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Abstract 

The significance of early and sporadic reports in the 19
th

 century of impairments of motion vision following 

brain damage was largely unrecognised. In the absence of satisfactory post-mortem evidence, impairments 

were interpreted as the consequence of a more general disturbance resulting from brain damage, the location 

and extent of which was unknown. Moreover, evidence that movement constituted a special visual 

perception and may be selectively spared was similarly dismissed. Such scepticism derived from a 

reluctance to acknowledge that the neural substrates of visual perception may not be confined to primary 

visual cortex. This view did not persist. First, it was realised that visual movement perception does not 

depend simply on the analysis of spatial displacements and temporal intervals, but represents a specific 

visual movement sensation. Second persuasive evidence for functional specialization in extrastriate cortex, 

and notably the discovery of cortical area V5/MT, suggested a separate region specialised for motion 

processing. Shortly thereafter the remarkable case of patient LM was published, providing compelling 

evidence for a selective and specific loss of movement vision. The case is reviewed here, along with an 

assessment of its contribution to visual neuroscience. 
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1. Introduction 

 

“In 1983, the world of neurology witnessed two surprises. The first was the publication of a paper by Zihl et 

al. describing a patient who has lost the ability to see objects in motion following a bilateral cerebral 

vascular lesion in cortex outside the striate area. … It was the first description of cerebral motion blindness. 



… The second surprise was that, although a single case study, it was immediately accepted by the 

neurological and, more generally, by the neurobiological world, without a murmur of dissent”. With this 

statement, Zeki introduced his review article on visual motion blindness, for which he coined the term 

“cerebral akinetopsia” (Zeki, 1991, p. 811). Moreover, he contrasted the silent acceptance of the report of 

akinetopsic patient LM with the fate of earlier reports of cases of cortical colour blindness, so-called 

cerebral achromatopsia, which were met with some dissent (Zeki, 1990). Undoubtedly, the publication of 

this exceptional single case, along with its positive acceptance by the neuroscientific community, has 

stimulated research on movement vision in the fields of psychology and neurobiology. This does not mean 

that before 1983 knowledge about movement vision was sparse, and evidence of specific processing of 

visual motion signals in the brain was insubstantial. But the unique case of LM provided the final ‘missing 

link’ between evidence based on experiments on principles of movement vision in normal observers on the 

one hand, and the neuroanatomical and neurophysiological evidence of how the brain deals with visual 

motion information on the other. As will be mentioned below, there was rich indirect evidence for a separate 

representation of movement vision in the visual brain before LM indicating, together with other evidence of 

functional segregation in the primate visual cortex (Zeki, 1978), that the visual brain is functionally 

specialised. What was missing was unequivocal evidence that movement vision can be specifically and 

selectively disturbed after acquired brain injury, a fact that was predicted on the basis of the psychological 

and neurobiological evidence that already existed. Early reports suggesting functional specialisation of the 

visual brain had, in general, aroused considerable controversy (see Zeki, 1993, for a comprehensive review). 

In his comprehensive monograph on visual disturbances after occipital damage, Poppelreuter (1917/1991) 

pleaded for such a concept, but also stressed the paucity of evidence: “These few examples, put together 

rather loosely, might be sufficient for the present to demonstrate our aim of not tolerating the neglect of 

pathological disorders of all these separate functions merely because they co-occur with the ‘geometrical’ 

facts of lost portions of the visual field” (p. 21). In 1983, the time seemed ripe for the neuroscientific 

community to accept and integrate a report of cerebral motion blindness as final confirmatory evidence for 

the individual representation of movement vision in the brain. 

 

2. Evidence for a particular status of movement vision in the visual modality before LM   

 

In his comprehensive paper on visual motion perception, Brown (1931) evaluated the state of research at his 

time by summarising that “in the last half century of psychological investigation few specific problems of 

perception have elicited so many researches and have been the basis for so much theoretical controversy as 

the visual perception of movement. The reason for this is not far to seek. From the earliest laboratory studies 

to the most recent it has become increasingly clear that the inconstant correlation between the physical 

events in the stimulus and the phenomenal events in the perception of movement could not be explained by 

the ordinary psychophysical concepts. … In all the work that has been done, no investigation has concerned 

itself primarily with the functional characteristics of the perception of velocity. Various investigators … 



have observed lack of correlation between the velocity of the stimulating movement and the phenomenal 

velocity” (pp. 199-200). This theoretical and conceptual dilemma in psychophysics stimulated Brown to 

investigate the effects of various stimulus variables, e.g. observer distance, size of moving field, degree of 

homogeneity of the surround of the moving field, component elements in the moving field, size and 

orientation of the moving stimulus, direction of movement, field brightness and afferent vs. efferent 

movement perception. The main outcome of his experimental work was that “velocity is perceived directly 

…. The visual perception of velocity follows dynamic laws that are not immediately deducible from the 

velocity of the stimulus as physically defined” (Brown, 1931, p. 231). Twenty-three years later Gibson 

(1954), reviewing the state of the art on the then available empirical evidence on “how do we see motion” 

and its implications, concluded that “there is plenty of evidence that visual motion is a “sensory” variable of 

experience. It has a kind of intensity (speed) and a kind of quality (direction). … But more than any sensory 

impression, it fails to correspond to the physical stimulus presumed for it. Whatever the stimulus for motion 

might be, it is not simply motion in the retinal image. … It cannot be assumed, that a movement is the same 

thing in the object, the retina, the brain, and consciousness” (p. 310-311). Interestingly, as early as 1881 

Exner had similarly argued that visual movement perception does not depend on the (independent) analysis 

of spatial displacements and temporal intervals, but represents a specific visual movement sensation. 

