �halo ∝ M1/3 ρ
7/6
crit , such that

�halo(M, z, (σ/m), c) = �halo(M0, z0, (σ/m)0, c)

(
M

M0

)1/3

×
(

ρcrit(z)

ρcrit(z0)

)7/6 (
(σ/m)

(σ/m)0

)
. (17)

We calculate �halo(M0, z0, (σ/m)0, c) with M0 = 1010 M�, z0 = 0
and (σ/m)0 = 1 cm2 g−1, by numerically integrating equation (16).
We can then calculate �halo for haloes with different masses and at
different redshifts using equation (17).

At fixed mass, redshift and cross-section, �halo is found to in-
crease significantly with increasing halo concentration. The loga-
rithmic slope of the �halo(c) relation is ∼1.7 for c = 5, and ∼2.5 for
c = 30, with �halo ∝ c2 for concentrations around 10. As halo con-
centrations generally decrease with increasing halo mass, the mass
dependence of �halo is suppressed below the �halo ∝ M1/3 seen
in equation (17). The overall form of �halo(M, z) depends upon the
concentration–mass–redshift relation. Following Duffy et al. (2008,
hereafter D08), we shall initially assume

c(M, z) = 5.72

(
M

1014 h−1 M�

)−0.081

(1 + z)−0.71. (18)

Using this c(M, z) relation we show �halo(M, z) in the middle panel
of Fig. 1. �halo increases rapidly with increasing redshift at fixed
mass, and increases with mass at fixed redshift. As objects grow in
mass through cosmic time, the scattering rate in typical haloes at
each redshift evolves slowly. Note that several more recent works
show that this simple power-law dependence of c(M) should flatten
at low masses, as is discussed in Section 3.1.

2.3 DM’s cosmic scattering rate

Multiplying the multiplicity function from Section 2.1 by the inter-
action rate in individual haloes from Section 2.2 gives the contribu-
tion of haloes of different mass to the total rate of particle scattering
in the Universe (see the bottom panel of Fig. 1). Integrating this
quantity over all halo masses at different redshifts yields the mean
scattering rate of all particles at that redshift, �(z), which we refer
to as the ‘Cosmic Scattering Rate’. This is plotted in Fig. 2, where
it can be seen that after a gradual rise from the early universe to
z ≈ 6, �(z) is constant to within a factor of 2 to the present day.

For this analysis, we assume that haloes form down to masses
of 10−12 M�. In the real Universe, SIDM creates a small-scale
cut-off in the power spectrum due to collisional damping. For DM
composed of weakly interacting massive particles (e.g. neutralinos),
the minimum mass of collapsed objects is ∼10−6 M� (Hofmann,
Schwarz & Stöcker 2001). If DM were axions, then this minimum
mass would be ∼10−12 M� (Kolb & Tkachev 1996). For the gen-
eral class of SIDM models that lead to astrophysically interesting
scattering rates in the late-time Universe, collisions in the early Uni-
verse suppress power on larger scales, or even introduce acoustic
oscillations in the dark matter–dark radiation system (Buckley et al.
2014). There is a rich possible phenomenology affecting the high-k
power spectrum, which is highly model-dependent.
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Figure 2. Top panel: the mean scattering rate of particles in the Universe
calculated from PS theory, assuming the NFW density profile, the D08
concentration–mass relation and σ/m = 1 cm2 g−1. The different lines count
only scatterings in haloes more massive than 1010 M� (bottom line) to
10−12 M� (top line). The scattering rate varies by less than a factor of 2 from
z ≈ 6 onwards. Bottom panel: the mean cumulative number of interactions
that particles have undergone as a function of redshift. The different lines
again include only those interactions in haloes more massive than a given
threshold. With a velocity-independent cross-section, most scattering is at
late redshifts where there is more time. This results in most scattering being
in high-mass haloes, so that Nscatter(z = 0) varies by less than 25 per cent
between Mmin = 10−12 M� and Mmin = 1010 M�.

