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ABSTRACT
We present the measurements and modelling of the small-to-intermediate scale (∼0.1–
25 h−1 Mpc) projected and three-dimensional redshift-space two-point correlation functions
(2PCFs) of local galaxies in the Sloan Digital Sky Survey Data Release 7. We find a clear
dependence of galaxy clustering on luminosity in both projected and redshift spaces, generally
being stronger for more luminous samples. The measurements are successfully interpreted
within the halo occupation distribution (HOD) framework with central and satellite veloc-
ity bias parameters to describe galaxy kinematics inside haloes and to model redshift-space
distortion effects. In agreement with previous studies, we find that more luminous galaxies
reside in more massive haloes. Including the redshift-space 2PCFs helps tighten the HOD
constraints. Moreover, we find that luminous central galaxies are not at rest at the halo centres,
with the velocity dispersion about 30 per cent that of the dark matter. Such a relative motion
may reflect the consequence of galaxy and halo mergers, and we find that central galaxies
in lower mass haloes tend to be more relaxed with respect to their host haloes. The motion
of satellite galaxies in luminous samples is consistent with their following that of the dark
matter. For faint samples, satellites tends to have slower motion, with velocity dispersion
inside haloes about 85 per cent that of the dark matter. We discuss possible applications of the
velocity bias constraints on studying galaxy evolution and cosmology. In the appendix, we
characterize the distribution of galaxy redshift measurement errors, which is well described
by a Gaussian-convolved double exponential distribution.

Key words: galaxies: distances and redshifts – galaxies: haloes – galaxies: statistics –
cosmology: observations – cosmology: theory – large-scale structure of Universe.
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1 IN T RO D U C T I O N

The three-dimensional (3D) galaxy distribution in our Universe can
be probed through the large-scale galaxy redshift surveys, such as
the Sloan Digital Sky Survey (SDSS; York et al. 2000). The angular
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positions of the galaxies can be accurately measured in photometric
observations, while the radial positions are usually obtained from
the observed galaxy redshifts. However, the radial distances derived
from the redshifts differ from the real positions of galaxies due to
the existence of the galaxy peculiar velocities, which is usually
referred to as the redshift-space distortion (RSD) effect. Although
the RSD prevents us from measuring the true galaxy distribution, it
also provides valuable information about the galaxy kinematics in
dark matter haloes.

A commonly used statistic for analysing the galaxy distribution
is the 3D two-point correlation function (2PCF), ξ (rp, rπ ), where
rp and rπ are the transverse and line-of-sight (LOS) separations
of galaxy pairs, respectively (see e.g. Zehavi et al. 2005, 2011;
Li et al. 2006; Guo et al. 2013). To minimize the effect of RSD,
the traditional way of probing the real-space galaxy distribution is
through the projected 2PCF, wp(rp), by integrating ξ (rp, rπ ) along
the LOS direction. Since wp(rp) is insensitive to the galaxy peculiar
velocities, it only probes the galaxy spatial distribution. To fully
understand the galaxy phase-space distribution, we need to model
the redshift-space clustering of galaxies.

In contemporary galaxy formation and evolution models, galax-
ies form and evolve in dark matter haloes. The galaxy distribution
in the universe can then be studied with the halo model, through the
distribution of galaxies within the haloes and the halo distributions
in the large-scale structure of the universe (see e.g. Cooray & Sheth
2002, and references therein). Since the distribution of dark mat-
ter haloes is well understood using analytic models and numerical
N-body simulations (e.g. Mo, Jing & White 1996; Springel 2005;
Klypin et al. 2014), the key component of the models is the connec-
tion between galaxies and dark matter haloes, such as the framework
of halo occupation distribution (HOD) or the closely related condi-
tional luminosity function (e.g. Jing, Mo & Boerner 1998; Peacock
& Smith 2000; Seljak 2000; Scoccimarro et al. 2001; Berlind &
Weinberg 2002; Yang, Mo & van den Bosch 2003; Zheng et al.
2005; Guo et al. 2014; Skibba et al. 2015). The HOD describes the
probability distribution P(N|M) of having N galaxies of a given type
in a dark matter halo of virial mass M. The probability distribution
P(N|M), together with the spatial and velocity distributions of galax-
ies inside haloes, is crucial to interpret and understand the real- and
redshift-space clustering of galaxies. The observationally inferred
HOD can help us test and constrain galaxy formation models.

A large fraction of the information contents on the HOD (like
the occupation function and galaxy kinematics and spatial distri-
bution inside haloes) are contained in the small-scale clustering of
galaxies. However, both measuring and modelling the galaxy dis-
tribution are non-trivial in the small-scale non-linear regime. On
the observational side, in fibre-fed spectrograph surveys as in the
SDSS, the hardware limit that two fibres on the same plate cannot
be placed closer than an angular separation of 55 arcsec (Blanton
et al. 2003a) significantly hinders the number of close galaxy pairs
on small scales. Fortunately, this fibre collision effect can be accu-
rately corrected using the method of Guo, Zehavi & Zheng (2012),
by taking advantage of the recovered redshifts of collided galax-
ies in the plate-overlap regions. On the theory side, modelling the
galaxy distributions on small scales is also difficult, especially in
redshift space due to the lack of understanding of the galaxy phase-
space distribution. This problem can be alleviated with the help of
high-resolution N-body dark matter simulations.

Recently, (Guo et al. 2015, hereafter G15) measured and mod-
elled the luminous red galaxy distribution in the SDSS-III Baryon
Oscillation Spectroscopic Survey (BOSS; Eisenstein et al. 2011;
Dawson et al. 2013) at redshift z ∼ 0.5, and found that central

galaxies are not at rest at the halo centres and the satellite galaxies
move more slowly than the dark matter. The difference in galaxy
and matter velocity distributions is dubbed as velocity bias. In this
paper, we follow the method of G15 and infer the phase-space dis-
tribution of galaxies in the local universe through modelling the
redshift-space galaxy 2PCFs.

We improve the model of G15 and also incorporate a more ac-
curate redshift error model shown in Appendix A. In Section 2, we
describe the data, the galaxy samples, and the redshift-space 2PCF
measurements. We introduce our modelling method in Section 3.
The constraints on the occupation function and galaxy phase-space
distribution are presented in Section 4. Finally, we summarize our
results in Section 5.

Throughout the paper, for the measurements we assume a spa-
tially flat � cold dark matter (�CDM) cosmology, with �m = 0.307
and h = 0.678, which is adopted in the MultiDark simulation (and
model) we use, and consistent with the constraints from Planck
(Planck Collaboration XVI 2014).

2 DATA A N D M E A S U R E M E N T S

For the purpose of studying the galaxy distribution in the local
universe, we use the galaxy sample of the New York University
Value-Added Galaxy Catalog (NYU-VAGC; Blanton et al. 2005),
which is constructed from the SDSS Data Release 7 Main galaxy
sample (Abazajian et al. 2009). The sample covers an effective area
of about 7300 deg2, with galaxies selected using an r-band Petrosian
magnitude limit of r < 17.77. The magnitudes in the catalogue are
K-corrected and passively evolving to the median redshift of z = 0.1
(Blanton et al. 2003b). To properly measure and model the galaxy
clustering and its dependence on galaxy luminosity, we construct
volume-limited samples with different luminosity thresholds. We
impose a minimum redshift of z = 0.02. The selection cuts for
the different samples are shown in Fig. 1. Table 1 provides the
corresponding sample information, including the average number

Figure 1. Construction of volume-limited galaxy samples with different
luminosity thresholds. The dots show the distribution of SDSS galaxies as
a function of redshift z- and r-band absolute magnitude Mr. The different
colour lines delineate the selection cuts for different luminosity-threshold
samples defined in Table 1.
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Table 1. Samples of different luminosity thresholds.

