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Donor-acceptor electron transport mediated by solitons
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We study the long-range electron and energy transfer mediated by solitons in a quasi-one-dimensional molecular
chain (conjugated polymer, alpha-helical macromolecule, etc.) weakly bound to a donor and an acceptor. We
show that for certain sets of parameter values in such systems an electron, initially located at the donor molecule,
can tunnel to the molecular chain, where it becomes self-trapped in a soliton state, and propagates to the opposite
end of the chain practically without energy dissipation. Upon reaching the end, the electron can either bounce
back and move in the opposite direction or, for suitable parameter values of the system, tunnel to the acceptor. We
estimate the energy efficiency of the donor-acceptor electron transport depending on the parameter values. Our
calculations show that the soliton mechanism works for the parameter values of polypeptide macromolecules and
conjugated polymers. We also investigate the donor-acceptor electron transport in thermalized molecular chains.
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I. INTRODUCTION

There is a large class of biological [1–5] systems and
synthetic molecular systems [6–9], in which charges or
excitons (molecular excitations) migrate from site to site
through multiple sites embedded in a complex system. In
many cases an electron transport takes place from a donor to
an acceptor through some intermediate molecules or systems
such as macromolecules or molecular bridges. An example of
such an electron transport in biological systems is the so-called
electron-transport chain in redox processes in respiration [10].
Such a chain represents a series of macromolecules onto
which electrons can be transferred via redox reactions, so that
each compound plays the role of a donor for the “preceding”
molecule and acceptor for the “succeeding” molecule. The
electron transport in chains also takes place in photosynthesis
[10], where the energy is extracted from sunlight via a
redox reaction, such as oxidation of sugars and cellular
respiration. The location of the electron-transport chain varies
for different systems: it is located in the inner mitochondrial
membrane in eukaryotes, where oxidative phosphorylation
with ATP synthase takes place, or in the thylakoid membrane
of the chloroplast in photosynthetic organisms, or in the cell
membrane in bacteria [10].

It is known that some molecules in the electron-transport
chain, such as NADH-ubiquinone oxidoreductase, flavopro-
teids, cytochrome c-oxidase cyt-aa3, and cytochrome cyt-bc1
complexes are proteins with large molecular weight and thus
they are practically fixed in the corresponding membrane. A
significant fraction of these proteins is in the alpha-helical
conformation, which can support the transport of electrons
in the form of electrosolitons [11,12]. Some other molecules
in the electron-transport chains, like quinone or cytochrome
cyt-c, possess much smaller molecular weight. They are
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highly soluble and can move relatively easily outside the
mitochondrial membrane, carrying electron from a heavy
donor to a heavy acceptor.

Recently, many conjugated donor-acceptor copolymer
semiconductors, which show intramolecular charge transfer
on large distances, have been synthesized. Among them
are donor-acceptor pairs mediated by salt bridges [13],
thienopyrazine-based copolymers [14], n-type conjugated
polymers based on electron-deficient tetraazabenzodifluo-
ranthene diimide [15–18], etc. Such conjugated polymer
semiconductors with electron donor-acceptor transfer have
become of growing interest for organic electronic applications
[19–22], such as photovoltaic cells [23–25], light emitting
diodes (LEDs) [26–29], and field-effect transistors [30–33].
During the past decade more evidence for the electron transport
in DNA [34–38] (see review [39]) has also been reported.

In theoretical studies such electron-transport systems are
modeled as complexes which include a donor molecule weakly
bound to a bridge molecule, which, in turn, is weakly bound
to an acceptor molecule. The bridge itself can be modeled
as a potential barrier through which the electron tunneling
takes place (see, e.g., [40] and references therein.) In some
other studies the bridge is modeled as a molecule with
superexchange electron interactions [41,42]. Such models
have been studied in various approximations in [40–43], etc.,
and it has also been shown that the rate of electron transfer or of
the electron tunneling time from a donor to an acceptor varies
with the length of the intermediate bridge. For short bridges,
of up to 5–7 units, it increases with the number of units,
while for longer bridges [41,42] it remains constant. Indeed,
it has been shown that an electron transfer in bis-porphyrin
donor-acceptor compounds with polyphenylene spacers shows
a weak distance dependence [44]. In some other approaches
the electron transport in donor-acceptor systems is modeled as
arising from the coupling of the system to a thermal bath and is
described by the so-called quantum master equations (QME)
or polaronic QME [45].

The importance of bridging molecular structures for the
long-range electron transfer has been anticipated a long time
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ago. In many cases the bridge induces long-range effective
charge transport in donor-acceptor systems or transport be-
tween two electrodes even at low temperatures. This indicates
that in such systems the mechanism of the electron transport
is different from the mechanisms based on thermal excitations
or superexchange interaction.