We investigate the approximate effect of a cut-off in the power
spectrum by integrating �halo(dF/dln M) down to different mini-
mum masses, Mmin, shown as the extra lines in Fig. 2. Furthermore,
in numerical simulations, only haloes above a given mass scale are
resolved, and only the DM interactions above those scales can be
tracked. We therefore include lines with large Mmin in Fig. 2, to act
as predictions for the expected scattering rate in cosmological sim-
ulations. Note that the results as Mmin → 0 converge particularly
slowly for the D08 concentration–mass relation, due to the high
concentration of very small haloes. Nevertheless, these results are
less sensitive to changing Mmin than those for a simple annihilation
channel where σvpair is constant (Mack 2014) and low-mass haloes
make a dominant contribution to the total scattering rate.

In addition to the rate of cosmic scattering, an interesting quantity
is the mean cumulative number of interactions that particles have
undergone. As each scattering event is a two-body interaction, this is
twice the number of interactions per particle. We call this quantity
Nscatter and plot it as a function of redshift in the bottom panel
of Fig. 2. While the cosmic scattering rate is markedly different
at intermediate and high redshifts when using different minimum
masses, the values of Nscatter(z = 0) are more robust. For (σ/m) =
1 cm2 g−1, Nscatter(z = 0) is 0.87 with Mmin = 10−12 M� and 0.68
with Mmin = 1010 M�.

A noticeable feature of �(z) in the upper panel of Fig. 2 is the
upturn after z ≈ 1. This is not present when using more recent c(M,
z) relations with more complex redshift dependences than the simple
(1 + z)−0.71 in the D08 relation. This upturn is not physical, and
arises because the concentration is defined in terms of r200 which
in turn depends on ρcrit. When the Universe is matter-dominated
ρcrit ∝ (1 + z)3, such that at fixed halo mass r200 ∝ (1 + z)−1. At
late times, when there is a significant dark energy contribution to
the Universe, the evolution of ρcrit slows and is no longer given
by a simple power law in (1 + z). This affects the r200 of haloes,
and hence halo concentrations, such that a simple power law cannot
accurately capture c(M, z).

3 SENSI TI VI TY TO ASTROPHYSI CAL
ASSUMPTI ONS

In the previous section, we considered the redshift dependence of
DM scattering rates and showed that with a velocity-independent
cross-section, the mean rate of particle scattering in the Universe
initially grows and then starts to decrease after z ≈ 6, dropping by
less than a factor of 2 to the present day. In this section we explore
the sensitivity of this result to the assumptions of the model.

3.1 Concentration–mass–redshift relations

The concentration–mass–redshift relation, c(M, z), of D08 is attrac-
tive for its simplicity and because over a small range of redshifts
and halo masses, concentrations can be well fitted by simple power
laws in M and (1 + z). However, numerical studies that have re-
solved structures over a wide range of halo masses have found that
concentrations are not well fitted by simple power laws. Examining
the results of the Millennium Simulation (Springel et al. 2005) from
z = 3 to z = 0 it is clear that the form of c(M, z) is not separa-
ble, with the mass dependence evolving with redshift (Gao et al.
2008). This evolution takes the form of a flattening of the c(M) rela-
tion at increasing redshift, such that concentrations of very massive
galaxy cluster haloes evolve only weakly with redshift while the
concentrations of smaller haloes decrease rapidly with increasing
redshift.

The c(M, z) relation is found to be remarkably complex, particu-
larly when considering the dependence on cosmological parameters.
Prada et al. (2012, hereafter P12) find that this complex relationship
is a result of the ‘wrong’ physical quantities, M and z, being used.
Analogous to studies of the halo mass function, in which a much
simpler fitting formula is possible when one considers the mass
function as a function of ln σ−1

M rather than a function of M (Jenkins
et al. 2001), the c(ln σ M) relationship is found to be simpler than
c(M).