Mmax
r zmax N ng V

−18.0 0.041 35 649 31.42 ± 4.03 1.19
−18.5 0.053 57 786 22.25 ± 2.70 2.72
−19.0 0.064 72 484 15.66 ± 2.06 4.87
−19.5 0.085 125 664 11.64 ± 1.27 11.44
−20.0 0.106 131 623 6.37 ± 0.75 22.00
−20.5 0.132 122 115 3.13 ± 0.30 41.82
−21.0 0.159 76 802 1.16 ± 0.12 71.74
−21.5 0.198 35 207 0.29 ± 0.03 134.65

The absolute magnitude is computed by assuming h = 1. The minimum
redshift of all the luminosity-threshold samples is zmin = 0.02. The total
number of galaxies N in each sample is also displayed. The mean number
density ng is in units of 10−3h3 Mpc−3. The volume V of each sample is in
units of 106h−3 Mpc3.

density and the volume of each sample. Overall, the samples are
similar to those constructed in Zehavi et al. (2011).

We measure the 3D redshift-space 2PCFs ξ (rp, rπ ) of the SDSS
DR7 Main galaxy sample through the Landy–Szalay estimator
(Landy & Szalay 1993). The 2PCF, ξ (rp, rπ ), can be further in-
tegrated along the LOS to reduce the effect of RSD. The resulting
projected 2PCF wp(rp) (Davis & Peebles 1983) is defined as

wp(rp) = 2
∫ ∞

0
ξ (rp, rπ )drπ . (1)

In both the measurements and the model, we integrate ξ (rp, rπ )
to rπ ,max = 40 h−1 Mpc to obtain wp. We adopt logarithmic rp bins
centred at 0.13–20.48 h−1 Mpc with �log rp = 0.2, and linear rπ bins
from 0 to 40 h−1 Mpc with �rπ = 2 h−1 Mpc. Denoting the relative
redshift-space position of a pair of galaxies as s, we also measure the

redshift-space 2PCF in bins of s and μ, with s =
√

r2
p + r2

π being

the redshift-space separation of galaxy pairs and μ being the cosine
of the angle between s and the LOS. The redshift-space 2PCF ξ (s,
μ) can be expanded into multipoles (Hamilton 1992),

ξ (s, μ) =
∑

l

ξl(s)Pl(μ), (2)

where Pl is the lth order Legendre polynomial. The multipole mo-
ments ξ l are usually used to characterize the redshift-space cluster-
ing (G15). We focus on the measurements of the monopole (ξ 0),
quadrupole (ξ 2), and hexadecapole (ξ 4). For s, we adopt the same
logarithmic bins as rp, while for μ we use linear bins from −1 to 1
with �μ = 0.05.

In linear theory, the three multipole moments we adopt are the
only non-zero terms. While at any scales odd terms are zero by the
symmetry of ξ (s, μ), at the translinear or non-linear scales explored
in this paper, higher order even terms do exist. However, the infor-
mation content in the higher order terms is minimal compared to the
three main terms (ξ 0, ξ 2, and ξ 4), as they are highly correlated with
these lower order terms. For example, Hikage (2014) explored the
constraints on the HOD by including multipoles of different orders,
and found that including the tetra-hexadecapole (l = 6) in addition
to multipoles with l =0, 2, and 4 leads to virtually no improvement
in the constraints (see their table 1 and fig. 3). We therefore limit
our study to only ξ 0, ξ 2, and ξ 4, in addition to wp.

We apply the method developed in Guo et al. (2012) to correct
the fibre-collision effect, enabling accurate measurements of the
small-scale 2PCFs. For each sample, the covariance matrix of the
measurements is estimated from 400 jackknife samples (Zehavi
et al. 2011; G15).

We show in Fig. 2 the measured 2PCFs for the different
luminosity-threshold samples. It is clear from the projected 2PCF
wp(rp) and the redshift-space monopole ξ 0(s) that more luminous
galaxies have stronger clustering amplitudes than their fainter coun-
terparts, consistent with the results of Zehavi et al. (2011). The
measurements of the quadrupole ξ 2(s) and hexadecapole ξ 4(s) are
noisier, but the overall dependence on luminosity is clear. For exam-
ple, more luminous galaxies show a more positive quadrupole and
hexadecapole on small scales, indicating stronger Fingers-of-God
(FOG) effects. We jointly model all the 2PCF measurements in the
following sections.

3 SI M U L AT I O N A N D M O D E L

To accurately model the galaxy clustering under the HOD frame-
work, we follow the simulation-based model method developed in
Zheng & Guo (2015), which is used in G15 to model redshift-
space clustering of BOSS galaxies. It tabulates properties of haloes
in an N-body simulation (e.g. halo mass functions, halo profiles,
halo clustering) necessary for computing galaxy 2PCFs. Given a
set of HOD parameters, the model can then accurately predict the
galaxy 2PCFs. It is equivalent to assigning galaxies to haloes in the
simulation with the given set of HOD parameters and measuring
the 2PCFs from the resultant mock catalogue. When populating
haloes with galaxies, the RSD is applied in a galaxy-by-galaxy
manner by using the velocity information of galaxies and haloes.
Our modelling method does the same thing by using the galaxy ve-
locity distribution inside haloes and the redshift-space clustering of
haloes (see Zheng & Guo 2015 for details). Our simulation-based
modelling method works more efficiently than directly populating
the simulation with galaxies, since it enables ‘populating galaxies’
and ‘measuring the 2PCF in the mock’ to be performed analytically.
The model is accurate since it automatically takes into account the
effects of halo exclusion, non-linear growth, and scale-dependent
halo bias by using the halo catalogues in high-resolution simula-
tions. In particular, it is well suited to model the redshift-space
galaxy clustering on small and intermediate scales, for which an ac-
curate analytic model is difficult to develop (e.g. Tinker 2007; Reid
& White 2011; Wang, Reid & White 2014a; White et al. 2015).

The model we use in this paper is based on the MultiDark simu-
lation of Planck cosmology (MDPL; Klypin et al. 2014), which is
carried out with L-GADGET-2 code (Springel 2005). The cosmologi-
cal parameters (�m = 0.307, �b = 0.048, h = 0.678, ns = 0.96, and
σ 8 = 0.823) used in MDPL are consistent with the recent results
from Planck (Planck Collaboration XVI 2014). The simulation has
38403 dark matter particles in a box of 1 h−1 Gpc (comoving) on a
side, so the mass resolution is 1.51 × 109 h−1 M�, which is about
six times higher than the previous MultiDark run simulation (Prada
et al. 2012). The force resolution, i.e. the gravitational softening
length, is only 5 h−1 kpc (physical) at low redshifts, which enables
us to accurately model the clustering signals on very small scales.
We use the simulation output at z = 0 to model all the luminosity-
threshold galaxy samples in the NYU-VAGC. In principle, when
modelling the measurements, it is better to choose the simulation
output to match the mean redshift for each individual sample. This
is certainly limited by the available simulation outputs. On the other
hand, given the small redshift range of the SDSS Main galaxies, the
effect of using one output (as we do) is small. We have tested ap-
plying the z = 0.1 simulation output for modelling the data, and the
inferred HOD parameters are consistent with those from the default
model built on the z = 0 output.
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Redshift-space clustering 4371

Figure 2. Measured projected 2PCF wp(rp) (top left), redshift-space monopole ξ0(s) (top right), quadrupole ξ2(s) (bottom left), and hexadecapole ξ4(s)
(bottom right) for SDSS galaxies. The different colour lines show the measurements for different luminosity-threshold samples. The errors are estimated from
400 jackknife samples.

Dark matter haloes are identified using the Rockstar phase-space
halo finder (Behroozi, Wechsler & Wu 2013), which is efficient and
accurate in finding the bound spherical structures from the density
peaks in the phase space (Onions et al. 2012; Knebe et al. 2013).
Halo mass is defined from the given spherical overdensities of a
virial structure (Bryan & Norman 1998). Note that we do not remove
the unbound particles in the haloes, because the satellite galaxies
in the haloes can also be unbound. The halo positions, velocities
and velocity dispersions are calculated from all the particles in the
haloes. In Rockstar, the centre of each halo is computed from the
average particle locations for the inner friends-of-friends subgroup
that best minimizes the Poisson error. Different from G15, who use
the average velocity of the inner 25 per cent of halo particles as
the halo core velocity, we define the halo velocity as the average
velocity of all particles in the halo, i.e. the centre-of-mass velocity.
The purpose of this definition is to make better comparisons with
the literature, and also make easier the application of our models to
other low-resolution simulations. The definition of the halo velocity
is important for comparing the results of galaxy velocity bias, since
the halo core velocity can have a substantial velocity offset from
the halo bulk velocity (Behroozi et al. 2013; Reid et al. 2014).