Another type of processes in macromolecules, close to the
systems considered above in its mathematical description,
is the transfer of energy released in the hydrolysis of ATP
into ADP molecules, through macromolecules. This energy
is stored in the form of AMID-I vibration of the nearest
peptide group. This quantum of energy can be self-trapped
in a soliton state and propagate to the opposite end of the
macromolecule almost without energy dissipation [11,12]. It
is known that biological macromolecules are not symmetric:
on both ends of the proteins they have some prosthetic groups
that are nonamino acid inorganic, or organic, portions of the
protein, which are required for the biological activity of the
protein. These prosthetic groups can be different on different
sides of the protein. A prosthetic group at the end of a protein
close to the hydrolysis of ATP into ADP can affect the time
evolution of the initial excitation and can either facilitate or
prevent the formation of a soliton in a macromolecule. On the
other hand, a prosthetic group on the other end of a protein
determines what happens when a soliton arrives there: it can
either be reflected back or be absorbed by the prosthetic group
in which case its energy can be utilized for the metabolic needs
of the cell.

It is well known that in polymers and in macromolecules
the electron-lattice interaction is significant, and that this
can result in the formation of large solitons which are
bound states of an electron and a molecular excitation. In
particular, in quasi-one-dimensional systems which satisfy the
adiabatic approximation (and polymers and macromolecules
do satisfy these conditions [12]), electrons can be self-trapped
in solitonlike states, which are bound states of an electron
and a self-induced local distortion of the molecular chain.
In such soliton states the electron and the lattice distortion
can propagate together at some velocity [11,12]. Indeed, both
analytical and numerical studies (see review [12]) confirmed
the existence of stable soliton states, whose energy is lower
than the energy of a free electron, due to the electron-lattice
interaction. In numerical studies, chains of finite length, which
are formed by identical lattice units, have been considered and
it was shown that an initial excitation at one end of the chain
evolves into a soliton, which propagates to the opposite end,
reflects back, and then keeps bouncing back and forth between
them (see, e.g., [12]).

The role of the prosthetic groups in the formation of a
soliton and its behavior at the farther end of a macromolecule
have so far neither been studied for molecular solitons nor
for electrosolitons. Also the problem of an electron transport
from a donor molecule to an acceptor molecule, mediated by
a soliton in a macromolecule, has not been studied in much
detail. Therefore, in the present paper we study the role of the
prosthetic groups in the time evolution of initial excitations in
quasi-one-dimensional molecular chains, and investigate the
possibility of electron transport in a donor-acceptor system,
mediated by a molecular chain when the electron-lattice
interaction is taken into account. In this paper we model

a macromolecule as an isolated polypeptide chain. A more
realistic structure of a macromolecule in a soliton mediated
donor-acceptor electron transport system will be reported
elsewhere.

In the first section of the paper, we describe our model
of soliton interaction with a donor and an acceptor. In the
third section, using known physical values, we derive some
range of relevant values for the dimensionless parameters
of our model. In the following section, we study our model
numerically, showing the range of parameter values for which
a soliton can be spontaneously created on the chain and then
be absorbed by the acceptor. Finally, in the last section, we
study the thermal stability of our model and we end the paper
with some conclusions.

II. HAMILTONIAN OF THE SYSTEM AND
DYNAMIC EQUATIONS

Let us consider a molecular chain made out of N sites
with a donor molecule or a prosthetic group on the left and
an acceptor molecule or another prosthetic group on the right.
For convenience in both cases we use the terms “donor” and
“acceptor,” respectively, and we use the term “electron” for
a proper electron and a molecular excitation. We label the
molecules in the principal chain with the indices 1,2, . . . ,N −
1,N , while the donor molecule corresponds to n = 0, and the
acceptor molecule to n = N + 1.

The Hamiltonian function of such a system can be written
in the form of the sum of three terms, accounting for
the Hamiltonians of an electron, lattice, and electron-lattice
interaction:

H = He + Hph + He-ph. (1)

Here

He = Ed |�0|2 + Ea|�N+1|2

+
N∑

n=1

[E0|�n|2 − (1 − δn,N )(J�∗
n�n+1 + c.c.)]

− (J d�
∗
0 �1 + c.c.) − (J a�

∗
N�N+1 + c.c.), (2)

Hph = 1

2

[
P 2

d

Md

+ wd (U0 − U1)2

]

+ 1

2

[
P 2

a

Ma

+ wa(UN − UN+1)2

]

+
N∑

n=1

1

2

[
P 2

n

M
+ w(1 − δn,N )(Un − Un+1)2

]
, (3)

He-ph = χd |�0|2(U1 − U0) + |�1|2
× [χd (U1 − U0) + χ (U2 − U1)]

+χa|�N+1|2(UN+1 − UN )

+
N−1∑
n=2

χ [|�n|2(Un+1 − Un−1)]

+ |�N |2[χ (U1 − U0) + χ (U2 − U1)]. (4)
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Our notation is as follows: E0 is the on-site electron energy,
J is the resonance integral, M is the mass of a unit cell,
χ is the electron-lattice coupling constant, and w is the
elasticity of the bond in the principal chain. The indexes d

and a refer to the donor and acceptor molecules, respectively.
Furthermore, in our notation, �n is the electron wave function
on site n, Un is the displacement of the nth molecule from
its equilibrium position, and Pn is its canonically conjugate
momentum. Moreover, the electron wave function satisfies the
normalization condition

