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Abstract: In the study of weather and climate, the digital computer has allowed 

scientists to make existing theory more useful, both for prediction and for 

understanding. After characterizing two sorts of understanding commonly 

sought by scientists in this arena, I show how the use of the computer to (i) 

generate surrogate observational data, (ii) test physical hypotheses and (iii) 

experiment on models has helped to advance such understanding in significant 

ways.  

 

 

 

1. Introduction 

In 1904, Norwegian physicist Vilhelm Bjerknes published what would 

become a landmark paper in the history of meteorology. In that paper, he 

proposed that daily weather forecasts could be made by calculating later states 

of the atmosphere from an earlier state using the laws of hydrodynamics and 

thermodynamics (Bjerknes 1904). He outlined a set of differential equations to 

be solved and advocated the development of graphical and numerical solution 

methods, since analytic solution was out of the question.  

Using these theory-based equations to produce daily forecasts, however, 

turned out to be more difficult than anticipated. Graphical solution techniques 

had limited success, and a first attempt to use numerical (finite-difference) 

methods gave little reason for optimism: it took Lewis Fry Richardson (1922) 

more than a month to calculate by hand the six-hour forecast for a small region, 

and the results produced were wildly unrealistic. Writing in 1955, atmospheric 

scientist Jule Charney characterized dynamical meteorology in the first half of 

the twentieth century as “a field in which belief in a theory was often more a 

matter of faith than of experience.…the practicing meteorologist could ignore 

the results of theory with good conscience” (1955, 798).  
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The advent of the digital computer in the mid-twentieth century brought 

new hope for making theory useful. Perhaps accurate numerical weather 

prediction would be possible after all: the computer could perform rapidly the 

calculations required by numerical solution techniques, and mathematical 

models incorporating reformulated (“filtered”) versions of the theoretical 

equations might avoid some of the problems that affected Richardson’s 

forecast.1 But improving weather forecasts was not the only goal. Scientists also 

had high hopes for the computer as a device that would allow them to advance 

their understanding of the atmosphere and climate system, in part by allowing 

them to investigate in new ways the mechanisms by which salient features and 

phenomena are produced (see e.g. Charney 1951, 1955 and quotes below from 

Lorenz 1967, 1970).  

In the half century since its introduction, the computer has proven 

valuable indeed for both prediction and understanding in this arena. Often, 

progress in weather prediction is emphasized, but in what follows I discuss how 

the computer – especially computer simulation – has helped with the latter goal: 

understanding. Rather than explore the nature of scientific understanding in 

general (e.g de Regt and Dieks 2005, Grimm 2006, Strevens 2008, Ylikoski and 

Kuorokoski 2010), I show how in practice computer simulation can promote two 

sorts of understanding commonly sought in the study of weather and climate.2  

In Section 2, I introduce these two sorts of understanding. Understanding 

why an event/phenomenon occurs is achieved when scientists obtain an accurate 

explanation of the occurrence of that event or phenomenon, while 

understanding a complex system/phenomenon is more open-ended and involves 

both knowledge and know-how. The next three sections discuss particular ways 

in which the computer is used to increase, or make progress toward, these sorts 

of understanding. Section 3 is concerned with the use of the computer to 

produce simulations that serve as surrogate observational data. Section 4 

                                                           
1
 Richardson himself had identified some of the problems with his attempt and had envisioned 

improved forecasting by numerical methods with the help of thousands of human “computers”, 
each responsible for performing by hand a limited set of calculations (see Richardson 1922). But 
this human “forecast factory” was never assembled.  
2
 Though my focus is on meteorology and climate science, much of the analysis is likely to apply 

to the use of computer simulation in other fields as well. For related discussions focusing on 
other fields, see Bechtel and Abrahamsen (2010) and Ylikoski (this volume). The present paper 
also dovetails with the more general discussion of simulation and understanding given by 
Lenhard (2009). 
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outlines how the testing of physical hypotheses, especially hypotheses relevant 

to explanation, can be performed with the help of the computer. Section 5 

discusses the use of the computer to experiment on models of the atmosphere 

and climate system, including models that are systematically related in a 

hierarchy. Finally, Section 6 offers some concluding remarks. 

 

2. Understanding weather and climate 

In the study of weather and climate, as in many other scientific fields, 

understanding is identified as a central aim, though there is little explicit 

discussion of what the desired understanding consists in. A survey of classic 

papers, textbooks and research monographs suggests that there are at least two 

notions of understanding in play in this arena.  

One sort of understanding is tightly linked to explanation and has as its 

target the occurrence of an event or phenomenon, usually defined in terms of a 

small set of salient or essential properties. For instance, scientists might want to 

understand why there is an extratropical jet stream – a persistent, narrow region 

of accelerated air near the top of the troposphere in the extratropical region, or 

why severe thunderstorms in the central United States sometimes split into two 

separate storms, or why New York City received a record-setting snowfall last 

Thursday, rather than a more typical amount of snow. The desired 

understanding is achieved by scientists when they arrive at (and perhaps also 

grasp) an accurate explanation of the occurrence of the event or phenomenon.3 

Usually, the explanations sought are causal explanations; the stated aim may be 

to identify the mechanism by which a phenomenon of interest is produced (e.g. 