The behaviour of this relationship can be explained by models in
which the concentration of a halo is related to its accretion history
(Wechsler et al. 2002; Zhao et al. 2003). Ludlow et al. (2014, here-
after L14) found that if the mass of a halo, M(z), was plotted against
the critical density, ρcrit(z), then the relationship M(ρcrit) was well
fitted by an NFW profile, with associated concentration cMAH. They
also found a simple relation between cMAH and the concentration of
the halo, allowing the concentration–mass relation to be predicted
from the mass-accretion history of haloes. The statistics of the mass
accretion of DM haloes can be found from simulations, or calcu-
lated using the conditional probabilities4 found in extensions of PS

4 The conditional probability that the material making up an object of mass
M1 at redshift z1 is in an object of mass M0 at redshift z0.
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Figure 3. The cosmic scattering rate calculated using the concentration–
mass–redshift relations of D08, P12, L14, Dutton & Macciò (2014), Diemer
& Kravtsov (2015) and Correa et al. (2015). These were calculated assuming
a Planck 2013 cosmology (Planck Collaboration XVI 2014), a PS mass
function and σ/m = 1 cm2 g−1, counting the contribution from all haloes
more massive than 10−12 M�. Lines become dashed for redshifts where
authors state their relationships may not be valid.

theory (Bond et al. 1991; Bower 1991; Kauffmann & White 1993;
Lacey & Cole 1993).

Different methods for measuring c(M, z), either from simulations
or analytical calculations, give similar results around the peak of
the multiplicity function (M ≈ M∗), but differ significantly at high
and low masses. While the cosmic scattering rate is dominated by
haloes around M∗(z), the scattering rate in haloes is highly sensitive
to the halo concentration, and so even small differences between
c(M, z) relations can lead to significant changes in �(z). In Fig. 3,
we show �(z) calculated as in Fig. 2 but for a variety of c(M, z)
relations.

Noticeable in Fig. 3 is that using c(M, z) from L14 gives a scatter-
ing rate at intermediate redshifts a factor of 2 above that found using
other c(M, z) relations. The L14 analytical model was calculated
for relaxed haloes, which are generally dynamically older, making
them more concentrated than unrelaxed haloes of a similar mass.
The cuts made to remove unrelaxed haloes are one of the two main
reasons why c(M, z) relations from simulations disagree with each
other, the other being the way in which c is calculated from a mass
distribution. For example, P12 calculate c from the ratio Vmax/V200,
where Vmax and V200 are the maximum circular velocity and the cir-
cular velocity at r200, respectively, while Diemer & Kravtsov (2015)
find c by directly fitting the radial density with an NFW profile.

3.2 Mass function prescription

It is known that the PS formula does not provide an exact fit to the
mass function from simulations. Specifically, it underestimates the
number of rare objects in the ‘high-mass tail’, with an overestimate
of the amount of mass around the peak of the multiplicity function
(see e.g. Jenkins et al. 2001). A better fit to the mass function from
simulations was achieved by Sheth & Tormen (1999, hereafter ST),
who found that compared to PS, equation (6) becomes

dF

d ln M
= A

√
2a

π

∣∣∣∣d ln σM

d ln M

∣∣∣∣ [
1 + (

aν2
)−p

]
ν exp

(
−aν2

2

)
,

(19)

with A = 0.3222, a = 0.707 and p = 0.3. We note that our definition
of ν is different from that in the ST paper, with νST = ν2. The
original PS formula can also be described by equation (19) with
A = 0.5, a = 1 and p = 0.

The ST mass function increases the number density of the most
massive objects compared to the PS mass function, providing a
better fit to simulations (see e.g. Reed et al. 2007). While these dif-
ferences can be extremely important for some studies (e.g. counting
the number density of massive clusters), we find that the different
mass functions do not have a large effect on our results. This is
because the scattering rate per unit mass in DM haloes increases
only gently with increasing halo mass, as can be seen in the middle
panel of Fig. 1. The shape of �(z) is similar when either a PS or ST
mass function is used, although the normalization is slightly lower
for the latter. By redshift zero there are ∼20 per cent fewer DM
interactions with an ST mass function.