N+1∑
n=0

|�n|2 = 1. (5)

In its general form the Hamiltonian (1) has been introduced
by Fröehlich and is known as the Fröhlich Hamiltonian. The
explicit form of the various terms in it depends on the specific
model. Here we study the model which consists of a long chain
n = 1,2, . . . ,N of identical sites (“atoms”) with a donor and
an acceptor “molecules” attached to the chain on the left n = 0
and the right n = N + 1 terminals, respectively. We describe
the principal chain in the nearest-neighbor approximation
and consider the case when the chain can be sufficiently
well approximated by one electron band and one acoustical
phonon mode which describes the longitudinal displacements
of the unit cells from their positions of equilibrium. The
electron-lattice interaction Hamiltonian induces a dependence
of the electron Hamiltonian on the lattice distortions. Here we
assume that the dependence of the on-site electron energy on
the lattice distortion is much weaker than that of the intersite
electron interaction energy. If the parameters of the principal
chain satisfy the conditions of the adiabatic approximation the
Hamiltonian leads to a system of Davydov equations [11,12],
which in the continuum approximation possess a solution in
the form of the so-called Davydov’s soliton. Such a soliton
describes a self-trapped quasiparticle (molecular excitation,
electron, hole), bound to the self-created localized lattice
distortion. The electron wave function in this case is given by
a solution of the nonlinear Schrödinger equation with the self-
induced deformation potential, proportional to the probability
of the electron presence at the given site. Such a soliton,
which is in fact a special form of a one-dimensional large

polaron, propagates along the chain with constant velocity,
determined by the initial conditions of its excitation (in the
absence of the external field). Within the harmonic description
of the lattice, which we consider here, the velocity of the
soliton is bound from above by the sound velocity in the
chain. It is worth mentioning that in the opposite case, i.e.,
when only the dependence of the on-site electron energy
on the lattice distortion is taken into account, the resulting
Hamiltonian describes the Su-Schrieffer-Heeger model, which
admits kink solutions and is applicable to such polymers, as
polyacetylene [46]. It has also been shown that in the adiabatic
approximation, in the continuum limit, the dependence of the
on-site electron energy on the lattice distortion leads to the
rescaling of the electron-lattice coupling constant coming from
the dependence of the intersite electron interaction energy on
the lattice distortion [47]. Therefore, to avoid extra parameters,
we restrict our model to the one described above.

This model had, in fact, been used first to explain high
efficiency of the energy storage and energy transfer in alpha-
helical proteins. Later on it has been extended to explain the
long-range charge transport in macromolecules and conduct-
ing polymers, such as polydiacetylene, etc. (see [11,12] and
references therein). The results of these analytical studies have
also been confirmed by numerous computer simulations of
discrete systems [12]. Some indirect experimental evidence of
soliton’s (large polaron’s) existence in quasi-one-dimensional
systems have been reported in [48–56].

So far as we know, the problem of the electron transport
from a donor molecule to an acceptor via a intermediate long
molecular chain, in which we take into account the electron-
lattice interaction, has not yet been studied. Therefore, in the
present paper we generalize the Davydov model, described
above, to study the long-range donor-acceptor charge transport
mediated by a molecular chain. Mathematically, this model,
as it was mentioned in the Introduction, can describe also
donor-bridge-acceptor systems, with bridge chains that are
large enough and for appropriate values of the parameters of
the system.

Substituting the above Hamiltonian function into the
Hamilton equations for the generalized “coordinates” of the
electron �n and lattice Un and their canonically conjugate
momenta i��∗

n and Pn, respectively, we obtain

Md

d2U0

dt2
= wd (U1 − U0) + χd (|�0|2 + |�1|2),

M
d2U1

dt2
= wd (U0 − U1) + w(U2 − U1) − χd (|�0|2 + |�1|2) + χ (|�1|2 + |�2|2),

M
d2Un

dt2
= w(Un+1 − 2Un + Un−1) + χ (|�n+1|2 − |�n−1|2), n = 2, . . . ,N − 1, (6)

M
d2UN

dt2
= w(UN−1 − UN ) + wa(UN+1 − UN ) − χ (|�N |2 + |�N−1|2) + χa(|�N |2 + |�N+1|2),

Ma

d2UN+1

dt2
= wa(UN − UN+1) − χa(|�N |2 + |�N+1|2).