Charney 1955, Schneider and Dickinson 1974, Klemp 1987, Markowski 2002), but 

more generally the goal is to obtain an accurate causal story – an accurate 

account of how a set of causal factors (e.g. forces, processes, conditions) 

together produces the event or phenomenon to be explained (Parker 2003, 80; 

see also Cartwright 1983, Ch.4).4 This sort of understanding will be referred to as 

understanding why an event/phenomenon occurs.  

                                                           
3
 Without the grasping requirement, this sort of understanding is similar to de Regt’s (2009) 

understanding a phenomenon; if the grasping requirement is included, then it is more similar to 
Strevens’ (2008; 2012) analysis.  
4
 Occasionally, something like deductive-nomological explanation is referenced, but it is 

commonly seen as an inferior sort of explanation. For instance, imagining a perfect numerical 
simulation of a hurricane, atmospheric scientist Edward Lorenz remarks: “We might still be 



4 
 

Progress toward the goal of understanding why an event/phenomenon 

occurs is made when scientists obtain what philosopher Peter Railton (1981) 

calls explanatory information – information that reduces uncertainty about the 

form or content of a sought-after explanation. Since causal explanations are 

typically desired here, explanatory information can include, among other things: 

information about causal dependencies; information about the relative 

contributions of different causal factors; and information about how parts or 

pieces of a larger mechanism work.  

A second sort of understanding is more open-ended and targets complex 

dynamical phenomena, such as extratropical cyclones and hurricanes, as well as 

the atmosphere and climate system as a whole. These targets of understanding 

are perceived as rich objects of study, and it is more difficult to give an account 

of what the desired understanding of them consists in (e.g. what understanding 

the climate system consists in). It seems to involve both knowledge and know-

how, that is, both knowing things about the phenomenon or system, such as 

facts about its structure and dynamics, and being able to synthesize and apply 

that knowledge to answer correctly additional questions about the phenomenon 

or system, especially questions about the effects of interventions on or changes 

to the system.5 This second sort of understanding, which is discussed in more 

detail below, will be referred to as understanding a complex 

phenomenon/system.6  

In practice, the knowledge that is partially constitutive of this second sort 

of understanding is often summarized in what scientists who study weather and 

climate refer to as conceptual models. A conceptual model of X is a 

representation of a set of key elements (parts, features, stages) of X as well as 

particular relationships (whether spatial, causal, etc.) among those elements. 

                                                                                                                                                               
justified in asking why the hurricane formed. The answer that the physical laws required a 
hurricane to form from the given antecedent conditions might not satisfy us, since we were 
aware of that fact even before integrating the equations” (Lorenz 1960, 243-244). 
5
 Exercising this ability may involve reasoning about the system in a qualitative or rough 

quantitative way or, when questions are beyond the reach of unaided reasoning, picking out 
relevant ingredients for simulation studies, etc. This ability to synthesize and apply existing 
knowledge thus bears some similarity to abilities emphasized by Ylikoski (this volume), de Regt 
(2009) and Lenhard (2009) in their discussions of understanding. 
6
 The two sorts of understanding are different in kind. Whereas the first is concerned with 

‘understanding why’ the second is concerned with ‘understanding a system’. Thanks to Henk de 
Regt for pushing me to clarify this. 
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Conceptual models in meteorology and climate science typically come in the 

form of diagrams with associated narrative text. Figure 1, for instance, shows the 

diagrammatic portion of a conceptual model of the hurricane phenomenon, in 

this case focusing on a period of time in which the hurricane undergoes eyewall 

replacement. Conceptual models of parts of phenomena – such as the cold front 

in an extratropical cyclone – are also common; they zoom in to reveal more 

detail about particular parts of the larger phenomenon or system. Almost by 

definition, the content of conceptual models is primarily qualitative, though it is 

not uncommon for them to make judicious reference to equations in their 

narrative text. As Figure 1 suggests, often they are constructed with the dual 

aims of describing and explaining important features of phenomena.   

 

[FIGURE 1 ABOUT HERE] 

 

