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Abstract 13 

The co-seismic and post-seismic behaviour of pyroclastic ash deposits and its influence on slope 14 

stability remains as a challenging subject in engineering geology. Case studies in volcanic areas of the 15 

world suggest that soil structural changes caused by seismic shaking results in landslide activity. It is 16 

critical to constrain how this kind of soil behaves during coseismic ground shaking, as well as the 17 

effects of dynamic loading on shear strength parameters after shaking. Direct shear tests carried out 18 

on cineritic volcanic materials from the Pudahuel Ignimbrite Formation in central Chile show a direct 19 

effect of cyclic loading on the shear strength and in a minor extent on the rheology. A high apparent 20 

cohesion found in monotonic shear tests, likely attributed to suction and cementation, is destroyed 21 

by dynamic loading. At the same time, the internal friction angle rises. This defines a differential 22 

post-dynamic behaviour depending on normal effective stress conditions, which favour the 23 

occurrence of shallow landslides. These results show how the use of shear strength parameters 24 

obtained from standard monotonic direct shear tests may produce misleading results when 25 

analyzing seismic slope stability in this type of soils. 26 
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 27 

1. Introduction 28 

 29 

Pyroclastic ash deposits are widely distributed in volcanic regions, presenting complex and 30 

differential geotechnical behaviour during earthquakes. While they tend to be competent 31 

foundation soils in aseismic conditions, their behaviour during seismically-induced dynamic loading 32 

can be problematic. For example, in central Chile Pleistocene, volcanic deposits are widespread and 33 

were associated with higher levels of damage in buildings during the 1985 (Mw 7.8) Valparaiso and 34 

the 2010 (Mw 8.8) megathrust earthquakes (Leyton et al., 2011, 2013).  Studies of the geotechnical 35 

behaviour of these types of soils have shown that they are characterized by high shear strengths 36 

(cohesion up to 90 kPa and friction angles of 35º-40º in unsaturated samples), with an important 37 

component of cohesion due to the presence of weak cements and/or negative pore pressures (i.e. 38 

apparent cohesion), which may be destroyed by saturation or seismic shaking (e.g. Bommer et al., 39 

2002; Rolo et al., 2004 and references therein).  In addition, when saturated they can be susceptible 40 

to liquefaction (e.g. Gratchev and Towhata, 2010). Such soils have proved to be highly prone to 41 

earthquake-induced landslides, with documented examples from a variety of locations, including 42 

Central America (Evans and Bent, 2002), Japan (Gratchev and Towhata, 2010; Chigira et al., 2013) 43 

and Patagonia (Sepúlveda et al. 2010).  44 

 45 

Given the widespread occurrence in different seismogenic settings and susceptibility to failure of 46 

pyroclastic hillslope deposits, it is critical to constrain how they behave during coseismic ground 47 

shaking, as well as the effects of dynamic loading on soil structural change and hence shear strength 48 

parameters due to precursory seismic events. However, this has been challenging due to the 49 

difficulties in generating representative dynamic stress conditions under laboratory conditions (e.g. 50 

Bray and Travasarou, 2007; Wasowski et al., 2011). In a slope, seismic loading generates both 51 

dynamic normal and shear stresses, which has conventionally proven to be difficult to reproduce 52 
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experimentally. However, recent technological advances and experimental work have led to 53 

significant advances in our understanding of coseismic strain accumulation in hillslopes (e.g. Schulz 54 

and Wang, 2014; Brain et al., 2015).  55 

 56 

In this paper we present the results of a programme of geotechnical tests undertaken to analyse the 57 

dynamic and post-dynamic behaviour of pyroclastic ash deposits from the Pudahuel Ignimbrite 58 

Formation in central Chile (Fig. 1). This formation was observed to be associated with both local site 59 

effects and earthquake-induced landslides during large subduction earthquakes in 1985 and 2010 60 