052915-3



BRIZHIK, PIETTE, AND ZAKRZEWSKI PHYSICAL REVIEW E 90, 052915 (2014)

The equations for the electron wave function are

i�
d�0

dt
= Ed�0 − J d�1 + χd (U1 − U0)�0,

i�
d�1

dt
= E0�1 − J

∗
d�0 − J�2 + [χd (U1 − U0) + χ (U2 − U1)] �1,

i�
d�n

dt
= E0�n − J (�n+1 + �n−1) + χ (Un+1 − Un−1) �n, n = 2, . . . ,N − 1, (7)

i�
d�N

dt
= E0�N − J�N−1 − J a�N+1 + [χ (UN − UN−1) + χa (UN+1 − UN )] �N,

i�
d�N+1

dt
= Ea�N+1 − J

∗
a�N + χa (UN+1 − UN ) �N+1.

To allow the electron to transfer from the chain to the
acceptor, we must add an extra interaction that will favor
such a transition. The first coupling that comes to mind
is to make the electron energy on the acceptor complex,
Ea = J (Da + iγa), where γa would correspond to an electron
transfer. Unfortunately, this does not preserve the electron
probability (5). Indeed, if we consider the last two equations in
system (7) neglecting in them all terms which do not contain
γ ,

d�N

dτ
= −γa�N,

d�N+1

dτ
= γa�N+1, (8)

where the rescaled time τ is defined below by Eq. (12), the
solution of this equation is

�N (τ ) = �N (0)e−γaτ , �N+1(τ ) = �N+1(0)eγaτ , (9)

which describes the exponential decrease of the electron
probability amplitude on the terminal site of the chain and
exponential increase on the acceptor, i.e., a sink at the acceptor.
It follows from Eqs. (8) and (9) that the total electron
probability is not conserved if the parameter γa is a constant.

We can address this problem by using instead a nonlinear
coupling of the form γa = Aa|�N+1|2 for the first equa-
tion and −iAa|�N |2�N+1 for the second one so that (8)
becomes
d�N

dτ
= −Aa|�N+1|2�N,

d�N+1

dτ
= Aa|�N+1|2�N+1.

(10)

To see that the electron probability is conserved, we multiply
each equation in (10) by the corresponding complex-conjugate
function �∗

m, then multiply the equations which are complex

conjugates to Eqs. (10), by the corresponding function �m and
extract the results. This gives

∑
m

�∗
m

d�m

dτ
+ �m

d�∗
m

dτ
= d

∑
m |�m|2
dτ

= 0. (11)

Note also that, for completeness, we also add a dissipation
term, proportional to �, to our lattice equations.

Before we write down the full set of equations, it is
convenient to introduce the dimensionless time τ and unit
length l, given respectively by

τ = J

�
t, l = �√

MJ
. (12)

Then defining the dimensionless parameters

C = �
2w

MJ
2 , Cd,a = �

2wd,a

Md,aJ
2 , G = χl

J
, Gd,a = �

2χd,a

Md,aJ
2
l
,

(13)

as well as

Cd,a = M

Md,a

wd,a

w
C, Gd,a = M

Md,a

χd,a

χ
G,

Jd = J d

J
, Ja = J a

J
, (14)

and

md,a = Md,a

M
, vd,a = wd,a

w
, xd,a = χd,a

χ
, (15)

the equations (6) and (7) become

i
d�0

dτ
= (E0 + Dd )�0 − Jd�1 + xdG(u1 − u0)�0,

d2u0

dτ 2
= vd

md

C(u1 − u0) + xd

md

G(|�0|2 + |�1|2) − �
du0

dτ
,

i
d�1

dτ
= E0�1 − Jd�0 − �2 + [xdG(u1 − u0) + G(u2 − u1)]�1,

d2u1

dτ 2
= vdC(u0 − u1) + C(u2 − u1) − xdG(|�0|2 + |�1|2) + G(|�1|2 + |�2|2) − �

du1

dτ
,
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i
d�n

dτ
= E0�n − (�n+1 + �n−1) + G(un+1 − un−1)�n, n = 2, . . . ,N − 1,

d2un

dτ 2
= C(un+1 − 2un + un−1) + G(|�n+1|2 − |�n−1|2) − �

dun

dτ
, n = 2, . . . ,N − 1,

i
d�N

dτ
= E0�N − �N−1 − Ja�N+1 + [G(uN − uN−1) + xaG(uN+1 − uN )]�N − iAa|�N+1|2�N,

d2uN

dτ 2
= C(uN−1 − uN ) + vaC(uN+1 − uN ) − G(|�N |2 + |�N−1|2) + xaG(|�N |2 + |�N+1|2) − �

duN

dτ
,

i
d�N+1

dτ
= (E0 + Da)�N+1 − Ja�N + xaG(uN+1 − uN )�N+1 + iAa|�N |2�N+1,

d2uN+1

dτ 2
= va

ma

C(uN − uN+1) − xa

ma

G(|�N |2 + |�N+1|2) − �
duN+1

dτ
. (16)

III. PARAMETER VALUES

In this section we analyze the experimental data to deter-
mine the range of parameter values for the real donor-acceptor
systems which we will use in our numerical modeling of the
system of equations derived above.

