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Abstract

Let M be a random m × n matrix with binary entries and i.i.d. rows. The weight
(i.e., number of ones) of a row has a specified probability distribution, with the row
chosen uniformly at random given its weight. Let N (n,m) denote the number of left
null vectors in {0, 1}m for M (including the zero vector), where addition is mod 2. We
take n,m → ∞, with m/n → α > 0, while the weight distribution converges weakly
to that of a random variable W on {3, 4, 5, . . .}. Identifying M with a hypergraph on
n vertices, we define the 2-core of M as the terminal state of an iterative algorithm
that deletes every row incident to a column of degree 1.

We identify two thresholds α∗ and α, and describe them analytically in terms
of the distribution of W . Threshold α∗ marks the infimum of values of α at which
n−1 logE[N (n,m)] converges to a positive limit, while α marks the infimum of values
of α at which there is a 2-core of non-negligible size compared to n having more rows
than non-empty columns.

We have 1/2 ≤ α∗ ≤ α ≤ 1, and typically these inequalities are strict; for example
when W = 3 almost surely, α∗ ≈ 0.8895 and α ≈ 0.9179. The threshold of values of
α for which N (n,m) ≥ 2 in probability lies in [α∗, α] and is conjectured to equal α.
The random row-weight setting gives rise to interesting new phenomena not present
in the case of non-random W that has been the focus of previous work.
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1 Introduction

Suppose that M := M(n,m) is an m× n matrix with entries in {0, 1}, each of whose
rows contains at least one 1, for which we seek a left null vector over GF[2], i.e. a row
vector a ∈ {0, 1}m such that aM ≡ 0 (mod 2), where here and elsewhere 0 is the all-0
vector. We are interested in the case where M is sparse and random, as specified below.
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Rank deficiency in sparse random GF[2] matrices

Let X1, X2, . . . , Xm denote the vectors constituting the rows of M , and let σ(n,m)

denote the co-rank over GF[2], namely, with ‘span’ denoting the linear span over GF[2],

σ(n,m) := m− dim span{X1, X2, . . . , Xm}. (1.1)

Then the number of null vectors of M , including the zero vector, is

N (n,m) = 2σ(n,m), (1.2)

which counts the number of distinct solutions in {0, 1}m, including the zero solution, to

a1X1 + · · ·+ amXm ≡ 0 (mod 2). (1.3)

Note that for a fixed n and a given realization of the sequence of rows X1, X2, . . ., the
numbers N (n,m) are nondecreasing as m increases.

Suppose that n,m → ∞, with m/n → α > 0. We study asymptotics of the expected
size E[N (n,m)] and probability P[N (n,m) > 1] of non-triviality of the left null space of
M(n,m), in terms of the asymptotic aspect ratio α. In particular, we derive computable
thresholds for α at which phase transitions occur. We describe the relevance of the
2-core construction to this question. We also study the rate of exponential decay of the
probability that 1 := (1, 1, . . . , 1) is a null vector.

In our probabilistic setting, the rows X1, X2, . . . are independent and identically dis-
tributed (i.i.d.) with the law of a random vector X = X(n) ∈ {0, 1}n. Our focus is the
(very) sparse regime in which the number of non-zero components of X converges in
law as n→∞ to some given weight distribution. The existing literature focuses on the
simplest case, where the weight distribution degenerates to some constant r.

Before describing our model in detail and presenting our main results (in Section 2),
we make some remarks on motivation. Note that σ(n,m) = 0 if and only if M has row
rank m, which occurs if and only if M has column rank m. Thus the absence of non-
trivial left null vectors is equivalent to all column vectors in {0, 1}m being expressible as
a linear combination of the columns of M (with addition modulo 2), or in other words,
to there being a solution x ∈ {0, 1}n to Mx ≡ y for all column vectors y ∈ {0, 1}m. In the
special case of r = 2, motivation for considering this question is discussed at the start
of [16, Chapter 3]. The following interpretations help to motivate the general case.

A scheduling problem. A tennis club is organizing its annual schedule. There are
n playing days, and m potential players. Each player wants to play on a given subset
of the days; if there is not a match available on every one of these days, they refuse to
pay the annual membership. So that nobody is left out, an even number of players is
needed on each day. Each possible schedule satisfying these requirements is a left null
vector mod 2; the one with the most units achieves the maximal income for the club.

Randomized Lights Out. This is a variant of the game ‘Lights Out’ [22]. Each of
m lamps can be either on or off, and there are n switches, each of which is incident
to a subset of the lamps specified by the matrix M ; Lamp i and Switch j are mutually
incident if and only if the (i, j) entry of M is 1. If a switch is toggled, the status of every
incident lamp is changed (from on to off or off to on). All configurations of on and off
lamps are accessible from the ‘all off’ state by using some sequence of switches if and
only if the column rank of M is m.

XORSAT. This is a variant of the random satisfiability problem [21], where there are
n Boolean variables which may be deemed true or false. Each row of M represents a
clause built as the logical XOR (exclusive OR) involving those Boolean variables corre-
sponding to columns incident to this row, so the clause is true if an odd number of the
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variables incident to the row are deemed true. Given a vector y ∈ {0, 1}m, finding a so-
lution x to Mx ≡ y corresponds to finding a truth-assignment for the Boolean variables
so that each clause i is true if yi = 1 and false if yi = 0. Thus the column rank is m if
and only if the problem is satisfiable for all possible choices of y.

A spin-glass model. The relationship between satisfiability problems and spin glasses
has already been noted in [21]. In the present instance, consider the following variant
of the well-known Sherrington–Kirkpatrick mean-field spin-glass model (see e.g. [23]).
There is a random collection of hyperedges on n vertices, represented by the m rows
of M . Each hyperedge i has a sign gi, taking value (−1)yi . Each vertex j is assigned
a spin σj ∈ {−1, 1}. The (zero temperature) probability measure on the state-space is
concentrated on states of minimal energy, i.e. with maximal value of

∑
giei, where ei is

the product of spins at vertices in hyperedge i. The existence of a configuration with all
terms in the sum equal to +1 is equivalent to the existence of a solution to Mx ≡ y.

The Ehrenfest urn and random walk on the hypercube. In the Ehrenfest model of
heat exchange (see e.g. [12, p. 121] or [20, §3.5]), a box contains n particles, each either
red or blue. At each step, a particle is sampled uniformly from the box and changes its
colour. In the case where X has a single unit entry, we may view each row of M as
selecting which particle is to be changed at that step. Then 1 is a null vector for M
if and only if the box returns to the initial state after m steps. This may be phrased
in terms of a random walk on a discrete hypercube {0, 1}n: the event that 1 is null
corresponds to the walker being back in the initial state after m steps.

The general case, allowing other weight distributions, corresponds to a generaliza-
tion of the Ehrenfest model whereby multiple ‘diffusions’ are allowed, i.e. at each step
several particles may change colour at once; cf [20, Chapter 10]. This can be similarly
interpreted in terms of a walk on a version of the hypercube with additional edges.

There is a large body of work on random matrices and random linear equations over
finite fields, including the surveys [16, Chapter 3] and [18, 19]. Problems may also
be formulated in terms of random hypergraphs: each row represents a hyperedge, and
each column represents a vertex (see Section 2.3 below). Generally, such models can be
described in the framework of random allocation or occupancy problems [16, 20, 17].

The null-vector problem in the fixed row-weight case has received several treat-
ments in the literature. It is not easy to reconcile all the existing results, due to dif-
ferences both in presentation and in the underlying probabilistic models. The present
paper provides clarification, including a rigorous justification that the results are un-
changed under small perturbations of the underlying model. Our main contribution,
however, is the treatment of genuinely random row weights, which is new. We men-
tion recent renewed interest in this area in several scientific communities: Alamino and
Saad [1] give a statistical physics approach to the null-vector problem; Ibrahimi et al.
[13] treat the related random XORSAT problem; Costello and Vu [6] study the rank of
random symmetric matrices.

Throughout the paper, we extend the function x 7→ xx, x > 0, continuously to x = 0,
so that 00 := 1. We define the weight of a vector v = (v1, . . . , vn) ∈ {0, 1}n to be
w(v) :=

∑n
i=1 vi, i.e., the number of unit entries. For n ∈ N := {1, 2, . . .} we write

[n] := {1, 2, . . . , n}. We write
d−→ for convergence in distribution.

2 Results and discussion

2.1 Description of the random matrix model

Given n ∈ N, suppose that X = X(n) ∈ {0, 1}n is a random row vector, selected
according to a probability law of the following form. Let W be an N-valued random
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variable (P[W ≥ 1] = 1) whose law will be the (limiting) weight distribution of X. Let

W1,W2, . . . be a sequence of random variables with Wn ∈ [n] such that Wn
d−→ W as

n → ∞. Let w(X) have the distribution of Wn, and for each k ∈ [n] let the conditional
distribution of X, given w(X) = k, be uniform over {x ∈ {0, 1}n : w(x) = k}.

Consider i.i.d. random vectors X1, X2, . . . with the same law as X. Let M := M(n,m)

be the m × n matrix whose rows are X1, X2, . . . , Xm. Let ρ(s) := E[sW ] and ρn(s) :=

E[sWn ] denote the probability generating functions of W and Wn, respectively. We
use Pρn and Eρn for probability and expectation for the random matrix model with n

columns and row-weight distribution specified by ρn. We say Wn are uniformly bounded
if there is a finite constant r1 such that P[Wn ≤ r1] = 1 for all n (so P[W ≤ r1] = 1 too).

2.2 Threshold results in the general setting

Given the probability generating function ρ, define the threshold

α∗ρ := inf{α ≥ 0 : Fρ(α) > 0}, (2.1)

where we set

Fρ(α) := log sup
γ∈[0,1/2]

(
(1 + ρ(1− 2γ))α

2γγ(1− γ)1−γ

)
, α ≥ 0. (2.2)

We note (i) Fρ( · ) is continuous and nondecreasing, with Fρ(α) = 0 for 0 ≤ α ≤ α∗ρ but
Fρ(α) > 0 for α > α∗ρ; and (ii) if P[W ≥ 2] = 1 and E[W ] < ∞, then α∗ρ ∈ [1/2, 1). These
facts, and others, are proved in Lemma 4.1 below. We now present our first main result,
describing the threshold behaviour of the expected number of null vectors N (n,mn).

Theorem 2.1. Suppose that mn/n→ α ∈ (0,∞) as n→∞. Then

lim
n→∞

n−1 logEρn [N (n,mn)] = Fρ(α). (2.3)

Moreover, if in addition there exist r0 ≥ 3 and r1 <∞ such that P[r0 ≤Wn ≤ r1] = 1 for
all n, and α ∈ (0, α∗ρ), then as n→∞,

Eρn [N (n,mn)] = 1 +O(n2−r0). (2.4)

We give the proof of Theorem 2.1 in Section 4.5. A key role in our proof is played by
the event A(n,m) that the row vector 1 = (1, . . . , 1) is null for M , i.e.,

A(n,m) := {X1 + · · ·+Xm ≡ 0 (mod 2)}. (2.5)

Observe that N (n,m) is the number of collections of rows of M(n,m) which sum to 0

(mod 2), and for each set of ` rows the probability that it sums to 0 is Pρn [A(n, `)]. So

Eρn [N (n,m)] =

m∑
`=0

(
m

`

)
Pρn [A(n, `)]. (2.6)

The first step in our analysis is to study the asymptotics of Pρn [A(n,m)], which is of
its own interest in the context of random allocations; see Section 2.4. The starting
point for this analysis is the novel exact formula (3.1) below for this probability in the
special binomial model, which we show serves as a good approximation for the general
case (details are in Section 3). The asymptotic analysis of (2.6), leading to the proof
of Theorem 2.1, needs additional work; in particular, ‘low weight’ null vectors must be
dealt with separately (details are in Section 4). Indeed, for α < α∗ρ, the expectation in
(2.4) is dominated by null vectors with only 2 non-zeros.
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For a fixed n, the number of rows m at which the first non-zero null vector appears,

Tn := min {m ∈ N : Xm ∈ span {X1, X2, . . . , Xm−1}} , (2.7)

is another random variable of interest. Standard linear algebra implies that Tn ≤ n+ 1.
We define another threshold, αρ, through an analytic description that needs more

notation; the probabilistic interpretation of αρ is in terms of the 2-core of M(n,m), as
we describe in Section 2.3. For x ∈ (0, 1) set

ψ(x) := x+

(
1 +

ρ(x)

ρ′(x)
− x
)

log(1− x); (2.8)

h(x) := − log(1− x)

ρ′(x)
. (2.9)

Provided P[W ≥ 1] = 1 we can and do extend ψ continuously to ψ(0) := 0, since
ρ(s)/ρ′(s) = O(s) as s ↓ 0. Note that h(x) → ∞ as x ↓ 0 provided P[W ≥ 3] = 1,
and that if E[W ] <∞ then as x ↑ 1 we have h(x)→∞ and ψ(x)→ −∞. Set

α]ρ := inf
x∈(0,1)

h(x), (2.10)

and note that α]ρρ
′(x) ≤ − log(1 − x) for all x ∈ (0, 1), so integrating from 0 to 1 we get

α]ρ ≤ 1, provided P[W ≥ 1] = 1. Define for α ≥ 0, with the convention sup ∅ = 0,

g∗(α) := sup{x ∈ (0, 1) : h(x) ≤ α}. (2.11)

Observe that if h has unbounded range (e.g. if P[W ≥ 3] = 1) then h ◦ g∗ is the identity
map on [α]ρ,∞). See Figure 1 for an example. Define

αρ := inf{α > α]ρ : ψ(g∗(α)) < 0}. (2.12)

In (2.12), the set defining αρ is non-empty provided P[W ≥ 3] = 1 and E[W ] <∞, since
as α→∞ we have g∗(α)→ 1 and ψ(g∗(α))→ −∞.

The relevance of αρ for the null vector problem is shown by the next result.

Theorem 2.2. Suppose Wn are uniformly bounded and P[Wn ≥ 3] = 1 for all n. Then
α∗ρ ≤ αρ ≤ 1, and for any ε > 0,

lim
n→∞

Pρn
[
(α∗ρ − ε)n ≤ Tn ≤ (αρ + ε)n

]
= 1. (2.13)

Theorem 2.2 is proved in Section 5.4. The case where P[W ∈ {1, 2}] > 0 must be
excluded from the statement of Theorem 2.2; different phenomena occur in that case,
which is discussed in [7], where the functions ψ and h also play a role.

