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Abstract

Investments in generation are high risk, and the introduction of renewable tech-
nologies exacerbated concern over capacity adequacy in future power systems.
Long-term generation investment (LTGI) models are often used by policymakers
to provide future projections given different input configurations. To understand
both uncertainty around these projections and the ways they relate to the real-
world, LTGI models can be calibrated and then used to make predictions or
perform a sensitivity analysis (SA). However, LTGI models are generally com-
putationally intensive and so only a limited number of simulations can be carried
out. This paper demonstrates that the techniques of Bayesian emulation can be
applied to efficiently perform calibration, prediction and SA for such complex
LTGI models.

A case study relating to GB power system generation planning is presented.
Calibration reduces the uncertainty over a subset of model inputs and estimates
the discrepancy between the model and the real power system. A plausible range
of future projections that is consistent with the available knowledge (both histor-
ical observations and expert knowledge) can be predicted. The most important
uncertain inputs are identified through a comprehensive SA. The results show
that the use of calibration and SA approaches enables better decision making
for both investors and policymakers.

Keywords: Generation investments, calibration, uncertainty analysis,
sensitivity analysis, Bayesian emulation

Nomenclature

Sets and Functions

T Set of planning years of interest, indexed by t.
P Set of past planning years.
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F Set of future planning years.
G Set of generation technologies, indexed by g.
J Subset of input variables, indexed by i, j.
ρ Set of fuel types including uranium, coal, gas, and carbon.

f(·), f̃(·) Functions of the simulator and the emulator, respectively.
hi(·) Functions of the main modules within the simulator.
GP(·, ·) Gaussian process function.
p(·) Probability distribution function.

Parameters and Variables

x Vector of input variables.
u, θ, ω Vector of control inputs, calibration parameters and forcing in-

puts, respectively.
I Total number of input variables.
yBg,t, y

M
g,t, y

D
g,t Investment, mothballing and de-mothballing of generation ca-

pacities of type g at year t, respectively.
yg,t Installed generation capacity of type g in operation at year t.
yobs Vector of historical observations of elements yobs,t over P .
Fρ,t Fuel price of type ρ at year t.
MRρ Reference trend level of annual fuel prices of type ρ.
Pρ Multiplier applied to the trend level of fuel type ρ.
Pmarkup,t Hourly price markup payment at year t.
θmarkup Markup cut-in point where the markup approaches to zero.
NDt Hourly net demand (demand minus wind generation) at year t.
AGg,t Hourly available thermal capacity subject to forced outages at

year t.
CMt Hourly capacity margin (hourly available thermal capacity mi-

nus hourly net demand) at year t.
V OLL Value of lost load (VOLL).
Pe,t Energy prices at year t.
Cg,t Generation cost of generation type g at year t.
LOLEt Loss-of-load expectation at year t.
RTg,t Retirement of existing generators of type g at year t.
Vt Net Present Value (NPV) of an investment at year t.
τf The furthest simulation year ahead of the current decision year.
VV aR,t Value at Risk (VaR) of Vt.
θV aR Assumed level of risk aversion.
β, σ2, γ Hyperparameters in the Gaussian Process model.
δ Model discrepancy function.
D Design points of chosen input variables.
Kf Principal component basis vectors of elements k1, · · · , kpf

.
di The i-th basis function for model discrepancy.
ϑi Weight of the i-th basis function for model discrepancy.
λϑ Hyperparameter in the model discrepancy.
pδ Total number of basis functions for model discrepancy.
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SJ Measure of sensitivity to a subset of inputs xJ.
SVJ Variance of the main effect of a subset of inputs xJ.
Var(y) Total output variance.

1. Introduction

There is a growing concern over capacity adequacy in future power sys-
tems due to a number of risks that may discourage investment in generation
capacity [1–4]. These risks exposed to investors range from policy (e.g., VOLL
pricing, CO2 prices and renewable targets) and market (e.g., fuel cost, demand
forecast and electricity price) risks, to technology (e.g., capital cost) and finance
(e.g., hurdle rate) risks [4] and they create uncertainty (i.e., imperfect knowl-
edge) in the financial returns of an investment. One prominent feature in future
power systems is that market risks increase with the amount of variable wind
power that contributes to higher price volatility and lower (on average) and
more uncertain load factors for thermal power plants [5].

Various long-term generation investment (LTGI) models have been devel-
oped for predicting real-world generation projections and hence guiding invest-
ment decisions and the design of energy policy [6–13]. From the perspective
of policymakers, who wish to adequately account for uncertainty around future
generation projections related to the real world, it becomes increasingly impor-
tant to consider two main sources of uncertainty existing in these models. One
is input uncertainty representing investment risks and/or model assumptions
that affect or shape the direction of investment decisions [4]. The other one is
structural uncertainty which concerns the discrepancy between the model and
the real-world complex investment decision-making process. Questions regard-
ing validation and understanding of these LTGI models need to be carefully
addressed before model outcomes can be interpreted and applied.

Calibration or history matching is a valuable tool for validating a model
and linking it to the real world when historical observations are available. This
typically involves calibration of a subset of uncertain model parameters against
historical observations of the model output whilst modeling the discrepancy
between the model and the real system. Uncertainty of calibration parameters,
which may be specified ex ante as a probability distribution based on the prior
beliefs of the model user or other experts, can be reduced through calibration
(i.e., by identifying values of calibration parameters that are plausible with
respect to prior beliefs and historical observations of the model output). To the
best of our knowledge, no such formal calibration of LTGI models has previously
been done. If a calibration against historical observations is not performed,
this severely limits the conclusions which can be drawn regarding investment
decisions and policy design in the real system.