The parameter values for the polypeptide macromolecules
are as follows: J AMID-1 = 1.55 × 10−22 J ≈ 10−3 eV;
J e ≈ 0.1–0.01 eV ≈ 10−21–10−20 J; χ = (35–62) pN; w =
39–58 N/m, Vac = (3.6–4.5) × 103 m/s [12]. The molecular
masses of large macromolecules, which participate in the
electron-transport chain in redox processes are as follows:
NADH-ubiquinone oxidoreductase—980 kDa; cytochrome
bc1 complex—480 kDa; cytochrome c-aa3 oxidase—420 kDa.
Mass of Cyt-c is 12 kDa, in which the hem-A group has a
molecular mass 852 Da, and hem-B group has 616 Da, which
are 3–5 times bigger than the molecular mass 100–200/Da
of amino acids, that form macromolecules. The study of
the mitochondrial electron-transport chain shows that the
electrochemical potential for the transfer of the electrons is
Ee-c = +1.135 V [4,5].

The molecular mass of many conjugated polymer semi-
conductors varies in the interval (10–176) kDa, and the
hole mobility lies typically in the range (4 × 10−4)–(1.6 ×
10−3) cm2/(V s). The ionization potential and electron affinity
potential for some donor-acceptor copolymer semiconductor
molecules are in the ranges (2.5–4.5) eV and (1.5–3.1) eV,
respectively [2]. The electrochemical band gap E(el)

g = EIP −
EEA is 1.5 eV for BTTP, 1.84 eV for BTTP-P, and 2.24 eV
for BTTP-F, which are 0.4–0.6 eV larger than the optically
determined ones E

(opt)
g = 1.1–1.6 eV. This difference can be

explained by the exciton binding energy of conjugated poly-
mers which is thought to be in the range of Eex ≈ 0.4–1.0/eV
[3]. Thieno pyrazine-based donor-acceptor copolymers, such
as BTTP, BTTP-T, BTTP-F, BTTP-P, have moderate to high
molecular masses, broad optical absorption bands that extend
into the near-infrared region with absorption maxima at
667–810 nm, and small optical band gaps (1.1–1.6 eV).
They show ambipolar redox properties with low ionization
potentials (HOMO levels) of (4.6–5.04) eV. The field-effect
mobility of holes varies from 4.2 × 10−4 cm2/(V s) in
BTTP-T to 1.6 × 10−3 cm2/(V s) in BTTP-F (see [14]). The
reduction potentials of BTTP, BTTP-P, and BTTP-F are −1.4,
−1.73, and −1.9 V (vs SCE), respectively. The oxidation

potentials of the copolymers are in the range 0.29–0.71 V
(vs SCE). The onset oxidation potential and onset reduction
potential of the parent copolymer BTTP are 0.2 and −1.3 V,
respectively, which give an estimate for the ionization potential
(IP, HOMO level) of 4.6 eV (EIP = Eonset

ox + 4.4) and an
electron affinity (EA, LUMO level) of 3.1 eV (EEA =
Eonset

red + 4.4). The 4.6 eV EIP value of BTTP is 0.3 eV
less than that of poly(3-hexylthiophene) (4.9 eV), whereas
its EEA value (3.1/eV) is 0.6 eV higher than that reported
for the poly(2,3-dioctylthieno[3,4-b]pyrazine) homopolymer
(≈2.5 eV). An EIP value of 4.64 eV and EEA value of 2.8 eV
were found in the case of BTTP-P [14].

Below, in our paper we investigate a set of model parameters
close to those encountered in polypeptide macromolecules or
bridge-mediated donor-acceptor systems, summarized above.
In particular, we study the case when the elasticity con-
stants, electron resonant constants, electron-lattice couplings,
and the energy differences between donor, acceptor, and
macromolecule are comparable. From the summary of the
experimental data given above we estimate the dimensionless
parameters introduced above as |Dd,a| ≈ 0–10, md,a ≈ 3–10,
and vd,a ≈ xd,a ≈ 0.1–0.3. Here we have taken into account
the fact that binding of donor and acceptor molecules to the
molecular chain is weaker than binding between the units in
the chain, as the binding by the van der Waals forces or by
chemical binding is weaker than the binding in the chain. We
also assume that the distance between the donor (acceptor)
molecule and the chain is larger than the lattice constant in
the molecular chain, and so the corresponding electron-lattice
coupling is significantly weaker.

Moreover, for the chain itself, we have taken exactly the
same parameters as in [57], i.e., C = 0.88 and G = 0.8,
which correspond to the physical values of polypeptides and
conducting polymers. For most of our simulations, we have
used the value � = 0.2. The dependence on that parameter
will be studied in the last section.

IV. RESULTS OF NUMERICAL MODELING

Before we analyze numerically the propagation of the
soliton along the chain it is useful to study some properties
of the soliton on the lattice. The reason is that when a soliton
is generated on the chain by the donor some radiation is
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FIG. 1. Properties of the stationary soliton as a function of its maximum density maxn|�n|2. (a) Norm N = ∑
n |�n|2; (b) soliton width;

(c) soliton energy.

emitted as well and the soliton only carries a fraction of the
total electron probability density. Thus it is very difficult to
determine exactly the properties of the soliton like its size or its
energy from the numerical data. On the other hand, the average
value of the maximum probability density, maxn|�n|2, of the
soliton is very easy to determine, even if the soliton oscillates.
To determine the properties of the soliton, we have thus
computed the energy, half width, and the total norm of static
solitons as a function of their maximum density. The results
are presented in Fig. 1.

