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ABSTRACT
In this paper, we compare three methods to reconstruct galaxy cluster density fields with
weak lensing data. The first method called FLens integrates an inpainting concept to invert
the shear field with possible gaps, and a multi-scale entropy denoising procedure to remove
the noise contained in the final reconstruction, that arises mostly from the random intrinsic
shape of the galaxies. The second and third methods are based on a model of the density
field made of a multi-scale grid of radial basis functions. In one case, the model parameters
are computed with a linear inversion involving a singular value decomposition (SVD). In
the other case, the model parameters are estimated using a Bayesian Monte Carlo Markov
Chain optimization implemented in the lensing software LENSTOOL. Methods are compared on
simulated data with varying galaxy density fields. We pay particular attention to the errors
estimated with resampling. We find the multi-scale grid model optimized with Monte Carlo
Markov Chain to provide the best results, but at high computational cost, especially when
considering resampling. The SVD method is much faster but yields noisy maps, although
this can be mitigated with resampling. The FLens method is a good compromise with fast
computation, high signal-to-noise ratio reconstruction, but lower resolution maps. All three
methods are applied to the MACS J0717+3745 galaxy cluster field, and reveal the filamentary
structure discovered in Jauzac et al. We conclude that sensitive priors can help to get high
signal-to-noise ratio, and unbiased reconstructions.
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1 IN T RO D U C T I O N

Galaxy redshift surveys such as Sloan Digital Sky Survey (SDSS;
York et al. 2000) and N-body simulations of cosmic structure for-
mation (e.g. the Millennium simulations; Springel et al. 2005) have
revealed a complicated network of matter, in which massive galaxy
clusters are located at the nodes, filaments connect them to each oth-
ers, and in-between extended regions with few galaxies and matter
called voids fill about 80 per cent of the volume of the Universe
(Bos et al. 2012; Pan et al. 2012).

Galaxy clusters are of considerable cosmological interest, as they
are the most recent structures to have formed at the largest angular
scales. Taking advantage of this specificity, several cluster-related
cosmological probes have been developed either based on cluster
count statistics (Bergé et al. 2008; Pires et al. 2009; Shan et al.
2012) or on the study of their physical properties (e.g. triaxiality,

� E-mail: eric.jullo@lam.fr

Morandi et al. 2012; bulleticity Massey, Kitching & Nagai 2011 or
gas mass fraction, Rapetti et al. 2010).

Filamentary structures surrounding galaxy clusters also happen to
be of particular interest. On the one hand, they reveal cosmological
voids and alike cluster count statistics, void number counts and
sizes are effective cosmological probes (Davis et al. 2012; Higuchi,
Oguri & Hamana 2013; Krause et al. 2013). On the other hand,
filaments funnel matter on to the galaxy clusters, and as such they
play an important role in cluster and galaxy formation.

Lensing has recently demonstrated its effectiveness at mapping
filaments. For instances, in their analysis of the double cluster sys-
tem Abell 222 and Abell 223, Dietrich et al. (2012) showed evidence
for a possible dark matter filament connecting both clusters. Finally,
in the COSMOS field (Scoville et al. 2007), Massey et al. (2007)
uncovered a massive large-scale structure at redshift z ∼ 0.73 ex-
tending over about 1◦ in length.

Recently, Jauzac et al. (2012) claimed another detection of a
large-scale filament connected on one end to the massive cluster
MACS J0717+3745, and vanishing into the cosmic web on the
other end. They used a model made of a multi-scale grid of radial
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basis functions (RBF) and a Bayesian Monte Carlo Markov Chain
(MCMC) optimization algorithm implemented in the lensing soft-
ware LENSTOOL to map its mass distribution and measure its size and
density.

In this paper, we study three methods of lensing map reconstruc-
tion, including the method used in Jauzac et al. (2012). The first
method called FLens integrates an inpainting concept to invert the
shear field with possible gaps, and a multi-scale entropy denoising
procedure to remove the noise contained in the galaxies. The sec-
ond and third methods are based on the same model of multi-scale
grid of RBFs, but in one case the parameters are estimated with
LENSTOOL, and in the other case with a linear matrix inversion in-
volving a singular value decomposition (SVD). We use simulated
data and compare the reconstructed maps in terms of fidelity to
the input map, sensitivity to the density of galaxies in the input
weak lensing catalogue. We also pay particular attention to the er-
rors estimated either directly from the MCMC samples or the linear
inversion theory, and the errors estimated with resampling.

The outline of the paper is the following. In Section 2, we re-
view the formalism of the different techniques. In Section 3, we use
simulations to compare the methods, focusing successively on the
reconstructing maps, azimuthally averaged density profiles, errors
and signal-to-noise ratio maps. Finally, in Section 4, we compare
the reconstructions obtained with the different methods applied to
real data coming from Hubble Space Telescope (HST) observations
of the massive galaxy cluster MACS J0717+3745. Throughout this
paper, we compute cosmological distances to lensed galaxies as-
suming the Universe is flat and described by the �cold dark matter
model with �m = 0.3 and w = −1.