 

The search for further particular characteristics of movement vision was picked up again by Carlson (1962) 

and Sekuler and Ganz (1963). These authors presented more direct psychophysical evidence for velocity and 

direction sensitivity of the human visual motion system using a selective adaptation paradigm, which can be 

understood as a specific transient functional inhibition (Weisstein, 1969). Subsequent research on human 

movement vision was inspired by the then exciting neurophysiological evidence of direction- and velocity-

dependent analysis of stimulus motion in the extrastriate visual cortex of the cat (Hubel and Wiesel, 1962; 

Baumgartner et al., 1964) and based on the observation, reported by Barlow and Hill (1963) in the rabbit and 

by Hubel and Wiesel (1965) in the cat, of the diminution of neuronal responses with repeated stimulation 

with the same motion stimuli. Pantle and Sekuler (1968), Sekuler et al. (1968) and Pantle (1970) used the 

same paradigm and found further empirical evidence for velocity- and direction-sensitive visual analysis. 

Using a similar psychophysical paradigm, Ritter et al. (1973) replicated and extended the findings of 

selective and specific adaptation effects of stimulus velocity and movement direction. Theinterocular 

transfer of these effects supported the hypothesis of a central site of stimulus analysis, i.e. where visual 

neurons receive inputs from both eyes (e.g., Hamilton and Lund, 1970; Raymond, 1993). These findings 

were mainly interpreted in the context of what was then known about primate visual cortical 

neurophysiology. Wurtz (1969) found a category of neurons in the striate cortex of alert, fixating monkeys 

which “were rapidly adapting and responded most vigorously to a moving stimulus” (p. 741) and also 

exhibited directionalselectivity; the most vigorous response was found for stimulus velocities of 8-12°/sec. 

The fundamental question, where in the visual cortex visual motion analysis is performed, was finally 

answered by Zeki (1974) who reported apparent specialisation for visual motion in an extrastriate cortical 



area in the posterior bank of the temporal sulcus in the rhesus monkey (area V5). This area receives a direct 

and highly convergent input from striate cortex and its neurons are motion selective and  also chiefly 

directionally selective. This important finding was later confirmed by many other authors and led, together 

with evidence ofcortical mechanisms of processing of other visual stimulus attributes, to the concept of 

functional specialisation in the visual cortex (Zeki, 1978). As defined later by positron emission 

tomography, the visual cortical area in question in humans is at the boundary of Brodmann areas 19 and 37 

at the temporo-parieto-occipital pit (Zeki et al., 1991). Irrespective of the question of whether V5/MT 

represents the ‘candidate’ area in the extrastriate visual cortex, based on the psychophysical, 

neurophysiological and also neuroanatomical evidence available before 1983, one would have predicted that 

injury to a particular extrastriate cortical structure chould result in a selective and specific impairment of 

movement vision. A major obstacle to this expectation had already been formulated by the 

neuroanatomistCampbell in 1905 (p. 145): “It is almost impossible for nature to restrict a damaging lesion to 

the cortex, and to the cortex only, in question”. Injury to the visual cortex usually causes more than one 

visual dysfunction. Visual movement perception may, therefore, be secondarily impaired, e.g. because of 

bilateral homonymous visual field defects or impaired visual contrast sensitivity, or because of other 

pathological conditions, for example, reduced visual acuity (Wood and Kulikowski, 1978), amblyopia 

(Simmers et al., 2011), optic neuritis (Barton et al., 1994; Raz et al., 2011), injury to the cerebellum (Ivry 

and Diener, 1991; Nawrot and Rizzo, 1995),  increase in light and movement thresholds as a non-specific 

sign of acquired brain injury (Mark and Pasamanick, 1958), and in association with various other visual and 

cognitive disorders after periventricular white matter damage (e.g., Weinstein et al., 2012), or in posterior 

variants of Alzheimer disease, accompanied with mental deterioration (Tsai and Mendez, 2009).  

 

However, there were a few earlier case studies with acquired brain injury which provided evidence for a 

special brain structure underlying visual movement perception. In 1911 Pötzl and Redlich reported a patient 

with bilateral occipital injury who was unable to perceive the movement of visual stimuli. The patient 

described her visual impression of moving objects as appearing at different successive positions. In contrast 

to this visual difficulty, she had normal colour and form vision. However, because she also suffered from a 

severe visual field restriction, her impairment could  perhaps be explained as an inability to maintain 

continuous fixation on a moving target as its visibility fluctuated when it moved within or outside the spared 

visual field. Goldstein and Gelb (1918) described a patient who had suffered anoccipital gunshot wound. His 

visual field was also concentrically restricted beyond 30° eccentricity; his visual acuity, colour vision and 

form discrimination were normal. In contrast, the patient had no impression of movement when confronted 

with moving visual objects but retained normal impression of movement with tactile stimulation. He stated 

that he could see visually presented objects at different positions, but never in motion between the positions. 

This experience did not depend on whether he maintained fixation on, or tracked, the moving target. In 

addition, he reported no perception of apparent movement. Similarly, one of Bodamer’s prosopagnosic 

patients, HA, who had also lost movement vision, reported only successive changes in object position but 



had no impression of movement. Because thepatient showed severe homonymous visual field restriction, 

and his visual acuity was 0.60, part of his movement visual disorder may also be accounted for as a result of 

these adjunct visual deficits (Bodamer, 1947). 