3.3 Varying cosmological parameters

Similar to changing the formalism used to calculate the multiplicity
function, small changes to the cosmological parameters leave the
cosmic scattering rate relatively unchanged because of the weak
mass dependence of �halo(M). Using c(M, z) from D08, we find that
changing cosmological parameters from Planck 2013 to WMAP9
decreases the mean number of interactions per particle by redshift
zero, Nscatter(z = 0), by 12 per cent. This is driven by Planck’s
larger value for �m, resulting in larger critical densities at early
times. Using earlier WMAP results leads to similar changes, except
for WMAP3 for which the anomalously low �m and σ 8 lead to a
33 per cent reduction in Nscatter(z = 0).

The concentration–mass–redshift relation also depends on cos-
mological parameters, which is made explicitly clear by relations
that relate c to σ M rather than M directly (e.g. P12; Diemer &
Kravtsov 2015). This cosmology dependence of c(M, z) makes
little difference when moving from Planck 2013 to WMAP9, but
further reduces the scattering rate for a WMAP3 cosmology such
that Nscatter(z = 0) is 40 per cent lower than with a Planck 2013 cos-
mology, using c(M, z) from P12. This increased difference, beyond
that seen for a cosmology independent c(M, z), can be understood
by noting that haloes of a particular mass form later with smaller
σ 8, and are therefore less concentrated.

3.4 Scatter in the concentration–mass relation

So far we have assumed that given the mass of a halo we know its
concentration through the concentration–mass relation. In practice,
this relation has some scatter around it, which will impact on the
mean scattering rate of haloes. From equation (17) the concentration
dependence of the scattering rate in haloes is described by �halo(M0,
z0, (σ/m)0, c). This is non-linear in c, such that even symmetric
scatter in c at fixed mass will alter the mean scattering rate in haloes
of that mass.

To discuss how �halo is affected by scatter in c, it will be useful
to introduce c0, the value of c implied by the c(M, z) relation. Dolag
et al. (2004) find that for haloes of fixed mass and redshift, ln c is
normally distributed. If we assume that ln c is normally distributed
with mean ln c0 and variance σ 2

ln c, then c follows a lognormal dis-
tribution, with probability density function

P (c) = 1

c σln c

√
2π

exp

(
− (ln c − ln c0)2

2 σ 2
ln c

)
. (20)
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Including a lognormal distribution of concentrations at fixed mass
and redshift leads to an increase in � at all concentrations, related to
the long tail of the distribution towards high values, as well as a shift
in the expectation value of c.5 If c(M, z) in D08 was a measure of the
mean c for a particular mass of halo, then we would have to make
the change ln c0 → ln c0 − σ 2

ln c/2 in equation (20) to keep 〈c〉 = c0.
However, the c(M, z) relation in D08 was acquired by fitting to the
median values of c in each mass bin at each redshift. The median
value of c from the probability density function in equation (20) is
simply exp (ln c0) = c0 as required. Dolag et al. (2004) found that
σ ln c ≈ 0.22, almost independent of the cosmological model. This
corresponds to a standard deviation in log10c of 0.1, or a scatter of
0.1 dex. We find that the shape of �(z) is effectively unchanged
by scatter in c(M, z), but that the normalization increases with
increasing scatter. For a 0.1 dex scatter, the normalization increases
above that of the scatter-free case by less than 15 per cent.

4 V ELOCITY-DEPENDENT CROSS-SECTI ONS

Having calculated the rate of DM scattering through cosmic time
assuming that the cross-section is velocity independent, we now lift
this assumption, and perform the same calculation with velocity-
dependent DM–DM cross-sections.