Usually, we have ψ(g∗(αρ)) = 0. In many cases, ψ has a single zero in (0, 1), x∗ρ say,
and αρ = h(x∗ρ). But the situation may be more complicated; and α 7→ g∗(α) typically
has at least one discontinuity. We return to this briefly in Section 2.3, and defer a more
detailed discussion of the properties of the functions ψ, h, and g∗, and the corresponding
thresholds, to Section 5.4 below. Figure 1 provides an example.

We believe that the upper bound in Theorem 2.2 (i.e., αρ) is sharp:

Conjecture 2.3. If Wn are uniformly bounded and P[Wn ≥ 3] = 1 for all n, then Tn/n

converges in probability to αρ as n→∞.

An equivalent statement to the fixed-weight case W = r ≥ 3 of this conjecture seems
to have been established recently in the random-XORSAT literature: see Section 2.6.2.
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Figure 1: Example with ρ(s) = 0.9s3 + 0.1s24. The left plot shows parts of the curves
y = h(x) (all the line) and x = g∗(y) (solid line). The right plot shows parts of the
curves y = ψ(x) (all the line) and the locus of (g∗(α), ψ(g∗(α))) (solid line). The left
plot shows that g∗(α) has two discontinuities, one at α = α]ρ ≈ 0.908654 and one at
α ≈ 0.938536, with the first corresponding to a jump from g∗ = 0 to g∗ ≈ 0.719682 and
the second to a jump from g∗ ≈ 0.835696 to g∗ ≈ 0.964919. The right plot shows the
single positive solution of ψ(x) = 0 at x = x∗ρ ≈ 0.987817, so αρ = h(x∗ρ) ≈ 0.991613. It
is not a coincidence that the curves h and ψ seem to mirror each other: see Lemma 5.8
below.

2.3 2-cores and random hypergraphs

To describe the probabilistic interpretation of α]ρ and αρ we need additional terminol-
ogy. Given a set V = {v1, . . . , vn}, whose elements we call vertices, a non-empty subset
of V is called a hyperedge. Given a collection E := (Ei) of m hyperedges, we refer to the
pair (V, E) as a hypergraph. This hypergraph may be identified with an m×n incidence
matrix of {0, 1} entires, having no zero rows, as follows: the (i, j) entry is 1 if and only
if vj ∈ Ei, in which case we say row i is incident to column j, and that hyperedge Ei is
incident to vertex vj , and refer to (Ei, vj) as an incidence of the hypergraph.

The number of hyperedges incident to a vertex is its degree. Fix a hypergraph (V, E).
For F ⊆ E , the set V (F) ⊆ V of vertices incident to at least one of the hyperedges in
F is the vertex span of F . We identify the hypergraph (V (F),F) by the edge subset F
that induces it, and call F ⊆ E a partial hypergraph. A partial hypergraph F 6= ∅ is a
hypercycle if every vertex v has even degree with respect to F ; this corresponds to a
non-trivial left null vector for the incidence matrix of the hypergraph (V, E).

Given a hypergraph (V, E), the 2-core is defined via the following algorithm:

1. If there exists no vertex of degree one, stop.

2. Otherwise, select an arbitrary vertex of degree one, and delete the unique incident
hyperedge; then return to Step 1.

The algorithm terminates, because the partial hypergraphs are decreasing; the terminal
partial hypergraph, which does not depend on the arbitrary choices made in Step 2 (see
[8, pp. 127–128]), and may be empty, is called the 2-core of E , denoted Core(E).

The next result, Theorem 2.4, describes the 2-core of our random matrix M(n,mn):
specifically, the limiting aspect ratio of the 2-core being less than or greater than 1
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depends on the sign of ψ(g∗(α)), where ψ and g∗ are defined at (2.8) and (2.11) respec-
tively. (A related result appears in [5].) While of interest in its own right, Theorem 2.4
has importance for the rank deficiency problem in view of the following observation:
if the 2-core has more rows than columns, then the corresponding hypergraph has a
hypercycle (see Lemma 5.1 below for details). Theorem 2.4 is thus the basis for the
appearance in Theorem 2.2 of αρ as defined at (2.12) (we explain in detail in Section 5).

We note, under the hypotheses of Theorem 2.4: (i) for α > α]ρ, g
∗ is positive and

strictly increasing; and (ii) g∗ is right continuous, with a finite set of discontinuities
Dρ ⊂ (0,∞) with α]ρ = minDρ. These and other facts are proved in Lemma 5.5 below.

Theorem 2.4. Suppose Wn are uniformly bounded and P[W ≥ 3] = 1. Let α ∈ (0,∞).
Consider the 2-core of the random incidence matrix M(n,mn) where mn/n → α as
n→∞. Then if α < α]ρ, the number of rows in the 2-core is o(n), a.s.

Now suppose α > α]ρ, so g∗ = g∗(α) > 0, and suppose that α /∈ Dρ. Then:

(i) n−1 times the number of rows in the 2-core converges a.s. to αρ(g∗).

(ii) n−1 times the number of occupied columns in the 2-core converges a.s. to 1 −
e−ν(1 + ν), where ν := αρ′(g∗).

(iii) Almost surely, for all n large enough, the 2-core has more rows than occupied
columns if ψ(g∗(α)) < 0 but has fewer rows than occupied columns if ψ(g∗(α)) > 0.
Moreover, there exists δ > 0 such that if α ∈ (αρ, αρ + δ), for all n large enough,
the 2-core has more rows than columns.

In the example in Figure 1, and also in the fixed weight setting, ψ(g∗(α)) changes
sign only once, but in the general random weight setting it may change sign multiple
times, leading, via Theorem 2.4, to non-monotonic behaviour for the aspect ratio of the
2-core. Figure 2 shows an example where ρ(s) = 0.9183s3 + 0.04s19 + 0.0417s41: as α in-
creases from 0, the 2-core switches from having asymptotically more columns than rows
to having more rows than columns not just once (at αρ), but twice, as ψ(g∗(α)) changes
sign. Proposition 5.7 below, and the subsequent discussion, explains some of the fea-
tures in the figure. Thus the random weight setting displays subtle new phenomena not
present in the fixed weight case that has been the focus of previous work.

2.4 Even occupancy in random allocations

One interpretation of the event A(n,m) defined at (2.5) is in terms of the random al-
location model. Suppose we have n urns, and for each row of M we allocate a collection
of balls to a set of urns determined by the unit entries of that row of M . Event A(n,m)

is that all the urns end up with an even number of balls. Random allocations have been
extensively studied; see e.g. [12, p. 101], and the monographs [16, 17, 20].

The following theorem, which we prove in Section 3, describes the exponential rate
of decay for Pρn [A(n,mn)] where mn/n has a finite positive limit. The theorem excludes
the case in which both W and mn only take odd values; if m is odd and Wn is odd a.s.,
then Pρn [A(n,m)] = 0 since the total number of units in the matrix is odd.

Theorem 2.5. Suppose that mn/n→ α ∈ (0,∞) as n→∞, and that either (i) mn ∈ 2Z

for all n; or (ii) P[W ∈ 2Z] > 0. Then

lim
n→∞

n−1 logPρn [A(n,mn)] = −Rρ(α), (2.14)

where Rρ(α) > 0 is continuous and nondecreasing in α > 0 and is defined by

Rρ(α) := − log sup
γ∈[0,1/2]

(
(ρ(1− 2γ))

α

2γγ(1− γ)1−γ

)
. (2.15)
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Figure 2: Example with ρ(s) = 0.9183s3 + 0.04s19 + 0.0417s41. The left plot shows parts
of the curves y = h(x) (all the line) and x = g∗(y) (solid line). The right plot shows parts
of the curves y = ψ(x) (all the line) and the locus of (g∗(α), ψ(g∗(α))) (solid line). Again
g∗(α) has two discontinuities, one at α = α]ρ ≈ 0.890061 and one at α ≈ 0.991044, with
the first corresponding to a jump from g∗ = 0 to g∗ ≈ 0.720793 and the second to a jump
from g∗ ≈ 0.929269 to g∗ ≈ 0.973325. The right plot shows the three positive zeros of
ψ(x). The two of these zeros achieved by ψ(g∗(α)) are at x ≈ 0.928538 and x ≈ 0.975069.
The first corresponds to α = αρ ≈ 0.990686 and the second to α ≈ 0.991185. Hence as α
ranges in (0, 1), ψ(g∗(α)) changes sign from positive, to negative, to positive, and finally
to negative again.

A consequence of Theorem 2.5 of independent interest concerns the probability
πn(m) that all the components Y1, . . . , Yn of a multinomial (m;n−1, . . . , n−1) random vec-
tor are even. Here Yj can be interpreted as the occupancy of urn j after m balls are
independently and uniformly distributed into n distinct urns: see e.g. [20, p. 11]. Then
πn(m) = 2−n

∑n
j=0

(
n
j

)
(1− (2j/n))

m
; this formula is known in the Ehrenfest urn litera-

ture [20, pp. 128–129] and can also be obtained from (3.1) below. If m is odd, πn(m)

must be zero.

Proposition 2.6. Let πn(mn) denote the probability that all the n components of a
multinomial (mn;n−1, . . . , n−1) random vector are even. Suppose that mn is even for
each n and mn/n→ α = λ tanhλ ∈ (0,∞) as n→∞. Then

lim
n→∞

n−1 log πn(mn) = log coshλ− (λ tanhλ)(1− log tanhλ). (2.16)

We derive Proposition 2.6 from Theorem 2.5 in Section 3.5; it also follows from a
result of Kolchin [15, Theorem 2, p. 141], and yet another proof is given in Section 3.6
of the first version of the present paper on ArXiv.

2.5 Thresholds in the fixed-weight case

In this section we consider the case where P[W = r] = 1 for fixed r ∈ N, which
is the focus of the existing literature (see the discussion in Section 2.6 below). In
particular, we discuss numerical and asymptotic evaluation of the thresholds α∗r , α

]
r,

and αr, defined to be the values of α∗ρ, α
]
ρ, and αρ, respectively, in the case where

ρ(s) = sr.
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Appropriate versions of Theorems 2.1 and 2.2 apply in this setting. We remark that
in the case r = 2, α∗2 = 1/2 and the number of cycles N (n,mn) in an Erdős–Rényi graph
with mn/n → α has a Poisson limit with finite expectation for α ∈ (0, 1/2), but the
limiting expectation is infinite for α ≥ 1/2 (see e.g. [16, §2.3]); we could not find in the
literature an explicit reference to the fact that the expectation blows up exponentially
with n for α > 1/2, at the rate given by the appropriate case of Theorem 2.1.

Table 1 shows values of α]r, α
∗
r , and αr, for r ≤ 8: we describe how these were com-

puted in Appendix A, where we also review previous computations of these thresholds.

r 1 2 3 4 5 6 7 8
α]r 0 0.5 0.818469 0.772280 0.701780 0.637081 0.581775 0.534997
α∗r 0 0.5 0.889493 0.967147 0.989162 0.996228 0.998650 0.999510
αr — — 0.917935 0.976770 0.992438 0.997380 0.999064 0.999660

Table 1: Fixed row-weight thresholds. Note that αr is not defined when r = 1 or 2.

As suggested by the numerical results, it can be shown that, for r large enough,
α]r < α∗r < αr < 1; this is a consequence of the following result.

Proposition 2.7. As r →∞,

α]r → 0; 1− α∗r ∼
e−r

log 2
; 1− αr ∼ e−r. (2.17)

The α∗r result in (2.17) is due to Calkin [3]; we prove the other two in Appendix A.

2.6 Discussion and related results

2.6.1 Previous results on threshold values

In the simplest case, Wn = W hyp
n := r∧n a.s., for a fixed r ∈ N; thenW = r a.s. This fixed

row weight ‘hypergeometric’ model is studied by Cooper [4]. A variation is the model
in which r units are assigned to the row independently and uniformly at random, with
multiplicities reduced mod 2. The latter ‘binomial’ model corresponds to Wn = W bin

n

distributed as the number of odd components in a multinomial (r;n−1, . . . , n−1) random

vector; then Wn
d−→ r (see Lemma 3.3 below). The r ≥ 3 binomial model is studied by

Kolchin [15]. Note that in this model rows of all zeroes may appear, in which case they
are ignored (in other words, empty hyperedges are discounted): this is a small effect
since P[W bin

n = 0] = O(n−r/2), so a vanishing proportion of rows needs to be discarded.
Phase transitions in the null vector problem for random matrices over finite fields

with fixed row weight r ≥ 3 have been studied since the early 1990s. In the case of
the binomial model, the threshold α∗r , r ≥ 3, for E[N (n,mn)], mn/n→ α, was described
by Balakin et al. [2] and Kolchin [15, 14]; in these results α∗r is characterized by the
fact that the expected number of non-trivial null vectors tends to 0 (∞) when α < α∗r
(α > α∗r), but the proofs show that the growth is in fact exponential for α > α∗r . Calkin
[3] and Cooper [4] also study α∗r , r ≥ 3, and in particular Calkin [3] studies α∗r as r →∞;
both [3] and [4] work in the case Wn = r ∧ n. Note that Cooper’s [4] expression of the
matrix problem is transposed compared to ours. Even the special case P[W = r] = 1

of our Theorem 2.1 represents a slight generalization of the results just mentioned
because it allows for any class of Wn provided Wn → r in probability.

In these previous investigations, the analytic description of the threshold α∗r varies,
but these descriptions can be shown to be consistent with ours: see Appendix A.

A similar tabulation to our tabulation of αr is given by Cooper [5, pp. 370–371], who
also gives an equivalent analytic description of αr to our (A.2); see also Dietzfelbinger
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et al. [10] which we discuss further in the next subsection. We note also that α]r has
received considerable attention in its own right: see e.g. [13] for its role in random
XORSAT.

2.6.2 Between the two thresholds

The following problem arises in the XORSAT literature. Let r ∈ N with r ≥ 3. Let M
be our m × n matrix, with m/n → α > 0, and suppose Wn = r a.s. for all n ≥ r. Let N
denote the number of column vectors x ∈ {0, 1}n such that Mx ≡ ω, where ω ∈ {0, 1}m
is chosen uniformly at random (independent of M ). Thus N is a random variable.

Dubois and Mandler [11] show for r = 3, and Dietzfelbinger et al. [10] extend to
general r ∈ N with r ≥ 3 (also providing a more detailed proof) the following result (see
[11, Theorem 3.1] and [10, Theorem 1], and also [13]): there is a constant α̃r > 0 such
that provided α < α̃r, P[N > 0]→ 1 as n→∞.

The proof of this in [11] is based on a second moment calculation. The analytical
definition of α̃r in [11, 10] is not obviously the same as our definition of αr, but the
definition in terms of cores (see [10, Proposition 3 and equation (4)]) seems to match
our definition of αr, and the numerical values in [10] are consistent with our αr.