 

A complementary argument for acknowledging movement vision as a “special visual perception” had been 

put forward by Riddoch (1917, p. 15). He performed careful examinations of the visual field in a group of 

people with posterior brain injury after gunshot wounds. He found preservation of movement vision, but loss 

of form and colour vision, in homonymous parts of the visual field contralateral to the brain injury in nine 

out of ten patients. From his observations Riddoch (1917) concluded, “that movement [vision] should be 

given a place among the stimuli which are recognized as originating visual perceptions” (p. 56). It should be 

mentioned here, that Riddoch did not use standardised methods to assess movement vision in his subjects, 

but “oscillated” the stimulus to determine the fields of movement vision; the response criterion was being 

“immediately conscious of ‘something’ moving“ (p. 16). In this manner, Riddoch demonstrated that the 

scotomatous field was frequently smaller for moving stimuli than their static counterparts. Some authors 

have used Riddoch’s observation on this so-called statokinetic dissociation, in which a stimulus is perceived 

during movement but not with static presentation, as an argument for the selective preservation and 

representation of visual motion perception (e.g. Vaina, 1989), others as evidence for a type of “blindsight” 

(for a detailed discussion, see Kentridge and Heywood, 1999). However, the selective sparing of movement 

vision is insufficient to draw conclusions about the functional segregation of visual cortex since the neural 

basis of such sparing remains unclear.  The processing of movement stimuli is not confined to cortical 

mechanisms, in particular if direction and speed are not crucial parameters (Schiller and Stryker, 1974; 

Krauzlis, 2004). Moreover, as Zeki (1991) has pointed out, Riddoch presented positive evidence, i.e. loss of 

form and colour vision, but preservation of movement vision, but did not provide essential evidence of the 

converse, namely the loss of movement vision with preservation of colour and form vision. Furthermore, 

relative preservation of movement vision may result merely from the higher saliency of moving (and 

flickering), compared with stationary, stimuli which would have  a higher probability of detection (for a 

review, see Treue, 2003). Reports of statokinetic dissociations are not uncommon.  Homonymous visual 

field regions with depressed light sensitivity, impaired or even lost colour and form vision, but spared 

detection of moving visual stimuli have been often reported after occipital damage and are known as 

cerebral amblyopia (e.g., Poppelreuter, 1917/1991; Teuber et al., 1960; Schiller et al., 2006; Zihl, 2011). 

Furthermore, statokinetic dissociations have been reported in cases with compression of the optic nerve and 

optic tract (Zappia et al., 1971), in retinal pathologies (Safran and Glaser, 1980; Gandolfo, 1996, and it may 

even be provoked in normal visual fields (Hudson and Wild, 1992; Schiller et al., 2006). Thus preservation 

of (conscious) vision of moving stimuli but impaired detection of static stimuli is not just observed after 

injury to the striate cortex. But none of this implies that Riddoch (1917) had not reliably assessed movement 

vision as a (conscious) visual quality in his patients. That conscious movement vision is possible without 

striate cortex has been convincingly demonstrated by Zeki and ffytche (1998) in a single case suffering from 



visual field loss since early childhood.  Poppelreuter (1917/1991) used dissociation of function in his studies 

on visual disturbances after occipital damage, as did Riddoch (1917), to infer from his observations the 

genuine character of movement vision in the functional organisation of the visual brain. This methodological 

approach, with some qualification (Dunn and Kirsner, 2003), has proved fruitful in elucidating the selective 

character of perceptual and cognitive functions (Teuber, 1955; Jones, 1983). Nevertheless, Riddoch’s 

observations were not widely accepted despite their publication in prominent scientific journals and were 

neglected or dismissed by eminent authorities in the same field, for example, Holmes (1918, 1945) and 

Teuber (1960). The same was true of the few contemporaneous reports of disorders of movement vision in 

the German neurological and psychological scientific communities (Pötzl and Redlich, 1911; Goldstein and 

Gelb, 1918). The influence of such early work lay dormant for a number of years but interest in the neural 

basis of movement vision and its particular role in the brain organisation of visual perception were reignited 

with the development of new methods to study the morphological and neurophysiological characteristics of 

the visual brain. Robust evidence for the concept of functional specialisation in the visual cortex soon 

aroused (implicitly or explicitly) the expectation of a condition, which could result in  a selective and 

specific loss of movement vision, an observation that could be taken as direct evidence for the existence of a 

genuine ‘motion system’ in the visual brain. Such unequivocal evidence may be expected after experimental 

lesions to the cortical structure in question in monkeys, and after an acquired lesion in the respective cortical 

region in humans. It appears that nature was faster; the first reports on the effect of local experimental 

lesions in monkeys causing selective visual motion deficits appeared some years after the report of patient 

LM (Newsome and Paré, 1988; Newsome et al., 1985, 1988). 

 

The case of LM 

  

A brief history 

On a Tuesday at the beginning of May 1980 a neurologist in Munich contacted JZ because of a 43-year-old 

female patient presenting with complaints about an “unusual, if not bizarre visual disorder mimicking 

agoraphobia”. She insisted of being unable to see motion and experienced the world as “restless”, with 

people changing their position so suddenly and unexpectedly that she loses them despite all efforts to keep 

them in sight. She had great difficulties with crossing roads; shopping was almost impossible during the day 

when many people were in the supermarket. She always needed much time to find out “what is going on”. 