Understanding a particular complex phenomenon/system, like the 

atmosphere or climate system, generally does not have a clear point of 

completion; it is achieved only to a greater or lesser extent. It is increased when 

a scientific community gains significant new knowledge about the phenomenon 

or system, or refines existing knowledge, or enhances its ability to synthesize and 

apply existing knowledge to correctly answer additional questions about the 

phenomenon or system. In connection with this, note that that uncovering the 

mechanisms by which salient features of a complex phenomenon or system are 

produced (i.e. obtaining this knowledge) is one important way of increasing 

understanding of that phenomenon or system. Hence, the first and second sorts 

of understanding are not unrelated. Indeed, the first sort of understanding is 

typically part of the second. Understanding why storm splitting occurs, for 

instance, is partially constitutive of understanding the supercell as a complex 

dynamical phenomenon. But understanding supercells is not just a matter of 

explanation; other sorts of knowledge about supercells – such as descriptive 

knowledge of their detailed internal composition and structure at different 

stages of development – also is partially constitutive of understanding of 

supercells, as is the ability to synthesize and apply such knowledge to answer 

additional questions about supercells (e.g. would changing feature X of the 

storm environment enhance storm formation and, if so, why?).  
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According to philosopher Henk de Regt, even when understanding 

requires only having an adequate explanation, as in the first sort of 

understanding discussed above, it implicitly depends on a kind of pragmatic 

understanding (or know-how) as well. In particular, he argues that it depends on 

understanding a theory, which on his view means being skilled in using the 

theory to construct suitable models of target systems or phenomena, which in 

turn are used to develop explanations and/or arrive at predictions (de Regt 2009, 

592-593). We might question whether scientific explanation always requires a 

theory per se, as de Regt’s analysis implies, but resolving this matter is not 

important for present purposes. What is of interest, rather, is that understanding 

a theory in de Regt’s sense seems to be precisely what atmospheric scientists 

lacked (at least to a significant degree) before the advent of the computer: they 

had a set of theoretical equations that they believed to apply to the atmosphere, 

but they were unable to use this theory for many of the explanatory and 

predictive purposes that interested them.7 Consequently, the theory was of 

limited value for understanding the atmosphere and its phenomena at that time.  

The computer helped scientists to improve this situation, but how? The 

computer did not tell scientists which models to construct – it did not tell them 

how to simplify and idealize the equations of hydrodynamics, thermodynamics, 

radiative transfer, etc. to arrive at mathematical models that were easier to work 

with computationally but still realistic enough to be useful (see e.g. the quasi-

geostrophic model developed in Charney 1947). But the computer did make it 

possible to estimate solutions to analytically-intractable equations using 

numerical methods, something that took ages, and thus was practically 

infeasible, when calculations were performed by hand. In doing so, it helped 

scientists to see what followed (or failed to follow) from the physical 

assumptions reflected in different mathematical models of the atmosphere or 

climate system. Moreover, because the equations of these models are meant to 

describe in an approximate way how conditions in the atmosphere or climate 

system change over time, their repeated solution for small time steps with the 

help of the computer could produce simulations, i.e. representations of the 

temporal evolution of the atmosphere or climate system.  

                                                           
7
 See, however, de Regt and Dieks 2005 on “PV-thinking” (potential-vorticity thinking) for an 

example of how simplified theory can be employed in the service of understanding a limited 
range of atmospheric phenomena.  
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In the next three sections, I discuss in more detail how using the 

computer to reveal the implications of modelling assumptions and to produce 

simulations has helped to advance understanding in the study of weather and 

climate. Given the two sorts of understanding just identified, any of the 

following would increase, or count as progress toward, understanding: (a) 

obtaining explanatory information, such as information about causal 

dependencies or causal relationships; (b) obtaining descriptive knowledge of the 

structure or evolution of a phenomenon or system of interest – the sort of 

knowledge that is commonly summarized in conceptual models; (c) enhancing a 

scientific community’s ability to synthesize and apply existing knowledge to 

answer additional questions about the phenomenon or system. I will suggest 

that the computer can help with all of these, but I will most often highlight 

connections with (a).     

Before moving on, however, some additional targets of understanding 

should be mentioned: the occurrence of events and phenomena in a simulation; 

simulated complex dynamical phenomena; and model atmospheres and climate 

systems. The mathematical models used to produce simulations in the study of 

weather and climate include variables that are given physical interpretations – 

they stand for temperature, pressure, wind speed, etc. Many atmospheric 

scientists view simulation results as if they were observations of a hypothetical 

atmosphere or climate system and identify phenomena and events that occur 

“in the simulation.” Often, they seek to understand the occurrence of these 

simulated phenomena and events, just as they seek to understand the 

occurrence of real phenomena and events in Earth’s atmosphere or climate 

system; the aim is to explain how the phenomenon or event in the simulation – 

the “jet stream” or “record snowfall” in the simulation – would be produced by 

the causal factors represented in the simulation. Likewise, atmospheric scientists 

sometimes seek to better understand a model atmosphere or climate system, or 

a simulated hurricane, just as they aim to better understand the real atmosphere 

and climate system and real hurricanes. In general, however, this model-directed 

understanding is desired as a means to better understanding weather and 

climate in the real world. 
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3. Computer simulation results as surrogate observational data  

One way to learn about phenomena is to study them observationally, i.e. 