4.1 Particle model

For velocity-dependent cross-sections we use the vdSIDMa and vd-
SIDMb models described in Vogelsberger & Zavala (2013). These
are well motivated by particle physics, and describe the transfer
cross-section for elastic scattering mediated by a new gauge boson
of mass mφ . This results in an attractive Yukawa potential with cou-
pling strength αc. These interactions are analogous to the screened
Coulomb scattering in a plasma, for which the momentum-transfer
cross-section can be approximated by

σT

σ max
T

≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4π
22.7 β2 ln(1 + β−1), β < 0.1

8π
22.7 β2 (1 + 1.5β1.65)−1, 0.1 < β < 103

π
22.7 (lnβ + 1 − 1

2 (ln β)−1)2, β > 103,

(21)

where β = πv2
max/v

2
pair and σ max

T = 22.7/m2
φ (Feng, Kaplinghat &

Yu 2010; Finkbeiner et al. 2011; Loeb & Weiner 2011). Here vmax

is the velocity at which (σ T vpair) peaks, with σT(vmax) = σ max
T . We

have also introduced the ‘momentum-transfer cross-section’, σ T,
defined as

σT =
∫

(1 − cos θ )
dσ

d�
(θ ) d� (22)

= 2π

∫ 1

−1
(1 − cos θ )

dσ

d�
(θ ) d cos θ, (23)

where dσ
d�

is the differential cross-section, assumed to be azimuthally
symmetric, which describes the probability of particles scattering
into a patch of solid angle d�. The transfer cross-section is an ef-
fective scattering cross-section that is useful in describing angularly
dependent cross-sections (where dσ

d�
is not constant). For isotropic

scattering ( dσ
d�

= constant) the transfer cross-section is simply σ T =
σ , while in general the mean momentum transfer for a scattering

5 For the distribution in equation (20), the expectation value of c is given by
〈c〉 = exp

(
ln c0 + σ 2

lc/2
)

> c0.

process with transfer cross-section σ T is equal to the mean momen-
tum transfer for isotropic scattering with σ = σ T. Throughout the
rest of this paper, when calculating the rate and number of parti-
cle scattering events we will use σ T as if it were the cross-section,
i.e. we will calculate an effective rate of particle scatterings that is
the rate of isotropic scattering events that would lead to the same
rate of momentum transfer.6

The velocity-dependent cross-section in equation (21) leads to
noticeable changes in �halo(M). The cross-section diverges as the
pairwise velocity tends to zero, such that scattering in low-mass
haloes (with typical velocities less than vmax) is enhanced above the
constant cross-section case. For vpair � vmax, σT ∝ v−4

pair, leading
to a strong suppression of the scattering rate in DM haloes with
velocity dispersions larger than vmax.

The vdSIDMa and vdSIDMb models have values of σ max
T /m and

vmax chosen to maximize the self-interaction rate at the typical ve-
locity dispersion of Milky Way dwarf spheroidals, while avoiding
known astrophysical constraints on the cross-section. Specifically,
vdSIDMa and vdSIDMb have vmax = 30 km s−1 and σ max

T /m =
3.5 cm2 g−1, and vmax = 10 km s−1 and σ max

T /m = 35 cm2 g−1,
respectively.

4.2 vdSIDM cosmic scattering rates

The calculation of the DM scattering rate �(z) proceeds in a similar
manner to Section 2, in that we first find the distribution of haloes of
different mass ( dF

d ln M
) and then find the scattering rate per unit mass

in these haloes, �halo(M). However, the calculation of �halo(M) is
complicated by the velocity-dependent cross-section, because the
cross-section can no longer be taken outside the integral in equa-
tion (11). Instead, we find 〈σ vpair〉(r) by numerically integrating
σ T(vpair) vpair over the probability distribution of pairwise veloci-
ties, again assuming that the velocities of individual particles are
drawn from a Maxwell–Boltzmann distribution function with 1D
velocity dispersion σ 1D. This yields

〈σTv〉 (σ1D) = 1

2σ 3
1D

√
π

∫
σT(v)v3e−v2/4σ 2

1D dv. (24)

Then with σ 1D(r) from equation (14) we can find 〈σ Tv〉(r), which
we use in the numerical evaluation of equation (11) to calculate
�halo(M). Combining �halo(M) with the multiplicity function we
can calculate the cosmic scattering rate as in Section 2.3.