For the HOD modelling of the galaxy clustering, we follow the
parametrization of Zheng, Coil & Zehavi (2007) by decomposing
the contributions to the mean occupation function 〈N(M)〉 of galax-
ies (i.e. the average number N of galaxies in a sample in haloes of

mass M) into the central and satellite components,

〈N (M)〉 = 〈Ncen(M)〉 + 〈Nsat(M)〉, (3)

〈Ncen(M)〉 = 1

2

[
1 + erf

(
log M − log Mmin

σlog M

)]
, (4)

〈Nsat(M)〉 = 〈Ncen(M)〉
(

M − M0

M ′
1

)α

, (5)

where Mmin describes the cutoff halo mass of the central galaxies and
σ log M takes into account the scatter between the galaxy luminosity
and halo mass. The three parameters for the satellite galaxies are
the cutoff mass scale M0, the normalization mass scale M ′

1 and the
power-law slope α at the high-mass end. In our model, we implicitly
assume that the halo hosting a satellite galaxy in a given luminosity-
threshold sample also hosts a central galaxy from the same sample.
One derived parameter we have is M1, the characteristic mass of
haloes hosting on average one satellite galaxy. In combination with
the halo mass function, the satellite fraction fsat of the galaxies in
the sample can also be derived from the central and satellite mean
occupation functions.

To model the redshift-space galaxy clustering, we need to specify
the phase-space (spatial and velocity) distribution of galaxies inside
haloes. We put the central galaxies at the halo centres and randomly
select dark matter particles inside haloes to represent the satellite
galaxies. When calculating the redshift-space clustering, we employ
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the plane–parallel approximation and use the ẑ direction in the
simulation as the LOS. The shift of a galaxy’s position from real
space to redshift space in the ẑ direction due to the RSD is then
calculated as �Z = vẑ(1 + z)/H (z) with z = 0, where vẑ is the
LOS peculiar velocity of the galaxy.

As found by G15, the motion of galaxies can differ from that of
dark matter. We therefore introduce two velocity bias parameters
(αc and αs) in the HOD model when describing the velocities of
central and satellite galaxies. Note that all the velocity quantities
below refer to the ẑ (LOS) component for our modelling purpose,
including the central galaxy velocity vc, satellite galaxy velocity
vs, halo velocity vh, and particle velocity dispersion σ v inside a
given halo. We first measure the LOS velocity dispersion σ v from
all the dark matter particles in the haloes. The central galaxy is not
necessarily at rest with respect to the host halo, and its velocity
vc − vh in the frame of the halo is assumed to follow a Laplace
distribution, in the form of

f (vc − vh) = 1√
2σc

exp

(
−

√
2|vc − vh|

σc

)
, (6)

where vh is the LOS centre-of-mass velocity of the halo, σ c ≡ αcσ v

is the LOS central galaxy velocity dispersion, and αc is the central
galaxy velocity bias, characterizing the relative motion between the
central galaxy and the host halo. The use of Laplace distribution
instead of the commonly used Gaussian distribution is motivated by
the distribution of the velocities of brightest cluster galaxies relative
to satellites in Abell clusters (Lauer et al. 2014).

To allow for possible velocity offsets between the satellite galax-
ies and the randomly selected dark matter particles, we scale the
velocity of the satellite galaxies in the centre-of-mass frame of the
halo by a satellite velocity bias factor αs,

vs − vh = αs(vp − vh), (7)

where vs and vp are the LOS velocities of the satellite galaxies
and the selected dark matter particles, respectively. Therefore, the
LOS velocity dispersion σ s of satellite galaxies in the haloes is
σ s = αsσ v (see e.g. Tinker 2007). We note that even though we
only apply the LOS velocity bias in the above equations, the velocity
bias exists in all components of the galaxy velocities. However, for
the purpose of modelling the redshift-space clustering, only the
LOS component matters. In our fiducial HOD model, we assume a
constant galaxy velocity bias, good enough given the current data
precision.

Except for the galaxy velocity bias, another ingredient that could
affect the galaxy LOS distribution in redshift space is the measure-
ment error of the SDSS galaxy redshifts. We show in Appendix A
an accurate modelling of the redshift errors from repeat observa-
tions of galaxy spectra in the SDSS. We find that the additional
velocity contribution introduced by the redshift errors is best mod-
elled by a Gaussian-convolved Laplace distribution. We adopt two
different redshift error models for the luminous and faint galaxies
(see details in Appendix A). The typical 1σ redshift error is about
10–15 km s−1. The redshift errors (following the Gaussian-
convolved Laplace distribution) are built into our HOD model.

Following G15, we apply a Markov Chain Monte Carlo method
to explore the HOD parameter space. The likelihood ∝ exp
(−χ2/2) for a given set of HOD parameters is determined by the
χ2, contributed by the projected 2PCF wp(rp), the redshift-space

multipoles ξ 0(s), ξ 2(s) and ξ 4(s), and the observed galaxy number
density ng,

χ2 = (ξ − ξ ∗)TC−1(ξ − ξ ∗) + (ng − n∗
g)2

σ 2
ng

, (8)

where C is the full error covariance matrix and the data vector
ξ = [wp, ξ 0, ξ 2, ξ 4]. The quantity with (without) a superscript ‘∗’
is the one from the measurement (model). The covariance matrix is
determined from 400 jackknife samples as mentioned above (Zehavi
et al. 2011; Guo et al. 2013). We apply a mean correction for the bias
effect in inverting the covariance matrix, as described in (Hartlap,
Simon & Schneider 2007, see also Percival et al. 2014). We also
apply a volume correction of 1 + V/Vsim to the covariance matrix
to account for the model uncertainty caused by the finite volume
(Vsim = 1 h−3 Gpc3) of the MDPL simulation (G15). The error σng

on the number density is determined from the variation of ng in
the different jackknife samples. The volume V and mean number
density ng of each luminosity-threshold sample are listed in Table 1.

4 R ESULTS

4.1 Fitting results and the mean occupation function

Fig. 3 shows the measurements and best-fitting HOD models for
the four sets of 2PCFs as in Fig. 2. For clarity, offsets are applied
to both the data points and best-fitting curves, 0.2 dex for wp and
20( h−1 Mpc)2 for s2ξ 0,2,4 for each galaxy sample. As is evident,
our HOD model leads to remarkably good fits to all the luminosity-
threshold samples, for both the projected and redshift-space 2PCFs.
We choose to fit 2PCFs on scales above 0.1 h−1 Mpc to reduce any
possible systematic effect in the fibre-collision correction (which
is small according to Guo et al. 2012). With our best-fitting HOD
model, we can predict the 2PCFs on smaller scales. The dotted
curves and the filled circles in the top-left panel of Fig. 3 show
the prediction and the measurements on scales below 0.1 h−1 Mpc.
The best-fitting models reproduce well the measurements for all
luminosity-threshold samples down to rp = 0.02 h−1 Mpc, suggest-
ing both an accurate HOD model and a robust fibre-collision cor-
rection.

The best-fitting HOD parameters are listed in Table 2 for the
different luminosity-threshold samples. The χ2/dof of the fittings
confirm the adequacy of the model in fitting the data. The derived pa-
rameters M1 and fsat are also displayed, together with the characteris-
tic central and satellite galaxy velocity dispersions σ c = αcσ v(Mmin)
and σ s = αsσ v(M1) (see Section 4.2 for more details).