The neurologist completed his report by adding that the patient had suffered a bilateral brain haemorrhage in 

October 1978 and had spent several months in a neurological rehabilitation centre, unfortunately without 

significant remediation with respect to the visual disorder. Although he assumed that the visual disorder in 

question may have been caused by the haemorrhage in the posterior brain, he could not exclude a 

psychogenic component because he has never heard about such a strange visual disorder. JZ gave him a date 

for the neuropsychological assessment of the patient for the following week. A rather shy lady presented 

herself at the Max Planck Institute of Psychiatry. When asked for her major problems, she reported that 



since her brain haemorrhage she could no longer see movements. “People, dogs, and cars appear restless, are 

suddenly here and then there, but disappear in between. Very often I don’t even know where they have 

jumped, because they move too fast, so I lose them quite often”. Fluids appeared frozen, like a glacier, 

which caused great difficulty, for example, with pouring tea or coffee into a cup; filling a glass with water 

became impossible. Most events were much too fast for her and she needed a considerable time to perform 

even simple routine activities, such as cutting bread or using the vacuum cleaner. She could no longer use 

the tube, bus or tram, which severely restricted her mobility. She also found it very irritating to meet friends 

and have a chat with them because she could not respond in time to their handshake and because she found 

their moving hand disturbing. In addition, the experience of talking to them was very unpleasant because she 

had to avoid watching their (changing) facial expressions while speaking, in particular, their lips “jumped 

rapidly up and down, and I was very often unable to listen to what they were saying”. In contrast, when 

people, faces, objects and cars were stationary, she had no difficulty in seeing them “clearly” and could 

recognise them immediately and accurately. The perception of colours had not changed, and she reported no 

difficulty with perceiving the position of objects and judging correctly both how far away they were and the 

distances between them.  She reported that reading took more time than before, but writing had become 

somehow difficult. She did not show any psychopathological symptoms, in particular depression, anxiety or 

agoraphobia.  

LM’s own detailed report of her visual difficulties indicated that her visual disorder was probably both 

specific and selective. She was fully aware of her visual disorder and its consequences in everyday life 

activities, which she correctly attributed to the brain injury she had suffered, without any sign of 

anosognosia. Her description of motion blindness resembled closely that of the patients reported by Pötzl 

and Redlich (1911) and Goldstein and Gelb (1918). 

Data on LM’s visual capacities and movement vision profiles have been reported in detail elsewhere (Zihl et 

al., 1983; 1991; Zeki, 1991; Rizzo et al., 1995; Heywood and Zihl, 1999). We will focus here on two aspects 

of the significance of the case of LM: the specificity and the selectivity of her visual disorder, and compare 

them with other cases with impaired motion vision, before and after 1983. Specifity means that LM’s 

motion blindness is not the result of other visual or non-visual disorders, which could putatively explain her 

severe impairment in detecting moving visual stimuli and discriminating their directions and velocities. 

Visual fields for detection of light, critical flicker fusion (CFF) and detection of simultaneously presented 

stimuli in both hemifields, colour and form recognition, visual acuity and contrast sensitivity, temporal 

separation and temporal order of visual stimuli, visual localisation and stereopsis, and visual recognition 

were all normal on formal testing. Furthermore, attention (apart from non-specific cognitive slowing; see 

below), visual and verbal memory and cognitive flexibility were not impaired; in particular, there were no 

signs of perseveration. In addition, LM showed no oculomotor or hand motor dysfunctions that could 

interfere with visually guided eye- and hand-movements. Her eye movement patterns during inspection of a 

scene and in reading were normal (Figs. 1 and 2).  



 

Figure 1: Oculomotor scanning patterns during the inspection of a scene (a) in an age-matched normal subject (b) 

and in LM (c). Dots indicate fixation positions, lines saccadic eye shifts. Both subjects reported all relevant items. 

Scanning time was 13.6s for the normal subject and 26.6s for LM. Note similar correspondence of scanning patterns 

to the spatial configuration of the scene in both subjects. 



 

Figure 2: Reading eye movement patterns in an age-matched normal subject (a; same as in Fig. 1b) and in LM (b). 

Dots indicate fixation positions. Reading performance in the normal subject was 156 words per minute (wpm), in LM 

72 words per minute. The slowness in LM can be explained by a higher number of fixation repetitions (22.7% in LM 

vs. 4.3% in the normal subject) and in longer fixation durations (0.31 s on average in LM vs. 0.22 s in the normal 

subject).  

LM had no difficulties with understanding verbal instructions and keeping them in mind during testing 

sessions, with responding to stimuli verbally or with hand motor responses, switching between stimulus and 

response categories, with commenting on her responses and reporting lucidly her visual impressions despite 

mild anomic aphasia. Taken together, these facts support the notion that the motion blindness in LM cannot 

be explained by other dysfunctions, either visual or non-visual in nature, but represents a strikingly specific 

visual disorder. Selectivity of LM’s motion blindness refers to the fact that her motion blindness was the 

only and exclusive deficit caused by her bilateral injury to the ‘visual brain’. Part of the evidence has already 

been described above. In addition, colour vision, form and object vision, visual spatial functions, including 

visual localisation, distance and depth perception, object and face perception, visual recognition of objects, 

faces, letters and places, and reading and calculation were not impaired. Writing was not impaired, but 

slowed because of interference with vision of the motion of the pencil and hand. Similarly, visuo-

constructive abilities were slowed, but LM did not exhibit any symptoms of ideomotor or ideational apraxia. 