(Leyton et al., 2011; Sepúlveda et al., 2015).  In this study we have utilised a dynamic back pressured 61 

shear box (DynBPS) that is able to replicate dynamic normal and shear stress states in slopes under 62 

laboratory test conditions. 63 

 64 

 65 

2. Materials & Methods 66 

 67 

2.1 The Pudahuel Ignimbrite deposits 68 

 69 

The Pudahuel Ignimbrite is an Upper Pleistocene stratigraphic unit mainly composed of pyroclastic 70 

ash deposits, widely distributed in the valleys of Maipo and Cachapoal rivers in central Chile (Fig. 1) 71 

as well as the Yaucha and Papagayos rivers in Argentina. It corresponds to deposits interpreted to 72 

originate from a single huge, violent eruption, or a series of closely spaced eruptions dated at 73 

450,000 ± 60,000 years B.P. (Stern et al., 1984), from the Maipo volcanic complex (Diamante 74 

Caldera, Fig. 1) located on the border of Chile and Argentina at 34°S 10´W. The unit is defined in the 75 

district of Pudahuel in western Santiago (Maipo valley, Fig. 1), where rhyolitic pumice and ash tuff 76 

deposits are found in the upper 10 to 40 m (Wall et al., 1999; Wall, 2000; Rebolledo et al., 2006). The 77 

deposits have been described as a basal ash fall layer overlain by a thick (>30 m) pyroclastic ash flow 78 
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and a <5 m thick uppermost pyroclastic surge (Rebolledo et al., 2006). The water table in Pudahuel is 79 

found at c. 14 m depth, indicating that part of the deposit is saturated. Petrographic and 80 

geochemical analyses by Stern et al. (1984) showed that similar deposits in a hilly area known as 81 

Tierras Blancas (“white land”) near the town of Machalí in the Cachapoal valley (Fig. 1) and other 82 

places downstream correspond to the same deposit. The total volume for the pyroclastic flows was 83 

estimated to be 450 km3 (Stern et al., 1984).  84 

 85 

2.2 Sample collection and lithological characterisation 86 

 87 

In this study, undisturbed block samples (e.g. ASTM D7015) were collected from Machalí (Tierras 88 

Blancas) and Pudahuel deposits (Fig. 1) in Chile and transported to UK for testing in appropriate 89 

protected conditions to prevent disturbance and desiccation. Both samples can be described as 90 

whitish volcanic ash with pumice fragments and occasional lithics. The soil in-situ is dry, with 91 

moisture contents below 5 %. The soil bulk density at natural moisture content is close to 1 g/cm3. 92 

Whilst it is able to form stable steep cuts and even unsupported caves and small tunnels in Machalí 93 

(Fig. 1), it shows very friable behaviour. Grain size analyses undertaken by sieving and laser 94 

granulometry (Fig. 2) show that in both cases the dominant  grain size is sand, with 10 - 20% of silt 95 

and very little clay (< 1%). The soil is slightly coarser at Pudahuel, but in both cases the amount of 96 

gravel is less than 5%, mainly resulting from the presence of gravel-sized pumice fragments.  97 

 98 

2.3 Testing Equipment 99 

 100 

Direct shear strength tests were carried out at the Laithwaite Landslide Laboratory at Durham 101 

University in the UK.  In this study we use two direct shear testing machines, both manufactured by 102 

GDS Instruments in the UK. Firstly, to undertake standard monotonic direct shear tests, we used a 103 

Back-Pressured Shear Box (BPS). Secondly, to assess dynamic behaviour we used the new Dynamic 104 



5 
 

Back-Pressured Shear Box (DynBPS).  The machines are located in a climate-controlled laboratory 105 

that regulates both temperature (± 1°C) and relative humidity (± 1%). Both machines subject 106 

samples with plan dimensions of 100 × 100 mm and a height of 20 mm to direct shear, which we 107 

consider to be the most representative of landslide rupture in our field settings.  Experiments can be 108 

undertaken in either a dry or a saturated state.  The sample is situated in a water bath within a 109 

sealed pressure vessel.  If the test is to be undertaken in dry conditions the water bath is left dry.  If 110 

the test is to be undertaken under saturated conditions the water bath is filled and pressurised, 111 

allowing the pore water pressure to be measured and controlled via a pressure controller.   112 