In our modelling, we choose to fit the projected 2PCF and the
redshift-space 2PCF multipole ξ 0,2,4, not the 3D redshift-space
2PCF ξ (rp, rπ ) directly. The reason is the large dimension of ξ (rp,
rπ ) (e.g. 240 data points per sample for 12 rp bins and 20 rπ bins),
which makes it difficult to estimate a robust covariance matrix.
However, with the best-fitting models, we can predict ξ (rp, rπ ) and
compare to the measurements as a cross-check. Such a compari-
son is shown in Fig. 4 for three representative luminosity-threshold
samples of Mr < −19, −20 and −21. Two main RSD effects show
up in ξ (rp, rπ ). On large scales, the galaxy infall towards overdense
regions as well as the streaming of galaxies out of underdense re-
gions compresses the contours along the LOS direction, known
as the Kaiser squashing effect (Kaiser 1987; Hamilton 1992). On
small scales, the random motions of galaxies in virialized structures
cause the ξ (rp, rπ ) contours to appear stretched along the LOS di-
rection, causing the FOG effect (Jackson 1972; Huchra 1988). The
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Figure 3. HOD fittings to the four sets of 2PCF measurements in Fig. 2. The measurements from the data are shown by open circles, while the HOD model fits
are displayed as lines. For clarity, the measurements of different luminosity-threshold samples are separated by 0.2 dex (for wp) or 20( h−1 Mpc)2 (for s2ξ0,2,4)
per sample, starting from the Mr < −18 sample. In the top left panel of wp(rp), the measurements at rp < 0.1 h−1 Mpc (below the fibre-collision scale) are also
shown, which are not included in the HOD fittings, while the dashed lines are the predictions from the best-fitting HOD models.

Table 2. Best-fitting HOD parameters and derived parameters for the luminosity-threshold samples.

Mmax
r −18.0 −18.5 −19.0 −19.5 −20.0 −20.5 −21.0 −21.5

χ2/dof 31.02/42 34.77/42 31.52/42 32.29/42 32.17/42 46.24/42 44.38/42 39.16/42
log Mmin 11.18 ± 0.14 11.38 ± 0.10 11.58 ± 0.09 11.67 ± 0.07 11.95 ± 0.06 12.23 ± 0.04 12.78 ± 0.11 13.53 ± 0.10
σ log M 0.09 ± 0.49 0.23 ± 0.22 0.00 ± 0.21 0.01 ± 0.21 0.16 ± 0.17 0.18 ± 0.13 0.49 ± 0.13 0.72 ± 0.08
log M0 11.57 ± 0.24 11.73 ± 0.16 11.61 ± 0.22 11.80 ± 0.13 12.10 ± 0.10 12.42 ± 0.12 12.59 ± 1.59 13.13 ± 2.88
log M ′

1 12.48 ± 0.12 12.71 ± 0.10 13.04 ± 0.08 13.07 ± 0.06 13.33 ± 0.06 13.57 ± 0.05 13.99 ± 0.07 14.52 ± 0.06
α 0.97 ± 0.07 1.02 ± 0.06 1.12 ± 0.04 1.06 ± 0.03 1.08 ± 0.03 1.06 ± 0.05 1.14 ± 0.08 1.14 ± 0.16
αc 0.01 ± 0.13 0.01 ± 0.09 0.29 ± 0.12 0.28 ± 0.07 0.25 ± 0.07 0.29 ± 0.04 0.27 ± 0.04 0.31 ± 0.04
αs 0.95 ± 0.05 0.81 ± 0.04 0.77 ± 0.03 0.86 ± 0.03 0.84 ± 0.03 0.85 ± 0.03 0.97 ± 0.05 1.05 ± 0.08

log M1 12.53 ± 0.10 12.76 ± 0.09 13.06 ± 0.07 13.10 ± 0.05 13.35 ± 0.05 13.60 ± 0.04 14.01 ± 0.06 14.55 ± 0.06
fsat 26.87 ± 1.53 23.90 ± 1.20 20.74 ± 1.03 20.45 ± 0.80 17.87 ± 0.75 15.67 ± 0.57 12.46 ± 0.90 7.74 ± 0.74
σ c 0.08 ± 8.39 0.37 ± 6.15 22.36 ± 9.81 22.85 ± 4.17 25.21 ± 7.17 35.05 ± 5.13 50.24 ± 7.95 99.20 ± 15.19
σ s 146.24 ± 13.68 146.78 ± 12.80 173.85 ± 11.53 197.32 ± 9.01 234.58 ± 11.83 285.16 ± 13.91 442.16 ± 31.99 705.10 ± 70.42

The halo mass is in units of h−1 M�. The best-fitting χ2 per degrees of freedom (dof) of the HOD modelling is also given. The dof of each sample is calculated
as dof = N2PCF + 1 − Npar, where the total number of data points (N2PCF + 1) is 49 (12 for each of wp and ξ0,2,4, plus one number density constraint), and
Npar = 7 is the number of HOD parameters. The derived parameter log M1 is the mass of a halo that on average hosts one satellite galaxy. The satellite fraction
fsat is in units of per cent. The σ c and σ s (in units of km s−1) are the typical velocity dispersion of central and satellite galaxies, respectively (see details in
text).
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4374 H. Guo et al.

Figure 4. Comparisons between the measured redshift-space 3D 2PCF ξ (rp, rπ ) (colour scales) and the prediction from the best-fitting HOD model (black
solid curves), for three representative luminosity-threshold samples. The data and models have the same contour levels of 0.3, 0.5, 1,2, 5, 10, and 20.

Figure 5. Comparisons between the predicted 3D 2PCF ξ (rp, rπ ) from the best-fitting HOD models (red-dotted curves) and the measurements (blue solid
curves) for different luminosity-threshold samples. Contour levels are set to ξ (rp, rπ ) = [0.3, 0.5, 1, 2, 5, 10, 20]. The black-dotted curves in each panel are
contours at the level of ξ (rp, rπ ) = 0.3 with ξ (rp, rπ ) shifting by ±1σ measurement error. The measurements of ξ (rp, rπ ) in each panel (as well as the model
curves) are smoothed with a Gaussian kernel to reduce the noise on large scales.

best-fitting HOD models reproduce the two features and the over-
all ξ (rp, rπ ) measurements very well. In particular, the agreement
between the measured and predicted 3D 2PCFs on small scales is
remarkably good.

On large scales, there appears to be slight deviations of the pre-
dictions from the measurements which are not significant, given the
measurement errors. To see this and to have a comparison for all
samples, in Fig. 5 we compare the 3D 2PCF contours for both the
best-fitting predictions (red-dotted curves) and the measurements
(blue solid curves). To illustrate the uncertainties on the measure-
ments of ξ (rp, rπ ), we show in each panel with black-dotted curves
the contours from ±1σ of the ξ (rp, rπ ) measurements for the out-
most level (ξ (rp, rπ ) = 0.3). The model fits of the Mr < −18.5 and
Mr < −19 samples seem to be out of the 1σ range of the mea-
surements on large scales of rp > 10 h−1 Mpc, which is consistent
with the overprediction of the model on large scales, as seen in wp

and ξ 0 in Fig. 3. However, such deviations are not significant given

the highly correlated covariance matrix elements on these scales.
The largest difference in the FoG feature is seen in the Mr < −18.0
sample, which is in fact not significant given the large error bars
in the measurement for this sample. Overall the model successfully
reproduces the luminosity dependent ξ (rp, rπ ) measurements. As
will be discussed in Section 4.2, velocity bias is needed for the
model to fit the redshift-space clustering.

The mean halo occupation functions for the different luminosity-
threshold galaxy samples are presented in Fig. 6. The most sig-
nificant trend is that the host halo mass scale increases with the
galaxy luminosity, as expected from HOD modelling of projected
2PCF wp(rp) from the same SDSS data by (Zehavi et al. 2011, see
also Zehavi et al. 2005; Zheng et al. 2007) (see also Zehavi et al.
2005; Zheng et al. 2007). Compared to the HOD model used in
Zehavi et al. (2011), our model in this paper adopts different cos-
mological parameters and halo definition. Furthermore, we shift to
a simulation-based model, rather than an analytic model. Finally,
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Redshift-space clustering 4375

Figure 6. Mean halo occupation functions of the best-fitting models for
different luminosity-threshold samples.

we jointly fit the projected 2PCF wp and the redshift-space 2PCFs
ξ 0,2,4, while Zehavi et al. (2011) only fit wp. Accounting for these
differences, our results are in good agreement with those in Zehavi
et al. (2011). We note that the uncertainties in many HOD param-
eters (and the derived satellite fraction) from the modelling in this
paper appear to be larger than those in Zehavi et al. (2011) from
modelling wp only. This can be attributed to the differences in the
models. The accuracy of the measured small-scale data points ex-
ceed that of the analytic HOD model used in Zehavi et al. (2011),
which may be the reason of their large χ2/dof (2–3 for some cases).
As a consequence, the uncertainties in the HOD parameters can be
artificially underestimated. The simulation-based model used in this
paper is a more accurate model, leading to good values of χ2/dof
and improved error estimates in the parameters.