Sensitivity analysis (SA) is also often applied to LTGI models in order to
understand how model outputs react to changes in model inputs. SA in [6, 9,
11, 13–15] were carried out using a simple one-at-a-time method, where each
uncertain parameter is varied independently across a range of possible values
while all others are held constant. The one-at-a-time method fails to treat the
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analysis with sufficient care (i.e., no formal weight or probability is attached
to each outcome), and is incapable of taking into account interactions among
different inputs. Multi-way SA can identify the combined effects of two or more
inputs, through varying the inputs together using a large and highly structured
set of simulator runs [16]. Probabilistic SA is an alternative approach to multi-
way SA that can address interactions and nonlinearities. The input uncertainty
is explicitly described as a scenario tree with associated probabilities (discrete)
or a probability distribution (continuous) in probabilistic SA while it is treated
only implicitly in the preceding methods. A wide ranging review of uncertainty
and sensitivity analysis in the context of power system planning may be found
in [17].

A conventional way to conduct a formal calibration or a probabilistic SA is
the Monte Carlo (MC) method of drawing random configurations of inputs from
their uncertainty distributions, running the model for each input configuration
to obtain the set of outputs, and constructing the output distribution (which can
in principle be evaluated to any desired accuracy). Computationally intensive
models associated with large studies tend to have high-dimensional inputs. The
MC-based method may require thousands of (if not more) individual evaluations
in order to avoid sparse coverage of the model input space. It may be practically
impossible for complex models to achieve very dense coverage of input space even
if very large computer resource is available [17]. For example, a single run of
a LTGI model may take many hours [6, 18] or even many days or weeks with
more detailed modeling of short-term operations of power plants [19, 20]. In
addition, the outputs of interest (e.g., generation projections) for a LTGI model
are often high-dimensional due to the long planning horizon; this adds to the
complexity of calibration and SA. Even where a very large number of runs may
be possible by acquiring additional computing resource, the approach adopted
in this paper allows results to be obtained in a systematic way with a smaller
computing resource.

This paper will carry out calibration and probabilistic SA of a computa-
tionally intensive LTGI model (i.e., the simulator) with careful management
of two sources of uncertainty - input uncertainty and structural uncertainty.
A highly-efficient Bayesian approach described in [21–24] is employed. Fig. 1
shows a diagram of the proposed Bayesian framework, which is based on a Gaus-
sian process model (i.e., the emulator) that is built as an approximation of the
simulator using a limited number of simulation runs (i.e., training data). The
emulator can efficiently deal with the tasks of: calibration; probabilistic SA; pre-
diction - estimation of model outputs at input configurations that have not been
tested; and uncertainty analysis that is most relevant when those outputs pro-
vide guidance in the making of some decision (such as using a LTGI simulator
in setting VOLL for maintaining the LOLE target).

The main contributions of this paper can be summarized as follows.

1) Use of Bayesian emulation to manage uncertainties arising from the limited
number of runs that are possible and consequent sparse coverage of the
input space; this is the first time that such emulation techniques have been
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Figure 1: Steps involved in performing the Bayesian framework based on emulation.

used to manage these uncertainties when performing model calibration and
uncertainty analysis associated with generation investment.

2) Presenting a statistical approach for the calibration of LTGI models, to
infer from historical observations improved knowledge of uncertain inputs
and model discrepancy;

3) Quantifying a plausible range of model outputs that is consistent with the
available knowledge (both historical observations and expert knowledge),
and demonstrating that a failure to account for the parameter and the
structural uncertainty may mean that results are misleading to investors
and policymakers;

4) Performing an efficient SA of a LTGI model and identifying the most
important uncertain model inputs.

In Section 2, a brief description of the simulator under study is provided,
emphasizing uncertain model inputs and outputs that are of interest. The the-
oretical foundations of the Bayesian framework is illustrated in Section 3. This
Bayesian approach is applied to the GB power system as a case study in Sec-
tion 4, including results from calibration, predictions and SA as well as discus-
sions on the generality of the Bayesian approach. Some conclusions are drawn
in Section 5.

2. The Long-term Generation Investment Simulator

A brief description of the simulator under study is provided in this section,
with emphasis on the uncertain model inputs and the output of interest. A full
description of the simulator may be found in [6, 18]. This LTGI model developed
by Eager, Bialek and Hobbs [6, 18] will be used as an exemplar to demonstrate
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the application of the Bayesian approach to a decision-support tool. Whilst
this is a specific application, the Bayesian framework as presented here can be
generally applied to models in which uncertainty plays a key role and where the
link between the model and reality is of great importance and interest to model
users. For more discussions, see Section 4.6.

2.1. High-level formulation of the generation investment model

The simulator can be used to quantify thermal investments given a scenario
of on-shore and off-shore wind capacities over a planning horizon T . The invest-
ment logic is based on an NPV approach combined with a VaR criterion applied
to the assessment of the profitability of investments based on forward-looking
simulations. A MC approach is employed to account for uncertain demand
growth and fuel and carbon prices at each simulation year, and estimates the
probability distribution of profitability at the decision year. Fig. 2 shows the
structure and the main inputs and outputs of the simulator. A high level descrip-
tion of the five main modules within the simulator is provided in eqs. (1a)–(1e).