In the BPS, as with a conventional direct shear machine, the normal stress is applied via a vertical 113 

ram acting on the full cross-section of the sample.  In this case the applied force, which is applied via 114 

a piston regulated by a pressure controller, is measured with a load cell.  Deformation is measured 115 

via LVDT. The apparatus permits deformation under stress (or load), or strain (displacement) control.  116 

In conjunction with the pressure controller for the water bath and a pore pressure transducer, it is 117 

possible to control effective normal stress.  Shear stress is applied as per a conventional direct shear 118 

machine, in this case via a stepper motor.  The applied load is measured with a load cell, permitting 119 

control of stress, load, displacement or strain.  The maximum allowed shear displacement is 20 mm.  120 

In the DynBPS machine, both vertical and shear stress can be applied under dynamic conditions up 121 

to 5 Hz.  Dynamic load can be controlled in terms of displacement or stress; the dynamic vertical and 122 

horizontal loads are applied separately. More details on the testing equipment are provided by Brain 123 

et al. (2015). 124 

2.3  Laboratory Testing Programme 125 

In this series of experiments, the undisturbed block samples were carefully sub-sampled to the 126 

dimensions of the testing cell in preparation for laboratory testing. Samples with gravel-size pumice 127 

fragments were excluded for testing. The majority of tests for Machalí samples were undertaken in 128 
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an unsaturated state, replicating the observed conditions at the site. In contrast, for the Pudahuel 129 

samples, and a small number of the Machalí samples, saturated tests were undertaken.  130 

A total of 21 experiments on undisturbed samples, and 12 experiments on remoulded samples, were 131 

undertaken (Tables 1 and 2, Figs. 3, 4 and 5).  In the case of the Machalí undisturbed samples, these 132 

consisted of ten monotonic and five dynamic tests. For the Pudahel samples, three monotonic and 133 

three dynamic tests were performed on undisturbed samples.  In addition, a series of three 134 

monotonic and three dynamic tests on remoulded samples were undertaken for each site. The 135 

results can be compared with shear strength tests that had been previously undertaken by Lagos 136 

(2003) and Rebolledo et al. (2006) on the same material, including several monotonic direct shear 137 

tests on remoulded samples from a range of sites and one consolidated isotropic undrained (CIU) 138 

triaxial test series in an undisturbed sample from Pudahuel.  139 

To obtain the shear strength failure envelopes, a series of monotonic direct shear tests were 140 

undertaken on undisturbed and remoulded samples from Machalí under both unsaturated and 141 

saturated conditions, and under saturated conditions for the Pudahuel samples, according to local 142 

site conditions (Table 1).  In these tests the samples were consolidated to a predetermined normal 143 

total (and, in the case of the saturated samples, effective) stress, and then sheared at a constant 144 

displacement rate of 0.1 mm/min in fully drained conditions. During testing, measurements were 145 

made of normal stress and strain, and shear stress and strain.  In the case of the saturated tests, the 146 

pore water pressure was also recorded to permit calculation of normal effective stress. 147 

The aim of the dynamic tests was not to generate failure under dynamic conditions.  The imposed 148 

stresses during the dynamic phases of the tests were designed to keep the stress path below the 149 

static failure envelope.  In each case the aim was to investigate whether dynamic testing that did not 150 

cause sample failure had an impact on monotonic behaviour.  Thus, after dynamic loading the 151 

samples were taken under monotonic loading conditions (i.e. through conventional direct shear) 152 
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until displacement reached full travel.  As such these experiments allow studying the role of dynamic 153 

loading in preparing slopes for failure rather than inducing failure itself during dynamic loading. 154 