2 M E T H O D S

2.1 Weak lensing formalism

Gravitational lensing, i.e. the process by which light from distant
galaxies is bent by the gravity of intervening mass in the Universe, is
an ideal tool for mapping the mass distribution of lensed structures
because it depends on the total matter distribution of the intervening
structures.

In lensing, the spin-2 shear field γ i(θ ) that is derived from the
shapes of observed background galaxies can be written in terms of
the intervening lensing gravitational potential ψ(θ ) projected on the
sky (Bartelmann & Schneider 2001):

γ1(θ ) = 1
2 (∂2

1 − ∂2
2)ψ(θ )

γ2(θ ) = ∂1∂2ψ(θ),
(1)

where the partial derivatives ∂i are with respect to θ i.
The convergence κ(θ) can also be expressed in terms of the

lensing potential ψ(θ ),

κ(θ) = 1

2

(
∂2

1 + ∂2
2

)
ψ(θ ), (2)

and is related to the mass density 	(θ ) projected along the line of
sight by

κ(θ) = 	(θ )

	crit
, (3)

where the critical mass density 	crit is given by

	crit = c2

4πG

DOS

DOLDLS
, (4)

where G is Newton’s constant, c the speed of light, and DOS, DOL,
and DLS are the angular-diameter distances between the observer
(O), the lens (L), and a galaxy source (S) at an arbitrary redshift.

2.2 A new inverse method

If the shear field could be measured everywhere, the convergence
field could be determined without error. In reality, we only have
access to an estimator of the shear field at the random discrete
locations of the background galaxies. The shear information is con-
tained in the observed ellipticity of the background galaxies, but is
overwhelmed by the intrinsic galaxy own ellipticity. Fortunately, we
can assume that this intrinsic shape noise is random and Gaussian
distributed. Therefore, we can compute an unbiased estimate of the
shear by binning the galaxies in a grid and average their ellipticities.

2.2.1 The Kaiser & Squires inversion

The weak lensing mass inversion problem consists in reconstructing
the projected (normalized) mass distribution κ(θ ) from the mea-
sured shear field γ i(θ ) in a grid. We invert equation (1) to find the
lensing potential ψ and then apply formula equation (2) to obtained
κ(θ ). This classical method is based on the pioneering work of
Kaiser & Squires (1993, hereafter KS93). In short, this corresponds
to :

κ̃ = �−1
((

∂2
1 − ∂2

2

)
γ1 + 2∂1∂2γ2

)
= ∂2

1 − ∂2
2

∂2
1 + ∂2

2

γ1 + 2∂1∂2

∂2
1 + ∂2

2

γ2. (5)

Taking the Fourier transform of these equations, we obtain

κ̂ = P̂1γ̂1 + P̂2γ̂2, (6)

where the hat symbol denotes Fourier transforms and we have de-
fined k2 ≡ k2

1 + k2
2 and

P̂1(k) = k2
1 − k2

2

k2

P̂2(k) = 2k1k2

k2
, (7)

with P̂1(k1, k2) ≡ 0 when k2
1 = k2

2 , and P̂2(k1, k2) ≡ 0 when k1 = 0
or k2 = 0.

Note that to recover κ from both γ 1 and γ 2, there is a degeneracy
when k1 = k2 = 0. Therefore, the mean value of κ cannot be
recovered from the shear maps. This is known as the mass-sheet
degeneracy. This problem can be solved with additional information
such as lensing magnification measurements for instance.

In reality, the measured shear is noisy because only a finite num-
ber of galaxy ellipticities are averaged per pixel. The actual relation
between the measured shear γ ib in pixel b of area A and the true
convergence κ is

γib = Pi ∗ κ + ni , (8)

where the intrinsic galaxy shape noise contribution ni is Gaussian
distributed with zero mean and width σn � σε/

√
Ng. The average

number of galaxies in a pixel Ng = ng A depends on the average
number of galaxies per arcmin2 ng. The ellipticity dispersion per
galaxy σ ε arises from both measurement errors and the dispersion
in the intrinsic shape of galaxies.

From the central limit theorem, we can assume to a good approx-
imation that with ng � 10 galaxies per arcmin2, in pixels with area
A � 1 arcmin2 the noise ni is Gaussian distributed and uncorrelated.
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Weak lensing galaxy cluster field 3971

The most important drawback of the KS93 method is that it
requires a convolution of shears to be performed over the entire sky.
As a result, if the field is small or irregularly-shaped, then the method
can produce artefacts in the reconstructed matter distribution near
the boundaries.