Fρ,t = h1

(

Pρ ∗MRρ

)

, ∀ρ ∈ {uranium, coal, gas, carbon} (1a)

Pmarkup,t = h2

(

NDt, {AGg,t}, θmarkup, V OLL
)

, ∀g ∈ G (1b)
[

Pe,t, {Cg,t}, LOLEt

]

= h3

(

NDt, {AGg,t}, Fρ,t, Pmarkup,t

)

, ∀g ∈ G (1c)
[

yBg,t, y
M
g,t, y

D
g,t

]

= h4

(

θV aR, {Pe,τ}, {Cg,τ}
)

, ∀τ ∈ {t, · · · , t+ τf − 1} (1d)

yg,t = h5

(

yg,t−1, y
B
g,t, y

M
g,t, y

D
g,t, RTg,t

)

, (1e)

In (1a), h1(·) simulates annual fuel and carbon prices (both in the past and
future) using mean-reverting stochastic processes [6, 25] which address volatility
around the trend (i.e., mean-reversion) levels of fuel prices. A multiplier Pρ

adjusts the reference trend level MRρ upwards or downwards, to reflect the
long-run or global uncertainty of fuel prices due to market changes or political
interventions. Applying a multiplier Pcarbon to the trend of future carbon prices,
as shown in Fig. 3, results in different levels of carbon price trend (in solid and
dashed lines) associated with modeled local uncertainty (in shaded areas).

In (1b), h2(·) calculates the price markup (i.e, an uplift), referring to charges
applied in addition to a uniform market-clearing price during periods of tight
supply (i.e., scarcity situations), as shown in the upper graph in Fig. 4. The
price markup, Pmarkup,t := V OLL ∗ eb∗CMt , is represented as an exponential
function of the capacity margin. The markup reaches VOLL at a capacity mar-
gin of zero, since VOLL is used as the price cap. The parameter b is calibrated
so that the markup approaches zero at the value of θmarkup. Different assump-
tions on θmarkup lead to different levels of price markup, as shown in the lower
graph in Fig. 4.

In (1c), h3(·) performs the probabilistic production costing method in a
nonequilibrium market settlement, as described in [6]. The method performs a
convolution of generator outages with the annual net demand curve NDt and
calculates the energy prices, costs, revenues and LOLE. NDt takes into account
the relationships between wind availability and demand and is modeled by a
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Figure 2: The model structure of the simulator.

mix of normal distributions. Annual load growth rates in forward-looking simu-
lations are sampled from independent normal distributions by a MC approach.
Since an existing published model is adopted, discussion about more details on
the form of this model is beyond the scope of the paper.

In (1d), h4(·) determines the investment in, mothballing and de-mothballing
of existing thermal generators. At each year, the investor assesses Vt based on
the NPV of the first τf years of forecasted profits. Note that Vt is random due to
the uncertain nature of fuel prices, demand growth rates and generator outages.
The VaR criterion is applied to Vt according to Pr(Vt ≤ VV aR,t) = θV aR. The
smaller the value of θV aR is, the more risk averse the investor is assumed, and
the lower level of investment would be.

The last function h5(·) in (1e) simulates capacity dynamics after taking into
the decisions derived from (1d) and exogenous thermal plant retirements RTg,t.

2.2. Model inputs and outputs

The inputs of interest here are sources of uncertainty that can result in
a substantially different trend in the long-run investment decisions. Among
the modules described in Section 2.1, five model inputs are identified and cat-
egorized into three types: control variables u := {V OLL, Pcarbon} that are
determined by the VOLL pricing policy and the carbon policy, respectively;
calibration parameters θ := {θmarkup, θV aR} with unknown values that will be
learned using historical observations of the model output [21], as further ex-
plained in Section 3.3; and a forcing input ω := Pgas reflecting uncertainty in
future gas prices. The parameters V OLL, Pgas, and Pcarbon are not chosen to be
calibrated since they are affected by market changes or political interventions,
whereas calibration parameters must take the same value for both historical
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Figure 3: Different trend levels of carbon prices (in solid and dashed lines) using the central
estimates of carbon prices published by DECC [26] as a reference (in solid line); the expanding
shaded area reflects increasing local uncertainty further out along the trend level.
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observations and future projections. The above input categorization is derived
from a policymaker’s perspective; an investor might have a different categoriza-
tion of inputs. The selected model inputs are assumed to be constant over the
planning horizon. This approach allows direct exploration of the relationship
between one parameter (used to represent a model input) and model outputs.
Similar practices can be found in [9, 11, 13, 15]. The dimensionality of the input
space can be extended if independent values are needed for an input variable at
each year or at each stage (e.g., every five years). Also more model parameters
(e.g., the mean or the variability of demand growth rates) can be included in the
input space if they are deemed to contribute substantial additional uncertainty.

The output of interest is a time series of annual installed thermal generation
capacity y = {yt}, ∀t ∈ 1 . . .T , where yt =

∑

g∈G

yg,t. The historical observations

of installed thermal capacities are available, which allows for calibration in the
history matching procedure. The planning time horizon of interest T is either
the past (t ∈ P), for which observations exist, or the future (t ∈ F), for which
a projection is made.