We also perform wp-only fit with the simulation-based model
and compare to the results from fitting both wp and ξ 0,2,4. We find

that redshift-space 2PCFs help tighten the constraints on the HOD
parameters. As an example, we show in Fig. 7 the comparison of the
constraints on Mmin and σ log M from fitting wp only (blue contours)
and jointly fitting wp and ξ 0,2,4 (red contours). We set a prior of
σ log M < 1.5 when fitting the data to have a reasonable value of the
scatter. Clearly, a substantial improvement with the redshift-space
2PCFs is to narrow down the range of σ log M, especially for less
luminous samples (with the Mr < −18 as an exception, which has
a tighter Mmin).

Even though redshift-space 2PCFs help tighten the constraints
on σ log M, we note that for faint galaxy samples the cutoff profile in
the mean central occupation function is still not well constrained,
as indicated by the large errors (Table 2 and Fig. 7). It is consistent
with a sharp cutoff at Mmin, and in Fig. 6 we choose to plot the best-
fitting models with σ log M 
 0 for these samples. The constraints
on Mmin and σ log M mainly come from the galaxy bias (large scale
2PCF amplitude) and the galaxy number density. The galaxy bias
is mainly determined by haloes around Mmin. For faint samples,
Mmin is in the range that halo bias is insensitive to halo mass.
As a consequence, the galaxy bias is insensitive to the way of
populating galaxies into haloes of different masses around Mmin,
i.e. insensitive to the change in σ log M. A change in σ log M can be
easily compensated by a slight change in Mmin to maintain the galaxy
number density. Therefore, the cutoff profiles for faint samples are
not well constrained. Conversely, σ log M is much better constrained
for the luminous samples as a result of the steep dependence of halo
bias and halo mass function on halo mass towards the high-mass
end.

Fig. 8 shows the dependence of the characteristic mass scales
(Mmin for central galaxies and M1 for satellite galaxies) and the
satellite fraction fsat on the sample number density ng. The depen-
dence of any of those parameters on ng roughly follows a power-
law form. As pointed out in Guo et al. (2014), the dependence of
Mmin on the number density largely comes from the nearly power-
law form of the halo mass function over a large mass range. The
mass Mmin is mostly determined by matching the halo number den-
sity with the galaxy number density, modulated by σ log M. There
is a trend that the ratio M1/Mmin decreases as the sample number
density decreases (or the sample luminosity increases), consistent

Figure 7. Comparisons between the constraints on the HOD parameters Mmin and σ log M from fitting wp (blue contours) and jointly fitting wp and ξ0,2,4 (red
contours).
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Figure 8. Top: characteristic mass scales (Mmin and M1) of haloes hosting
central galaxies and satellites as a function of the sample number density ng.
Bottom: satellite fraction as a function of the sample number density. The
shaded area around each curve shows the 1σ uncertainties in the parameter.

with those found in literature (e.g. Zehavi et al. 2005; Skibba, Sheth
& Martino 2007; Zheng et al. 2009; Zehavi et al. 2011; Guo et al.
2014; McCracken et al. 2015; Skibba et al. 2015). This is a manifes-
tation of the halo mass dependent competition between accretion
of galaxies into haloes and destruction of galaxies inside haloes.
From the bottom panel of Fig. 8, we see that fainter galaxies are
more likely to be satellite galaxies in massive haloes. The satellite
fraction follows fsat 
 0.1[n̄g/(10−3 h3Mpc−3)]1/3, as also shown
in other surveys (Guo et al. 2014), which can be used to estimate
the satellite fraction given the number density of a threshold galaxy
sample. Note that the values of satellite fraction are slightly lower
than those inferred in Zehavi et al. (2011), which can be mostly
attributed to the difference in the definitions (hence the sizes) of
haloes.

4.2 Galaxy velocity bias

The constraints on the galaxy velocity bias parameters are shown
in Fig. 9, including the 68 per cent and 98 per cent contours in the
αc–αs plane and the marginalized distributions of αc and αs for each
sample. In terms of the tightness in the central galaxy velocity bias
αc constraints, the luminous and faint samples show a dichotomy.

For the luminous samples (more luminous than Mr = −19.5),
both the central and satellite velocity bias parameters are well

constrained, as shown in the top-left panel. The case without any
galaxy velocity bias (i.e. αc = 0 and αs = 1) is far beyond the
95 per cent contours of all luminous samples. That is, galaxy veloc-
ity bias is required to reproduce the redshift-space clustering in the
local universe for luminous samples.

The central velocity bias parameter αc for luminous samples is
about 0.3 (top-left and bottom-left panels in Fig. 9). It shows no
significant dependence on galaxy luminosity. The existence of the
central velocity bias implies that these luminous central galaxies
are not at rest at the halo centres with respect to the bulk motion of
the haloes. This reflects the mutual (non)relaxation status of central
galaxies and host haloes, which are related to the merger history of
the galaxies and the formation history of haloes (see more detailed
discussions in G15). The value of αc inferred from our modelling
of the redshift-space clustering is in agreement with the estimates
from galaxy group catalogues in the SDSS (e.g. van den Bosch et al.
2005), which uses the mean velocity of satellites as a proxy for the
halo velocity.

The constraints on the central velocity bias parameter αc are
loose for the three faint samples (with threshold luminosity fainter
than Mr = −19.0), as seen from the contours in the top-right panel
and the corresponding curves in the bottom-left panel of Fig. 9.
For the Mr < −19 sample, αc is different from zero only at the
2.5σ level (see Table 2). For the other two fainter samples, αc is
consistent with zero. The loose constraints can be partly attributed to
the relatively large uncertainty in the clustering measurements and
in the jackknife covariance matrix estimate for the faint samples,
as the sample volumes are substantially smaller than those of the
luminous samples (see Fig. 1 and Table 1), especially on large scales
where αc is mostly constrained (see fig. 6 of G15). The three faint
samples have volumes that are 10, 24, and 43 per cent that of the
Mr < −19.5 sample, which has the smallest volume among the
luminous samples. The other possible cause of the loose constraints
can be the redshift errors. As the central velocity bias, in terms of
velocity dispersion (see below), approaches or drops below the level
of redshift errors (about 13 km s−1; see Appendix A), the sensitivity
of RSD to the central velocity bias is reduced, likely the case for
the faint samples.

For the satellite velocity bias, all samples show good constraints.
Sample volume becomes less important here, since the constraints
mainly come from the small-scale FoG effect (see fig. 6 of G15),
where the uncertainties in the measurements are small. However,
the faintest sample (Mr < −18) may still be affected by the small
sample size and the noisy covariance matrix estimate, and we should
interpret the satellite velocity bias with caution. If we neglect the
Mr < −18 sample, the satellite velocity bias αs constraints show
a more or less continuous trend with luminosity, i.e. higher values
of αs for more luminous sample. Probably more appropriately, the
satellite velocity bias constraints can be divided into two groups.
For the two most luminous samples (more luminous than L∗, cor-
responding to Mr = −20.44; Blanton et al. 2003b), αs is consistent
with unity. That is, the motion of the luminous satellites closely fol-
lows that of the dark matter. For samples with threshold luminosity
fainter than L∗, αs is about 0.8 – 0.85. That is, for those samples,
satellites move more slowly than dark matter particles.