If we accept that α̃r = αr, this result implies that if α < αr there is, for n large
enough, no non-zero left null vector for M , as follows. Suppose that a non-zero y sat-
isfies y ·M = 0. Then N > 0 implies y · ω = 0. So P[y · ω = 0] ≥ P[N > 0] → 1, which
contradicts the easy observation that P[y · ω = 0] = 1/2 for non-zero y.

We may then deduce that in the case with Wn = n ∧ r, our Theorem 2.2 may be
strengthened to n−1Tn → αr in probability. This implies that for α in the interval
(α∗r , αr), a form of substantialism occurs; existence of any left null vector is unlikely,
but if there is one, there are lots of them.

3 Multinomial parities and random allocations

3.1 Overview and terminology

In this section we work towards proving Theorem 2.5, in the context of the classical
occupancy problems of random allocations of balls into urns.

We shall use the following terminology. Suppose W is a random variable taking
values in Z+, and k ∈ N, and p, p1, p2, . . . , pk are numbers in [0, 1] such that

∑k
i=1 pi = 1.

(In most of the rest of the paper we assume W ≥ 1, but for this section we can allow
W to take value 0.) Let us say the random variable X has the Bin(W,p) distribution if
for each n ∈ Z+ the conditional distribution of X, given that W = n, is binomial with
parameters (n, p). Let us say that a random vector (Z1, . . . , Zk) has the multinomial
(W ; p1, . . . , pk) distribution if for each n ∈ Z+ the conditional distribution of (Z1, . . . , Zk),
given that W = n, is multinomial with parameters (n; p1, . . . , pk).

As in Section 2.1, we assume Wn (having the distribution of row weights for our ma-
trix with n columns) is chosen to converge in distribution to a limiting random variable
W . An important special case is the so-called binomial model. In the binomial scheme
take Wn = W bin

n to be distributed as the number of odd components in a multinomial
(W ;n−1, . . . , n−1) random vector. Note that we may also generate the corresponding
row by first sampling the given multinomial vector and then reducing its elements mod

2. By Lemma 3.3 below, W bin
n

d−→W as n→∞, so this is indeed a special case.

We write Pbin
ρn for probability associated with the binomial allocation scheme. For

the general model we write Pρn as before.
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3.2 Exact formulae for the allocation problem

Fix n. Let Xij denote the jth component of Xi. Define the column sums Yj and
partial row sums Si,J of the matrix (Xij) as follows (with standard addition):

Yj :=

m∑
i=1

Xij , j ∈ [n]; and Si,J :=
∑
j∈J

Xij , J ⊆ [n].

Recall from (2.5) that A(n,m) denotes the event that 1 is a null (row) vector for M .

Lemma 3.1. In the binomial allocation scheme, we have the exact formula

Pbin
ρn [A(n,m)] = 2−n

n∑
j=0

(
n

j

)
(ρ(1− (2j/n)))

m
. (3.1)

In the general allocation scheme,

Pρn [A(n,m)] = 2−n
∑
J⊆[n]

(
Eρn [(−1)S1,J ]

)m
(3.2)

= 2−n
n∑
j=0

(
n

j

)
(2p

(n)
j − 1)m, (3.3)

where p(n)j :=
∑n
r=0 pj,rP[Wn = r] and pj,r is given by

pj,r =
1(
n
j

) ((n− r
j

)
+

(
r

2

)(
n− r
j − 2

)
+

(
r

4

)(
n− r
j − 4

)
+ · · ·

)
. (3.4)

Proof. Event A(n,m) occurs if and only if all the Yj are even, so

P[A(n,m)] = E

n∏
j=1

(
1 + (−1)Yj

2

)
= 2−n

∑
J⊆[n]

E
[
(−1)

∑
j∈J Yj

]
,

where the latter sum is over subsets J of [n], including the empty set. Since
∑
j∈J Yj =∑m

i=1 Si,J and S1,J , S2,J , . . . are i.i.d., (3.2) follows.
Consider the binomial allocation scheme. In the binomial model,

S1,J =
∑
j∈J

X1j ≡
∑
j∈J

Zj (mod 2),

where (Z1, . . . , Zn) has a multinomial (W ;n−1, . . . , n−1) distribution so that
∑
j∈J Zj has

a Bin(W, |J |/n) distribution. Recalling that if ξ ∼ Bin(n, p) then E[sξ] = (sp + (1 − p))n,
we then obtain (3.1) from (3.2).

In the general scheme, conditional on
∑n
j=1X1j = r, the distribution of S1,J is hy-

pergeometric with parameters (n; |J |, r). Let H ⊆ [n] denote the set of values of j for
which X1j = 1. For r ∈ [n], we write Er for expectation in the case where P[Wn = r] = 1.
Instead of fixing J ⊆ [n] and choosing H as a uniform random r-subset, we obtain an
exact formula for Er[(−1)S1,J ] by fixing j = |J | and an r-subset H, and selecting J uni-
formly from the j-subsets of [n]. The probability pj,r that S1,J := |H ∩ J | is even is given
by summing probabilities for |H ∩ J | ∈ {0, 2, 4, . . .}, giving the expression in (3.4). It
follows that Er[(−1)S1,J ] = 2pj,r − 1, and hence

Eρn [(−1)S1,J ] =

n∑
r=1

(2pj,r − 1)P[Wn = r] = 2p
(n)
j − 1.

Substitution of this into (3.2) gives (3.3).
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3.3 Asymptotics in the binomial model

The remainder of Section 3 concerns asymptotic analysis of the quantities in Lemma
3.1. The first result enables us to work primarily with even m, which has technical
advantages.

Lemma 3.2. Suppose that Wn
d−→W and P[W ∈ 2Z] > 0. Then for any m > 3,

logPρn [A(n,m− 3)] +O(log n) ≤ logPρn [A(n,m)] ≤ logPρn [A(n,m+ 3)] +O(log n).

Proof. The hypotheses imply that there exist ε > 0 and r ∈ 2Z such that P[Wn = r] > ε

for all n large enough. For m > 3, suppose A(n,m− 3) occurs. Then A(n,m) will occur
if the 3 additional rows constitute a hypercycle. With probability at least ε3, these new
rows each have r units, and given this, there is a probability at least n−2r, say, that
these units form a hypercycle. Thus logPρn [A(n,m)] ≥ logPρn [A(n,m − 3)] + O(log n).
Applying this inequality twice, once with m+ 3 in place of m, gives the result.

Recall that in general we assume Wn
d−→ W . Next we give an elementary lemma

that confirms the binomial model’s place in this framework.

Lemma 3.3. For W a Z+-valued random variable, let W bin
n be the number of odd com-

ponents in a multinomial (W ;n−1, . . . , n−1) random vector. Then W bin
n

d−→W as n→∞.

Proof. Let W and W bin
n be coupled in the natural way. Then for each k ∈ N, by the

union bound P[W bin
n 6= W |W = k] ≤ n−1

(
k
2

)
, and the result follows easily from this and

a truncation argument.

We will prove Theorem 2.5 (in Section 3.5) by first showing that (2.14) holds in the
binomial setting, using (3.1) and the Stirling approximation as discussed in Appendix B.
Then we will extend this to the general setting using an approximation argument de-
scribed in Section 3.4. We start with a slightly more general statement than (2.14) in
the binomial case, which we will also need later in the proof of Theorem 2.1.

Lemma 3.4. As defined at (2.15), Rρ( · ) is continuous and nondecreasing. Suppose
that either (i) mn ∈ 2Z for all n; or (ii) P[W ∈ 2Z] > 0. Suppose that there exist α1, α2

with 0 < α1 < α2 <∞ such that, for all n sufficiently large, α1 < mn/n < α2. Then,

lim sup
n→∞

n−1 logPbin
ρn [A(n,mn)] ≤ −Rρ(α1);

lim inf
n→∞

n−1 logPbin
ρn [A(n,mn)] ≥ −Rρ(α2). (3.5)

In particular, if mn/n→ α > 0, then

lim
n→∞

n−1 logPbin
ρn [A(n,mn)] = −Rρ(α). (3.6)

Proof. Suppose mn/n ∈ (α1, α2). First assume mn ∈ 2Z. By (3.1) and Lemma B.1(iii),

Pbin
ρn [A(n,m)] ≤ (n+ 1)2−n max

0≤j≤n

(
n

j

)
|ρ(1− (2j/n))|m

≤ (n+ 1)2−n sup
γ∈[0,1/2]

(
n

γn

)
(ρ(1− 2γ))m,

where we set
(
n
x

)
= 0 if x is a not an integer in {0, 1, . . . , n}. Using the upper bound on

binomial coefficients from the first inequality in (B.1), we get

Pbin
ρn [A(n,mn)] ≤ (n+ 1) sup

γ∈[0,1/2]

(
2γγ(1− γ)1−γ

)−n
(ρ(1− 2γ))mn .
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By monotonicity, we then obtain

n−1 logPbin
ρn [A(n,mn)] ≤ n−1 log(n+ 1) + log sup

γ∈[0,1/2]
gmn/n(γ), (3.7)

where we have set

gα(γ) :=
(ρ(1− 2γ))α

2γγ(1− γ)1−γ
;

so with Rρ as defined at (2.15), Rρ(α) = − log supγ∈[0,1/2] gα(γ). Note that, for α ≥ 0,
gα(γ) is continuous in γ ∈ [0, 1/2], and gα(γ) is nonincreasing in α; this implies, by
Dini’s theorem, that if α′ → α monotonically then gα′ converges uniformly to gα on
the compact interval [0, 1/2]. It follows that α 7→ supγ∈[0,1/2] gα(γ) is continuous and
nonincreasing. In particular, Rρ( · ) is continuous and nondecreasing, as claimed in the
lemma. Moreover, we obtain from (3.7) and the fact that mn/n > α1 that

lim sup
n→∞

n−1 logPbin
ρn [A(n,mn)] ≤ log sup

γ∈[0,1/2]
gα1

(γ),

which gives the first inequality in (3.5).
For the second inequality, we have from (3.1) and (B.2) that for any integer in ≤ n/2,

Pbin
ρn [A(n,mn)] ≥ 2−n

(
n

in

)
(ρ(1− (2in/n)))mn ≥ e−1/6

(
n

2πin(n− in)

)1/2

(gmn/n(in/n))n,

using the fact that mn is even. Then, since mn/n < α2,

Pbin
ρn [A(n,mn)] ≥ e−1/6

(
n

2πin(n− in)

)1/2

(gα2
(in/n))n.

Now use continuity of gα to choose a sequence of integers in ≤ n/2, n ∈ N, such that
gα2(in/n) → supγ∈[0,1/2] gα2(γ), with in → ∞ and n − in → ∞ as n → ∞. The lower
bound in (3.5) follows, for mn even.

The results in (3.5) extend to the case of odd mn with P[W ∈ 2Z] > 0 by Lemma 3.2,
which is applicable here by Lemma 3.3. Finally, (3.6) follows from (3.5) on taking α1 =

α− ε and α2 = α+ ε, for arbitrary ε > 0, and using the continuity of Rρ.

3.4 Approximation by the binomial model

The exact formula (3.1) is simpler to work with than the more complicated exact
formula (3.3), but intuition suggests that the asymptotics of any of the models in the

class with Wn
d−→W should be similar. The next result quantifies this intuition.

Lemma 3.5. Suppose that Wn
d−→ W and either (i) mn ∈ 2Z for all n; or (ii) P[W ∈

2Z] > 0. Suppose that there exist α1, α2 with 0 < α1 < α2 < ∞ and n0 ∈ N such that
α1 < mn/n < α2 for all n ≥ n0. Then, uniformly over all such sequences mn,

lim
n→∞

n−1
∣∣logPρn [A(n,mn)]− logPbin

ρn [A(n,mn)]
∣∣ = 0. (3.8)

In particular, if mn/n→ α > 0,

lim
n→∞

n−1 logPρn [A(n,mn)] = lim
n→∞

n−1 logPbin
ρn [A(n,mn)].

Proof. Denote the weight of row 1 by Wn in the general allocation scheme, and by W bin
n

in the binomial scheme. Then Wn
d−→ W and W bin

n
d−→ W , and we can work in a
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probability space where P[Wn 6= W bin
n ] → 0. As in Section 3.2, set S1,J =

∑
j∈J X1j; on

{Wn = W bin
n }, the (conditional) law of S1,J is the same as in the binomial model. Thus

sup
J⊆[n]

∣∣Eρn [(−1)S1,J ]− Ebin
ρn [(−1)S1,J ]

∣∣ ≤ 2P[Wn 6= W bin
n ]→ 0. (3.9)

First assume mn ∈ 2Z. By (3.2) with (3.1) and (3.9), there exists a triangular array
of numbers (δj,n, j ∈ [n] ∪ {0}, n ∈ N) satisfying max0≤j≤n |δj,n| → 0 as n→∞, and

Pρn [A(n,mn)] = 2−n
n∑
j=0

(
n

j

)
(ρ(1− (2j/n)) + δj,n)

mn . (3.10)

Let ε > 0 and choose K > 1 large enough so that log(1−K−1) > −ε/α2 and log(1 +

K−1) < ε/α2. Then choose δ > 0 such that (K + 1)δ < exp{−1/(α1ε)}. Finally assume n
is large enough so that supj∈[n]∪{0} |δj,n| ≤ δ and α1 < (mn/n) < α2.

We split the sum in (3.10) into two parts, depending on the size of ρ(1−(2j/n)). First
suppose that |ρ(1− (2j/n))| ≤ Kδ. In this case

|(ρ(1− (2j/n)) + δj,n)
mn | ≤ ((K + 1)δ)mn ≤ exp{−mn/(α1ε)} ≤ exp{−n/ε}, (3.11)

and similarly,
(ρ(1− (2j/n)))

mn ≤ exp{−n/ε}. (3.12)

It follows from (3.10) and (3.11) that

Pρn [A(n,mn)] = 2−n
∑

j:|ρ(1−(2j/n))|>Kδ

(
n

j

)
(ρ(1− (2j/n)) + δj,n)

mn

+O (exp{−n/ε}) . (3.13)

Now suppose that |ρ(1− (2j/n))| > Kδ. In this case

(ρ(1− (2j/n)) + δj,n)
mn = (ρ(1− (2j/n)))

mn
(
1 + θj,nK

−1)mn
,

where |θj,n| ≤ 1. By the choice of K, e−ε/α2 < 1 + θj,nK
−1 < eε/α2 , and hence

exp{−εn} < (1 + θj,nK
−1)mn < exp{εn}.

Therefore for each j with |ρ(1− (2j/n))| > Kδ, there is εj,n for which |εj,n| < ε, and

(ρ(1− (2j/n)) + δj,n)
mn = (ρ(1− (2j/n)))

mn exp{εj,nn}.