The dynamic tests (see Table 2) were undertaken in four stages: 155 

 In Stage 1, the samples were consolidated to predetermined normal effective stresses, 156 

replicating the depth range of potential shear surfaces in Machalí estimated from field 157 

observations (1 to 20 m).  The normal effective stresses applied for the Machalí samples 158 

were of 50, 100, 150 and 200 kPa. For the Pudahuel test series we opted to investigate the 159 

influence of different dynamic loads at the same normal stress. In this case, all dynamic tests 160 

were carried out at an effective normal stress of 150 kPa to represent stress conditions 161 

below the water table in Pudahuel. 162 

 Stage 2 consisted of the application of a monotonic shear stress at a displacement rate of 0.1 163 

mm/min until a predetermined shear stress of 50 % the normal stress was achieved (Table 164 

2), which replicated the stress state encountered in typical slopes at the Machalí site. The 165 

same stress conditions were applied to the Pudahuel samples to allow comparison.  166 

 In Stage 3 cyclic stresses were applied for 30 cycles at a frequency of 2 Hz. This is the 167 

dominating natural frequency measured using H/V or Nakamura’s method (Leyton et al. 168 

2011) at a site at Pudahuel. For simplicity, in-phase horizontal and normal loads were 169 

applied, with maximum horizontal stress amplitude (Kh) being double the vertical stress (Kv). 170 

During the 2010 earthquake, the only record for these soils (Maipú seismic station in 171 

Pudahuel deposits) recorded peak accelerations of 0.54 g (horizontal) and 0.23 g (vertical) 172 

(Saragoni & Ruiz, 2012). For the Machalí test series on unsaturated samples, the loads were 173 

selected such that the horizontal load was around 50 % of the shear strength at the applied 174 

normal stress. The peak horizontal cyclic shear stresses applied were of 52, 75, 98 and 120 175 

kPa, respectively. For the tests on saturated samples from the Pudahuel site, all taken at a 176 

normal effective stress of 150 kPa and an initial shear stress of 75 kPa, the applied peak 177 
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horizontal shear stresses were of 50, 100 and 200 kPa, with an in-phase vertical load half the 178 

horizontal load (Table 2). For comparison, a similar test on a saturated sample from Machalí 179 

was carried out at the same stress state, with a peak cyclic horizontal stress of 100 kPa. 180 

 The fourth and last stage was carried out after the cyclic loading had been completed. Then, 181 

the sample was loaded monotonically to full travel at the initial normal effective stress, 182 

allowing recording of post-dynamic peak and residual strength and obtaining the 183 

corresponding failure envelopes.  184 

 185 

3. Test Results 186 

 187 

3.1  Monotonic tests 188 

 189 

The results of monotonic tests are summarized in Table 1. The Machalí undisturbed samples show a 190 

high cohesion of slightly over 60 kPa under unsaturated conditions, which is reduced to 17 kPa when 191 

the sample is saturated, suggesting that this is predominantly an apparent cohesion effect. The peak 192 

friction angle varies between 39° and 51°, being higher for saturated samples, suggesting a sample 193 

densification caused by cohesion loss. The monotonic tests on remoulded samples show smaller 194 

cohesion values (c. 8 kPa) but similar friction angles (47°) to the undisturbed samples.  Residual 195 

strength is generally similar to peak strength in relation to the friction angle, but in the remoulded 196 

samples all cohesion is lost. 197 

 198 

While the (apparent) cohesion is quite variable from one site to another and it is dependent on the 199 

saturation conditions, the friction angle is comparable with those obtained from standard direct 200 

shear tests in both unsaturated and saturated samples from different sites by Rebolledo et al. 201 

(2006), which range from 38° to 47°. The peak cohesion obtained by these authors varied from 7 to 202 

20 kPa.  203 
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 204 

The undisturbed, unsaturated samples tend to show a semi-ductile rheology (Fig. 3), while the 205 

undisturbed-saturated and remoulded-unsaturated samples show a more variable behaviour from 206 

brittle-ductile to semi-ductile curves.  207 

 208 

3.2  Dynamic test results 209 

3.2.1 Machalí 210 

 211 

Results of dynamic tests on unsaturated, undisturbed Machalí samples are summarized in Fig. 4. In 212 

all cases the dynamic stresses did not cause the stress path to cross the monotonic failure envelope. 213 