In a steady state, the spatial distribution and velocity distribution
of satellite galaxies inside haloes are related to each other. In our
modelling, we draw random dark matter particles for the position of
satellites. That is, we implicitly assumed that the spatial distribution
of satellites follows that of the dark matter, which is well described
by the Navarro–Frenk–White (NFW) profile (Navarro, Frenk &
White 1997). For the two luminous samples, αs is around unity,
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Figure 9. Top panels: marginalized probability distributions of central and satellite galaxy velocity bias parameters for the luminous (left) and faint (right)
galaxy samples. The contours show the 68 and 95 per cent confidence levels for the two parameters. Bottom panels: 1D probability distribution of the central
(left) and satellite (right) galaxy velocity bias parameters for various luminosity-threshold samples.

i.e. their satellite velocity distribution is consistent with that of the
dark matter. Therefore, based on the constraints we infer, an NFW
profile and associated velocity distribution for satellites are able
to explain the redshift-space clustering for the luminous sample.
More modelling efforts are needed to see whether other profiles
and the corresponding velocity distributions are preferred or not
(see the tests in G15). For the other, faint samples, the inferred
αs (∼0.8–0.85) differs substantially from unity, inconsistent with
the value for the NFW profile. The result alone suggests that the
spatial distribution of faint satellites should deviate from the NFW
profile. Our current model, however, is not able to provide more
information on how significant a deviation it needs to be. For an
improved model, one can consider to parametrize the spatial profile
of satellites and solve for the corresponding velocity distribution in
a self-consistent manner, which is beyond the scope of this paper.

Watson et al. (2010, 2012) analysed the small-scale (down to
∼0.01 h−1 Mpc) clustering (wp) of the SDSS Main galaxy sample
and luminous red galaxies. They found that the spatial distribution of
faint satellite galaxies (below Mr =−20) is consistent with the NFW
profile, while that of bright satellite galaxies deviates from the NFW
profile (with a steeper inner profile). These seem opposite to what

we find from modelling the redshift-space clustering. An improved
model is necessary to constrain the range of profiles allowed by
the redshift-space clustering data and to see whether this apparent
difference is significant.

In the left-hand panel of Fig. 10, we summarize the constraints
on the velocity bias parameters αc and αs as a function of galaxy
number density (more luminous galaxy samples have lower number
densities). For galaxies Mr < −19.5 and brighter, there is no signif-
icant dependence of αc on number density. The three faint galaxy
samples (with the highest number densities) seem to have lower
values of αc, consistent with zero, but with large error bars. Since
the host halo mass increases as the galaxy luminosity increases
(or as the number density decreases), the trend also indicates the
weak dependence of αc on the host halo mass. With the faintest sam-
ple excluded (smallest sample volume), the dependence of satellite
velocity bias αs on the luminosity for faint galaxies is also weak,
while αs shows a clear increase with luminosity for Mr < −21.

To interpret the velocity bias results, the more meaningful phys-
ical quantities are the velocity dispersions of central and satel-
lite galaxies inside haloes, denoted as σ c and σ s, respectively.
Given the velocity bias parameters, velocity dispersions depend
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Figure 10. Velocity bias and typical velocity dispersion. Left: central and satellite galaxy velocity bias as a function of the sample number density ng. Right:
dependence of the typical central and satellite galaxy velocity dispersions, σ c and σ s, on the sample number density. The shaded area shows the 68 and
95 per cent confidence levels of the parameters. The solid lines with circles are the best-fitting models.

on halo mass, and we choose to evaluate typical values in repre-
sentative haloes. For central galaxies, the velocity bias constraint
is mainly contributed from haloes around Mmin, and we compute
the typical central galaxy velocity dispersion as σ c = αcσ v(Mmin).
For satellite galaxies, the effect of the velocity bias on cluster-
ing comes from haloes around M1, and the typical satellite ve-
locity dispersion is computed as σ s = αsσ v(M1). The right-hand
panel of Fig. 10 shows the dependences of these typical veloc-
ity dispersions on sample number density, which roughly follow
power-law relations, σc 
 55 km s−1n̄g/(10−3 h3 Mpc−3)−0.45 and
σs 
 437 km s−1n̄g/(10−3 h3 Mpc−3)−1/3.

The existence of galaxy velocity bias reflects the dynamical evo-
lution of galaxies inside haloes. For example, infalling satellites
experience tidal striping and dynamical friction in the dark mat-
ter haloes, affecting its velocity distribution. For central galaxies,
the existence of velocity bias indicates that central galaxy and the
host haloes are not mutually relaxed. A likely cause can be the halo
mergers and the subsequent galaxy mergers. Our results can be used
to assess the dependence of the degree of relaxation after mergers
on halo mass (or galaxy number density). For mergers of haloes of
similar mass, the mean pairwise infall velocity v12 on large scales
is proportional to the bias factor (Sheth et al. 2001; Zhang & Jing
2004). With the luminosity-dependent bias factor in Zehavi et al.
(2011), we find that the bias factor approximately scales as n−0.11

g ,
which means that the pairwise infall velocity v12 ∝ n−0.11

g before
merger. The central velocity dispersion constrained from the RSD
(αc ∝ n−0.45

g ) is much steeper than the infall velocity. We therefore
conclude that central galaxies in lower mass haloes are more relaxed
with respect to the host haloes, compared with their counterparts in
more massive haloes, consistent with an overall earlier formation
and thus more time for relaxation of the lower mass haloes.

4.3 Dependence of velocity bias on cosmology (�m)

The velocity bias constraints we infer rely on the MultiDark simu-
lation with the assumed cosmology. The cosmological parameters
are close to the results from Planck (Planck Collaboration XVI
2014). It is useful to see whether the velocity bias constraints are

robust against reasonable change in cosmology. Here, we limit our
investigation to the change in �m. Instead of using simulations with
different �m parameters, we use the appropriate scaling relations
with the MDPL simulation for the corresponding change in the dark
matter halo properties when varying �m.

According to Zheng et al. (2002) and Tinker, Weinberg & Zheng
(2006), if two simulations have the identical initial matter fluctua-
tion spectrum (including amplitude and phase) but different values
of �m, there exists a simple relation between simulation outputs
at a given linear growth factor G. There are correspondences be-
tween haloes in the two simulations, and the corresponding haloes
have the same radius with the mass scaling with �m. Halo velocity
scales with the growth rate f ≡ dln G/dln a, with a the scale factor.
The internal velocity dispersion inside haloes scales with �0.5

m . We
therefore modify our default simulation output by scaling the halo
mass M, halo velocity vh, dark matter particle velocity vp, and the
1D velocity dispersion σ v of dark matter particles in haloes in the
following way,

M = (
�m/�m,0

)
M0, (9)

vh = (f /f0) vh,0, (10)

vp − vh = (
�m/�m,0

)1/2
(vp,0 − vh,0), (11)

σv = (
�m/�m,0

)1/2
σv,0, (12)

where the symbols with subscript ‘0’ denote the values in the fiducial
MDPL simulation. The halo mass function also changes accordingly
in each scaled simulation. We build 11 scaled simulation catalogues,
varying �m from 0.24 to 0.34 with a step of ��m = 0.01. We then
apply our HOD model to the Mr < −21 sample based on the eight
scaled simulations to constrain the velocity bias parameters.

We show in Fig. 11 the dependence of the velocity bias parame-
ter constraints on �m. Both the central and satellite velocity biases
decrease with increasing �m, as expected. Increasing �m leads to
higher halo–halo and internal halo velocity dispersions, and the
velocity bias parameters decrease to compensate such a change to
match the redshift-space clustering. For the range of �m considered
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Figure 11. Dependence of central and satellite galaxy velocity bias on
the cosmological parameter �m. The central and satellite velocity bias are
displayed in circles of different colours. The shaded area shows the 68 and
95 per cent confidence levels of the parameters.

here, both velocity bias parameters are well constrained. In particu-
lar, the central velocity bias differs from zero for all the cases, which
shows that our constraints are robust against reasonable changes in
cosmology.