The scattering rate through cosmic time is plotted for vdSIDMa
and vdSIDMb in Fig. 4. In contrast to the velocity-independent case
in Fig. 2, the scattering rate is now displayed on a logarithmic scale.
It peaks at redshift 20–30 and falls by two orders of magnitude
before z = 0. Most interactions thus occur at early times as can be
seen in Fig. 5. Half occur before z = 5.7 for vdSIDMa and z = 7.2
for vdSIDMb (in the latter case, the Universe is ∼5 per cent of its
present age). This is in stark contrast to the gentler evolution of �(z)
with a constant cross-section (cf. Fig. 2), where half the interactions
occur after z = 0.96.

6 In general, particle orbits within a DM halo are approximately isotropic,
so there is no preferred direction for particle scattering. In these cases, the
momentum transfer cross-section accurately captures the effects of scatter-
ing. However, this may not be the case for systems where there is a preferred
direction along which particles approach (Kahlhoefer et al. 2014), such as
in a merger.
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Figure 4. Scattering rates (top row) and cumulative number of scatters (bottom row) as a function of redshift, for two different velocity-dependent scattering
cross-sections. The left-hand column is for vdSIDMa which has vmax = 30 km s−1 and σmax/m = 3.5 cm2 g−1; while vdSIDMb (right-hand column) has
vmax = 10 km s−1 and σmax/m = 35 cm2 g−1. The different line colours correspond to different values for Mmin of 108, 104, 1, 10−4, 10−8 and 10−12 M�,
with both � and Nscatter monotonically increasing with decreasing Mmin. The solid lines are for the D08 concentration–mass–redshift relation, while the dashed
lines use the P12 c(M, z). Unlike the constant cross-section case in Fig. 2, �(z) is now plotted on a logarithmic scale as the scattering rate is larger by around
two orders of magnitude at high redshift compared to redshift zero.

Figure 5. When do scatterings happen? The cumulative number of inter-
actions as a function of redshift, normalized to unity at redshift zero. The
different colours correspond to different particle models for the DM, while
the solid and dashed lines are for the D08 and P12 c(M, z) relations, respec-
tively. All curves were calculated using Mmin = 10−12 M�. The number in
brackets in the legend is Nscatter(z = 0) for the relevant model. These are not
present for the models with specified vmax, which represent vdSIDM mod-
els with unspecified σmax

T . Velocity-dependent models with low vmax lead to
more interactions in haloes with low internal velocities, pushing scattering
towards high redshifts where collapsed objects are less massive.

With a velocity-dependent cross-section, most scatterings also
occur in low-mass haloes with typical velocities v � vmax. Rais-
ing the minimum mass of considered haloes Mmin from 10−12 to
108 M� lowers the number of interactions by redshift zero by a

Figure 6. Where do scatterings happen? The fraction of scatterings by red-
shift zero that occur in haloes more massive than Mmin, normalized to unity
for Mmin = 10−12 M�. Different line styles are as in Fig. 5, with colours
corresponding to particle models, and solid or dashed lines representing
the D08 or P12 concentration–mass–redshift relations, respectively. Models
with velocity-independent cross-sections have more of their scatterings in
high-mass haloes compared to velocity-dependent cases, where the typical
halo mass in which most interactions happen is an increasing function of
vmax.

factor of 6, which can be seen in Fig. 6 (for which we intro-
duce N0 ≡ Nscatter(z = 0)). For the constant cross-section case,
the same change leads to a decrease in Nscatter(z = 0) of only
10 per cent.
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The choice of concentration–mass–redshift relation becomes
more important when the cross-section is velocity dependent, be-
cause different c(M, z) disagree most for low-mass haloes and at
high redshift. In particular, the simple power-law relation from D08
predicts low-mass haloes to be much more concentrated than more
recent relations in which c(M) flattens at low mass. This recov-
ers (a less extreme version of) what is seen in estimates of the
DM annihilation rate, where 〈σ vpair〉 is usually assumed to be con-
stant, resulting in an even larger fraction of interactions occurring
in low-mass haloes, and hence a cosmic scattering rate with strong
dependence on c(M, z) (Mack 2014; Correa et al. 2015).