To analyze the transfer of the soliton from the donor to
the acceptor via the chain we have performed numerical
simulations where we have put the electron on the donor as an
initial condition. We have then integrated the equations (16)
numerically until the electron was located on the acceptor or
spread out over the chain. We have used mostly chains of 50
nodes, which for realistic systems is relatively long, but we
have also studied how the electron transport was affected as
the length of the chain was varied. Using the set of parameters
given above, we have performed many simulations varying the
parameters for the donor and acceptor sites, i.e., Jd , Dd and

D =0d
D =0.3d

D =0.6d

D =0.8dD =1d

D =1.2d

| 
 |2

Ψ

0

0.05

0.1

0.15

0.2

Jd

0 0.5 1 1.5 2

FIG. 2. (Color online) Maximum of |�|2 as a function of Dd and
Jd for xd = vd = 0.1.

Ja , Da , Aa , respectively, determining the range of parameter
values for which a soliton was generated by the donor and
those for which the electron was absorbed by the acceptor.
We have also identified the parameter values for which the
tunneling was optimal.

In these simulations, when the coupling parameters were
suitable, the electron quickly moved onto the chain where it
created a local deformation of the chain in which it then was
self-trapped in a localized solitonlike state. Then the soliton
moved along the chain at a constant speed until it reached
the acceptor. As is shown later in this paper, the soliton is
not perfect, as the system of equations (16) is not completely
integrable, but in the best cases most of the electron density
forms a soliton, while the rest forms small waves that diffuse
along the chain.

We then scanned the parameters Dd and Jd and, as one can
see from Fig. 2, for the case xd = vd = 0.3, a soliton is formed
for a wide range of values, roughly for DD ∈ [0,1.2] and Jd ∈
[0.3,1.5]. The optimal values of Dd and Jd for the formation of
a soliton as well as the properties of the corresponding soliton
are given in Table I. As the soliton oscillates after its creation
the values of |�|2 were obtained by averaging their values
when the soliton was in the chain interval n ∈ [7,18]. We note
from Table I that the values for which a soliton is generated do
not depend much on xd , but that, on the other hand, the soliton
amplitude increases with xd .

We have also investigated the dependence of the rigidity of
the coupling between the donor and acceptor to the chain and
have varied both vd and va by two orders of magnitude and
we found that the size of the soliton generated on the chain

TABLE I. Optimal parameter values for the formation of a soliton
and the absorption of a soliton by the acceptor for the chain with
vd = va = 0.1, C = 0.88, G = 0.8, and Md = Ma = 3.

xd xa Dd Jd Sol max |�|2 N Da Ja Aa |�a|2t=50

0.1 0.1 0.6 0.7 0.183 0.75 0.2 0.13 4 0.64
0.3 0.3 0.6 0.7 0.201 0.81 0.3 0.12 4 0.69
0.6 0.6 0.8 0.7 0.219 0.82 0.7 0.11 3.4 0.76
1 1 2.2 0.9 0.251 0.89 1.1 0.14 2.9 0.702
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FIG. 3. (Color online) Electron probability |�|2 on the acceptor
as a function of time (in adimensional units) for the parameter values
listed in Table I for xd = xa = 0.1 and xd = xa = 0.3. N = 50.

or the amount of absorption of the electron probability by the
acceptor only changed by a few percent. For this reason we
have performed all our studies, to be discussed below, using
the values vd = va = 0.1.

When the soliton arrives at the end of the chain, it can
be absorbed by the acceptor when the coupling between the
chain and the acceptor is appropriate. When the absorption is
present, the soliton is absorbed very quickly and |�a|2, the
electron density on the acceptor site, rises very rapidly from
zero to a constant value as seen in Fig. 3. The electron density
fluctuates a little because the waves on the chain are also
progressively absorbed by the acceptor site, but those waves
have to bounce several times between the two ends of the chain
before being slowly absorbed.