In summary, motion blindness in LM presents as a highly selective visual disorder. Fig. 3 shows the 

outcome of an experiment on movement vision performed in 1985.  



 

Figure 3: Proportion of “no” (grey bars), “uncertain” (hatched bars), and “yes” responses (dark bars) of LM in 20 

trials in stimulus velocities ranging from 2°/s to 20°/s. Moving path length was 20°. LM’s task was to indicate 

verbally, whether she can see the stimulus in motion (yes responses), was not sure about motion (uncertain 

responses) or could not see motion at all (no responses; 10 trials per velocity). Presentation time was unlimited, but 

was usually between 2 and 5 s. Note increase in “no”- and decrease in “yes” responses with increasing velocities. 

Table 1 summarises the various components of vision and movement vision studied in LM and reported 

between 1983 and 2000 in 12 research papers and one book chapter, with 25 different authors involved.  

Table 1: Summary of outcomes of visual (a) and movement vision (b) assessment in LM. 

  +: normal, (+) mild impairment, (-) moderate impairment, - loss; *: secondarily affected.  

 DSS detection: detection of stimuli in a double simultaneous stimulation condition. 

 

 

a) Visual functions and capacities 

Visual fields      + 

Visual acuity (far and near)     + 

Spatial contrast sensitivity     (+) 

Temporal contrast sensitivity    (+) 

Critical flicker fusion     + 

Temporal separation     + 

Colour discrimination     + 

Stereopsis       (+) 

Visual reaction time     (-) 

DSS detection      + 

Visual localisation      + 

Visual form discrimination     + 

2-D and 3-D shape perception    + 

Visual recognition      + 

 



(b) Movement vision 

Movement detection in the foveal visual field  - 

Movement detection in the peripheral visual field  - 

Discrimination of movement direction   (-) 

Movement vision, > 6°/s     - 

Motion prediction (horizontal direction), > 6°/s  - 

Coherence of visual motion perception, > 6/s  - 

Visual search for moving stimulus    - 

2-D and 3-D shape and structure from motion  (-) 

Apparent motion      (-) 

Motion aftereffects      - 
Biological motion perception    +   

 

It becomes clear that the study of LM contains a comprehensive list of experimental conditions, including a 

follow-up study (Zihl et al., 1991) in which some of the experiments reported in the first paper (Zihl et al., 

1983) were repeated with nearly identical outcomes (Fig. 4).  

 

Figure 4:  Mean subjective velocities for LM in 1982 (circles) and in 1990 (diamonds), and in an age-matched normal 

subject (squares; same as in Figs. 1b and 2a; 10 trials per velocity) as a function of stimulus velocity calculated from 

motion prediction responses (modified after Zihl et al., 1983, 1991). LM was instructed to press a key to start the 

target in motion, and to press it again when she judged that the now invisible target had reached a red marker 

behind a mask. The path of horizontal movement was 10°; the length of the path behind a mask was 20°. Note that 

motion prediction accuracy in LM dropped for stimulus velocities > 6°/s on both occasions. 

This fulfils an essential prerequisite for valid and reliable research, for which reproducibility represents a 

“cornerstone of science” (Simons, 2014, p. 76). In none of the earlier or later studies was movement vision 

tested in so many conditions to unequivocally establish specificity and selectivity of visual motion 

dysfunction or visual motion blindness. However, these other studies have added further evidence about 

various aspects of visual motion perception (see Table 2, for a summary), for example, dissociation of 3D-

structure from motion and stereopsis (Vaina, 1989); impairment in visual motion perception in the hemifield 

contralateral to unilateral posterior brain injury (Plant and Nakayama, 1993; Plant et al., 1993; Schenk and 

Zihl, 1997a, b; Greenlee and Smith, 1997; Braun et al., 1998); direction-selective visual motion impairment 



(Blanke et al., 2003a); dissociation of processing of various types of visual motion stimuli (Billino et al., 

2009; Vaina et al., 2010), and the transient nature of visual motion blindness (Cooper et al., 2012). Although 

there is no reason to believe that the reported visual motion impairments in patients with uni- or bilateral 

posterior brain injury are non-specific, it is not immoderate to remark that none of the other patients reported 

in the literature has been documented in such detail with respect to the specificity and selectivity of the 

disorder as LM. Of course, selectivity cannot be expected in each case because it depends on the extent of 

brain injury. However, specificity should be demonstrated in each case, otherwise impaired movement 

vision may, at least in part, be caused and thus explained by other visual and/or by non-visual deficits and 

would then not represent a genuine visual deficit. 

 

Interestingly, experimental data from normal observers in various movement vision tasks underline the 

particular character of LM’s specific visual disorder. For example, Kennedy et al. (1972) reported very 

precise visual velocity estimation in the range of 0.8 deg/sec to 11 deg/sec. High accuracy in visual motion 

prediction in normal subjects was reported by Wiener (1962) and Rosenbaum (1975); LM showed, in 

contrast, severe impairment in both tasks. Sekuler and Ball (1977) found that the predictability of movement 

direction improved performance in normal subjects by about 20%. LM did not benefit either from 

predictability or from feedback. Thus, LM’s motion vision impairments can be characterised as severe. 