Hence for the sum on the right-hand side of (3.13), there exists εn with |εn| < ε so that

2−n
∑

j:|ρ(1−(2j/n))|>Kδ

(
n

j

)
(ρ(1− (2j/n)) + δj,n)

mn

= 2−n exp{εnn}
∑

j:|ρ(1−(2j/n))|>Kδ

(
n

j

)
(ρ(1− (2j/n)))

mn ,

using the assumption that mn is even so all the terms in the sum are nonnegative.
Then by (3.12) and a similar argument to (3.13), the last displayed quantity is equal to
Pbin
ρn [A(n,mn)] exp{εnn}+O

(
exp{(ε− ε−1)n}

)
. Combining this with (3.13) we obtain

Pρn [A(n,mn)] = Pbin
ρn [A(n,mn)] exp{εnn}+O

(
exp{(ε− ε−1)n}

)
, (3.14)

uniformly in n (and mn), the implicit constants depending on α1 and α2.
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Writing ∆n = O
(
exp{(ε− ε−1)n}

)
for the final term in (3.14), we obtain

logPρn [A(n,mn)] = logPbin
ρn [A(n,mn)] + εnn+ log

(
1 +

∆n

Pbin
ρn [A(n,mn)] exp{εnn}

)
.

By Lemma 3.4, we have that Pbin
ρn [A(n,mn)] ≥ exp{−nRρ(α2) − εn}, for all n large

enough. So we may take ε > 0 small enough so that the final log term in the last
display is O(exp{−n}), say. Hence

n−1 logPρn [A(n,mn)] = n−1 logPbin
ρn [A(n,mn)] + εn + o(1).

Since |εn| ≤ ε and ε > 0 was arbitrary, (3.8) follows in the case of even mn. In the other
case, Lemma 3.2 yields the same conclusion. The final statement in the lemma then
follows from the final statement in Lemma 3.4.

3.5 Proofs of Theorem 2.5 and Proposition 2.6

Now we can complete the proofs of Theorem 2.5 and Proposition 2.6.

Proof of Theorem 2.5. The theorem is now a consequence of Lemmas 3.4 and 3.5.

Proof of Proposition 2.6. Set

fα(γ) := log

(
(1− 2γ)α

2γγ(1− γ)1−γ

)
. (3.15)

In the case ρ(s) = s, it follows from Theorem 2.5 that n−1 log πn(mn)→ supγ∈[0,1/2] fα(γ).
Proposition 2.6 will follow once we prove that, setting α = λ tanhλ,

sup
γ∈[0,1/2]

fα(γ) = −(λ tanhλ)(1− log(tanhλ)) + log(coshλ). (3.16)

Note that fα(γ)→ −∞ as γ ↑ 1/2. Differentiating (3.15) gives, for γ ∈ (0, 1/2),

d

dγ
fα(γ) = − 2α

1− 2γ
+ log

(
1− γ
γ

)
,

which is zero at γ1 := γ1(α) ∈ (0, 1/2) defined implicitly in terms of α by

α =
1

2
(1− 2γ1) log

(
1− γ1
γ1

)
. (3.17)

For α > 0 (3.17) defines a unique stationary value γ1 ∈ (0, 1/2) which is a local max-
imum, since for γ1 ∈ (0, 1/2) the right-hand side of (3.17) is positive, continuous, and
strictly decreasing as a function of γ1, vanishing at γ1 = 1/2; this local maximum is
indeed the maximum of fα(γ) for γ ∈ [0, 1/2] since f ′α(γ) → ∞ as γ ↓ 0 (and also
f ′′α(γ1) < 0).

Setting λ = 1
2 log

(
1−γ1
γ1

)
we see that λ tanhλ = α as given by (3.17), since we get

tanhλ = 1 − 2γ1. To verify (3.16) we need to express fα(γ1) in terms of λ to get the
expression on the right-hand side of (3.16). We have

fα(γ1) = α log(1− 2γ1)− log 2− γ1 log γ1 − (1− γ1) log(1− γ1)

= (λ tanhλ) log tanhλ+ log coshλ+ ( 1
2 − γ1) log γ1 + (γ1 − 1

2 ) log(1− γ1),

using the fact that log tanhλ = log(1−2γ1) and log coshλ = − 1
2 log(1−tanh2 λ) = − log 2−

1
2 log γ1 − 1

2 log(1− γ1). The terms involving γ1 in the last displayed equation simplify to
−λ tanhλ = −α as given by (3.17). Thus we verify (3.16).
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4 The expected number of null vectors

4.1 Exact formula for the expected number of null vectors

Let N (n,m; `) denote the number of left null vectors of weight `, so that

N (n,m) =

m∑
`=0

N (n,m; `). (4.1)

By the argument around (2.6), we have that

Eρn [N (n,m; `)] =

(
m

`

)
Pρn [A(n, `)]. (4.2)

The proof of Theorem 2.1 is based on an asymptotic analysis of (2.6) with our exact
formulae for Pρn [A(n, `)]. As in the proof of Theorem 2.5 (see Section 2.4) it is most
convenient to work in the binomial model, for which W bin

n is the number of odd com-
ponents in a multinomial (W ;n−1, . . . , n−1) vector. Thus a key step in the proof will be

showing that, in the general case of Wn
d−→ W , the expression in (2.6) can be well ap-

proximated by the binomial case. First, in the next section, we make some preliminary
computations.

4.2 Analytic preliminaries

Before embarking on the main proof, we study the rate functions that will appear.
Define

Fρ,α(γ) := log

(
(1 + ρ(1− 2γ))α

2γγ(1− γ)1−γ

)
, (4.3)

and recall from (2.1) and (2.2) that Fρ(α) = supγ∈[0,1/2] Fρ,α(γ) and α∗ρ = inf{α ≥ 0 :

Fρ(α) > 0}. Note that for γ ∈ [0, 1/2], ρ(1 − 2γ) ≥ 0. By continuity, Fρ,α(γ) attains its
supremum over γ ∈ [0, 1/2]; we denote by γ0 := γ0(α) ∈ [0, 1/2] the smallest point at
which the supremum is attained. The next lemma collects results on Fρ(α) and α∗ρ.

Lemma 4.1. Suppose that P[W = 0] = 0. For any α ≥ 0, Fρ(α) ≥ 0, and Fρ is continuous
and nondecreasing. The threshold α∗ρ enjoys the following properties.

(i) α∗ρ ∈ [0, 1], and Fρ(α) = 0 for α ≤ α∗ρ but Fρ(α) > 0 for α > α∗ρ.

(ii) If α < α∗ρ, then γ0(α) = 1/2 and for any ε > 0, supγ∈[0,(1/2)−ε] Fρ,α(γ) < 0.

(iii) If α > α∗ρ, then γ0(α) ∈ [0, 1/2).

(iv) Suppose that W̃ is another N-valued random variable, with ρ̃(s) = E[sW̃ ], such
that ρ̃(s) ≤ ρ(s) for all s ∈ [0, 1]. Then α∗ρ̃ ≥ α∗ρ.

(v) α∗ρ = 0 if and only if P[W = 1] > 0.

(vi) If P[W = 2] = 1, then α∗ρ = 1/2.

(vii) If E[W ] <∞, then α∗ρ < 1.

Proof. By Lemma B.1, ρ(0) = P[W = 0] = 0 and ρ(1) = 1; hence Fρ,α(1/2) = 0 and
Fρ,α(0) = (α− 1) log 2, so that Fρ(α) ≥ (α− 1)+ log 2 ≥ 0. Since Fρ,α(γ) is nondecreasing
as a function of α ≥ 0, Dini’s theorem implies continuity of Fρ(α) as a function of α ≥ 0.

For part (i), Fρ(α) ≥ (α − 1)+ log 2 implies that Fρ(α) > 0 for α > 1, so that α∗ρ ≤
1. On the other hand, for α < 1, γ0(α) ∈ (0, 1/2], since by continuity there is some
neighbourhood of 0 for which Fρ,α(γ) < 0.

Since Fρ,α(γ) is nondecreasing as a function of α, for α′ ≥ α, Fρ(α′) ≥ Fρ,α′(γ0(α)) ≥
Fρ(α), i.e., Fρ is also nondecreasing. Hence Fρ(α) > 0 for α > α∗ρ. Also, the fact that
Fρ(α) = 0 for α < α∗ρ is immediate from the definition of α∗ρ and the fact that Fρ(α) ≥ 0.
Then Fρ(α∗ρ) = 0 by the continuity of Fρ established above. Thus we obtain part (i).
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For part (ii), suppose that α < α∗ρ. Suppose for some γ0 ∈ [0, 1/2) that Fρ,α(γ0) ≥ 0.
Since ρ(1 − 2γ) > 0 for γ < 1/2, Fρ,α(γ0) is strictly increasing in α, so there exists
α′ ∈ (α, α∗ρ) for which Fρ,α′(γ0) > 0, contradicting the definition of α∗ρ. This gives (ii).

For part (iii), suppose that α > α∗ρ. Then Fρ(α) > 0 by part (i) of the lemma; since
Fρ,α(1/2) = 0, the supremum is attained in [0, 1/2).

For part (iv), we have that for any γ ∈ [0, 1/2], Fρ,α(γ) ≥ Fρ̃,α(γ), since ρ(1 − 2γ) ≥
ρ̃(1− 2γ). So Fρ(α) ≥ Fρ̃(α) for all α ≥ 0, and hence α∗ρ̃ ≥ α∗ρ.

For the remaining parts of the lemma we use more detailed properties of the gener-
ating function ρ(s) (see Lemma B.1). For part (v), differentiating in (4.3) we obtain

d

dγ
Fρ,α(γ) = − 2αρ′(1− 2γ)

1 + ρ(1− 2γ)
+ log

(
1− γ
γ

)
; (4.4)

this is well defined at least for γ ∈ (0, 1). At γ = 1/2 this equates to −2αP[W = 1], since
by Lemma B.1 ρ′(0) = P[W = 1] and ρ(0) = 0. So if P[W = 1] > 0, Fρ,α(γ) is equal to
0 at γ = 1/2 and its derivative there is negative for any α > 0, so that, for any α > 0,
Fρ,α(γ) > 0 for some γ < 1/2. The ‘if’ part of part (v) follows.

Conversely, suppose that P[W = 1] = 0. Then the previous argument shows that
Fρ,α(1/2) = F ′ρ,α(1/2) = 0, while a calculation shows that F ′′ρ,α(1/2) = 4αρ′′(0)−4. Hence
by continuity there exists δ > 0 such that for α < δ and (1/2) − δ ≤ γ ≤ 1/2 we have
F ′′ρ,α(γ) ≤ −3. Hence by Taylor’s theorem, Fρ,α(γ) ≤ 0 for α < δ and (1/2)− δ ≤ γ ≤ 1/2.
Also, Fρ,α(γ) → − log(2γγ(1 − γ)1−γ) as α → 0, which is strictly negative apart from
at γ = 1/2. Thus by Dini’s theorem, for all α small enough we have Fρ,α(γ) ≤ 0 for
γ ≤ (1/2)− δ. So all together we have shown that Fρ,α(γ) ≤ 0 for all α sufficiently small.
Hence α∗ρ > 0 in this case, giving the ‘only if’ part of (v).

For part (vi), suppose that P[W = 2] = 1, i.e., ρ(s) = s2. In this case, (4.4) has a zero
at γ ∈ [0, 1/2) if α = s(γ) where

s(γ) =
1 + (1− 2γ)2

4(1− 2γ)
log

(
1− γ
γ

)
.

We claim that s(γ) is decreasing on [0, 1/2), with a unique minimum of s(1/2) = 1/2. To
verify this, we show s′(γ) < 0 for γ ∈ [0, 1/2), which, after simplification, amounts to

(1 + (1− 2γ)2)(1− 2γ)

8γ2(1− γ)2
> log

(
1− γ
γ

)
.

Setting z = 1 − 2γ, it suffices to show that z
(1−z2)2 > 1

2 log
(

1+z
1−z

)
for z ∈ (0, 1], which

can be verified by term-by-term comparison of the corresponding power series, namely
z + 2z3 + 3z5 + · · · > z + z3

3 + z5

5 + · · · . Hence s(γ) = α has no solution for α < 1/2,
in which case the only stationary value of Fρ,α is at γ = 1/2, necessarily the maximum.
Hence α∗ρ ≥ 1/2. On the other hand, if α > 1/2 then F ′′ρ,α(1/2) = 8α − 4 > 0, while
Fρ,α(1/2) = F ′ρ,α(1/2) = 0, so by Taylor’s theorem and continuity there exists γ < 1/2

with Fρ,α(γ) > 0. Hence α∗ρ = 1/2, proving (vi).

Finally we prove part (vii). If E[W ] < ∞, Lemma B.1(ii) implies that, as γ ↓ 0,
ρ′(1 − 2γ) = E[W ] + o(1). Thus the final term on the right-hand side of (4.4) dominates
in the γ ↓ 0 limit, and there exists δ > 0 such that d

dγFρ,α(γ) ≥ δ for all γ ∈ [0, δ] and all

α ∈ [0, 1]. Then by an application of the mean value theorem, Fρ,α(δ) ≥ (α− 1) log 2 + δ2

for all α ∈ [0, 1]. Thus taking α < 1 close enough to 1 we see that Fρ,α(δ) > 0, which
implies that α∗ρ < 1.
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4.3 Approximation by the binomial model

In Section 3.4 we showed (in Lemma 3.5) that Pρn [A(n,mn)] can be well approxi-
mated by Pbin

ρn [A(n,mn)] on the logarithmic scale, provided that mn/n→ α. The follow-
ing result is an analogous approximation lemma for Eρn [N (n,mn)]. One could obtain
such a result from Lemma 3.5 applied to (2.6), with some work (including dealing sep-
arately with terms with ` = o(n): cf Section 4.4 below). However, it is more convenient
to proceed directly, albeit using similar ideas to the proof of Lemma 3.5; helpful is the
fact that Eρn [N (n,m)] possesses monotonicity properties absent for Pρn [A(n,m)].

Lemma 4.2. Suppose that Wn
d−→W and mn/n→ α > 0. Then

lim
n→∞

n−1| logEρn [N (n,mn)]− logEbin
ρn [N (n,mn)]| = 0.