to collect data regarding their properties using instruments or even the naked 

eye. Sometimes, these data provide information that leads to significant 

progress in developing accurate explanations and conceptual models. For 

example, when there are several competing accounts of the mechanism by 

which a phenomenon is produced, trustworthy observational data might 

strongly support one of the proposed mechanisms while indicating that the 

others are untenable. In such a situation, the observational data provide 

valuable explanatory information.8 

Yet obtaining desired observational data in the study of weather and 

climate can be quite difficult. Routine observations tend to be made at relatively 

widely-spaced locations and only a few times a day, while many phenomena and 

events of interest occur on smaller spatiotemporal scales. In addition, some of 

these phenomena and events – like supercell thunderstorms and hurricanes – 

involve intense and dangerous conditions. Radar can provide some information 

about conditions within a supercell from afar, but it is difficult to make in-situ 

observations of temperature, humidity and other conditions inside such a storm; 

one must be willing to brave high winds, lightning, heavy rain, hail and perhaps a 

tornado, and measurements still usually will cover only a relatively limited 

spatiotemporal domain. 

Computer simulations, by contrast, provide values for every variable in 

the model, at every spatial grid point, for every time step in the simulation. 

Moreover, simulation results can be examined from the comfort of the computer 

lab, without risking life and limb and, in many cases, can be obtained for 

substantially less cost than observational data collected in specialized observing 

campaigns. So it is not surprising that atmospheric scientists sometimes analyze 

simulation output in place of real-world data, learning which features of a 

phenomenon of interest arise in what order in the simulation, how key 

atmospheric fields (e.g. temperature, pressure, vorticity) are structured at 

particular time steps, how they change from one time step to the next, etc. (see 

                                                           
8
 What counts as explanatory information for a given scientist, of course, will depend on her 

background knowledge and cognitive capacities; she must be able to see that the information 
obtained is relevant to an explanatory goal. 
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Figure 2 for an illustration). 9 Here, advanced visualization tools, which allow 

scientists to plot and animate results in ways that make desired information 

more salient, are especially valuable (see also Winsberg 1999). Just as traditional 

observational data can aid the development of conceptual models and can favor 

one proposed explanation over another, so too can simulation results analyzed 

as surrogate observational data.  

The case of supercell thunderstorms illustrates this nicely. Relatively high-

resolution simulations of supercells were developed in the early 1980s, drawing 

on some of the same theoretical foundations used in weather forecasting (i.e. 

fluid dynamics and thermodynamics) but focusing on a smaller spatiotemporal 

scale. While traditional observations of the complicated inner workings of 

supercells were difficult to make, these simulations and their increasingly-

sophisticated successors provided “complete kinematic and thermodynamic data 

both in and around a *simulated+ storm” (Klemp 1987, 372). Upon examining and 

analyzing these data with the help of advanced visualization techniques, 

atmospheric scientists developed new hypotheses about the mechanisms 

responsible for salient features of supercells, such as their tendency to 

propagate to the right of the mean environmental wind (Rotunno and Klemp 

1985). In addition, some existing hypotheses about supercell dynamics were 

called into question because they appeared inconsistent with what was observed 

to happen in simulations (see e.g. Klemp 1987, 395, and Houze 1994, 294, on the 

role of the rear-flank downdraft in the transition of the supercell to its tornadic 

phase), while others were supported by the simulation results.  

 

[FIGURE 2 ABOUT HERE] 

 

In general, conceptual models and explanations developed by analyzing 

simulation results as surrogate observational data – such as the explanation of 

storm propagation mentioned above – are treated as how-possibly or how-

plausibly models and explanations, pending further empirical investigation.10 For 

instance, a review article on supercells, written shortly after the first wave of 

                                                           
9
 This is what I mean by using simulation results as “surrogate” observational data; they are a 

surrogate or stand-in for “real” observational data. 
10

 See Machamer et al. 2000 and Craver 2006 for further discussion of how-possibly, how-
plausibly and how-actually explanations of the mechanistic variety.  
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high-resolution simulation studies, draws heavily on these studies but cautions 

that:  

…although these [simulation] models have demonstrated good qualitative 

agreement with observed storms, some of the mechanisms derived from the 

detailed analyses of simulated storms must still be tested against future data 

that will be obtained from the increasingly sophisticated storm-observing 

systems. (Klemp 1987, 372) 

Fifteen years later, a more specialized review article expresses the same 

sentiment, but only after attributing to simulation studies “significant advances 

in our understanding of supercells” (Markowski 2002, 870). By this time, some of 

the mechanisms derived from detailed analyses of simulated storms had been 

accepted and, while others remained more hypothetical, they provided starting 

points for further investigation – starting points that might well have been 

lacking if atmospheric scientists had not been able to “look inside” simulated 

supercells, examining their detailed inner workings. It was not possible to do this 

for real supercells, given the limited availability of observational data, and simply 

inspecting the theoretical equations used in storm simulations provides little 

insight into the complex dynamical evolution of supercells. Indeed, as the same 

review notes, “it is probable that some conclusions drawn from simulation 

results never could have been made from observations or theory alone” (ibid).   