Clatworthy and Frisby (1973) investigated the effect of adaptation to real movement on the perception of 

subsequent apparent movement and found a marked carry-over effect of adaptation. LM experienced no phi-

movement, except in the short-range (Hess et al., 1989), suggesting that the same movement-detecting 

mechanism mediates both real and apparent movement phenomena (Gregory and Harris, 1984; Newsome et 

al., 1986). Finally, Anstis and Ito (2010) have shown that smooth pursuit eye-movements are guided by real 

stimuli and not by retinal signals. Therefore, LM’s difficulty with visually-guided smooth pursuit eye-

movements is more likely of central origin, caused by her cerebral motion blindness, and not by dysfunction 

of her peripheral visual system. 



Table 2: Synopsis of cases reported with motion blindness or impaired movement vision (1911-2014). NR: not assessed; n: number of cases; BI: brain injury, uni, bil: uni- 

and bilateral brain injury, respectively; VF: visual field, uni-, bil: uni- and visual field defect (VFD), respectively; CS: contrast sensitivity, Stereo: Stereopsis, Vis loc: visual 

localisation, Mov vision: movement vision. +: normal, -: impaired/lost. SFM: Structure-from-motion; CM: coherent motion. CL: contralateral. Visual acuity refers to decimal 

near acuity (1.0 ~ 100%). * 10 subjects were also included in Greenlee et al. (1995). **31 subjects were also included in Schenk & Zihl (1997a); 2 subjects exhibited bilateral 

posterior brain injury. 

 

Author(s)/year   n BI VF  Acuity  CS stereo  vis loc  movement vision    

Pötzl & Redlich (1911)  1 bil bil  NR  NR NR  NR  subjective report 

Goldstein & Gelb (1918) 1 bil bil   +  NR NR  NR  subjective report 

Bodamer (1946)  1 bil bil  0.50  NR NR  NR  subjective report 

Vaina (1989)   18 uni NR  +  NA 8 -  NR  velocity comparison and SFM impaired 

Plant et al. (1993)  11 uni 7  +  + NR  NR  elevated thresholds for motion direction 

in the CL hemifield 

Greenlee et al. (1995)  23 uni 2  NR  NR NR  NR  threshold elevation for velocity 

discrimination 

Greenlee & Smith (1997*) 21 uni 3  NR  NR NR  NR  threshold elevation for direction of  

motion and speed discrimination 

Schenk & Zihl (1997a)  32 uni 5  +  NR NR  NR  impaired CM perception 

Schenk & Zihl (1997b**) 39 37/2** 7  +  NR NR  NR  impaired form-from-motion perception  

Braun et al. (1998)  9 uni 2  +  NR NR  NR  threshold elevation for CM in the CL 

hemifield  

Billino et al. (2009)  23 uni 4  +  + +  NR  impaired perception in translational  

               motion (n=3) 

Blanke et al. (2003)  11 uni 7 with VFD NR  NR NR  NR  impaired discrimination of motion 

direction  

Vaina et al. (2010)  57 uni NR  NR  NR 25 -  +  impaired movement vision of different  

               type in 77% of cases 



 

3.   Is there a visual motion ‘centre’ or module in the brain? 

 

LM’s bilateral brain injury was caused by thrombosis of cortical veins in cerebral sinovenous 

occlusion and affected the middle and superior temporal gyri, extending into the lateral 

occipital gyri. Thus, the bilaterally symmetric brain injury, which was more extensive on the 

left side, was mainly located in the lateral occipital cortex and the underlying white matter 

with the main focus in the upper (cranial) banks of the anterior occipital sulcus (Zihl et al., 

1983, 1991). This is consistent with the location of area V5/MT and its surroundings in 

primates and humans, which occupy the temporo-parieto-occipital pit at the boundaries of 

Brodmann areas 19 and 37 (for a review, see Zeki, 1991). Later studies have confirmed that 

the principal location of brain injury causing impaired visual motion perception is in the 

region bordering lateral occipital and superior temporal cortex (Plant and Nakayama, 1993; 

Greenlee et al., 1995; Greenlee and Smith, 1997). However, as Blanke et al. (2003a) have 

shown, injury to the posterior parietal cortex may also cause dysfunction of motion vision. 

Similar observations have been reported by Vaina et al. (2010), who compared behavioural 

and morphological MRI-data in 57 patients with visual motion impairments after stroke. 

Differences in task performance, including direction and speed discrimination, radial and non-

radial motion coherence detection, and motion discontinuity detection were correlated with 

injury localisation. Occipito-temporal and (pre-)frontal injury was not associated with 

impaired task performance, but occipito-parietal injury (areas VIP, AIP, LIP and MIP) was 

associated with substantial impairments. The fact, that cortical areas other than V5/MT are 

essentially involved in visual motion processing is not a compelling argument against the idea 

of a single structure in the extrastriate visual cortexwhich is crucial for the processing of 

visual motion signals and thus for visual motion perception. In addition, interactions between 

motion processing units should also be considered, i.e. with respect to white matter injury 

(Nishida, 2011; see also discussions in Zihl et al., 1983, and Zeki, 1991). Considering the 

combined evidence it appears, however, that V5/MT is the most probable candidate as the 

‘visual motion centre’. Neurophysiological and neurobehavioural data from primates (e.g., 

Movshon et al., 1992) and brain imaging (e.g., Watson et al., 1993; Aspell et al., 2005), as 

well as stimulation data from humans (e.g., Beckers and Zeki, 1995; Becker et al., 2013), are 

consistent with this view. Further evidence comes from a study by Marcar et al. (1997) who 

compared LM’s motion blindness with that of macaque monkeys with area MT removed. 