Proof. We use a coupling argument, constructing the general model with row weights

distributed as Wn
d−→W on the same probability space as the binomial model with row

weights distributed as W bin
n

d−→ W (cf Lemma 3.3). We can use a probability space
in which, for each row, the weight in each model converges almost surely to a copy
of W . Indeed, let W (1),W (2), . . . be independent copies of W . Using the Skorokhod
representation theorem, we may take Wn,1,Wn,2, . . . as independent copies of Wn, being
the weights of the rows in the general model, such thatWn,i →W (i) almost surely. Also,
take W bin

n,i to be the number of odd components in a multinomial (W (i);n−1, . . . , n−1)

distribution, so that W bin
n,1 ,W

bin
n,2 , . . . are independent copies of W bin

n and the weights
of the rows in the binomial model. We also couple the row entries: if W bin

n,i = Wn,i,
we generate a single row i with the given weight to use in both models, otherwise, it
suffices to generate the two rows independently given their (different) weights.

Take ε > 0. Let An(i) := {Wn,i 6= W bin
n,i }. Then for any δ > 0, we may take n large

enough so that P[An(i)] ≤ δ, uniformly in i. Let K(n,m) =
∑m
i=1 1An(i) denote the

number of ‘bad’ rows. Then K(n,m) is stochastically dominated by a Bin(m, δ) variable.
In particular, for any fixed ε > 0 and any C < ∞, standard binomial tail bounds imply
that we may take δ small enough, and hence n sufficiently large, so that

P[K(n,mn) ≥ εn] ≤ P[Bin(2αn, δ) ≥ εn] ≤ exp{−Cn}. (4.5)

We claim that each row added to a matrix can increase the number of null vectors by at
most a factor of 2; this follows from (1.1) and (1.2). Hence

2−K(n,mn) ≤ N (n,mn)

N ′(n,mn)
≤ 2K(n,mn), (4.6)

where N (n,mn) is the number of null vectors in the matrix with the Wn,i and N ′(n,mn)

is the number of null vectors in the matrix with the W bin
n,i . Partitioning according to

whether K(n,mn) ≤ εn or not, and using the crude bound N (n,mn) ≤ 2mn when not,
we obtain from (4.6) the upper bound

E[N (n,mn)] ≤ 2εnE[N ′(n,mn)] + 2mnP[K(n,mn) > εn]

≤ 2εnE[N ′(n,mn)] + 2εn,

say, for all n large enough, by (4.5). Since N ′(n,mn) ≥ 1, we may divide through by
E[N ′(n,mn)] and take logs in the last display to obtain

lim sup
n→∞

n−1
(
logEρn [N (n,mn)]− logEbin

ρn [N (n,mn)]
)

= 0,

using the fact that ε > 0 was arbitrary. A similar argument using (4.6) in the other
direction yields the complementary lim inf result, giving the statement in the lemma.
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4.4 Null vectors consisting of few rows

In the asymptotics of Eρn [N (n,m)], it turns out that null vectors of low weight play a
distinct and important role. Recall (4.1). The main result of this section is the following
lemma, which exhibits a polynomial growth rate for null vectors of few rows.

Lemma 4.3. Suppose that there exist r0 ≥ 3 and r1 <∞ such that P[r0 ≤Wn ≤ r1] = 1

for all n. Suppose that mn/n→ α > 0. Then there exists δ > 0 such that∑
2≤`≤δn

Eρn [N (n,mn; `)] = O(n2−r0). (4.7)

Remark 4.4. The exponent 2 − r0 in (4.7) cannot be improved when P[Wn = r0] > 0,
because E[N (n,mn; 2)] is itself of order n2−r0 . Indeed, there are of order m2

n weight-
2 candidate vectors, and each is null if each of the two corresponding rows have r0
non-zeros in matching positions, an event of probability of order n−r0 .

Proof of Lemma 4.3. Let n, ` ∈ N. Let R = R(n, `) denote the ‘column range’ of M(n, `),
i.e., the number of columns of non-zero degree. We estimate Pρn [A(n, `)] by considering
separately the events R ≤ k and R > k, where k = k(`) ∈ [n] is to be chosen later.

We describe M(n, `) in the language of allocations: for each row, a Wn-distributed
collection of balls is distributed uniformly at random among n urns (columns), at most
one ball per urn. If R ≤ k then there is some set of k urns that contain all the balls.
For each ball, the probability that it lands in one of the first k urns, given that the other
balls cast so far for that row all land in the first k urns, is at most k/n. Hence since for
each of the ` rows at least r0 balls are cast,

Pρn [R ≤ k] ≤
(
n

k

)(
k

n

)`r0
≤ nk−`r0k`r0

k!
. (4.8)

For A(n, `) to occur, each of the columns in the range must have degree at least 2. Thus
if R > k and A(n, `) occurs there is a collection of k + 1 urns such that each urn in the
collection gets at least 2 balls. Let B(i) be the event that urn i gets at least 2 balls. The
probability that a particular entry is 1, given the values of up to k other entries in the
same row, is at most r1/(n− k). Hence the union bound yields for 1 ≤ j ≤ k + 1 that

Pρn [B(j) | ∩j−1i=1B(i)] ≤
(
`

2

)(
r1

n− k

)2

,

and hence we have

Pρn [∩k+1
i=1B(i)] ≤

((
`

2

)(
r1

n− k

)2
)k+1

.

Hence by the union bound, provided k ≤ n/2 we have

Pρn [{R > k} ∩A(n, `)] ≤
(

n

k + 1

)((
`

2

)(
2r1
n

)2
)k+1

≤ n−(k+1)`2(k+1)ck+1
1

(k + 1)!
,

where we put c1 = 2r21. Combined with (4.8) this gives

Pρn [A(n, `)] ≤ nk−`r0k`r0

k!
+
n−(k+1)`2(k+1)ck+1

1

(k + 1)!
.
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For all n large enough, mn ≤ (1 + α)n so that, for all `, and for k ≤ n/2, by (4.2),

Eρn [N (n,mn; `)] =

(
mn

`

)
Pρn [A(`, n)]

≤
(

((α+ 1)n)`

`!

)(
nk−`r0k`r0

k!
+
n−(k+1)`2(k+1)ck+1

1

(k + 1)!

)
. (4.9)

Taking k = `+ r0 − 2, we obtain for each fixed ` that for some constant c(`) we have

Eρn [N (n,mn; `)] ≤ c(`)(n(`−1)(2−r0) + n1−r0),

which is O(n2−r0) for any fixed ` ≥ 2.
Fix an integer K ≥ 2, to be chosen later, and take K ≤ ` ≤ δn. Now put k =

`(r0 − 1)− d`/2e. Assume δ ≤ 1/(2r0); then for ` ≤ δn this choice of k satisfies k ≤ n/2,
so (4.9) remains valid. Also, since r0 ≥ 3, k ≥ 3`

2 − 1 ≥ ` provided ` ≥ 2.

By the bound e` ≥ ``

`! and similar for k, there are constants c2, c3, c4 such that the
first term in the right side of (4.9) (i.e. the product of the first factor with the first term
in the second factor) is bounded by a constant times