As well as the three particle models already discussed (velocity-
independent, vdSIDMa and vdSIDMb), we include in Figs 5 and 6
plausible but more extreme velocity-dependent models with lower
vmax. We need not specify the normalization of σ max

T /m for these
calculations, but it can be chosen to solve small-scale problems at
dwarf galaxy scales, while eluding constraints at cluster scales. As
vmax is lowered, a larger fraction of interactions happen at high red-
shift and in low-mass haloes. For the most extreme case considered,
with vmax = 10−3 km s−1, half of the interactions have occurred by
z = 19, and half occur in haloes of mass <10−6 M�. We stress that
such models cannot be excluded on particle physics grounds, but it
is unclear whether the large number of scatterings in such low mass
haloes would leave a detectable signal in the present-day universe.

5 C O N C L U S I O N S

We have presented an analytical calculation of the mean rate of DM–
DM scattering events, for particle physics models with a velocity-
independent or velocity-dependent cross-section. In all our calcula-
tions, we assume that the self-interactions are a small perturbation
to �CDM and do not, for example, change the overall growth of
structure.

For particle physics models with a velocity-independent interac-
tion cross-section, our results match the canonical picture in which
most scatterings occur in massive structures �1012 M� at late times
z� 1. Our calculations are found to be robust to current uncertainties
in cosmological parameters as well as variations in the mass func-
tion used. They are also insensitive to the high-k power spectrum
(because most scattering events occur in haloes more massive than
the cut-off scales due to DM self-interactions in the early Universe).
The main source of uncertainty in the results is the concentration–
mass–redshift relation c(M, z). Its unknown form at high redshift
and low mass propagates into a factor of almost 3 discrepancy in
the scattering rate at intermediate redshifts (z ≈ 10). However, the
scattering rate changes by only a factor of 2 over most of cosmic
time, and different c(M, z) relations give similar results after z ≈ 1,
where there is more time. Consequently, the total number of inter-
actions during the entire history of the Universe is uncertain to only
a factor of ∼2.

For particle physics models with a well-motivated velocity de-
pendence, the scattering takes place mainly in low-mass objects
� 104 M� at early times z � 7. The scattering rate �(z) peaks
at earlier redshifts z ∼ 20, with a pronounced peak two orders of
magnitude higher than the scattering rate at the present day. These
numbers are more sensitive to the choice of cosmological and as-
trophysical parameters, and are dominated by regimes in which the
mass function and concentration–mass–redshift relation are least
well known. This minimum mass of considered structures, Mmin,
is particularly important, with changes to the small-scale power
spectrum induced by DM scattering affecting the cosmic scattering
rate.

The dominance of high-redshift scatterings in velocity-dependent
models profoundly changes their influence on the evolution of struc-
ture, and may alter the best strategy to search for observational sig-
natures. DM particle interactions lead to a transport of particles away
from the centres of structures (Kochanek & White 2000), replacing
the cusps found in collisionless CDM simulations with constant
density cores.7 If the SIDM interactions are effectively confined
to high redshift, then they may lead to a smearing of small-scale
structure more qualitatively reminiscent of warm dark matter. The
affected DM structures are also the hosts of the first galaxies, and
it is interesting to consider what impact cored haloes could have on
early galaxy formation.

High-redshift scattering in low-mass objects also has important
consequences for attempts to simulate vdSIDM cosmologies. Most
scatterings occur in low-mass haloes at high redshift that would not
be resolved in typical cosmological simulations, but the unresolved
interactions could be important for the later dynamics of particles.
The large number of self-interactions would create DM cores in
high-redshift haloes, and it then becomes an important question –
on which there seems little consensus – whether or not the mergers
of small cored haloes form cores that persist in large haloes at the
present day.
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