Given a set of model inputs x = {u, θ, ω} of I elements, the simulator com-
bines the five functions defined in eqs. (1a)–(1d) to give the output y. In this
way, the simulator can be thought of as a deterministic function, f , with

y = f(x). (2)

3. Bayesian framework based on emulation

In the LTGI model presented in Section 2.1, there is uncertainty in the input
values of x, which propagates into output uncertainty, resulting in a range of
generation projections. LTGI simulators are often too expensive to evaluate at
a large number of points within the input space [18, 19, 27] (see Section 4.2 for
details), which makes it difficult to identify the plausible range of generation
projections that is consistent with historical observations.

The aim of Bayesian emulation is to evaluate the function f given in (2)
at a small number of carefully configured input points, and to approximate
this function as accurately as possible with a statistical representation f̃ . The
statistical representation should be computationally less demanding to evaluate
than f , and will include terms modeling the uncertainty in the approximation
at any point x in the input space where f(x) has not been evaluated. The
challenge posed by the high-dimensional model output in the emulation process
is handled by a dimension reduction technique. Once the Bayesian emulator
is built in the first-stage, problems such as prediction or SA can be efficiently
tackled using the emulator in the second stage. The basic theory is provided in
the following subsections. More detailed theoretical foundations can be found
in [21, 22].

3.1. Emulation using a Gaussian process

The simulator represented by the function f in (2) is treated as an uncertain
function, as the value of f(x) for any value of x is unknown until the simulator is
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run at x. Our prior uncertainty on the function f is modelled with a Gaussian
process (GP) f̃(·) = GP(·, ·), with mean function E[f(x) | β] and covariance
function Cov[f(x), f(x′) | σ2, γ] [21], so that,

f(x)|β, σ2, γ ∼ f̃(x) = GP

(

E[f(x) | β],Cov[f(x), f(x′) | σ2, γ]

)

, x, x′ ∈ [0, 1]I ,

(3)
where

E[f(x)|β] = xTβ,

Cov[f(x), f(x′)|σ2, γ] = σ2exp{−(x− x′)T γ(x− x′)}.
(4)

The mean function depends on a vector of hyperparameters (i.e.,uncertain
parameters) β and the covariance function is conditional on a hyperparameter
σ2 and a diagonal matrix γ of correlation hyperparameters; x, x′ are any two
points over the standardized input space [0, 1]I .

The forms of the prior mean E[f(x) | β] and covariance function Cov[f(x), f(x′) |
σ2, γ] in the GP used here are given by,

E[f(x) | β] = 0,

Cov[f(x), f(x′) | σ2, γ] = exp[−

I
∑

i=1

{(xi − x′
i)/0.3}

2],
(5)

where the index i denotes the i-th element of the input. The hyperparameters
β are set to zero and {σ2, γ} in (4) are fixed at specific values.

Given the prior GP model, the following three steps are taken to develop
the emulator:

Step 1: Defining the standardized input space of interest through prior
knowledge of these parameters; and selecting a small set of well designed input
configurations, known as design points, D := [x(1), x(2), . . . , x(d)] of d elements
using latin hypercube designs [28].

Step 2: Running the simulator f(·) at each of these design points, and obtain-
ing the simulator output f(D) := (f(x(1)), f(x(2)), . . . , f(x(d)))T of d elements.

Step 3: Fitting an emulator by combining the training data (D, f(D)) with
the prior GP model given in (3). This procedure uses a Bayesian approach
described in [24];

The trained emulator f̃ is a statistical distribution. In particular, for any
point x′, the distribution of the output [f(x′)|D, f(D), β, σ2, γ] is another GP
(for more details, including details on the estimation of {β, σ2, γ}, see [29]). The
emulator estimates the model response at any point in the parameter space and
quantifies the uncertainty in this estimate; this means that computational tasks
such as calibration, prediction and SA can be carried out efficiently. Validation
is required to ensure that an emulator is sufficiently accurate. A number of
diagnostics are provided in [30], such as the Mahalanobis distance, the analysis
of prediction errors (see Section 4.3.1), the pivoted Cholesky decomposition etc.
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3.2. Dimension Reduction

As described in Section 2.2, the simulator output of interest y := f(x) is a
vector of T elements. To cope with the high-dimensional model output space,
principal components analysis (PCA), described in [31] is used to project the
high dimensional output data into a new lower dimensional representation of the
data that contains most of the variance in the data with minimal loss of infor-
mation. The principal component basis vectors Kf = [k1, · · · , kpf

] are obtained
via singular value decomposition of the standardized simulation output matrix
f(D). Based on PCA, the T -dimensional simulator output f(x) is modelled
using a pf -dimensional basis representation [24]:

f(x) ∼

pf
∑

i=1

kiνi(x), (6)

where νi(x) are GP models described in (3). With this formulation, the prob-
lem of building an emulator that maps [0, 1]I to R

T is reduced to building pf
independent, univariate GP models for each νi(x).