During the cyclic loading shear displacements between 2.8 and 4.5 mm were recorded, most of 214 

which registered during the first ten cycles (Fig. 4). At the same time, the shear stresses increased 215 

with each cycle (Fig. 3b), suggesting a strain-hardening response during cyclic loading.  216 

 217 

In most cases the samples showed a clear post-dynamic peak strength with a post-peak strain-218 

softening to semi-ductile behaviour (Fig. 3b), with residual values between 80 % and 95 % of the 219 

peak value. If linear envelopes are traced through the peak and residual values (Fig. 4), the resulting 220 

post-dynamic strength parameters are zero cohesion and friction angles of 55° (peak) and 51° 221 

(residual). The experiment was repeated on remoulded samples under the same loading conditions. 222 

In this case the results were essentially identical, with no cohesion and friction angles of 56° (peak) 223 

and 52° (residual) for the post-dynamic failure envelopes.  224 

 225 

3.2.2 Pudahuel  226 

 227 

In this series of tests on saturated samples, the effect of changes on the cyclic load amplitude was 228 

investigated. In all cases except one (the remoulded sample with a 200 kPa peak horizontal stress) 229 
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the dynamic stresses did not cross the monotonic failure envelope. Similarly as for the other tests, 230 

monotonic shear under displacement control was applied afterwards until the apparatus reached 231 

full travel.  232 

 233 

In these tests, excess pore water pressures developed during the dynamic phase, although these 234 

were less than 10% of the back pressure and quickly dissipated.  The post-dynamic peak shear 235 

strengths were all ‘above’ the monotonic failure envelope observed for the saturated Pudahuel 236 

samples, showing an increase in strength with higher loading amplitude for undisturbed samples, 237 

and a more variable behaviour for the remoulded samples (Fig. 4c). The strength of the Pudahuel 238 

sample is higher than the undisturbed, saturated Machalí sample tested under the same loading 239 

conditions, which is consistent with the monotonic test results. In turn, the Machalí saturated 240 

sample shows a slightly higher strength than the unsaturated test at the same dynamic loading 241 

conditions.    242 

 243 

4. Discussion 244 

 245 

Figure 5 presents the dynamic and static failure envelopes measured for the Machalí series of tests.  246 

The monotonic unsaturated failure envelope displays a high level of cohesion, which we interpret as 247 

cohesion generated by suction (i.e. apparent cohesion) and inter-particle bonding.  When tested 248 

under saturated, monotonic conditions the samples lose almost all of their cohesion but display a 249 

higher level of internal friction than for unsaturated conditions.  Remoulded samples tested under 250 

unsaturated conditions show essentially identical strength parameters to the saturated undisturbed 251 

samples (Fig. 5), suggesting that the behaviour of the undisturbed unsaturated samples, 252 

characterized by high cohesion, is dominated by the effects of suction. There is still some cohesion in 253 

saturated samples that can be attributed to weak cements, which are destroyed during cyclic 254 

loading. Preliminary X-ray diffraction analyses carried out at the University of Chile (Morata, pers. 255 
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comm., 2014) show the presence of clay minerals and silica polymorphs. Cementation due to 256 

chemical weathering producing clay and silica viscous agents is likely in the Pudahuel Ignimbrite 257 

soils.  The effect of loss of suction and/or destruction of cementation in pyroclastic materials has 258 

been proposed as mechanism of strength loss in seismically-induced landslides in volcanic soils 259 

(Evans et al., 2002). As found in similar volcanic soils elsewhere (Rolo et al. 2002 and references 260 

therein), the effect of such cements and suction may explain the metastable behaviour of these soils 261 

that can sustain steep slopes and caves in static conditions but tend to fail during heavy rainfall or 262 

seismic shaking, or show poor behaviour as foundation soil during earthquakes (Leyton et al. 2011). 263 