To evaluate the efficiency of absorption, we have taken the
value of |�a|2 at t = 50 for a chain of 50 nodes, which is the
value just after the plateau has been reached (see Fig. 3). For
the four values of xd , we have taken the values of Dd and Jd

from Table I, for which the largest soliton was generated and
we have scanned the values of Da and Ja , taking xa = xd

and va = vd , to determine when the soliton was absorbed
by the acceptor site. The parameter values for which the
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FIG. 4. (Color online) Absorption of soliton by the acceptor: |�|2 at τ = 50. Md = Ma = 3, C = 0.88, vd = va = 0.1, G = 0.8, xd =
xa = 0.3, Da = 0.6, and Jd = 0.7; (a) as a function of Ja for different Da and Aa = 4; (b) as a function of Ja for different Aa and Da = 0.3;
(c) as a function of Aa for different Da and Ja = 0.12; (d) as a function of Da for different Aa and Ja = 0.12.
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FIG. 5. (Color online) Profile |�|2 of the soliton on a chain with 50 nodes. At τ = 0, not shown, the soliton is exclusively on the
donor (|�d |2 = 1). Md = Ma = 3, C = 0.88, vd = va = 0.1, G = 0.8, xd = xa = 0.3, Dd = 0.6, Jd = 0.7, Da = 0.3, Ja = 0.12, and Aa = 4.
(a) τ = 2, (b) τ = 4, (c) τ = 10, (d) τ = 20, (e) τ = 28, and (f) τ = 40.

absorption is the largest are presented in Table I. Most of
our simulations were performed up to τ = 2000 and in all
cases |�a|2 stayed constant or very slowly increased after the
soliton was absorbed. The slow increase of |�a|2 was caused
by the slow absorption of remaining wave on the lattice by the
acceptor.

The parameter region in which the absorption takes place
is relatively large. In Fig. 4 we present the electron probability

density just after the absorption (t = 50) for different values
of the parameters Ja , Da , and Aa for the case xd = xa = 0.3,
Dd = 0.6, and Jd = 0.7. One can clearly see that when Aa > 2
the absorption does not vary much. The electron coupling, Ja ,
on the other hand, must lie approximately in the range 0.1 to
0.4. To have a good absorption the energy level of the acceptor,
Da , must lie approximately in the range −0.5 to 2. So overall
the electron absorption takes place for a relatively large domain
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FIG. 6. (Color online) Displacement u of unit cells on a chain with 50 nodes. Md = Ma = 3, C = 0.88, vd = va = 0.1, G = 0.8,
xd = xa = 0.3, Dd = 0.6, Jd = 0.7, Da = 0.3, Ja = 0.12, and Aa = 4. (a) τ = 4, (b) τ = 10, (c) τ = 20, and (d) τ = 28.

of the parameters. We have performed a similar analysis for
other values of xa and xd and we have found very similar
results. We have also varied ma and md and found that the
variation of these parameters has virtually made no difference.

In Fig. 5, we present the time dependence of the electron
density across the chain for the case xd = xa = 0.1, Dd = 0.6,
Jd = 0.7, Da = 0.2, Ja = 0.13, and Aa = 4. At t = 0 the
electron is exclusively on the donor and it is rapidly transferred
to the chain. A soliton is then formed and its maximum
probability (charge density) is approximately |�|2 = 0.18
which, from Fig. 1(a), corresponds to an approximate norm
of 0.64. We can thus conclude that, in this case, two-thirds
of the electron probability density is located in the soliton,
while the rest forms some ripples that propagate along the
chain. Once the electron reaches the other end of the chain it
is rapidly absorbed by the acceptor.

In Fig. 6 we present the displacement fields for four of the
profiles shown in Fig. 5. It shows clearly that the front edge
of the soliton corresponds to a negative displacement followed
by a tail that widens as time increases. Looking at Fig. 5 we
can also see that the soliton position matches the middle of
the front drop of the displacement field u. So relative to the
position of the center of the soliton, the displacement field
exhibits an S shape curve as expected. We also notice that the

tail of the displacement field corresponds to a slow relaxation
of the lattice vibration which does not travel as fast as the
soliton itself.

.

V. THERMAL STABILITY

In the previous section, we have shown that an electron can
spontaneously be transferred from a donor to a chain on which
it is self-trapped in a soliton state and propagates to the opposite
end of the chain where it can be absorbed by the acceptor.
As this was all performed at zero temperature, we must now
study how these results are modified when thermal effects
are added to our system and, in particular, study the thermal
stability of the electron transport on the chain. To perform
the analysis numerically, we have proceeded by thermalizing
the donor-chain-acceptor system to a given temperature in the
absence of an extra electron. After the system had reached a
stable thermal state, we have put the electron on the donor and
we have looked at how it generated a soliton and how that
soliton was then absorbed by the acceptor. The thermalization
was performed by adding the following Langevin term

Ln = Fn(t) − �
dUn

dτ
(17)
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FIG. 7. (Color online) |�|2 on the acceptor for xd = xa = 0.3, Dd = 0.6, Jd = 0.7, Da = 0.3, Ja = 0.12, and Aa = 4: (a) as a function of
the temperature for chain of different length; (b) as a function of � for various temperatures.

to Eqs. (16) for each Un fields. � in (17) is an absorption
parameter and the thermal noise Fn(τ ) is a Gaussian white
noise of zero mean value and variance given by

〈Fn(τ1)Fm(τ2)〉 = 2�kT δ(τ1 − τ2)δn,m, (18)

i.e., we describe it by a random function with a normal
distribution satisfying the constraint (18). In our numerical
simulations F (τ ) has been kept constant during the time step
interval dτ and we used δ(τ2 − τ1) = 1/dτ .