3.3. Bayesian Calibration

The goal of model calibration here is to identify plausible values of cali-
bration parameters whilst simultaneously inferring the model discrepancy using
physical observations of the output over the time period P . Among the inputs
x := {u, θ, ω} described in Section 2.2, {u, ω} are already known historically.
The calibration parameters θ are assumed to have unknown best values due to
our incomplete knowledge of the real-world. If the simulator were run with these
best values, it would reproduce the observations plus a model discrepancy term
δ (if we assume no observation error). With the emulator f̃(·) as an approxi-
mation of the simulator, the relationship between the observations, the model
discrepancy and the emulator at the best value of θ can be written as [32],

yobs = f̃(u, θ, ω) + δ, (7)

where yobs := {yobs,1, · · · , yobs,P} is the observation.
The model discrepancy δ quantifies the mismatch between the model and the

observations at the best setting for the calibration parameter θ. The mismatch
may arise from inadequacies in the simulator, such as in the model equations,
model structure or logic [32]. δ is modelled by a linear combination of basis
functions [33]:

δ =

pδ
∑

i=1

diϑi, (8)

where di’s are basis functions; and the weights ϑi’s are modelled as iid N(0, λϑ)
where the prior of λϑ can be suggested by expert knowledge (i.e., the knowledge
about how accurately the simulator represents the system). Here the basis
functions are independent normal kernels of which the number and the width
depend on the application (see Section 4.3). More details regarding the use of
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kernels to model the discrepancy against real-world observations can be found
in [33].

To find plausible values for the calibration parameters, θ, alongside inferring
the model discrepancy, first suppose that the prior knowledge of the calibration
parameters, the discrepancy parameters λϑ and the emulator parameters β, σ2

and γ is described by the joint prior distribution p(θ, λϑ, β, σ
2, γ). This prior

distribution is updated using the observations and the set of training runs ob-
tained from the simulator. This updating is done according to Bayes’ rule [32]:

p(θ, λϑ, β, σ
2, γ|yobs, f(D)) ∝ p(yobs, f(D)|θ, λϑ, β, σ

2, γ)p(θ, λϑ, β, σ
2, γ), (9)

where the left hand term of 9 is the posterior distribution of the key param-
eters of interest and p(yobs, f(D)|θ, λϑ, β, σ

2, γ) is the joint distribution of the
observed data and the training runs f(D), conditional on these key parameters.
The marginal posterior distribution for each of θ, λϑ, β, σ

2 and γ can be ob-
tained through marginalisation over the other parameters. For discussion and
technical details regarding this Bayesian calibration approach see [32].

3.4. Sensitivity analysis
Sensitivity analysis is used to quantify how much of the total output uncer-

tainty is attributed to uncertainty in a particular input or a group of inputs.
Using the calibrated emulator, a probabilistic SA that treats uncertainty explic-
itly may be carried out. Compared with that conducted in [17] where uncertain-
ties are modeled as decision trees, the probabilistic sensitivity study formally
treats uncertainties (inputs x, the emulator f̃ , and outputs y) as probability
distributions, as is required in the full Bayesian approach adopted in emulation.

Uncertainties are prioritized through a direct variance-based measure of sen-
sitivity, known as “first-order effect index” or “main effect index” [16]. The sen-
sitivity index SJ for inputs xJ is defined as the ratio of the sensitivity variance
to the overall variance:

SJ =
SVJ

Var(y)
, (10)

where the total variance can be partitioned into the sum of all the sensitivity
and interaction variances,

Var(y) =

I
∑

i=1

SVi +

I
∑

i<j

SVij + · · ·+ SV12...I , (11)

SVi = Var(E(f̃(x)|xi)) = Var(

∫

f̃(x)p−i|i(x−i|xi)dx−i), (12)

SVij = Var(E(f̃(x)|xij))) = Var(

∫

f̃(x)p−ij|ij(x−ij |xij)dx−ij), (13)

where E(f̃(x)|xi) denotes expected value of the emulator at x, conditional on xi,
averaged over the joint distribution of all the other input variables x−i (known
as the mean effect); E(f̃(x)|xij) represents the two-input mean effect.

The sensitivity index can be quantified through exploring the distributions of
model inputs together with the emulator via Markov chain Monte Carlo [23, 34].
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4. GB case study

In this section, as a detailed case study, Bayesian emulation is applied to
the GB power system with an energy-only market design. In particular, the
simulator will be calibrated, as described in Section 3.3, quantifying the plausible
range of generation projections, and a probabilistic SA will be performed. Note
that the Bayesian framework presented in this paper is applicable to other types
of generation investment model.

4.1. Data

The data used in the case study are consistent with those provided in [18],
including the initial capacity mix, wind and demand data, as well as financial
and technical assumptions for generators.

Expert knowledge can be incorporated in the model by assigning prior dis-
tributions to model inputs. A uniform distribution is commonly used when
there is little knowledge about an uncertain parameter in the model except that
its value has to lie anywhere within fixed bounds. The risk attitude θV aR is
sampled from the uniform distribution U(0.5%, 50%) reflecting a range of in-
vestment assumptions from extremely risk averse to risk neutral. In the GB
power system with 60 GW peak demand, θmarkup is sampled from U(0, 25)
[GW]. The chosen range of θmarkup implies that the price uplift function is used
under system conditions with a fairly tight capacity margin (range 0−25%). For
2015 onward, V OLL is assumed to sample from U(1000, 20000) [£/MWh] over
which we wish to achieve the desired understanding through sensitivity analy-
sis; this is a reasonable range according to the study in [35] where the VOLL is
estimated for domestic, industrial and commercial electricity consumers in GB.
A prior uniform distribution U(0.80, 1.20) is assigned to Pcarbon. In the case
that Pcarbon = 1.05, the reference trend of carbon prices, which takes DECC’s
central forecast [36], would be shifted upwards by 5%. The uncertainty range
of future carbon prices resulting from the chosen range of Pcarbon is broadly in
line with the range of DECC’s carbon projections in [36]. The prior belief for
the forcing input Pgas is a normal distribution N(1, 0.062), which indicates bias
over the reference gas price level, and results in a range consistent with that
estimated by DECC [26].