n`(1−r0)+kk`r0c`2
``kk

≤ n−d`/2e`r0`c`3
```(r0−1)`−d`/2e

=

(
c4`

n

)d`/2e
. (4.10)

Similarly, there are constants c5, c6, c7 such that the second term in the right side of
(4.9) is bounded by a constant times

n`−k−1`2`(r0−1)−2d`/2e+2c`5
``(k + 1)k+1

≤ n`(2−r0)+d`/2e``(2r0−2)−2d`/2ec`6`
2

``r0−d`/2e+1n

≤
(
c7`

n

)`(r0−2)−d`/2e
(`/n).

Combining with (4.10), since r0 ≥ 3 so r0 − 2 ≥ 1 and (`/2) ≤ d`/2e ≤ (`/2) + 1, we can
find a constant c8 such that for 2 ≤ ` ≤ n we have

Eρn [N (n,mn; `)] ≤ c8
(
c8`

n

)`/2
.

By calculus we have that
(
c8x
n

)x
is decreasing in x ≤ n/(c8e), so provided δ ≤ 1/(c8e)

the last bound is maximized, over K ≤ ` ≤ δn, at ` = K, so that

∑
K≤`≤δn

Eρn [N (n,mn; `)] ≤ c8δn
(
c8K

n

)K/2
,

which is O(n2−r0) provided we choose K so that K/2 ≥ r0 − 1.

4.5 Proof of Theorem 2.1

First we prove Theorem 2.1 for the binomial model, i.e., for Pbin
ρn on the right-hand

side of (2.6), and then use Lemma 4.2. Specifically, we prove the following result.

Lemma 4.5. Suppose that P[W ≥ 1] = 1. Suppose that mn/n → α ∈ (0,∞) as n → ∞.
Then with Fρ(α) as defined by (2.2),

lim
n→∞

n−1 logEbin
ρn [N (n,mn)] = Fρ(α). (4.11)
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Proof. From 3.1,

m∑
`=0

(
m

`

)
Pbin
ρn [A(n, `)] ≤ (m+ 1)(n+ 1)2−n sup

0≤`≤m
sup

0≤j≤n

(
m

`

)(
n

j

)
|ρ(1− (2j/n))|`

≤ (m+ 1)(n+ 1)2−n sup
β∈[0,1]

sup
γ∈[0,1]

(
m

βm

)(
n

γn

)
|ρ(1− 2γ)|βm, (4.12)

setting
(
n
x

)
= 0 for x /∈ {0, 1, . . . , n}. Write

Sα(β, γ) :=

(
|ρ(1− 2γ)|β

ββ(1− β)1−β

)α(
1

2γγ(1− γ)1−γ

)
.

Taking m = mn = O(n) in (4.12) and using the first inequality in (B.1), we obtain

n−1 log

mn∑
`=0

(
mn

`

)
Pbin
ρn [A(n, `)] ≤ O(n−1 log n) + log sup

β∈[0,1]
sup
γ∈[0,1]

Smn/n(β, γ). (4.13)

For any B ≥ 0, routine calculus (with a separate argument for B = 0) shows that

sup
β∈[0,1]

(
Bβ

ββ(1− β)1−β

)
= B + 1,

with the supremum attained at β = B/(1 +B), so that from (2.6) and (4.13) we have

n−1 logEbin
ρn [N (n,mn)] ≤ O(n−1 log n) + log sup

γ∈[0,1]

(
(1 + |ρ(1− 2γ)|)mn/n

2γγ(1− γ)1−γ

)
. (4.14)

Considering the transformation γ 7→ 1− γ, we see that

sup
γ∈[1/2,1]

(
(1 + |ρ(1− 2γ)|)α

2γγ(1− γ)1−γ

)
= sup
γ∈[0,1/2]

(
(1 + |ρ(2γ − 1)|)α

2γγ(1− γ)1−γ

)
≤ sup
γ∈[0,1/2]

(
(1 + ρ(1− 2γ))α

2γγ(1− γ)1−γ

)
,

since, for γ ∈ [0, 1/2], |ρ(2γ − 1)| ≤ ρ(1 − 2γ), by Lemma B.1(iii). Hence from (4.14) we
have, with Fρ(α) as defined at (2.2), n−1 logEbin

ρn [N (n,mn)] ≤ O(n−1 log n) + Fρ(mn/n).
Since mn/n→ α and α 7→ Fρ(α) is continuous (see Lemma 4.1),

lim sup
n→∞

n−1 logEbin
ρn [N (n,mn)] ≤ Fρ(α).

For the lower bound, we use the fact that, by (2.6) and (3.1),

Ebin
ρn [N (n,mn)] ≥

∑
`∈[mn]∩2Z

(
mn

`

) bn/2c∑
j=0

2−n
(
n

j

)
(ρ(1− (2j/n)))`

≥ 2−n sup
β∈[0,1]:βmn∈2Z

sup
γ∈[0,1/2]

(
mn

βmn

)(
n

γn

)
|ρ(1− 2γ)|βmn ,

using the nonnegativity of the appropriate terms for both inequalities. Using the lower
bound in (B.2), similarly to above, we obtain that lim infn→∞ n−1 logEbin

ρn [N (n,mn)] ≥
Fρ(α). Hence combining the upper and lower bounds, we obtain (4.11).

Now we can prove our main result on the expected number of null vectors.

Proof of Theorem 2.1. Lemma 4.5 shows that (2.3) holds for the case whereWn = W bin
n ,

and Lemma 4.2 shows that the result carries over to the general case. For the final
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statement of the theorem, suppose that α < α∗ρ and that P[r0 ≤ Wn ≤ r1] = 1 for some
r0 ≥ 3 and r1 <∞. Lemma 4.3 shows that, for a suitable δ > 0,

δn∑
`=1

(
mn

`

)
Pρn [A(n, `)] = O(n2−r0). (4.15)

For ` ≥ δn, we first restrict to the binomial model. Choose ε > 0 so that (3ε)δ < 2−2α.
By a similar argument to (4.12), but splitting the supremum over j into two parts,

mn∑
`=δn

(
mn

`

)
Pbin
ρn [A(n, `)] ≤ (mn + 1)(n+ 1)2−n sup

δn≤`≤mn

sup
j:|j−(n/2)|≤εn

(
mn

`

)(
n

j

)
|ρ(1− (2j/n))|`

+ (mn + 1)(n+ 1)2−n sup
0≤`≤mn

sup
j:|j−(n/2)|>εn

(
mn

`

)(
n

j

)
|ρ(1− (2j/n))|`. (4.16)

Similarly to (4.14), the second term on the right-hand side of (4.16) is bounded above
by

exp

{
n

(
o(1) + sup

γ∈[0,(1/2)−ε]
Fρ,mn/n(γ)

)}
,

which decays to 0 exponentially fast, by Lemma 4.1(ii), since mn/n → α ∈ (0, α∗ρ). On
the other hand, for |j− (n/2)| ≤ εn, we have from Lemma B.1(i) that |ρ(1− (2j/n))| ≤ 3ε,
for ε > 0 small enough, so that, since ` ≥ δn, |ρ(1 − (2j/n))|` ≤ (3ε)δn, so the first term
in the right hand side of (4.16) is bounded above by (mn + 1)(n+ 1)2mn(3ε)δn. Hence

lim sup
n→∞

n−1 log

mn∑
`=δn

(
mn

`

)
Pbin
ρn [A(n, `)] < 0. (4.17)

Next we use Lemma 3.5 to deduce a version of (4.17) with Pρn in place of Pbin
ρn .

Observe first that the Pρn -analogue of the sum in (4.17) consists of O(n) nonnegative
terms, so is bounded between the largest term and O(n) times that same term, so that

n−1 log

mn∑
`=δn

(
mn

`

)
Pρn [A(n, `)] = n−1 log sup

δn≤`≤mn

(
mn

`

)
Pρn [A(n, `)] +O(n−1 log n).

By Lemma 3.5, for any ε > 0, there exist εn,` with |εn,`| ≤ ε, uniformly for ` with
δn ≤ ` ≤ mn and n sufficiently large, such that(

mn

`

)
Pρn [A(n, `)] =

(
mn

`

)
Pbin
ρn [A(n, `)] exp{εn,`n}.

So now using (4.17) and the fact that ε > 0 was arbitary, we obtain

lim sup
n→∞

n−1 log

mn∑
`=δn

(
mn

`

)
Pρn [A(n, `)] < 0,

which, combined with (4.15), yields (2.4).

Remark 4.6. Write β0 = ρ(1−2γ0)
1+ρ(1−2γ0) ∈ [0, 1/2], where γ0 = γ0(α) ∈ [0, 1/2] is the value of

γ for which the supremum in (2.2) is attained. The proofs above show that for α > α∗ρ
the exponential rate in (2.3) is dominated by null vectors using proportion β0 = β0(α)

of the (roughly αn) available rows (and also possibly those using proportion 1 − β0 of
the rows, due to parity effects).
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5 Cores of sparse random hypergraphs

5.1 Hypercycles and 2-cores

Recall the definitions from Section 2.3. The connection between the 2-core and
hypercycles was exploited by Cooper [5, p. 371], following an idea that he attributes to
Molloy (see [4, p. 268]). The connection is demonstrated by the following result.

Lemma 5.1. Suppose that the 2-core C := Core(E) of a hypergraph (V, E) has vertex
span V (C) ⊆ V and size (number of hyperedges) |C|.

(i) Any hyperedge E /∈ C cannot belong to a hypercycle of (V, E).

(ii) If C = ∅, then (V, E) contains no hypercycle.

(iii) If |V (C)| < |C|, then (V, E) contains a hypercycle.

Proof. If there are s hyperedges not in the 2-core C, there exists a labelling of them
as E1, E2, . . . , Es with the property that, for every j, Ej has some vertex with degree
one after hyperedges E1, E2, . . . , Ej−1 are removed. Suppose (V, E) has some hypercy-
cle F 6= ∅. None of E1, E2, . . . , Es can belong to F : otherwise, there would be some
minimum j for which Ej ∈ F , and this Ej has some vertex v of degree one in the partial
hypergraph from which E1, E2, . . . , Ej−1 have been removed, which contains F ; so v

cannot have even degree in F , which is a contradiction. This proves (i), and (ii) follows.
For (iii), say c := |V (C)| < |C| =: r. Then there are 2r−1 non-empty partial hypergraphs,
but only 2c < 2r − 1 possible indicator vectors for a set of vertices of odd degree. By
the pigeonhole principle, there must be two distinct partial hypergraphs F ,F ′ ⊆ E for
which the sets of vertices of odd degree are the same. Then F4F ′ is a hypercycle.

5.2 The 2-core in uniform random hypergraphs

In this section we consider a certain uniform random hypergraph model, which is
different from (but related to) the hypergraph model induced by our random matrix
M(n,mn); in Section 5.3 we will connect the two models.

Recall from Section 2.3 that we may represent a hypergraph by an incidence matrix,
and the degree of a vertex is the number of incidences (non-zero entries) in the corre-
sponding column of the incidence matrix. The weight of a hyperedge is its number of
incident vertices, i.e., the number of incidences in the corresponding row of the matrix.

A natural probability model for a random hypergraph is to fix the multiset of vertex
degrees and the multiset of hyperedge weights in advance (subject to a consistency
condition), and sample uniformly from the hypergraphs with these collections of vertex
degrees and hyperedge weights. This gives a uniform random hypergraph.

Darling and Norris [9] analyse the statistical properties of the 2-cores for sequences
of uniform random hypergraphs, assuming a uniform bound on the hyperedge weights
and vertex degrees. In unpublished work of the same authors, the uniform bounds are
replaced by third moments assumptions. For the present paper, we require a more mod-
est relaxation of the conditions of [9], to cover the case where the row weights remain
uniformly bounded but the vertex degrees are approximately Poisson distributed.

For each n, define vectors of nonnegative integers dn := (dn(k) : k ∈ Z+) and
wn := (wn(k) : k ∈ N) with

∑
k≥0 dn(k) = n and mn :=

∑
k≥1 wn(k); we assume that

dn and wn are compatible in the sense that
∑
k≥1 kwn(k) =

∑
k≥0 kdn(k) < ∞. We also

assume that mn →∞. Suppose that for each i ∈ N and j ∈ Z+,

lim
n→∞

wn(i)∑
k≥1 wn(k)

= ρi; lim
n→∞

dn(j)

n
= νj . (5.1)
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Define generating functions ρ(s) :=
∑
k≥1 ρks

k and ν(s) :=
∑
k≥0 νks

k. We assume that
the weights are uniformly bounded and the degree distribution has all moments, so that
the means ρ′(1) and ν′(1) corresponding to these distributions are finite.

Consider a sequence of random hypergraphs with n vertices and mn hyperedges,
selected uniformly from those hypergraphs with edge weight multiplicities wn and ver-
tex degree multiplicities dn. Let (En, vn) be a random incidence, sampled uniformly at
random from all incidences in the nth hypergraph. Denote the weight of En by 1 + Sn,
and the degree of vn by 1 + Ln; thus Sn counts the other vertices in this hyperedge,
and Ln counts the other hyperedges incident to this vertex. Size bias occurs here: the
probability that En has weight k is proportional to k times the number of rows of weight
k, and similarly the probability that the degree of vn is d is proportional to d times the
number of degree d vertices. Given ρw and νd describing via (5.1) the limiting weight
and degree distributions, we may thus compute a pair of limiting probability generating
functions:

λ(s) := lim
n→∞

E[sLn ] =:

∞∑
d=0

λds
d; σ(s) := lim

n→∞
E[sSn ] =:

∞∑
w=0

σws
w, (5.2)

where, due to the size biasing, the coefficients in (5.2) are given by

λd =
(d+ 1)νd+1

ν′(1)
; σw =

(w + 1)ρw+1

ρ′(1)
.

Hence the generating functions themselves become:

λ(s) =
ν′(s)

ν′(1)
; σ(s) =

ρ′(s)

ρ′(1)
. (5.3)

To avoid triviality, we assume that σ0 = 0 (equivalently, ρ1 = 0), i.e., there are no
1-edges, and λ0 /∈ {0, 1} (otherwise the 2-core is of no interest). Define

ϕ(s) := 1− λ(1− σ(s)). (5.4)

Since σ0 6= 1 and λ0 6= 1, we deduce that ϕ : [0, 1] → R is strictly increasing; moreover
ϕ(0) = 1− λ(1− σ(0)) = 0 (since σ0 = 0) and ϕ(1) = 1− λ0 ∈ (0, 1), so ϕ takes values in
[0, 1), and there exists a largest solution g∗ in [0, 1) of the equation ϕ(s) = s. That is,

g∗ := sup{s ∈ [0, 1) : ϕ(s) = s}. (5.5)

In the case where g∗ > 0 and the curve y = ϕ(s) crosses the curve y = s (rather than
just touching it) at s = g∗, we also have

g∗ = sup{s ∈ (0, 1) : ϕ(s) > s}. (5.6)

Now we can state the result on the 2-core that we shall use, which amounts to a
variant of Theorem 7.1 of [9].

Theorem 5.2. Consider a sequence of uniform random hypergraphs associated with se-
quences wn and dn satisfying (5.1) with ρw = 0 for all w large enough and

∑
d≥1 νdd

β <

∞ for all β > 0. Suppose that the corresponding pair (5.2) of random-incidence gener-
ating functions has σ0 = 0, λ0 /∈ {0, 1}, and is such that g∗, given by (5.5), has either
g∗ = 0 or g∗ satisfying (5.6). Then the following hold a.s. in the limit as n→∞.

(i) If g∗ = 0, the proportion of hyperedges which survive in the 2-core converges to
zero.
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(ii) If g∗ > 0, then for any k ∈ Z+ with ρk > 0, the proportion of weight-k hyperedges
which survive in the 2-core is asymptotically (g∗)k; overall, a proportion ρ(g∗) of
hyperedges survive, and a proportion g∗σ(g∗) of incidences.

(iii) If g∗ > 0, then for any d, k ∈ N with 2 ≤ d ≤ k and νk > 0, the proportion of
vertices of degree k whose degree in the 2-core is d converges to(

k

d

)
σ(g∗)d(1− σ(g∗))k−d.

(iv) If g∗ > 0, the 2-core is again a uniform random hypergraph, given its hyperedge
weights and vertex degrees, whose distributions are determined by the previous
assertions.

As mentioned above, in [9] all but finitely many coefficients of the generating func-
tions (5.2) were taken to be zero, but the methods admit the modest extension of this
section, and indeed can be extended to the case where λ′′(1) and σ′′(1) are finite, corre-
sponding to finite third moments for hyperedge weight and vertex degree distributions.
Because of its proximity to the result in [9], we do not prove Theorem 5.2 here.

5.3 Application to the random matrix model

We return to the random matrix model used in the rest of the paper, so our random
incidence matrix will be M(n,mn) described in Section 2.1, i.e., with i.i.d. rows with
Wn-distributed weights, and corresponding generating function ρn(s) having limit ρ(s).
To justify application of Theorem 5.2 in this setting, we give the following strong laws
of large numbers for the empirical distributions of the row and column weights of M .

Lemma 5.3. Suppose mn ∈ N with mn/n → α as n → ∞, with α > 0, and the Wn are