They found a close correspondence between patterns of impairments indicating that LM’s loss 



of movement vision is attributable to total loss of, or extensive damage to, a cortical visual 

area that is the human equivalent of area MT and perhaps its adjacent areas. In addition, LM 

showed a similar deficit in a motion coherence task (Baker et al., 1991) to monkeys with 

bilateral MT ablation (Newsome and Paré, 1988; Fig. 5).  

 

Figure 5: Comparison of LM’s performance in a motion-coherence task with that of MT-lesioned 

monkey (Newsome and Paré, 1988). a: Threshold coherence values for the Movshon noise stimulus 

as a function of spatial stimulus displacement for LM (a, filled circles) and an age-matched normal 

subject (open circles; same as in Fig. 4). b: same as a, but for monkeys before (open diamonds) and 

after acute MT lesion (filled diamonds). Presentation time was 1 s. The subjects were required to 

indicate the perceived (or guessed) direction of stimulus motion (left or right).  Note the similarity to 

the effect of brain injury on motion coherence perception (modified after Baker et al., 1991).  

Moreover, Britten et al. (1992) and Celebrini and Newsome (1994) have convincingly shown 

that psychophysical data and neuronal responses in monkey MT show high correspondence in 

a direction discrimination task; sensitivity in these neurons was very similar to the 

psychophysical sensitivity at the behavioural level. Thus, the combined evidence strongly 

supports the idea of at least regional specialisation for movement vision in extrastriate visual 

cortex (Vaina et al., 2005), with an additional role of the cerebellum (Ivry and Diener, 1991; 

Nawrot and Rizzo, 1995) which is poorly understood.  

 



4. Behavioural consequences of visual motion blindness 

 

As mentioned earlier, LM was referred by her neurologist because of a visual disorder, most 

likely caused by brain injury and a behavioural disorder, namely agoraphobia. The neurologist 

did not assume any association between the two disorders. In fact, her motion blindness 

caused severe impairments in all activities that are either guided by, or are associated with, 

movement vision. Pursuit eye-movements were only possible for slowly moving stimuli (Zihl 

et al., 1983; Fig. 6a).  

 

Figure 6: a: Recordings of LM’s smooth pursuit eye movements to a target moving either at 4°/s 

(upper trace) or at 8°/s (lower trace). Note deterioration of smooth pursuit at the higher velocity 

(modified after Zihl et al., 1983; ©Oxford University Press with permission). b: Handwriting with eyes 

closed (upper writing) and eye open (lower writing). Time taken for writing was 4s with eyes closed 

and 26s with eyes open (modified after Heywood and Zihl, 1999, ©Psychology Press with 

permission). Note better writing with eyes closed.  

Reaching for and grasping of moving objects was difficult, as was manipulating objects with 

her hands moving. Walking was difficult because LM could not watch her moving feet 



without being irritated; in addition, she was distracted (if not captured) in an uncomfortable 

way by people approaching or overtaking her. As a consequence, she used to stop walking 

and waited until people were out of sight. Interestingly, in normal observers self-motion, such 

as walking, apparently subtracts perceived visual speed (Durgin et al., 2005), which should 

have supported LM’s coping with moving signals, but it did not.  Furthermore, she had 

difficulties keeping her body in balance because of interference of visuo-vestibular 

interactions with visual stimulus movement (Paulus and Zihl, 1989). When only a single 

person approached her, she could detect the “restless” person, but could not tell a person’s 

direction of movement, consistent with impaired motion-in-depth perception (Zihl et al., 

1983; Rizzo et al., 1995). The presence of additional stationary people, perhaps providing 

figure-ground segregation, was not helpful which is consistent with the observation that 

adding static noise to a moving stimulus severely affected her movement direction judgments 

(McLeod et al., 1996; Shipp et al., 1994). These difficulties caused a severe visual handicap in 

all activities-of-daily-living including personal hygiene, cooking, cleaning, shopping, using 

public transport, and meeting friends. Nevertheless, LM learned to cope successfully with 

these adverse conditions by daily systematic practice under supervision over several months. 

For example, she learned to overcome her difficulties with pouring water, tea, coffee or milk 

in a cup or glass, by using her intact distance perception to stop pouring fluids when they 

reached about 1 cm below the rim. She had difficulties slicing bread, because of the 

movement of the knife, but learned to put the knife in theappropriate position and then just 

make the cut without observing the knife. She chose to shop when the supermarket was nearly 

empty but never used a trolley; when somebody else appeared in her field of view, she 

stopped and waited until the person had passed her. She learned to use again public transport 

by avoiding watching people entering or alighting and following the last passenger in front of 

her while looking only at his or her back, i.e. the body part that was least “restless”. When she 

was eventually in the compartment of the tube, bus or tram, she searched for a handhold and 

kept her fixation at a given position until exit. She got to know new friends and met with them 

regularly for various outdoor activities. She informed them in advance that she is unable to 

look at their face when they are speaking because otherwise she has difficulty in listening to 

what they are saying. This is consistent with the interference she experienced between hearing 

and facial and especially lip movements (see Campbell et al., 1997). As with self-motion, 

moving faces did not make facial recognition easier for LM, as in normal observers (Lander 

and Chuang, 2005), but more difficult. This development of successful coping strategies to 

compensate for her inability to process visual motion stimuli is in sharp contrast to the 



chronic nature of her motion blindness, which was found essentially unchanged when 

examined 8 years after the first report (Zihl et al., 1991). Coping strategies consisted of a 

mixture of active adaptation and avoidance behaviour. Avoiding watching moving stimuli had 

a positive effect on guiding finger- and hand- movements (Zihl et al., 1983) and on writing 

(Heywood and Zihl, 1999; Fig. 6b). Although LM became less anxious in public over the 

years she still avoided crowded places unless she was in company, when she sought 

reassurance by linking arms while walking. Sometimes she was, however, still frightened, for 

example, when people, dogs or cars suddenly “appeared or disappeared” in front of her. 