4.2. Computational time

The simulator was run in the Matlab/Simulink R2012a environment using
an Intel(R) Core(TM) i5 − 3470 3.20GHz processor with 8.00GB RAM. The
run time for a single simulation of the 30-year generation planning varied be-
tween 140 and 600 minutes, with 7 stochastically simulated years and 100 MC
simulations for each investment decision. The GPM/SA code package that was
developed by Los Alamos National Laboratory as described in [37] has been
adapted in this paper and used for emulator development and valuations. In
comparison with simulator runs, one emulator evaluation in the same environ-
ment took approximately 10−4 seconds, a speed ratio in the order of 107 ∼ 109.
The extra time needed for developing the emulator is about 6 minutes excluding
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Figure 5: Simulated historical installed capacities of each thermal generation type given dif-
ferent design points compared with and observations

the time required for a handful of simulator runs (depending on the amount of
training data required).

Traditional MC-based probabilistic SA that is directly applied to the simu-
lator would take several months or even over one year for a thousand of simu-
lation runs. However, with the developed emulator, the sensitivity task can be
achieved within several seconds. The advantage of the emulator-based approach
in saving computational time is clearly seen.

4.3. Calibration

It will be shown here how the simulator can be calibrated against historical
observations of model output. In practice a good simulator is needed in that it
is able to reasonably well reproduce the dynamics of observations (at least for
some parameter values).

An emulator is built using 12 training data that are composed of 12 design
points over the input space (θV aR, θmarkup) and the corresponding 12 scenarios
of annual outcome of total thermal capacity in operation over the planning
horizon P . The observation data yobs, against which the simulator is calibrated,
consists of a single time series of N = 12 observations. We assume that any
observation error is negligible. Fig. 5 gives a breakdown of simulated (in lines)
and observed (in circles) installed thermal generation capacities at all design
points, and also historically observed on-shore and off-shore wind capacities.

4.3.1. Validation of the emulator

Apart from the training data, 6 additional model runs on a maximin Latin
hypercube design are used for validation. Fig. 6 shows that almost all the results
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Figure 6: Predictions at data points for validation; Circles show the observation simulated
by the simulator; Dashed and solid black lines indicate the mean and the the 5th and 95th
percentiles of model output predicted by the emulator.

produced by the simulator are located within the 95% confidence intervals of
model output predicted by the emulator, suggesting that the emulator performs
well. Fig. 7 shows a boxplot of residuals (i.e., differences between predicted
values from the emulator and observed values from the simulator) at each plan-
ning year. The root mean-square error (RMSE) between the emulator’s mean
prediction and the simulator output is 46.4 MW. The ratio of RMSE to the
mean value of the simulated output is 0.0062; this is small and indicates a good
mean prediction by the emulator.

It is worth noting that a probabilistic prediction of generation projections at
a point estimate of model inputs is estimated by the emulator here, whereas in [6,
18, 27] one path within the uncertainty window of the calibrated uncertain range
would be seen, resulting in overconfident predictions. This is also true for future
projections in Section 4.4. Since a full Bayesian approach has been taken in this
paper, the model inputs, the model itself, and the model outputs of interest are
all treated as uncertain and described through probability distributions.

The following calibration work is based on the validated emulator, with the
aim of obtaining the posterior distributions of the calibration parameters, and
also inferring the model discrepancy, so that these may be used to make future
projections. This approach improves on validation work done in [27], where the
simulation results at the assumed ‘good’ values of calibration parameters are
graphically compared against observations, and issues such as model structure
discrepancy are not addressed.
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Figure 7: Boxplots of holdout residuals at each planning year

4.3.2. Parameter Calibration

Fig. 8 shows probability density functions for the marginal and bivariate pos-
terior distributions of the two calibration parameters on the normalized [0, 1]
scale. As compared with their prior uniform distributions specified in Sec-
tion 4.1, the posterior distributions are constrained in these two dimensions by
removing input values that result in implausible outputs.

The posterior distribution of θV aR shows that the investor tends to be risk-
averse, but it might be inappropriate to assume a very risk-averse investor given
the probabilistic descriptions of fuel prices and demand growth rates in the
simulator. The posterior distribution of θmarkup indicates that it is plausible
for generators to receive an uplift payment when the capacity margin falls into
the range [4− 23] GW (on the original scale).