uniformly bounded. For k ∈ Z+, let Nk(n) be the number of rows of M(n,mn) of weight
k, and let Ñk(n) be the number of columns of M(n,mn) of degree k. Then a.s.,

lim
n→∞

m−1n Nk(n) = P[W = k], and (5.7)

lim
n→∞

n−1Ñk(n) =
e−µµk

k!
, (5.8)

where we set µ := αE[W ] = αρ′(1). Moreover, the total number of incidences satisfies

lim
n→∞

n−1
∑
k≥1

kNk(n) = lim
n→∞

n−1
∑
k≥1

kÑk(n) = µ, a.s. (5.9)

Proof. First note that mn
−1E[Nk(n)] = P[Wn = k], which converges to P[W = k] by

assumption. To deduce almost sure convergence from this convergence in means, we
use the Azuma–Hoeffding inequality in a standard way, as follows. Fix n and for 1 ≤
i ≤ mn let Fi be the σ-algebra generated by the rows X1, . . . , Xi of M(n,mn). Define
ξi = E[Nk(n) | Fi], with ξ0 = E[Nk(n)]. Since resampling a single row changes the
number of rows of weight k by at most 1, we have for 1 ≤ i ≤ mn that

|ξi − ξi−1| = |E[Nk(n)−Nk(n, i) | Fi]| ≤ 1,

where Nk(n, i) is defined like Nk(n) but based on a matrix with row i resampled. Let
ε > 0. The Azuma–Hoeffding inequality applied to the martingale (ξ0, . . . , ξmn

) yields

P[|Nk(n)− E[Nk(n)]| > εn] ≤ 2 exp(−ε2n/(4α)), for all n large enough,

so by the first Borel–Cantelli lemma, we have |Nk(n)−E[Nk(n)]| ≤ εn for all but finitely
many n almost surely. Combined with the convergence of the mean, this gives us (5.7).
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The remaining two parts of the lemma use the assumption P[W ≤ r1] = 1 for r1 <∞.
To prove (5.8) note that the degree of the first column of M(n,mn) is binomially dis-
tributed with parameters mn and E[Wn]/n. Hence E[Ñk(n)/n] = P[Bin(mn,E[Wn]/n) =

k], which tends to e−µµk/k! as n → ∞ by binomial-Poisson convergence. Given conver-
gence of means, we may prove (5.8) by a similar Azuma–Hoeffding argument to that for
(5.7), since resampling a single row changes the number of columns of degree k by at
most r1.

For the final statement in the lemma, we have that

n−1
∑
k≥1

kNk(n) = (mn/n)

r1∑
k=1

km−1n Nk(n)→ α

r1∑
k=1

kP[W = k], a.s.,

by (5.7), and then (5.9) follows.

Corollary 5.4. Consider the random matrix model M(n,mn) with Wn
d−→ W , where

the Wn are uniformly bounded. Suppose that mn/n → α > 0. Then, a.s., taken as
hypergraph incidence matrices the sequence M(n,mn) defines a sequence of uniform
random hypergraphs whose row weight and vertex degree distributions satisfy (5.1)
with ρw and νd given by ρw = P[W = k] and νd = e−µµd/d! respectively, where µ :=

αE[W ].

Proof. Since the distribution of M(n,m) is invariant under permutations of the rows
or columns, conditional on the empirical distribution of row and column weights, all
possible outcomes with those row and column weight distributions are equally likely,
so this conditional distribution is indeed uniform. Moreover by Lemma 5.3 the limiting
proportion of rows of weight k is given by P[W = k] and the limiting proportion of
columns of degree k is P[D = k] where D ∼ Po(µ) is Poisson with mean µ := αρ′(1).
Hence conditionally on this sequence of empirical distributions, almost surely we have
a sequence of random matrices satisfying the hypotheses of Section 5.2.

In the notation of Section 5.2, in this case ν(s) =
∑∞
d=0 e−µ (sµ)d

d! = eµ(s−1) is the
generating function of a Po(µ) random variable, so, by (5.3), the pair (5.2) becomes

λ(s) = eµ(s−1); σ(s) =
ρ′(s)

ρ′(1)
.

In this case, we have from (5.4) that

ϕ(s) := 1− λ(1− σ(s)) = 1− e−µσ(s) = 1− e−αρ
′(s),

and to emphasize the dependence on α we will use the notation ϕα for ϕ from now on.
Recall from (5.5) that g∗ was defined as the largest s ∈ [0, 1) for which ϕα(s) = s. In
order for the model of this section to fit into the setting discussed in Section 5.2, we
need to assume that σ0 = 0 and λ0 /∈ {0, 1}. Here λ0 = e−µ = e−αE[W ] and σ0 = P[W=1]

E[W ] .

So it suffices to assume that α > 0, P[W ≥ 2] = 1, and E[W ] < ∞; in this case the
argument in Section 5.2 shows that g∗ is well defined.

Note that g∗ depends both on ρ and on α; in this section we write g∗ = g∗(α) to
emphasize the dependence on α; we will show (see Lemma 5.5) that the present defi-
nition is equivalent to that at (2.11) given in Section 2.2. For any solution s ∈ [0, 1) to
ϕα(s) = s, so in particular for s = g∗(α), provided ρ′(s) 6= 0, we have α = h(s) as given
by (2.9).

We note some facts about g∗(α); recall the definition of α]ρ from (2.10).
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Lemma 5.5. Suppose that P[W ≥ 2] = 1 and E[W ] <∞. With the convention sup ∅ = 0,
the definition (2.11) is equivalent to the definition (5.5) of g∗(α) as the largest solution
of ϕα(s) = s. Also, α]ρ ∈ [0, 1], and g∗(α) = 0 for all α ∈ [0, α]ρ), and for α > α]ρ, the
function g∗(α) is positive and strictly increasing, with g∗(α) ↑ 1 as α→∞.

Now assume also that P[W ≥ 3] = 1 and E[W 2] <∞. Then the following hold.

(i) We have g∗(α]ρ) ∈ (0, 1) and α]ρ = h(g∗(α]ρ)) ∈ (0,∞).

(ii) The function g∗ is right continuous, and there is a finite set Dρ ⊂ (0,∞), with
α]ρ = inf Dρ, such that g∗ is continuous apart from jumps at points of Dρ. For each
α ∈ Dρ, h(g∗(α)) = α is a local minimum for h.

(iii) If α /∈ Dρ, then g∗(α) satisfies the crossing condition (5.6).

Proof. Since P[W ≥ 2] = 1 and E[W ] <∞, we have ϕα(1) < 1 and ϕα(0) = 0. Therefore
by continuity we may rewrite (5.5) using the convention sup ∅ = 0 as

g∗(α) = sup{s ∈ (0, 1) : ϕα(s) ≥ s}.

By the definition (2.9) of h, for s ∈ (0, 1) it is easy to check that ϕα(s) ≥ s if and only if
h(s) ≤ α, and this shows that (2.11) and (5.5) give equivalent definitions of g∗(α).

By (2.9) and subsequent remarks, h(x) is positive, continuous in x, and tends to
infinity as x ↑ 1. By the definition (2.10), and the subsequent remark, α]ρ ∈ [0, 1]. By
the definition (2.11), it is clear that g∗(α) = 0 for α ∈ [0, α]ρ), and the fact that g∗(α) is
positive and strictly increasing for α ∈ (α]ρ,∞) is easily deduced from the continuity of
h. Also, given ε ∈ (0, 1) we can choose α with h(1 − ε) ≤ α so that g∗(α) ≥ 1 − ε, and
together with the monotonicity of g∗ this shows g∗(α)→ 1 as α→∞.

For part (i), under the extra assumption P[W ≥ 3] = 1 we have h going to infinity at
0 and at 1, and by continuity h attains its infimum on (0, 1), so using (2.10) and (2.11)
we have that g∗(α]ρ) is the supremum of a non-empty compact set contained in (0, 1),
and so lies in (0,1). The last part of (i) also follows from the continuity of h.

For part (ii), under the extra assumption E[W 2] < ∞, note first that if 0 ≤ y < α]ρ
then g∗(y) = 0. Hence g∗ is continuous at y for all y < α]ρ.

Now let y ≥ α]ρ; note that by (2.11) and continuity of h, we have h(g∗(y)) = y. Take a
monotonic sequence yn tending to y; set xn = g∗(yn).

Suppose first that yn ↓ y. Then xn is nonincreasing; denoting the limit by x∞ we
have h(xn) = yn so h(x∞) = y by continuity, and therefore x∞ ≤ g∗(y) by (2.9). Since
also xn ≥ g∗(y) by monotonicity we have x∞ = g∗(y); hence g∗ is right-continuous at y.

Now suppose instead that yn ↑ y. Set x = g∗(y). If h does not have a local minimum
at x then lim inf g∗(yn) ≥ x, so that xn → x, and hence g∗ is left-continuous at y. Hence,
if g∗ is discontinuous at y then h has a local minimum at g∗(y).

The function h′ is analytic and non-constant on (0, 1) so its zeros do not accumulate
except possibly at 0 or 1. But h′(x) = 0 if and only if ρ′(x)/ρ′′(x) = −(1 − x) log(1 − x).
This equality yields a contradiction as x ↑ 1 (since E[W 2] < ∞ and E[W ] > 0) and as
x ↓ 0 since, if r0 ≥ 3 is the smallest possible value of W ,

lim
x→0

(
−ρ
′′(x)

ρ′(x)
(1− x) log(1− x)

)
= r0 − 1 > 1.

Hence there exists ε > 0 such that h′(x) 6= 0 for 1 − ε < x < 1 and for 0 < x < ε, so h
has only finitely many local minima in (0, 1). Thus h has a local minimum at g∗(y) for at
most finitely many y. This completes the proof of (ii).

For part (iii) note that, for s ∈ (0, 1), ϕα(s) > s if and only if h(s) < α, so (5.6) reads
g∗(α) = sup{s ∈ (0, 1) : h(s) < α}, which for α /∈ Dρ agrees with (2.11).

EJP 19 (2014), paper 83.
Page 27/36

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2458
http://ejp.ejpecp.org/


Rank deficiency in sparse random GF[2] matrices

To apply the results in Section 5.2 to M(n,mn), we need to assume that g∗(α) either
is zero or satisfies (5.6). Lemma 5.5 shows it suffices to take α /∈ Dρ.

By Theorem 5.2(ii) and (5.9), n−1 times the number of incidences which survive in
the 2-core converges a.s. to

µg∗σ(g∗) = (αρ′(1))g∗
ρ′(g∗)

ρ′(1)
= αg∗ρ′(g∗) = −g∗ log(1− g∗). (5.10)

By Theorem 5.2(iii) and (5.8), for d ≥ 2 the proportion of original vertices whose degree
in the 2-core is d is asymptotically∑

k≥d

e−µ
µk

k!

(
k

d

)
σ(g∗)d(1− σ(g∗))k−d = e−µ

(µσ(g∗))d

d!

∑
j≥0

µj(1− σ(g∗))j

j!

= e−µσ(g
∗) (µσ(g∗))d

d!
, (5.11)

the remainder having degree 0 in the 2-core (the algorithm of Section 5.1 never deletes
any columns). In other words, the 2-core vertex degrees have the distribution of a
random variable D1{D 6= 1}, where D ∼ Po(µσ(g∗)); by (5.10), µσ(g∗) = αρ′(g∗). As
a check on the previous calculation of the number of surviving incidences, n−1 times
the total number of incidences in the 2-core should converge to the mean of the vertex-
degree distribution, which is αρ′(g∗)(1− e−αρ

′(g∗)) = αg∗ρ′(g∗), as in (5.10).

5.4 Proofs of Theorems 2.2 and 2.4

We are now in a position to present the proof of Theorem 2.4.

Proof of Theorem 2.4. By Corollary 5.4, a.s. our sequence of random matrices satisfies
the hypotheses of Theorem 5.2. If α < α]ρ, then g∗(α) = 0, and Theorem 5.2 implies the
2-core has o(n) rows. From now on suppose α > α]ρ, so g∗ = g∗(α) > 0 by Lemma 5.5.

For the statement (i), note that out of mn ∼ αn rows, a proportion ρ(g∗) survives, by
Theorem 5.2(ii). For (ii), the discussion around (5.11) implies that the proportion of the
n original vertices whose degree in the 2-core is non-zero is obtained by subtracting
from 1 the mass that a Po(ν) random variable places on {0, 1}.

For (iii), we compare the limits in (i) and (ii). Suppose that these limits satisfy

αρ(g∗) > 1− e−αρ
′(g∗)(1 + αρ′(g∗)). (5.12)

By our assumptions on α and W , we have ρ(0) = ρ′(0) = 0 and g∗ > 0, which implies
that ρ(g∗) and ρ′(g∗) are both positive. Then we may rewrite (5.12) as

αρ(g∗) > 1− (1− g∗)(1 + αρ′(g∗))

= g∗ + (1− g∗) log(1− g∗),

using the definition of g∗. Now substituting in α = h(g∗(α)) for α on the left-hand side
of the last display (given ρ′(g∗) > 0) we may rewrite the last inequality as ψ(g∗) < 0,
where ψ is defined by (2.8). Similarly, ψ(g∗) > 0 is equivalent to

αρ(g∗) < 1− e−αρ
′(g∗)(1 + αρ′(g∗)). (5.13)

If ψ(g∗) < 0, then (5.12) holds and the limit in (i) in strictly greater than the limit in
(ii), which shows that the 2-core eventually has more rows than occupied columns, and
vice versa if ψ(g∗) > 0 (so that (5.13) holds).

Recall the definition of αρ from (2.12). By Lemma 5.5(iii), g∗ has finitely many dis-
continuities. Either αρ is a continuity point for g∗( · ) (and hence for ψ(g∗( · ))), or else
αρ ∈ Dρ with ψ(g∗(αρ)) < 0 and no other point of Dρ is in a neighbourhood of αρ. In
either case, ψ(g∗( · )) < 0 over an interval of the form (αρ, αρ + δ) with δ > 0.

EJP 19 (2014), paper 83.
Page 28/36

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2458
http://ejp.ejpecp.org/


Rank deficiency in sparse random GF[2] matrices

We next state a result giving an upper bound for αρ.

Proposition 5.6. Suppose that P[W ≥ 3] = 1 and E[W 2] <∞. Then αρ ≤ 1.

Proof. We know from Lemma 5.5 that α]ρ ≤ 1, so if αρ ≤ α]ρ there is nothing to prove.
Hence we assume αρ > α]ρ from now on. First we show that

for any ε > 0 there exists α ∈ (αρ − ε, αρ), such that ψ(g∗(α)) > 0. (5.14)

By the definition (2.12) of αρ, and the assumption αρ > α]ρ, if (5.14) fails then there
exists δ > 0 such that ψ ◦ g∗ is identically zero on the interval I := (αρ − δ, αρ), and
by taking δ small enough we may assume the interval I contains no discontinuities of
g∗. But then the image J := g∗(I) is also an open interval because g∗ is continuous and
strictly increasing on I. So we would then have ψ identically zero on J , which would
contradict the fact that ψ is analytic and non-constant on (0, 1). Thus (5.14) must hold
as asserted.

Observe next that every time the 2-core algorithm deletes a row, it has to create at
least one column of degree zero, and possibly more. So the aspect ratio (i.e., number
of rows divided by number of occupied columns) is nondecreasing at each step of the
algorithm, provided the initial aspect ratio is at least 1. Hence the aspect ratio of a
non-empty 2-core is at least as large as the aspect ratio of the original incidence matrix
to which the algorithm is applied, provided the latter is at least 1.

So if mn/n → α > 1, the aspect ratio of the original matrix exceeds 1 for all n
large enough, and hence so does the aspect ratio of any non-empty 2-core. Suppose
that αρ > 1. By (5.14) and the finiteness of Dρ, there exists α′ ∈ (1, αρ) \ Dρ such that
ψ(g∗(α′)) > 0. Then, by Theorem 2.4(iii), with mn/n → α = α′, the 2-core has aspect
ratio less than 1 for all n large enough, which contradicts the previous conclusion that
α > 1 implied the 2-core having limiting aspect ratio greater than 1. Hence αρ ≤ 1.

The situation in Theorem 2.4(iii) is clarified by the following facts on h and ψ.

Proposition 5.7. Suppose that P[W ≥ 3] = 1 and E[W 2] < ∞. Then 0 < α]ρ ≤ αρ ≤ 1.
The function ψ has at least one zero in (0, 1), and h has at least one local minimum in
(0, 1). Suppose that the following condition holds:

(a) h has a single local minimum x]ρ in (0, 1), with h(x]ρ) = infx∈(0,1) h(x).

Then x]ρ is the location of the unique local maximum of ψ in (0, 1), ψ(x]ρ) > 0, and
the interval (0, 1) contains exactly one zero of ψ, denoted x∗ρ, which satisfies x]ρ < x∗ρ.
Moreover, αρ = h(x∗ρ) > α]ρ, and

ψ(g∗(α))

{
> 0 for all α ∈ (α]ρ, αρ)

< 0 for all α > αρ.
(5.15)

Finally, in the fixed row-weight case where where W = r ≥ 3 a.s., condition (a) holds,
and the unique positive zero of ψ is x∗r ∈ ( r−2r−1 , 1).

An important observation that helps to explain the close connection between the
functions h and ψ (apparent in Figure 1, for example) and will also form an ingredient
in the proof of Proposition 5.7 is the following result.

Lemma 5.8. For all x ∈ (0, 1), ψ′(x) has the same sign as −h′(x), so, in particular,
the locations of the local minima of h correspond exactly to the locations of the local
maxima of ψ in (0, 1). Moreover, if E[W 2] <∞, then as x ↓ 0 we have

ψ(1− x) = 1− h(1− x)− x− E[W (W − 1)]

2E[W ]
(1 + o(1))x2 log x

= 1− h(1− x)− x+ o(x). (5.16)
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Proof. Differentiating (2.8), we obtain

ψ′(x) = − ρ(x)

ρ′(x)

(
1

1− x
+
ρ′′(x)

ρ′(x)
log(1− x)

)
. (5.17)

On the other hand, from (2.9), we have that, for x ∈ (0, 1),

h′(x) =
1

ρ′(x)

(
1

1− x
+
ρ′′(x)

ρ′(x)
log(1− x)

)
= − 1

ρ(x)
ψ′(x),

by comparison with (5.17). Finally, (5.16) follows from a routine calculation.

Before completing the proof of Proposition 5.7, we collect some further remarks and
examples. The main complication in the interpretation of Theorem 2.4(iii) is due to
discontinuity of g∗, so {ψ(g∗(α)) : α ≥ 0} is only a subset of {ψ(x) : x ∈ [0, 1)}. Let

Gρ := {g∗(α) : α ≥ α]ρ}.

By Lemma 5.5(ii), Gρ is a union of finitely many intervals Gρ = [g−1 , g
+
1 ) ∪ · · · ∪ [g−` , g

+
` )

where g−1 < g+1 < g−2 < · · · < g+` , and, for each k, g−k = g∗(α) for α ∈ Dρ, and h(g−k ) is
a local minimum. Recall that α = h(g∗(α)) and α 7→ g∗(α) is increasing for α > α]ρ (see
Lemma 5.5), so x 7→ h(x) must be increasing on Gρ. So in fact α]ρ = h(g−1 ) < · · · < h(g−` ).
The ‘curve’ ψ(g∗(α)), α ≥ α]ρ is then a (discontinuous) trace of ψ(x), where x runs over
Gρ, piecewise continuously on intervals starting at g−k which, by Lemma 5.8, correspond
to local maxima of ψ. Figures 1 and 2 give some illustrations of possible behaviour.
Observe that ψ(x) is not necessarily decreasing for all x ∈ Gρ.

Note that condition (a) in Proposition 5.7 is not necessary for the sharp transition
property (5.15) to hold. Two other relevant conditions are:

(b) ψ has a single zero in (0, 1);

(c) the global minimum of h on (0, 1) is the rightmost local minimum.

If P[W ≥ 3] = 1 and E[W ] < ∞, then h(x) → ∞ as x → 0 and as x → 1, so (a) ⇒ (c),
while in the course of the proof of Proposition 5.7 below, we show that (a)⇒ (b) as well.
We mention 3 illustrative examples.

• An example for which conditions (a) and (b) do not hold but (c) does is provided
by ρ(s) = 0.9s3 + 0.1s38, for which ψ has 3 positive zeros (see Figure 3).

• An example for which condition (b) holds but conditions (a) and (c) do not is ρ(s) =

0.9s3 + 0.1s24, for which g∗ has two discontinuities (see Figure 1).

• An example in which none of (a), (b) or (c) holds and where (5.15) fails is provided
by ρ(s) = 0.9183s3 + 0.04s19 + 0.0417s41 (see Figure 2).

Proof of Proposition 5.7. First we show that if P[W ≥ 3] = 1 and E[W ] < ∞, then ψ

has at least one zero in (0, 1). So suppose that there exists an integer r ≥ 3 for which
P[W ≥ r] = 1 and P[W = r] = p > 0. Then ρ(s) ∼ psr as s ↓ 0. From (5.17) we have

ψ′′(x) = (1− x)−1
(

2ρ(x)ρ′′(x)

ρ′(x)2
− 1

)
− (1− x)−2

ρ(x)

ρ′(x)

−
(
ρ′′(x)

ρ′(x)
+
ρ(x)ρ′′′(x)

ρ′(x)2
− 2ρ(x)ρ′′(x)2

ρ′(x)3

)
log(1− x). (5.18)

Taking x ↓ 0 in (5.17) and (5.18), using ρ(k)(x) ∼ r!
(r−k)!px

r−k for k ≤ 3, we obtain

ψ′(0) = 0; ψ′′(0) =
r − 2

r
> 0,
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Figure 3: Plots of y = ψ(x) for ρ(s) = s3 (left) and ρ(s) = 0.9s3 + 0.1s38 (right). On
the left, the only positive zero is x1 ≈ 0.883414. On the right, the 3 positive zeros
are x1 ≈ 0.901174, x2 ≈ 0.937414, and x3 ≈ 0.997979. On the right, α]ρ ≈ 0.872923

and g∗(α]ρ) ≈ 0.988192, and only the zero x3 exceeds this value. Proposition 5.7 gives
αρ ≈ 0.917935 for the case on the left and αρ ≈ 0.998263 for the case on the right.

since r ≥ 3. Hence ψ(0) = 0 is a local minimum, and ψ(x) > 0 for x > 0 small enough.
But ψ(x)→ −∞ as x ↑ 1, so continuity implies that ψ has at least one zero in (0, 1).

Consider the condition (a) in the proposition. Suppose that h has a unique local
minimum located at x]ρ ∈ (0, 1), so α]ρ = h(x]ρ). Then by Lemma 5.8, ψ has a unique
local maximum at x]ρ, and necessarily ψ(x]ρ) > 0. By continuity (and Rolle’s theorem) it
follows that ψ has exactly one zero x∗ρ ∈ (x]ρ, 1). So (a) ⇒ (b). Moreover, it follows that
ψ(x) > 0 for x ∈ (0, x∗ρ) and ψ(x) < 0 for x > x∗ρ. The claim (5.15) follows.

Finally, suppose ρ(s) = sr for some r ≥ 3. We deduce (a). First note (cf (5.18))

ψ′′(x) =
1

r(1− x)

(
r − 1− 1

1− x

)
.

Hence ψ′′(0) = r−2
r > 0 and for x ∈ (0, 1) we have ψ′′(x) = 0 if and only if x = r−2

r−1 (an
inflexion point). By Rolle’s theorem and the fact that ψ(x) → −∞ as x ↑ 1, ψ′(x) = 0 at
exactly one x ∈ (0, 1), necessarily a local maximum x ∈ ( r−2r−1 , 1). Another application of

Rolle’s theorem shows that ψ has a single positive zero, necessarily in ( r−2r−1 , 1).

Now we can complete the proof of Theorem 2.2.

Proof of Theorem 2.2. Markov’s inequality applied to N (n,m)− 1 ≥ 0 gives

Pρn [Tn ≤ m] = Pρn [N (n,m) ≥ 2] ≤ Eρn [N (n,m)]− 1. (5.19)

Suppose that mn/n→ α ∈ (0, α∗ρ). Then by (5.19) with (2.4), Pρn [Tn ≤ mn] = O(n−1). It
follows that, for any ε > 0, Pρn [Tn ≤ (α∗ρ− ε)n]→ 0. On the other hand, Theorem 2.4(iii)
implies that there exists δ > 0 such that for any α ∈ (αρ, αρ + δ), Pρn [Tn ≤ α] → 1.
Moreover, these results together show that α∗ρ ≤ αρ, and αρ ≤ 1 by Proposition 5.6.
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A Threshold numerics and asymptotics

In this appendix we return to the discussion of the fixed-weight case presented in
Section 2.5. By (2.1) we have α∗r := inf{α ≥ 0 : Fr(α) > 0}, where

Fr(α) := log sup
γ∈[0,1/2]

(
(1 + (1− 2γ)r)α

2γγ(1− γ)1−γ

)
. (A.1)

If r ≥ 3, ψ has a single positive zero in x∗r ∈ (0, 1) (see Proposition 5.7) satisfying

x∗r = −
(

1−
(
r − 1

r

)
x∗r

)
log(1− x∗r), (A.2)

and αr = h(x∗r) = − log(1− x∗r)
r(x∗r)

r−1 . (A.3)

For example, α]3 ≈ 0.818469, g∗(α]3) ≈ 0.715332, and x∗3 ≈ 0.883414 so α3 ≈ 0.917935 (see
also Figure 3).

We consider the evaluation (and asymptotics) of αr; this will lead to a proof of Propo-
sition 2.7. One can obtain arbitrarily sharp upper and lower bounds for x∗r as follows.
By (A.2) we have that x∗r = ir(x

∗
r), where we set

ir(x) := 1− exp

{
− x

1− ( r−1r )x

}
.

For θ ∈ [0, 1), x 7→ x
1−θx is strictly increasing for x ∈ [0, 1]. Thus if x∗r > an, it follows that

x∗r > an+1 := ir(an). Also, i′r(0) = 1, i′′r (0) = 2−r
r > 0, and ir(1) = 1−e−r < 1, so ir(x) > x

for x ∈ (0, x∗r) but ir(x) < x for x ∈ (x∗r , 1]. Hence starting with a0 = r−2
r−1 < x∗r (an

inequality in Proposition 5.7), iteration yields an increasing sequence of lower bounds
an for x∗r . Conversely, starting with b0 = 1 > x∗r and iterating bn+1 := ir(bn) gives a
decreasing sequence of upper bounds bn for x∗r . For example, after one step we get

1− exp

{
−r(r − 2)

2(r − 1)

}
< x∗r < 1− e−r, (r ≥ 3).

Proceeding up to b2 for the upper bound and a4 for the lower bound is sufficient to
obtain the r →∞ asymptotic expression

x∗r = 1− e−r − r2e−2r +O(r4e−3r), (A.4)

which will be the main ingredient in the proof of the αr result in (2.17).
In fact, this iteration converges, so an ↑ x∗r and bn ↓ x∗r . To prove convergence it

suffices to show that i′r(x) < 1 at x = x∗r . A calculation shows that i′r(x) evaluated at
x = x∗r is x−2(1− x)(log(1− x))2, so for the required inequality it suffices to show that

−x−1 log(1− x) < (1− x)−1/2, for 0 < x < 1.

The coefficient of xk in the power series expansion of the left-hand side of the last
inequality is 1/(k + 1), and for the right-hand side it is 4−k

(
2k
k

)
, and both series are

convergent on the given interval. An induction shows that 1/(k + 1) ≤ 4−k
(
2k
k

)
for all

integers k ≥ 0. So term-by-term comparison of the two power series gives the inequality.
Now we present the proof of Proposition 2.7.

Proof of Proposition 2.7. Take ρ(s) = sr for r ≥ 3. As already mentioned, the asymptotic
for α∗r is in [3]. Let α > 0. Then, by (2.9),

h(1− e−αr/2) = − log(e−αr/2)

r(1− e−αr/2)r−1
=
α

2
(1 + o(1)),
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as r → ∞. Hence h(1 − e−αr/2) ≤ α for all r sufficiently large, which by (2.10) shows
that lim supr→∞ α]r ≤ α. Since α > 0 was arbitrary, it follows that limr→∞ α]r = 0.

Finally, by (A.3) with (A.4) and repeated Taylor expansions we obtain αr = 1− e−r +

O(r3e−2r), completing the proof of (2.17).

We briefly review previous descriptions of α∗r in the literature. Calkin [3, §4] gives
the same description of α∗r as our (A.1). Systems of nonlinear equations for α∗r are
proposed in [2, 15, 4]; these can be shown to be consistent with our description, as
follows. Let

Fr,α(γ) := log

(
(1 + (1− 2γ)r)α

2γγ(1− γ)1−γ

)
, (A.5)

so that Fr(α) = supγ∈[0,1/2] Fr,α(γ). Differentiating, we obtain

d

dγ
Fr,α(γ) = −2αr(1− 2γ)r−1

1 + (1− 2γ)r
+ log

(
1− γ
γ

)
. (A.6)

Then one may characterize α∗r by the two equations Fr,α(γ) = 0 and d
dγFr,α(γ) = 0.

On the substitution λ = 1
2 log( 1−γ

γ ), the first of these equations becomes, after some
calculations along the lines of those in Section 3.5,

(1 + (tanhλ)r)αe−λ tanhλ coshλ = 1. (A.7)

For the second equation, setting (A.6) to zero gives, after the same substitution for λ,

rα = (1 + (tanhλ)−r)λ tanhλ. (A.8)

The system defined by equations (A.7) and (A.8) is the same as that given by Cooper
[4, p. 269], and, after some manipulation, is seen to coincide also with that given by
Balakin et al. [2, p. 564] and Kolchin [15, p. 139]. Small discrepancies in the values for
α∗r given in [2, 15, 3, 4] can presumably be put down to numerical inaccuracies.

Finally, we discuss the numerical evaluations of α∗r in Table 1; here we use some
claimed properties of the functions involved that we do not verify rigorously. Observe
from (A.6) that any stationary value γ for Fr,α solves

α =
1 + (1− 2γ)r

2r(1− 2γ)r−1
log

(
1− γ
γ

)
=: αr(γ). (A.9)

Numerical curve sketching shows that (A.9) generically has at most 2 solutions in
(0, 1/2); of such solutions, the smallest will be the local maximum, since F ′r,α(γ) → ∞
as γ ↓ 0, by (A.6). If (A.9) has no solutions in (0, 1/2), then the supremum in (A.1) is
either Fr,α(0) = (α − 1) log 2 or Fr,α(1/2) = 0. Thus setting γ0 := γ0(α, r) = 0 if (A.9)
has no solutions in (0, 1/2) and γ0 := γ0(α, r) to be the smallest positive solution to (A.9)
otherwise, we have that Fr(α) = Fr,α(γ0) whenever α ∈ (0, 1).

For α ∈ (0, 1), Fr(α) > 0 if and only if γ0(α, r) > 0. Moreover, Lemma 4.1 shows that
α∗r < 1, so that for α < 1 such that γ0(α, r) > 0, Fr(α) = αr(γ0) log(1 + (1 − 2γ0)r) −
log(2γγ00 (1− γ0)1−γ0). Thus to find α∗r , we solve for γ ∈ [0, 1/2] the equation

αr(γ)− φr(γ) = 0, (A.10)

where

φr(γ) =
log (2γγ(1− γ)1−γ)

log (1 + (1− 2γ)r)
.

Numerical curve plotting shows that γ 7→ αr(γ) − φr(γ) is decreasing on [0, 1/2], so
(A.10) can be solved using efficient numerical methods; let γr denote the solution to
(A.10). Then we compute α∗r via α∗r = αr(γr).
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B Technical appendix

This appendix gives two technical results that we need in the body of the paper.
The first, whose proof is omitted, collects some elementary properties of probability
generating functions (see e.g. [12, pp. 264–266]).

Lemma B.1. Let φ(s) := E[sX ], s ∈ [−1, 1], for a Z+-valued random variable X. Then
φ(0) = P[X = 0], φ(1) = 1, and φ(s) is infinitely differentiable at least for s ∈ (−1, 1); if
E[X] <∞ then φ′(s) = d

dsφ(s) is continuous in the closed interval [−1, 1]. Moreover:

(i) Suppose that P[X = 0] = 0. Then as s ↓ 0,

φ(s) = sP[X = 1] +O(s2), and φ′(s) = P[X = 1] +O(s).

(ii) If E[X] <∞, then as s ↓ 0,

φ(1− s) = 1− sE[X] + o(s), and φ′(1− s) = E[X] + o(1).

(iii) For any s ∈ [0, 1], |φ(−s)| ≤ φ(s).

We shall use the following bounds on the binomial coefficient
(
n
k

)
.

Lemma B.2. Let n ∈ N and k ∈ {0, 1, . . . , n}. Then

(
n

k

)
≤

((
k

n

)k/n(
1− k

n

)1−(k/n)
)−n

≤ nkekk−k. (B.1)

On the other hand, if 0 < k < n,(
n

k

)
≥
(

n

2πk(n− k)

)1/2

e−1/6

((
k

n

)k/n(
n− k
n

)(n−k)/n
)−n

. (B.2)

Proof. Robbins’s refinement of Stirling’s formula (see e.g. [12, §II.9]), says that

n! = (2π)1/2nn+(1/2)e−n+εn , for any n ≥ 1,

where 1
12n+1 < εn <

1
12n . This yields the upper bound, for n ≥ 1 and k, n− k ≥ 1,

(
n

k

)
≤
(

n

2πk(n− k)

)1/2
((

k

n

)k/n(
n− k
n

)(n−k)/n
)−n

, (B.3)

where we have used the fact that

εn − εk − εn−k ≤
1

12n
− 12n+ 2

144k(n− k) + 12n+ 1
≤ 1

12n
− 12n+ 2

36n2 + 12n+ 1
≤ 0.

Considering separately the cases (i) k ∈ {0, n}, and (ii) 0 < k < n, using (B.3) in case
(ii), we obtain the first inequality in (B.1). The second follows from the fact that(

1− k

n

)−(n−k)
=

(
1 +

k

n− k

)n−k
≤ ek.

For the lower bound, another application of Robbins’s bounds yields (B.2), where for
the e−1/6 term we have used the fact that εn − εk − εn−k ≥ − 1

12k −
1

12(n−k) ≥ −
1
6 .
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