However, she never showed phobia in the psychiatric sense of the term, as did a patient 

reported by Blanke et al. (2003b), but took her unusual and often uncomfortable visual 

experiences with great patience and humour. 

  

5. Conclusions and final comments 

 

The main outcome of the comprehensive assessment of LM, including neuropsychological 

examination, testing of visual functions and capacities, and, in particular, movement vision, 

revealed a highly specific and selective loss of visual motion perception and, consequently, 

impaired visually guided activities that depend crucially on the ability to process motion 

signals. The terms ‘motion’ blindness” and ‘cerebral akinetopsia’ appear more than 

appropriate to denote this unusual visual disorder, even though LM possessed some kind of 

residual movement vision. The severity of LM’s disability is underlined by the fact that she 

was even more impaired in moving stimulus conditions that are known to enhance perception 

and guidance of behaviour in normal observers. Combined psychophysical, 

neuropsychological, neuroanatomical, neurophysiological and behavioural data after 

experimental lesions in primates support Riddoch’s (1917) and Gibson’s notion (1954), that 

movement vision is a special visual perceptual quality. This assumption is further supported 

by developmental findings on the very early existence of visual motion sensitivity (e.g., 

Freedland and Dannemiller, 1987; Aslin and Shea, 1990; Armstrong et al., 2011; Mohring et 

al., 2012), indicating, that motion vision may possess an innate basis, and thus is an inherent 

capacity of the visual brain. 

 

There is agreement that movement vision, like colour vision, is subserved by an extrastriate 

cortical structure specialised for processing motion signals. It appears that this structure 

corresponds to visual area V5/MT, and its connected satellite regions. There is evidence of a 



constellation of visual areas involved in the processing of motion signals of a particular 

nature. This would explain dissociations of visual motion impairments and thus 

heterogeneous patterns of deficits in other patients with posterior brain injury. For example, 

motion signals can be carried by variations in luminance or colour or carried by differences in 

contrast, texture and disparity (first- and second-order motion, respectively). The perception 

of such motion can be differentially affected by brain damage (Greenlee and Smith, 1997). 

Similarly,, despite the severity of L.M.'s disorder, she is able to perceive some complex forms 

of motion normally. For example,, when small lights are attached to the joints of an actor who 

performs actions while being filmed in the dark, the pattern of moving dots defines so-called 

biological motion such as walking, running and jumping (so-called Johansson figures). 

Despite the impoverished nature of the display and the small number of lights visible in the 

dark, their moving configuration provides compelling percepts of human actions.  L.M. can 

readily identify such actions (McLeod et al., 1996). There is, however, evidence that the 

perception of biological motion can be selectively disturbed as a result of parietal damage 

(Battelli et al., 2003). 

 

Although it seems still an open issue as to whether V5/MT is the crucial structure for 

movement vision, it appears that in LM this structure and the majority of other structures 

involved in the processing of other kinds of motion signals have been destroyed by the 

bilateral symmetrical brain injury she suffered (see also Marcar et al., 1997). The extent of the 

injury, encroaching on the cluster of brain areas concerned with motion processing, may also 

explain why LM, unlike non-human primates where the ablation is largely restricted to 

V5/MT, did not show any recovery of movement vision at all despite intensive practice with 

coping strategies.  

 

Of course, selectivity of a functional deficit in humans depends heavily on the size of the 

associated brain injury. Such selectivity will be the exception, not the rule, since brain injury 

is usually larger than the size of the cortical structure in question (Campbell, 1905). In this 

respect the selectivity of motion blindness in LM was clearly such an exception; one would 

have predicted many more functional deficits than were found. The evidence for selectivity 

does, however, not come from the anatomical analysis of LM’s brain injury, but from a very 

comprehensive behavioural assessment of her visual and non-visual functions and abilities. 

This detailed assessment was, in addition, the fundamental basis for the proof of specificity of 

motion blindness in LM. It seems reasonable, but also important from a methodological point 



of view, to consider at least a critical minimum of assessment of visual and cognitive function 

in patients with impaired motion vision to guarantee an adequate degree of specificity.  

 

In conclusion, LM has made a very significant contribution to our understanding of visual 

movement perception and the underlying brain functions and structures. Because of the 

selectivity and specificity of her motion blindness, she represents undoubtedly a ‘key’ case in 

the neuroscience of vision. In this sense, her case was indeed a moving story: on the one hand 

she moved research on movement vision, on the other her story moved everybody who 

participated in the many experiments on which she has collaborated with great enthusiasm. 

For this engagement, we express our deep respect and our gratitude to her. LM fell in a 

comatose state for two weeks as a result of a second brain haemorrhage, and died on the 20
th

 

of January, 2003. 
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