 Thus, as the case of supercells illustrates, the use of simulation results as 

surrogate observational data can promote both sorts of understanding identified 

in Section 2. It does this in part by facilitating the development of descriptive and 

explanatory hypotheses. These hypotheses provide a starting point for further 

empirical investigation and may eventually be accepted as correct, as when how-

possibly or how-plausibly explanations become accepted as how-actually 

explanations in light of subsequent empirical investigation. (The design of such 

empirical investigation is itself often strongly influenced by what the simulation 

results indicate, e.g. about where in the storm one should look to find evidence 

of a particular structure or process.) Without simulation results that stand in for 

observational data, even how-plausibly explanations for some phenomena might 

remain out of reach for much longer.  
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4. Testing hypotheses  

 A second important way in which the computer helps to advance 

understanding in the study of weather and climate is by facilitating tests of 

hypotheses relevant to explanation – tests that in many cases would not 

otherwise be feasible. As Jule Charney put it not long after high-speed digital 

computers were introduced: 

The radical alteration that is now taking place [in dynamical meteorology] is 

due not merely to the ability of the machine to solve known equations with 

known initial and boundary conditions but even more to its ability to serve as 

an inductive device. … The machine, by reducing the mathematical 

difficulties involved in carrying a physical argument to its logical conclusion, 

makes possible the making and testing of physical hypotheses in a field 

where controlled experiment is still visionary and [physical] model 

experiment difficult, and so permits a wider range of inductive methods. 

(Charney 1955, 798-9) 

Here, the physical hypotheses of interest concerned the mechanisms responsible 

for salient, large-scale features of the atmosphere, such as the high- and low-

pressure systems that regularly populate the middle latitudes. But the value of 

the computer for testing hypotheses about climate change was also emphasized 

early on; even as computer models of the climate system were in their early 

days, atmospheric scientist Edward Lorenz suggested that “perhaps there should 

be a center for climatic change hypothesis testing” (Lorenz 1970, 328), where 

the tests would be carried out with the help of computers.11   

  But how can the computer facilitate hypothesis testing? And what sorts 

of hypotheses can be tested? According to the Charney passage, the computer 

facilitates testing by “reducing the mathematical difficulties involved in carrying 

a physical argument to its logical conclusion” (1955, 798). Put differently, the 

computer allows scientists to see what follows (or fails to follow) from the 

physical assumptions reflected in different mathematical models of the 

atmosphere or climate system – models for which analytical solutions are out of 
                                                           
11

 The climate system is usually defined to include the atmosphere, ocean, land surface and 
cryosphere. Today’s state-of-the-art global climate models incorporate not only atmospheric 
models similar to those used in weather forecasting, but also representations of these other 
component systems. Historically, climate modeling grew out of atmospheric modeling, with the 
first global atmospheric modeling results obtained by Norman Phillips in a project aimed to 
construct a “dynamic climatology” (see Charney 1955; Phillips 1956). 
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reach. This allows scientists to test hypotheses about the sufficiency of different 

sets of causal factors (processes, conditions, forces) for producing a 

phenomenon or event or feature of the atmosphere/climate system, and it can 

also facilitate tests of hypotheses regarding necessary causal factors.  

To see why, suppose an atmospheric scientist hypothesizes that H: Causal 

factors {c1…cn} are jointly sufficient for producing P, a particular phenomenon or 

event. Even if the scientist cannot say exactly how {c1…cn} would produce P, she 

might test H by building a mathematical model that accurately represents the 

mutual interactions among {c1…cn} and then checking whether that model 

entails the occurrence of P. Computers help with the latter step, i.e. checking 

whether the model entails the occurrence of P. Of course, typically the computer 

delivers only approximate solutions to the modelling equations of interest, so it 

is important to consider whether the occurrence/non-occurrence of P in a 

simulation is a product of errors introduced by the methods used to estimate 

solutions or by programming mistakes. But when there is reason to think that 

such errors did not interfere in this way, and that {c1…cn} and other important 

system processes have been adequately represented via the modelling 

equations, then the simulations produced can provide evidence regarding H. In 

particular, if the simulations produce something closely resembling P, then this is 

evidence for H; if they do not produce anything like P, then this is evidence 

against H. 12 

In 1970, when Lorenz was writing, hypotheses about climate change 

mainly concerned the causes of past ice ages and very fundamental questions 

about the climate system, such as whether there might be more than one semi-

stable climate for Earth even when important factors like incoming solar energy 

and the chemical composition of the atmosphere are held constant. Lorenz 

describes how the computer could help test the latter sort of hypothesis: 

Meanwhile, it is of interest to ask what would happen if we took the 

mathematical models which are currently being used to simulate climate, 

without any modification to accommodate existing climatic change 

hypotheses, and performed experiments lasting centuries or more. Would 

climatic changes be revealed? If we include as one hypothesis of climatic 

                                                           
12

 Of course, there is still an empirical dimension to these tests – there is an empirical 
phenomenon or event or feature to be accounted for. The computer helps with the step in 
testing that involves deriving a prediction or conclusion from the set of equations. 
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change the proposition that no processes other than those commonly 

considered in short-range weather forecasting are needed to bring about 

changes in climate, we would be testing this hypothesis (Lorenz 1970, 328). 