4.3.3. Calibrated and Discrepancy-adjusted Simulator

The risk of overfitting using the calibrated emulator is relatively low com-
pared with the simulator used in [27], due to the use of a posterior distribution
covering a range of possible values for calibration parameters which is the case in
our study (see Fig. 8) rather than a single combination of values. However, there
is potential for overfitting if too many Normal kernels di are specified to model
the discrepancy term δ, resulting in too many parameters that need calibrating
given the limited number of observations available. The model discrepancy is ex-
pected to have a strong time persistence so that the normal kernels of δ are wide
in the t direction. Here, the model discrepancy is represented by a restricted
number of 3 weighted Normal kernels centered on years (2005, 2009, 2013), each
with a standard deviation of 2. Note that the observations at years 2001− 2002
are omitted from calibration because the investment decisions do not take effect
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until 2003 due to construction delays associated with thermal power plants.
The input uncertainty (i.e., the uncertainty in the calibration parameters),

represented by the prior or posterior distributions, propagates into the output
uncertainty, resulting in a probability distribution over the outputs. Fig. 9 shows
how the calibration and the discrepancy term reduce the plausible output space
when observations are available. A credible interval of [5%, 95%] is taken as the
plausible range in this paper. Without calibration, a wide range of simulator
outputs is observed, as shown by the light grey lines in both the left and the
centered graphs. With a calibrated simulator, a much narrower plausible range
of simulator outputs is identified by the dashed black lines in the left column.
After adding the discrepancy term to the calibrated simulations, the predicted
range of simulator outputs, as quantified by the black lines in the centered graph,
more closely matches the observation data compared with that predicted by the
calibrated simulator. The plots in the right column quantify the plausible range
of the model discrepancy, which has a much lower order than the model output
and grows slightly over time.

4.4. Future projections using the discrepancy-adjusted and calibrated emulator

The aim of this section is to use the posterior distributions obtained from the
calibration of the simulator against historical observations to obtain plausible
future projections from the simulator. Additional uncertainty on the inputs
(u, ω) takes effect in making future projections. Following a Bayesian approach
allows for the combination of the simulator runs, the posterior distributions of
the calibration parameters θ, and the model discrepancy.

As for calibration, the first stage for obtaining plausible future projections is
building an emulator; this is trained using a group of 25 design points over the
5-dimensional input space x = {u, θ, ω} and the corresponding 25 scenarios of
annual installed thermal capacity over period F . The same validation approach
described in Section 4.3.1 was employed and similar results were obtained sug-
gesting a good fit. All these design and validation points are sampled using a
Latin-hypercube design over their prior ranges. Fig. 10 shows a breakdown of
simulated scenarios of installed thermal capacities given a projection of future
on-shore and off-shore wind capacity.

The validated emulator is used for making predictions in the second stage,
where the control variables are fixed but the calibration and forcing parame-
ters remain uncertain. In this case, the output uncertainty results from the
uncertainty of forcing and calibration parameters as well as the approximation
error of the emulator. Fig. 11 shows a probabilistic prediction of future ther-
mal capacities at fixed values of V OLL := 10000 and Pcarbon := 1. The grey
lines in the left and center column show all the simulations obtained from the
simulator. A comparison is made between the plausible range of thermal ca-
pacities predicted by the simulator before calibration (in dashed lines in the
left column), and the calibrated and discrepancy-adjusted simulator (in black
lines in the center column). As expected, a much wider plausible range of fu-
ture thermal capacities is predicted by the simulator before calibration; in this
case, the prior distributions of calibration parameters are used instead of their
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Figure 10: A breakdown of simulated generation projections across all the design points
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Figure 12: Predictions of thermal capacities at different values of (V OLL,Pcarbon). Grey
lines are simulation output and black lines indicate the plausible range of projected thermal
capacities.
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posterior distributions and no model discrepancy is accounted for. The right
column in Fig. 11 shows the model discrepancy applied to future projections,
which is consistent with the discrepancy term inferred from history matching
for the first 12 years of simulation. In order to reflect the increasing uncertainty
far into the future, the model discrepancy is assumed to increase by 5% of the
average systematic error at every year from 2026 onwards. Although there is
no guarantee that the modelled historical discrepancy would accurately apply
to future projections, the discrepancy term added to the calibrated predictions
can mitigate the risk of making overconfident projections.

To help understand the combined effects of (V OLL, Pcarbon), the probabilis-
tic predictions (i.e., the uncertainty ranges) of thermal capacities and LOLE
are presented in Fig. 12 and Fig. 13 respectively, at selected combinations of
“high”, “middle” and “low” values of both variables. LOLE, one of the outputs
of the LTGI model and calculated in (1c), indicates the level of security of sup-
ply risk. In comparison with the GB standard of 3 hours per year LOLE [38],
the risk of security of supply from year 2023 onwards for some choices of input
settings can be very high, as shown by the grey lines in Fig. 13. The LOLE
profiles are emulated using the Bayesian approach as described in Section 3.1.
The right-hand graphs in Fig. 12 and Fig. 13 show that thermal capacities de-
cline and the LOLE increases as the value of Pcarbon increases (i.e., the trend
level of carbon prices increases) but the effect is small. One of the advantages of
the probabilistic predictions is that it is natural and computationally efficient
to determine the combination of (V OLL, Pcarbon) with a high probability of
keeping the LOLE at each planning year below some set threshold.

4.5. Sensitivity Results

Sensitivity analysis is firstly conducted to study the individual and com-
bined effects of calibration parameters on the installed thermal capacities for
the emulator used for calibration. Fig. 14 shows variations in the output by
varying one parameter while averaging over the other (instead of holding the
other constant). Table 3 provides the variance contributions of each calibration
parameter to the total variance of the model output in terms of the main ef-
fect index defined in (10). It is clear that the installed thermal capacity is much
more sensitive to the change in the price markup model parameter θmarkup than
the risk-preference parameter θV aR.