 264 

The samples subject to dynamic testing show no cohesion, but have a higher angle of internal 265 

friction (Fig. 5).  It appears that the dynamic loading cause a restructuring of the sample that 266 

destroys (apparent) cohesion (i.e. results in a loss of suction and cementation) but increases the 267 

angle of internal friction, perhaps due to some densification or  strain hardening effect. Additionally, 268 

the rheology tends to be more brittle, or displaying evidence of strain softening, after shaking. The 269 

results from the Pudahuel site also show an increase in shearing resistance for higher shear stresses 270 

(Fig. 4). 271 

 272 

Given the nature of the climate in the study area, it is likely that seismic shaking usually occurs when 273 

slopes are in an unsaturated state. Thus, the loss of cohesion as a result of dynamic loading is an 274 

important effect. In studied soils, for potential shallow landslides, this loss of cohesion will increase 275 

the potential for instability, and these effects will not be compensated by the higher angle of 276 

internal friction.  For deeper landslides (shear surfaces with normal stress over c. 100 kPa, where the 277 

failure envelopes in Fig. 5 intersect) the loss of cohesion is likely to be less important, with shear 278 

strength being dominated by the higher angle of internal friction (Fig. 5).   279 

 280 
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For example, a simple stability analysis of a theoretical 2D, unsaturated soil slope of 30 degrees 281 

using the infinite slope method (e.g. Das, 1998) with the shear strength parameters of the 282 

undisturbed, unsaturated Machalí samples for both monotonic and post-dynamic conditions show 283 

how for shallow slides the loss of cohesion reduces the static factor of safety in over 40%, while for 284 

deeper slides, where the increase of friction angle dominates the behaviour, the static factor of 285 

safety may even increase despite the cohesion loss (Table 3). Thus, the behaviour observed in this 286 

test series suggests that in these materials seismic shaking is likely to promote shallow rather than 287 

deep-seated landslides, which is in accordance with observed behaviour during the 2010 earthquake 288 

(Sepúlveda et al. 2012, 2015). 289 

 290 

The results illustrate the effects of dynamic loading during earthquakes on pyroclastic ash soils and 291 

hence possible changes in shear strength parameters due to precursory seismic events that may 292 

modify the stability conditions of slopes. The effect of loading frequencies or horizontal to vertical 293 

stress ratios in such changes need to be further investigated, as well the role of liquefaction on slope 294 

failures in these types of soil.   295 

 296 

5. Conclusions 297 

 298 

Direct shear tests carried out on pyroclastic materials from the Pudahuel Ignimbrite Formation in 299 

central Chile show a direct effect of cyclic loading on the shear strength, and in a minor extent on 300 

the rheology. A high apparent cohesion found in monotonic shear tests, likely attributed to suction 301 

and cementation, is destroyed by dynamic loading. At the same time, the internal friction angle 302 

rises. This defines a differential behaviour with a post-dynamic shear strength lower than the static 303 

strength at normal effective stresses below 100 kPa, due to loss of cohesion, while for higher normal 304 

stresses the effect of frictional resistance results in higher strength. Additionally, if higher shear 305 

stresses are applied for a given normal stress, the peak strength increases. The results are consistent 306 
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with observations of differential behaviour as foundation soils and shallow landsliding in slopes of 307 

the Pudahuel Ignimbrite Formation during recent strong earthquakes in the region. We conclude 308 

that seismic shaking in this kind of cineritic soils induce changes in shear strength leading to shallow 309 

slope failures and that the use of shear strength from monotonic direct shear tests may produce 310 

quite misleading results when studying seismic slope stability in this type of soils.       311 
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TABLES 374 

 375 

Table 1. Monotonic shear tests settings and resulting shear strength parameters (peak and residual 376 

strength) on Machalí and Pudahuel sites. 377 

 378 

Site Sample 

Condition 

Saturation Normal 

Effective 

Stresses 

(kPa) 

Peak 

Cohesion 

(kPa) 

Peak 

Friction 

Angle (°) 

Residual 

Cohesion 

(kPa) 

Residual 

Friction 

Angle (°) 