In other words, we would be testing the hypothesis that H: The physical 

processes represented in 1970-era weather forecasting models are sufficient to 

produce changes in climate. (Models then used to simulate climate were very 

similar to the models used in short-range weather forecasting at the time.) 

For a more recent example, consider a hypothesis about the causes of 

late twentieth century global warming, H1: Estimated changes in natural forcing 

factors are sufficient to produce most of the global warming observed to occur 

during the second half of the twentieth century; changes in greenhouse gas 

emissions and other human-related factors need not have contributed much. To 

test H1, scientists might run today’s state-of-the-art climate models, allowing 

natural forcing factors (i.e. changes in solar output and volcanic aerosols) to vary 

in accordance with twentieth century estimates but holding fixed all 

anthropogenic forcing factors. Of interest would be whether global warming 

similar in magnitude to that observed during the latter half of the twentieth 

century occurred in the simulations. In fact, such simulations have been 

produced, and they do not show warming similar to that observed to occur 

during the second half of the twentieth century (see Figure 3b). Insofar as 

natural forcing factors and important climate system processes are adequately 

represented in today’s climate models, this finding is evidence against H1.13 

 

[FIGURE 3 ABOUT HERE] 

 

By contrast, simulations produced with state-of-the-art climate models 

that include representations of both anthropogenic and natural forcing factors 

do show changes in global mean temperature that (roughly) match those 

estimated from twentieth century observations (see Figure 3a). Insofar as the 

identified forcing factors and important climate system processes are adequately 

represented in today’s climate models, this finding supports hypothesis H2: 

These anthropogenic and natural forcing factors are sufficient to produce 

                                                           
13

 Here, I mean adequately represented for purposes of discerning the major causes of late 
twentieth century global warming; a model might be adequate for this purpose but not, say, for 
giving precise quantitative predictions of long-term regional and local changes in climate. 
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(roughly) the changes in global mean temperature observed to occur over the 

course of the twentieth century. Moreover, to the extent that there is also good 

reason to think that all major natural forcing factors have been identified, the 

two sets of simulations together also support H3: Anthropogenic forcing factors 

are necessary to account for observed twentieth century global warming. 

As the examples illustrate, the conclusion that simulations results provide 

evidence of the sufficiency or necessity of a set of causal factors rests on some 

significant assumptions, for instance, that the causal factors of interest, as well 

as important system processes, are adequately represented in the models used. 

In the case of hypotheses about necessary factors, there is also the assumption 

that all of the plausible candidate factors have been identified. The difficulty in 

justifying these assumptions will vary from case to case. Some of the easier cases 

are those in which hypotheses concern the sufficiency of a relatively small set of 

causal factors for producing P, and something resembling P does appear in the 

simulations. For instance, early investigations found that phenomena resembling 

extratropical cyclones, the large low-pressure systems that bring poor weather in 

the middle latitudes, would develop in simulations made with simple 

atmospheric models that represented a reduced set of causal factors (see 

Charney 1955, 800-801), supporting the hypothesis that those factors are 

sufficient for cyclogenesis.14 On the other hand, with a system as complex as the 

climate system, about which there is substantial but still rather limited 

knowledge, it is not easy to argue persuasively that all candidate causes of a 

climate phenomenon have been identified, which is required when testing 

whether a particular causal factor is necessary. The rejection of H1 above is 

resisted by some individuals precisely on the grounds that there may be other 

important natural forcing factors – such as cosmic rays – that are not 

represented, or not represented adequately, in today’s models.15  

So how does using computers to test hypotheses about necessary and 

sufficient causal factors advance understanding? Once again, the clearest links 

                                                           
14

 Charney concluded that these simulation studies had determined the actual cause of 
cyclogenesis (see Charney 1955, 801), but this conclusion would seem unwarranted, since 
existing rival hypotheses had not been tested. 
15

 It is beyond the scope of this paper to examine past and ongoing scientific debates about 
additional natural forcing factors. Such debates do, however, merit further attention from 
philosophers of science and scholars in STS. For more on the assumptions made in contemporary 
detection and attribution studies, see Solomon et al. 2007, Parker 2010 and Petersen 2012. 
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have to do with explanation: testing these hypotheses sometimes provides 

explanatory information. Learning that a set of causal factors is sufficient for 

producing phenomenon P indicates that a causal or mechanistic explanation of P 

in terms of those causal factors should be possible; one can then being pursuing 

such an explanation.16  Learning that the set of factors is not sufficient for 

producing P can prevent one from wasting time trying to find such an 

explanation. Moreover, learning that particular causal factors are necessary for 

producing P can strongly constrain the space of possible explanations of P (e.g. 

the range of mechanism descriptions) that should be taken seriously.  