We note that the luminosity-threshold samples used in this pa-
per are constructed over different redshift ranges according to the
range for which they are volume limited (see Fig. 1 and Table 1).
If we were to apply the cosmology change and compare the re-
sults among different samples, the difference in the sample mean
redshifts needs to be accounted for, which leads to small effective
cosmology changes. As mentioned in Section 3, our test with the
model built on the z = 0.1 simulation output shows that the inferred
HOD parameters are within the uncertainties of those from the de-
fault model built on the z = 0 output. So the effect of cosmology
change from the difference in mean redshift is small. Furthermore,
here we only focus on one sample and aim to see the sensitivity of
velocity bias constraints to cosmology, and the effective cosmol-
ogy change among different samples becomes irrelevant. With one
sample, there is another effect related to the cosmology change. In
principle, when varying the cosmological parameter �m, we need
to rescale or remeasure the 3D 2PCFs and then perform the mod-
elling. Otherwise, the Alcock–Paczynski effect (Alcock & Paczyn-
ski 1979) would introduce an additional distortion in the 2PCFs.
However, since the galaxy samples are local, with z ∼ 0, the co-
moving distance is insensitive to �m and the effect is tiny. For
example, at the mean redshift of the Mr < −21 sample, z ∼ 0.12,
the comoving distance changes by less than 1 per cent in the whole
range of �m we study here, which has little effect on the 2PCF
measurements. We therefore do not rescale or remeasure the 2PCFs
changing the cosmology.

Relevant to the RSD effect, a more interesting change in cos-
mology is in the combination of the growth rate and fluctuation
amplitude, fσ 8. Because of the high precision measurements, the
small-scale redshift-space clustering can help tighten the constraints
on fσ 8 (e.g. Reid et al. 2014), providing potentially stringent tests
to the �CDM cosmology and theory of gravity. We reserve such an
investigation on the fσ 8 constraints with the SDSS Main galaxies
for a future work.

5 SUMMARY AND DI SCUSSI ONS

We measure the projected and redshift-space 2PCFs for volume-
limited, luminosity-threshold samples of SDSS Main galaxies, on
small to intermediate scales (0.1–25 h−1 Mpc). The measurements
are interpreted within the HOD framework to infer the relation be-
tween galaxies and dark matter haloes. In particular, the RSD effects
in the redshift-space 2PCFs enable us to constrain the kinematics
of central and satellite galaxies inside dark matter haloes and infer
the difference between the motions of galaxies and dark matter.

It is the first time that the redshift-space clustering of local galax-
ies is accurately measured on scales as small as ∼0.1 h−1 Mpc. The
measurements become possible with the accurate fibre-collision
correction method developed in Guo et al. (2012), which makes
use of the resolved collided galaxy pairs in tile overlap regions
to recover the small scale clustering. Previous measurements (e.g.
Hawkins et al. 2003; Zehavi et al. 2005) rely on either angular or
nearest neighbour fibre-collision corrections, which results in sys-
tematics at the level of the data precision (Guo et al. 2012). With our
measurements, we find that both the projected and redshift-space
2PCFs show a clear dependence on galaxy luminosity, generally
with a higher clustering amplitude for more luminous galaxies on
both small and large scales. The dependence on luminosity becomes
stronger for galaxies above ∼L∗. The overall trend is consistent with
previous results based on the projected 2PCFs (e.g. Zehavi et al.
2011).

To interpret the measurements, similar to G15, we resort to an
accurate HOD model based on a high-resolution N-body simula-
tion. In addition to the mean halo occupation function, the model
also parametrizes the central and satellite galaxy velocity bias. For
the first time, a halo-based model is applied to model the measured
luminosity dependent small- and intermediate-scale redshift-space
clustering of local galaxies. Previous studies usually focus on rela-
tively large scales and adopt a streaming model (e.g. Peacock et al.
2001; Hawkins et al. 2003; Bel et al. 2014; Howlett et al. 2015). The
commonly inferred quantities include the linear redshift distortion
parameter and the mean pairwise velocity dispersion of galaxies
(e.g Cabré & Gaztañaga 2009) or its scale dependence (e.g. Li et al.
2007). Our halo-based model, as applied in G15 (see Reid et al.
2014 for a similar model), makes use of the kinematic information
of haloes and parametrizes the galaxy velocity distribution on top
of it, rather than an overall mean velocity dispersion. It allows us to
constrain the occupation and kinematic distribution of galaxies at
the level of dark matter haloes, a more informative extraction from
galaxy redshift-space clustering data. We find that the model is able
to successfully reproduce the observed projected 2PCF wp(rp), the
redshift-space multipole moments ξ 0(s), ξ 2(s) and ξ 4(s), and the
3D 2PCF ξ (rp, rπ ), on all scales for all SDSS luminosity-threshold
samples (Figs 3 and 5).

Consistent with previous work that only model the projected
2PCF (e.g. Zheng et al. 2007; Zehavi et al. 2011), we find that the
clustering trend with luminosity can be explained by the fact that
more luminous galaxies reside in more massive haloes. The charac-
teristic halo masses, Mmin (for central galaxies) and M1 (for satellite
galaxies), increase with increasing luminosity threshold. The satel-
lite fraction, fsat, drops as the luminosity threshold increases. The de-
pendence of Mmin, M1, and fsat on the sample number density (which
is directly related to the sample luminosity threshold) can be well
described by power-law relations. Compared to the wp-only mod-
elling results, the redshift-space 2PCFs help tighten the constraints
on the HOD parameters. However, we find that for the faint galaxy
samples (with luminosity threshold below L∗), the cutoff profile
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(characterized by the parameter σ log M) in the mean occupation func-
tion of central galaxies is still loosely constrained.

Besides the above results, the brand-new outcomes from our
modelling are the constraints on galaxy kinematics inside haloes,
coming from the RSD effects on both small and large scales. The
redshift-space clustering data require the existence of a non-zero
central galaxy velocity bias of about 0.3 for luminous samples (with
threshold luminosity Mr < −19.5), while for faint samples the cen-
tral velocity bias parameters are loosely constrained but consistent
with the above value. That is, in the rest-frame (centre-of-mass
frame) of a halo, the central galaxy on average moves at a speed
about 30 per cent that of dark matter particles. The central galaxy
velocity bias in our model is in agreement with the estimates from
the galaxy group catalogues in the SDSS (e.g. van den Bosch et al.
2005). This mutual non-relaxation between central galaxies and
dark matter haloes can result from mergers and dynamical evolu-
tion of galaxies and haloes. Converting the value to physical speed
and comparing to the typical infall velocity before merging, our
results imply that galaxies in lower mass haloes are more relaxed
with respect to the host haloes, consistent with their earlier for-
mation time. Further theoretical investigation of such an evolution
paradigm using high-resolution cosmological hydrodynamic galaxy
formation simulations will be pursued in future work.

For satellite galaxies, we find that the two most luminous sam-
ples have satellite velocity bias consistent with unity, which means
that they follow closely the motion of dark matter. The satellite
velocity bias αs ∼ 0.85 for fainter samples implies that fainter
satellites move more slowly than dark matter. If satellite motion is
in a steady state, the result suggests that the spatial distribution pro-
file of faint satellites should differ from that of dark matter. More
informative constraints need an improved model that allow for a
self-consistent treatment of the spatial and kinematic distributions
of satellites, which would also lead to tighter constraints than using
only projected spatial clustering measurements (e.g. Watson et al.
2012; Wang et al. 2014b). An improved model can also include the
effect of halo assembly bias to see its influence on the HOD (e.g.
Zentner, Hearin & van den Bosch 2014; but see Lin et al. 2015) and
velocity bias. The existence of satellite galaxy velocity bias affects
any dynamical inference based on satellite velocity dispersions. For
example, the effect needs to be taken into account when using the
velocity dispersion of the galaxy cluster members to estimate the
halo mass of galaxy clusters (Goto et al. 2003; Old, Gray & Pearce
2013).