Machalí Undisturbed Unsaturated 50, 100, 

150, 200, 

350 

64.2 39.4 62.7 37.3 

Machalí 

 

Undisturbed Saturated 35, 70, 

100, 140, 

200 

17.0 46.4 6.1 47.0 

Machalí Remoulded Unsaturated 50, 150, 

200 

8.6 47.4 0.0 44.2 

Pudahuel Undisturbed Saturated 70, 150, 

250 

13.7 51.3 12.1 44.8 

Pudahuel Remoulded Saturated 70, 150, 

250 

0.0 50.9 0.0 51.6 

 379 

 380 

 381 

 382 
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Table 2. Summary of dynamic test settings for Machalí and Pudahuel samples. 384 

 385 

Sample Site Sample 

condition 

Saturation Normal 

Effective 

Stress (kPa) 

Initial 

Shear 

Stress 

(kPa) 

Max. 

Horizontal 

Cyclic 

Stress, Kh 

(kPa) 

Max. 

Vertical 

Cyclic 

Stress, Kv 

(kPa) 

Machalí Undisturbed Unsaturated 50 25 52 26 

Machalí Undisturbed Unsaturated 100 50 75 37 

Machalí Undisturbed Unsaturated 150 75 98 49 

Machalí Undisturbed Unsaturated 200 100 120 60 

Machalí Undisturbed Saturated 150 75 100 50 

Machalí Remoulded Unsaturated 50 25 75 37 

Machalí Remoulded Unsaturated 150 75 98 49 

Machalí Remoulded Unsaturated 200 100 120 60 

Pudahuel Undisturbed Saturated 150 75 50 25 

Pudahuel Undisturbed Saturated 150 75 100 50 

Pudahuel Undisturbed Saturated 150 75 200 100 

Pudahuel Remoulded Saturated 150 75 50 25 

Pudahuel Remoulded Saturated 150 75 100 50 

Pudahuel Remoulded Saturated 150 75 200 100 

 386 

 387 

 388 

 389 
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Table 3. Results of static slope stability analyses using the infinite slope method for unsaturated soils 390 

without seepage using monotonic and post-dynamic strength parameters for Machalí undisturbed 391 

samples. A slope angle of 30 degrees is assumed.  392 

 393 

Strength parameters Factor of Safety, 

depth 5 m 

Factor of Safety, 

depth 30 m 

 

Monotonic (c=64kPa,=39º) 4.3 1.9 

Post-dynamic (c=0kPa,=55º) 2.5 2.5 

 394 

 395 

  396 
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FIGURES397 

398 
Figure 1. a) Landsat-Google Earth image indicating the location of Pudahuel ignimbrite sampling sites 399 
of Pudahuel (pink symbol) and Machali (blue symbol) and Diamante Caldera; b) Shallow landslide in 400 
Machalí; c) Machali samples site in unsupported cave; d) Pudahuel samples site; e) Detail of sample 401 
carving process.  402 
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 403 
 404 
Figure 2. Cumulative grain size distribution of the Machalí and Pudahuel samples. 405 
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 406 
 407 
Figure 3. Examples of shear stress-shear strain charts of a) monotonic and b) dynamic shear tests on 408 
Machalí unsaturated samples at normal stress of 100 kPa.  409 
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 410 

Figure 4. Dynamic tests results: a) Example of stress conditions in plot of shear stress vs normal 411 
effective stress during a test on Machalí, undisturbed, unsaturated sample at baseline condition of 412 
200 kPa normal stress. b) Peak and residual strength data for Machalí undisturbed, unsaturated 413 
samples.  c) Pudahuel saturated tests post-dynamic peak shear strength for different dynamic 414 
loadings (Kh: horizontal stress amplitude) on both undisturbed and remoulded samples. The 415 
monotonic failure envelopes and one equivalent saturated test of a Machalí undisturbed sample are 416 
also presented for comparison.  417 
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 418 

Figure 5. Monotonic and post-dynamic peak strength failure envelopes for the Machalí tests. 419 