As the process is randomized, we have performed 100
simulations on a chain with 50 nodes for each set of parameters
at each temperature and then we averaged the values obtained
for the amount of absorption by the acceptor. For kT = 0 there
was no need to do this so we only performed one simulation.
The simulations were performed using the parameter values
given in Table I and the temperature was increased up to the
value for which the soliton was not stable enough to transfer the
electron across the lattice. The results are presented in Fig. 7
for the case xa = xd = 0.3. The other three cases considered
in Table I gave nearly identical results.

From our results we see that the electron can easily prop-
agate through the lattice even at relatively high temperature.
In our units, kT is measured in units of J which for α helices
is of the order of 0.1 eV. So at physiological temperature,
kT ≈ 0.025 eV, about a third of the electron probability can
be transferred through the chain as a soliton.

All the simulations so far have been performed using the
energy dissipation coefficient � = 0.2 and we decided to
investigate how the results described above depend on the
value of �. The results of these investigations are presented
in Fig. 7(b) from which we see that the amount of absorption,
even for kT = 0, modifies the effectiveness of the system
of transferring the electron from the donor to the acceptor
by about 10%. The optimal absorption occurs for � ≈ 2.2.
This optimal value is determined by the balance between the
energy loss due to radiation by the soliton of sound waves and
energy gain due to electron binding with the self-created lattice
deformation. We would like to reiterate that the system (16)
is not an integrable system even in the continuum limit and
so the soliton can generate phonon-electron waves during its

time evolution, although the waves can be very small, as in the
present studies for the given parameter values. As � increases
we have observed that the soliton size decreases faster as
it propagates along the chain and so one would expect the
absorption to decrease as well, but what Fig. 7(b) suggests is
that the transfer between the chain and the acceptor is somehow
enhanced by a larger absorption. At bigger values of � thermal
oscillations of the lattice cites and radiation of linear waves are
weaker, and this enhances the electron transfer of the electron
from a soliton state in the end of the chain into the acceptor.

VI. CONCLUSIONS

In this paper, we have studied the transfer of a quasiparticle
(an electron, molecular excitation, exciton, etc.) from a donor
to an acceptor mediated by a molecular chain through which
the electron is transferred in a soliton state. We have presented
a model in which a donor and an acceptor molecules are
connected to both ends of the chain with a coupling between
these two molecules and the chain itself. We have then
solved the discrete nonlinear equations describing this system
numerically and we have found that, for a broad range of
coupling parameters, the electron spontaneously tunnels to the
nearest end of the chain, where it is self-trapped in a soliton
state and then propagates to the opposite end of the chain
coherently with constant velocity and weak energy dissipation.
At this end of the chain the electron is transferred to the
acceptor when the coupling parameters belong to a suitable
range of values.

For the considered parameters of the principal chain the
adiabatic approximation is expected to be valid. As shown
in Ref. [11], in the continuum approximation, the electron
ground state in such a chain is described by a soliton, which is
a bound state of an electron self-trapped in the localized lattice
deformation. This analytical result has been confirmed by
numerical simulations (see Ref. [12]). Such a two-component
(electron + lattice deformation) soliton in a molecular chain
has been called “Davydov soliton” [12].

In the present paper we have found the range of parameters
of a donor molecule, at which the evolution of an electron
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probability provides sufficient conditions for the generation of
a soliton in the principal chain. Strictly speaking, in a discrete
chain this soliton is a solitonlike localized electron state, stable
enough to propagate to the opposite end of the chain with very
little energy dissipation. The analytical study of this problem
is in progress.

We have investigated numerically the broad range of
parameters for which such a transfer is possible. We have
shown that the long-range electron transfer is possible, and
effective, if the energy level of the electron on the donor,
Dd , is in the range [0,1.2] in units of J , while the electron
coupling between the donor and the chain, Jd , must be in the
range [0.3,1.5]. We have also found that the effective electron
transfer from the soliton state in the chain to the acceptor
molecule takes place when the parameters of the acceptor are
Da ∈ [−0.5,2], Ja ∈ [0.1,0.4], and Aa > 2.

We then investigated how the electron transfer depends on
the length of the chain and have found, not surprisingly, that
when the chain is longer, it takes longer for the soliton to
travel across the chain. Moreover, the amplitude of the soliton
decreases slowly as the soliton travels along the chain and
so the effectiveness of the electron transport also decreases
slowly as the chain becomes longer.

We also studied the thermal stability of the soliton transport
and have found that the effectiveness of the electron transport
on the chain decreases as the temperature increases but that, for
chains that are not excessively long, the transfer can still take
place even at temperature of the order of kT = 0.5 in units
of J . This implies that for polypeptide chains the electron
transport can occur via a solitonic state not only at low but
also at physiological temperatures.

We also studied the dependence of the soliton transport for
various values of the damping coefficient � and found that the
electron absorption depends only very weakly on the value of
this parameter.
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