In G15, velocity bias is inferred for a sample of z ∼ 0.5 lumi-
nous galaxies (ng = 2.19 × 10−4 h3 Mpc−3). Converted to the same
velocity bias definition used in this paper (i.e. in the centre-of-mass
frame of haloes), their result on the velocity dispersion for cen-
tral galaxies in haloes of ∼1013.35 h−1 M� is about 96 ± 8 km s−1.
On average, these haloes evolve to ∼1013.55 h−1 M� haloes at z∼0
(e.g. Zhao et al. 2009), around Mmin of the Mr < −21.5 sample
(ng = 2.86 × 10−4 h3 Mpc−3). We thus can have an approximate
connection between the two samples at z ∼ 0.5 and 0 from the
halo evolution, following the same spirit as in Zheng et al. (2007),
which is also supported by the number density comparison. The
central galaxy velocity dispersion for the Mr < −21.5 is about
99 ± 15 km s−1. Such a preliminary analysis shows that the veloc-
ity dispersion for luminous central galaxies has not evolved much
since z ∼ 0.5 (in fact, it has marginally increased, but only at a
∼0.3σ level). We can assume a simple circular motion of the cen-
tral galaxy in the inner NFW halo to study the implication of the
result. With the z ∼ 0.5 velocity bias result, the radius of the orbit
can be inferred to be about 0.4 per cent of the virial radius of the

halo (G15). The corresponding dynamical friction time-scale is es-
timated to be ∼0.1 Myr, much shorter than the 3.7 Gyr time span
from z ∼ 0.5 to z ∼ 0.1. Therefore, a substantial central velocity
bias at z ∼ 0 indicates that these luminous central galaxies and their
host haloes (or the cores of haloes and the rest of the haloes) may
have been constantly disturbed by galaxy and halo mergers. We ex-
pect that velocity bias of galaxies inferred from different redshifts
can help study the dynamical evolution of galaxies and haloes and
test galaxy formation theory.

The galaxy peculiar velocity field is directly related to the growth
of structures in the universe. RSD effects can be used to constrain
cosmology, especially the growth rate (i.e. the fσ 8 parameter) to test
the theory of gravity (e.g. Guzzo et al. 2008; Percival & White 2009).
The statistical power of small-scale RSD measurements have the
potential to greatly tighten the constraints (e.g. Tinker et al. 2006;
Tinker 2007; Reid et al. 2014). The effect of velocity bias needs to be
taken into account when using small-scale redshift-space clustering
to constrain cosmology. We leave an investigation on cosmological
applications based on our measurements and model for a future
work.
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A P P E N D I X A : T H E R E D S H I F T E R RO R
D I S T R I BU T I O N

In order to develop an accurate HOD model to apply to the redshift-
space clustering measurements in SDSS, we need to carefully ac-
count for the distribution of redshift measurement errors of galaxies.
The effect of redshift errors is to add apparent peculiar velocity dis-
persion to galaxies, which, if not accounted for, introduces appar-
ent velocity bias component. This is especially important for faint
galaxies, because the potentially small central and satellite veloci-
ties inside haloes make the constraints more vulnerable to redshift
errors.

To properly investigate the redshift errors in the SDSS Main
galaxies, we make use of all the galaxies with repeat spectra for each
luminosity-threshold sample to derive the distribution of redshift
measurement errors. In particular, for a galaxy with n observations
and hence n redshift measurements, we construct the estimator of
the velocity error in each measurement as

�vi =
√

n

n − 1

c(zi − z̄)

1 + z̄
, (A1)
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Figure A1. Redshift error distribution of SDSS Main galaxies with different luminosity thresholds. In each panel, the histogram is obtained from galaxies
with repeat spectroscopic observations, and the red curve is the best-fitting Gaussian-convolved Laplace distribution. See the text.

where zi is the ith redshift measurement for this galaxy (i = 1,
. . . , n) and z̄ is the mean of the n measurements, and the factor√

n/(n − 1) makes the estimator unbiased.
The histograms in Fig. A1 show the probability distribution of

the redshift errors in terms of the peculiar velocity errors �v in
four different luminosity-threshold samples. We find that the dis-
tribution has more extended tails than a naively assumed Gaussian
distribution. The extended part follows closely the double exponen-
tial distribution or the Laplace distribution (appearing as straight
lines in the plot), while the central part can be described by a Gaus-
sian core (less sharply peaked than the Laplace distribution). In fact,
the distribution can be remarkably fitted by a Gaussian-convolved
Laplace distribution, shown as the red curves of Fig. A1. A ran-
dom deviate �v for such a distribution can be obtained by the sum
of two independent Gaussian and Laplace random numbers, i.e.
�v = �vgau + �vexp, with the distribution functions of �vgau and
�vexp as

fgau(�vgau) = 1√
2πσgau

exp

(
−�v2

gau

2σ 2
gau

)
, (A2)

fexp(�vexp) = 1√
2σexp

exp

(
−

√
2|�vexp|
σexp

)
. (A3)

The parameters σ gau and σ exp are the standard deviations for the
Gaussian and Laplace distributions, respectively.

Why does the redshift error follow more closely to a Laplace
distribution than a Gaussian distribution? Laplace distribution can
be thought as the distribution of Gaussian random variables with
mean zero and stochastic variance that has an exponential distribu-
tion (Kotz, Kozubowski & Podgórski 2001). We speculate that for

a given galaxy, the redshift error follows a Gaussian distribution,
but the variance of the distribution varies from galaxy to galaxy.
We expect that for higher variance in redshift errors, there are fewer
galaxies, and that there is a minimum variance (e.g. from the spectral
resolution). With such an expectation, the probability distribution
of the variance can be approximated as an exponential distribution
with a cutoff towards lower value. The overall distribution of the
redshift errors then follows a Laplace distribution with the central
part modified by the lower cutoff on the variance. In such a scenario,
the random variable �v can be obtained through the product of two
independent random numbers, �v = σu, where u follows the unit
normal distribution and σ 2 follows a modified exponential distribu-
tion of scale parameter σ 2

e with non-zero values above a threshold
σ 2

t . The two parameters σ e and σ t characterize the tail and central
part of the distribution. The above speculation is supported by the
data. In Fig. A2, we show the histogram of the sample variance
s2 of the redshift error distribution estimated from galaxies with
n = 2 repeat spectra, with s2 = ∑n

i=1[c(zi − z̄)/(1 + z̄)]2/(n − 1)
for each galaxy. The dotted curve shows an exponential distri-
bution of the variance σ 2 of the Gaussian error distribution with
σ 2

e = 200(km s−1)2 and σ 2
t = 20(km s−1)2. The expected distribu-

tion of sample variance s2 is shown as the solid curve. It is derived
from convolving the dotted curve with the sample variance distribu-
tion at given σ 2 [noting that (n − 1)s2/σ 2 follows a χ2 distribution
with n − 1 dof]. Clearly, the s2 distribution from galaxies with
repeat spectra is consistent with being from a sample of Gaussian
errors with stochastic variance that follows a truncated exponential
distribution.

In this paper, we adopt the Gaussian-convolved Laplace dis-
tribution to model the redshift error distribution. From fitting
the histograms of redshift errors with such a distribution for
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Figure A2. Distribution of sample variance s2 of redshift errors. For each
galaxy with n = 2 repeat spectra, the sample variance s2 is computed as
s2 = ∑n

i=1[c(zi − z̄)/(1 + z̄)]2/(n − 1). The distribution is consistent with
the expected s2 distribution (solid curve) for the following case: the redshift
error of each galaxies follows a Gaussian distribution, while the variance σ 2

of the Gaussian distribution varies from galaxy to galaxy and this stochastic
variance σ 2 follows an exponential distribution with a cutoff (illustrated
by the dotted curve, characterized by a scale parameter σ 2

e and a cutoff
threshold σ 2

t ). The description provides an explanation for the redshift error
distribution of SDSS galaxies (Fig. A1). See text for more details.

different luminosity-threshold galaxy samples, we derive the pa-
rameters σ gau and σ exp. We find that it is sufficient to adopt two
groups of parameters, for bright and faint galaxies, respectively. We
use σ gau = 2 km s−1 and σ exp = 12.5 km s−1 for the luminosity-
threshold samples of Mr < −18, −18.5 and −19, while the more
luminous samples have σ gau = 5 km s−1 and σ exp = 14.5 km s−1. We
incorporate the redshift errors into our model by adding shifts in the
redshift-space positions of galaxies, following the corresponding
Gaussian-convolved Laplace distribution.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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