 

5. Experimenting on models / exploring hierarchies 

The atmosphere and climate system are made up of numerous nonlinear 

and interactive processes, making it difficult to infer causal relationships by 

simply observing these systems in action. By experimenting on a computer 

simulation model of the atmosphere or climate system in various ways – 

“turning off” particular physical processes, varying the values of parameters, etc. 

– and comparing the simulations produced with and without these interventions, 

scientists investigate the contributions of the manipulated processes and 

parameters in producing (simulated) phenomena of interest. For instance, a 

scientist might include more realistic topography in a climate model in order to 

learn whether this makes much difference to the amount of (simulated) annual 

precipitation that falls over the United States or to other outcomes of interest. 

What is learned in this way about dependencies in the model can provide a 

starting point for identifying the mechanisms by which real-world phenomena 

are produced and for reasoning about the effects of particular interventions. In 

this way, it can promote both sorts of understanding identified in Section 2. 

In fact, a closely related approach to advancing understanding of the 

atmosphere and climate system was explicitly recommended when the digital 

computer first came on the scene. The idea was to start with simplified models 

that represent in an idealized way a reduced set of causal factors thought to be 

particularly important in shaping system behavior, and then gradually increase 

the models’ complexity by including representations of additional causal factors 

and/or by representing previously-included factors more realistically (see e.g. 
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 There is no guarantee that such an explanation will be correct, of course, but at least one’s 
efforts are directed in a potentially fruitful way. 
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Charney 1949, Phillips 1956, Lorenz 1960; see also Dahan Dalmedico 2001). By 

observing how the simulated atmosphere or climate system changed with the 

addition of each new causal factor, such as frictional drag or a primitive 

hydrologic cycle, scientists could develop a storehouse of information about 

dependences in simpler models, which would serve as a resource for 

constructing explanations of the behavior of more complex models and of the 

real atmosphere and climate system.17  

In other words, understanding was to be advanced by constructing and 

experimenting on a hierarchy of models of increasingly complexity, not by 

running the most comprehensive and “realistic” computer simulation model 

possible. The latter was considered unlikely to help much with the goal of 

identifying the causal contributions of different factors: 

The total behavior of the [atmospheric] circulation is so complex that the 

relative importance of various physical features, such as the Earth’s 

topography and the presence of water, is no more evident from an 

examination of numerical solutions than from direct observations of the real 

atmosphere. (Lorenz 1967, 134) 

On Lorenz’s view, “it is only when we use systematically imperfect equations or 

initial conditions that we can begin to gain further understanding of the 

phenomena which we observe” (1960, 244). Doing so can show us how things 

would be different – in the simulated system and perhaps in the real system – if 

particular factors were absent or changed.  

So have atmospheric scientists followed the hierarchies-of-models 

approach to advancing understanding? That is, have collections of 

systematically-related models been carefully developed and intensively studied, 

to provide a foundation for explaining the observed behavior of the atmosphere 

and climate system and for reasoning about how weather and climate would be 

different if conditions were changed in various ways? Only to a limited extent, it 

would appear. While significant progress via a hierarchy-of-models approach was 

made early on, in recent decades a tremendous increase in computing power 
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 This strategy calls to mind uses of “false” models in biology identified by William Wimsatt: “An 
oversimplified model may act as a starting point in a series of models of increasing complexity 
and realism” and “An oversimplified model may provide a simpler model for answering questions 
about the properties of more complex models that also appear in the simpler case, and answers 
derived here can sometimes be extended to cover the more complex models” (1987, 30-31). 
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and a growing interest in predicting future climate change has led atmospheric 

scientists to focus their efforts on the development of more and more 

comprehensive and detailed models, without attending carefully to how they 

relate to other models and without investing comparable effort in understanding 

simpler ones.  

This state of affairs has not gone unnoticed. Recently, atmospheric 

scientist Isaac Held (2005) expressed concern over the growing gap between 

what can be simulated with today’s climate models and what is understood 

about the climate system and its dynamics. He calls for renewed efforts to 

develop “hierarchies of lasting value” – sets of systematically-related “elegant” 

models, the careful study of which can provide a foundation for understanding 

the real atmosphere and climate system.18 Constructing hierarchies of lasting 

value will not be easy, he suggests. Unlike molecular biologists, who in their 

quest to understand human biology at the molecular level are provided by 

nature with a ready-made, evolutionarily-connected hierarchy of model 

organisms, ranging from bacteria to fruit fly to mouse to man, atmospheric 

scientists must construct their hierarchies from scratch; nevertheless, they 

should try to identify “the E.coli of climate models” as well as models of 

intermediate complexity that they take “just as seriously as do the biologists who 

map out every single connection in the nervous system of the snail” (ibid, 1610 & 

1614). Despite the challenges associated with a hierarchies-of-models approach, 

on Held’s view, “there are no alternatives if we want to understand the climate 

system and our comprehensive climate models” (ibid, 1610).19  

As noted above, experimenting on a computer model of the atmosphere 

or climate system can provide explanatory information and can aid and inform 

reasoning about the effects of particular interventions on the real system. 