Table 3: Measures of sensitivity on the calibration parameters in history matching

Input variables θV aR θmarkup (θV aR, θmarkup)
% of variance 6 85 9

A more comprehensive SA is conducted for future projections under the
input uncertainty. Table 4 and Table 5 provide the variance contributions of in-
dividual model inputs and those of two-input interactions to the overall variance
associated with the projections of thermal capacity, respectively. It is clearly

21



Figure 14: Sensitivity analysis of θ = {θV aR, θmarkup} in history matching

seen that the most important input parameters are V OLL and θmarkup, as vary-
ing these has the largest effect on the output. An index of 57.6% indicates that
uncertainty about V OLL accounts for over half of the the overall uncertainty
in the output. The results from SA highlight the significant long-term effect
of scarcity pricing on incentivizing the investment of conventional generation
capacity in future electricity markets with a high penetration of wind power.

Table 4: Sensitivity of the five input parameters in future projections

Input variables V OLL Pcarbon Pgas θV aR θmarkup

% of variance 57.6 2.3 0.8 0.6 34.9

Table 5: Sensitivity of two-input interactions in future projections

Inputs (V OLL, Pcarbon) (V OLL, Pgas) (V OLL, θV aR)
% of variance 0.46 0.13 0.01

Inputs (V OLL, θmarkup) (Pcarbon, Pgas) (Pcarbon, θV aR)
% of variance 1.84 0.12 0.02

Inputs (Pcarbon, θmarkup) (Pgas, θV aR) (Pgas, θmarkup)
% of variance 0.53 0.02 0.33

Inputs (θV aR, θmarkup) % of variance 0.13

4.6. Generality of the Bayesian framework

The case study in this Section has provided a full exemplar of how the
Bayesian framework can be applied in a large, complex problem, showing all
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important tasks of calibration, validation, uncertainty analysis and sensitivity
analysis. As mentioned in Section 2, the Bayesian framework is very useful for
those who rely on models to understand complex process involving uncertainty,
and those who wish to know how much they can trust the model outputs.
The unique characteristics found in different models mean that the emulator
must be tuned for each particular model, e.g. the dimensionality of the input
and the output space, and prior distributions for inputs, the emulator and the
discrepancy. Besides, different parametric forms can be chosen for the emulator
and the model discrepancy to reflect the characteristics of a particular model.

Examples of power system models to which the emulation methods described
in this paper could be applied include: models discussed in [39, 40], which are
used in GB Electricity Market Reform; a model presented in [13] to study the
capacity market proposal of PJM; and models described in [7, 9–12] which are
used for academic and industrial studies of electricity markets. The particu-
lar modeling methods used in these studies are different to those used in the
LTGI model described in this paper. For example, methods for the model-
ing of uncertainties within the model (e.g., load, wind generation, fuel prices,
policy options), energy dispatch (e.g., Dynamic Dispatch Model (DDM) [39],
PLEXOS [40]) and investment logic may differ. A particular challenge for fit-
ting an emulator to the DDM in [39] is the high-dimensional input space of
this model, meaning that a careful selection of the inputs to be included in any
emulator must be carried out. A key similarity between the DDM and the LTGI
exemplar is that outputs for both models are in the form of a time-series, so
the dimension reduction techniques and the form used for the model discrep-
ancy described here could be applied directly to the DDM. The PJM capacity
market model in [13] can be enhanced by employing the Bayesian emulation
method to provide a more realistic and confident assessment of capacity market
designs. Some model parameters (e.g., parameters in the utility function) that
were originally chosen based on behavioral assumptions, can be more rigorously
calibrated against historical observations of model outputs of interest by fit-
ting an emulator to the model retaining the same main features but with an
energy-only market design where historical data were observed.

5. Conclusion

This paper has demonstrated the use of a Bayesian method of emulation
on a computationally expensive long-term generation investment model. This
Bayesian method allows for calibrating uncertain model parameters, quantify-
ing the model discrepancy, and making probabilistic predictions of the model
output that are consistent with historical observations, as well as conducting
SA in a formal and efficient manner. The emulator allows management of un-
certainties arising from the limited number of evaluations of the LTGI model
and its imperfect science. Such calibration and uncertainty analysis approaches
are necessary in linking modeling results to the real system which the model
is intended to represent, and hence enabling better decision making for both
investors and policymakers.
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In our GB case study, for model inputs, the uncertainty on regulatory deci-
sions (e.g., VOLL and carbon prices), future gas prices, and calibration param-
eters (e.g., investor’s risk preference and energy price markup) are considered
and specified with prior distributions. For model outputs, both the real-world
observations and the simulated outputs of installed thermal capacities are con-
sidered as well as simulated LOLE profiles. Future projections are obtained
using a combination of the simulator, calibrated model parameters and model
discrepancy. The calibration results and the predictions in the case study have
been compared the validation performed by Eager et al. in [6, 18, 27], as dis-
cussed in Section 4.3.1. Sensitivity analysis results quantitatively show that
the investment decisions are most sensitive to the two factors affecting scarcity
pricing – value of lost load and price markup. Our uncertainty about system
capacity adequacy can be significantly reduced by reducing policy risks.
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