Exploration of a hierarchy of models of the atmosphere or climate system 

involves extensive experimentation on models, with similar benefits. Moreover, 

                                                           
18

 By “elegant” models, he means ones that include only what is necessary to “to capture the 
essence of a particular source of complexity” in the atmosphere or climate system (Held 2005, 
1613). 
19

 While this is a strong claim, it is difficult to see how else desired understanding of these 
complex systems would be achieved, given humans’ cognitive limitations. Of course, particular 
questions about the atmosphere and climate system might be answered in other ways – e.g. by 
experimenting on a single model. But understanding the atmosphere or climate system (in the 
sense of understanding a complex phenomenon/system as discussed in Section 2) aims at more 
comprehensive knowledge and know-how.  
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in the long run, such exploration/experimentation can create a familiarity with 

the behavior of model atmospheres and climate systems, and with the ways in 

which different causal factors shape their behavior, that can enhance scientists’ 

ability to synthesize and apply existing knowledge to answer additional questions 

about their real counterparts (i.e. can help to develop this know-how).20,21 

Exploration of a hierarchy of systematically-related models is, and is explicitly 

recognized to be, a long-term strategy for advancing understanding of the 

atmosphere and climate system – a strategy that involves leveraging knowledge 

about and experience with simpler models to make progress in understanding 

more complex models and systems. 

 

6. Concluding remarks 

 In the half century since its introduction, the computer has helped to 

transform the study of weather and climate. Its impact has been felt not just in 

weather prediction, where dramatic increases in forecast skill have been 

achieved, but also in basic research that aims to advance understanding of 

weather and climate phenomena and of the atmosphere and climate system as a 

whole.  

 Three ways in which the computer has helped to advance understanding 

in this arena were identified above. First, the computer has been used to 

produce simulations that supply surrogate observational data, aiding the 

development of conceptual models and explanations. Second, it has been used 

to facilitate tests of explanatory hypotheses, especially hypotheses about the 

causal factors that are necessary or sufficient for producing a phenomenon of 

interest. Third, the computer has been used to experiment on models, including 

models related systematically in a hierarchy; this not only can reveal information 

that aids the search for explanations but also can create a familiarity with the 

behaviour of model atmospheres and climate systems that enhances one’s 
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 Here, I refer to the know-how involved in carrying out qualitative reasoning about the system, 
or in deciding which process to represent, and in what manner, in a mathematical model of the 
system, etc., given the goal of correctly answering some additional question about the system 
(see Section 2).  
21

 As Lenhard (2009) suggests, with experimentation on models, one may develop “the ability to 
recognize … qualitatively characteristic consequences of modelling assumptions even though the 
modelling dynamic remains partly opaque” (p.173). 
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ability to synthesize and apply existing knowledge to answer additional questions 

about these systems.  

 The discussion also revealed, however, some limitations or caveats on 

these uses of the computer to advance understanding. For instance, conceptual 

models and explanations developed by analyzing simulation results as surrogate 

observational data are treated as how-possibly or how-plausibly models and 

explanations, pending further empirical investigation; they are not, nor should 

they be, immediately accepted as how-actually models and explanations. 

Likewise, testing hypotheses about the sufficiency or necessity of sets of causal 

factors requires some significant assumptions – for instance, that the causal 

factors of interest, as well as important system processes, are adequately 

represented in the models used – and these assumptions are sometimes difficult 

to justify. 

 Despite these limitations and caveats, the computer is now firmly 

established as an important tool for advancing understanding in the study of 

weather and climate. This paper provided a preliminary overview of some of the 

ways in which the computer is used to advance understanding in this arena. 

These practices involving simulation, both in the study of weather and climate 

and in other fields, merit additional attention from philosophers of science and 

scholars in STS; further analysis and detailed case studies can shed more light on 

how use of the digital computer is enriching and transforming the quest for 

understanding in science. 
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Figure 1. Diagrammatic portion of a conceptual model of a hurricane undergoing 

eyewall replacement (From Houze et al. 2007, Figure 4; see original caption and 

accompanying text for further details).  
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Figure 2. Vertical cross section of conditions 75 minutes into a simulation of 

convection when the convection is isolated (left) and along a frontal boundary 

(right). The plot shows rainwater density (shading), wind speed and direction in 

the plane (arrows) and normal to the plane (contours), locations of prominent 

minima and maxima (+/-), and the location of the 298°K potential temperature 

isotherm (dark grey line). (From Jewitt and Wilhelmson 2006, Figure 12) 
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Figure 3. Global mean surface 

temperature anomalies over the 

20th century from observations 

(black) and from simulations (thin 

light grey) when the simulations  

include (a) both natural and 

anthropogenic forcing factors and 

(b) natural forcing factors only. 

Anomalies comprising a given time 

series are calculated relative to the 

global mean surface temperature 

for that simulation (or from 

observations) during the period 

1900-1950. The heavier grey line 

shows the average anomaly in the 

simulations. (Adapted from Hegerl 

et al. 2007, Figure 9.5) 

 