2.2.2 The Seitz & Schneider inversion

In Seitz & Schneider (1996), the authors propose a local inversion
method that reduces these unwanted boundary effects. The con-
vergence κ is computed in real space (without Fourier transform)
thanks to the kernel integration

κ(θ ) − κ0 = 1

π

∫
θ ′∈�

K(θ − θ ′) · γ (θ ′) dθ ′, (9)

where κ0 stands for the mean value of κ . The kernel K depends on
the geometry of the domain �. For � = R

2, it is given by

K(θ ) =
(

θ2
2 − θ2

1

(θ2
1 + θ2

2 )2
,

−2θ1θ2

(θ2
1 + θ2

2 )2

)
, (10)

where we expressed the positions in complex coordinates
θ = θ1 + iθ2. For small irregularly shaped fields, the authors pro-
pose to combine the derivatives of γ i

u =
(

∂1γ1 + ∂2γ2

∂1γ2 − ∂2γ1

)
, (11)

and then to apply the Helmholtz decomposition u = ∇κ (E) + ∇ ×
κ (B), in order to reconstruct the convergence κ = κ (E). This method
reduces the unwanted boundary effects but whatever the formula,
the reconstructed field is more noisy than that one obtained with
a global inversion. Another point is that the reconstructed dark
matter mass map still has a complex geometry that will complicate
subsequent analyses.

2.2.3 The FLens method

Binning the shape catalogue. As said previously, the shape cata-
logue is first binned into a regular grid, in which each pixel value
is obtained by averaging the ellipticity of the galaxies it contains.
The pixel size is a parameter defined by hand, so that all (or almost
all) pixels contain at least one galaxy. Not doing so usually prevents
mass inversion because of missing data. In general, the pixel size is
adjusted to have about 10 galaxies per pixel. If we were having a
method to deal with this missing data issue, there would be no par-
ticular limitation on the pixel size. However the increasing number
of empty pixels would make the mass inversion step always more
difficult. Ideally, it would be preferable to have about one galaxy
per pixel on average.

Dealing with missing data. Missing data are common practice in
weak lensing. They can be due to camera CCD defects, or bright
stars that saturate the field of view. More specifically to cluster field
reconstruction, the galaxies inside the Einstein radius are usually
removed from the study because the weak lensing approximation
does not hold there. In addition, depending on the pixel size and
the regularity of the galaxy distribution, the amount of empty pixels
can increase dramatically. As a result, the measured shear field
is generally incomplete and the gaps in the data require proper
handling.

A solution that has been proposed by Pires et al. (2009) to deal
with missing data consists in filling-in judiciously the masked re-
gions by performing an inpainting method simultaneously with a

global inversion. Inpainting techniques are an extrapolation of the
missing information using some priors on the solution. This new
method uses a prior of sparsity in the solution introduced by Elad
et al. (2005). It assumes that there exists a dictionary D (here the
Discrete Cosine Transform) where the complete data are sparse
and where the incomplete data are less sparse. The weak lensing
inpainting problem consists of recovering a complete convergence
map κ from the incomplete measured shear field γ obs

i . The solution
is obtained by minimizing

min
κ

‖DT κ‖0 subject to
∑

i

‖ γ obs
i − M(Pi ∗ κ) ‖2≤ σ, (12)

noting ||z||0 the l0 pseudo-norm, i.e. the number of non-zero entries
in z and ||z|| the classical l2 norm (i.e. ||z|| = ∑

k(zk)2), where σ

stands for the standard deviation of the input shear map, and M is
the binary mask (i.e. Mi = 1 if we have information at pixel i, Mi = 0
otherwise).(σ = 0 is only used for noiseless data).

If DT κ is sparse enough, the l0 pseudo-norm can also be replaced
by the convex l1 norm (i.e. ||z||1 = ∑

k|zk|; Donoho & Huo 2001).
The solution of such an optimization task can be obtained through
an iterative thresholding algorithm called MCA (Elad et al. 2005)
starting from the noisy κ0 obtained with the KS93 method

κi+1 = �D,λn

(
κi + M

[
P1 ∗ (

γ obs
1 − P1 ∗ κi

)
+ P2 ∗ (

γ obs
2 − P2 ∗ κi

)])
, (13)

where the non-linear operator �D,λ(Z) consists in:

– decomposing the signal Z on the dictionary D to derive the
coefficients α = DT Z.

– threshold the coefficients with a hard-thresholding (α̃ = αi if
|αi| > λi and 0 otherwise). The threshold parameter λi decreases
with the iteration i.

– reconstruct Z̃ from the thresholded coefficients α̃.

This method enables to reconstruct a complete convergence map
κn.

However, this convergence map κn obtained by inversion of the
shear field is very noisy as shown in the left panel of Fig. 1. This
noise originates from the shear measurement errors and the intrinsic
galaxy shape noise, and grows inversely proportional to the number
of galaxies per pixel.

Dealing with noise in the cluster reconstruction. In this study, we
use the MRLens (Multi-Resolution for weak Lensing) denoising
method to denoise the reconstructed convergence map κ . The MR-
Lens filter is based on the Bayesian theory that considers that some

Figure 1. Illustration of the filtering of a raw in-painted convergence map
with FLens.
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prior information can be used to improve the solution (Starck, Pires
& Réfrégier 2006). Bayesian filters search for a solution that maxi-
mizes the posterior probability P(κ|κn) defined by the Bayes theo-
rem:

P (κ|κn) = P (κn|κ) P (κ)

P (κn)
, (14)

where

(i) P(κn|κ) is the likelihood of obtaining the data κn given a
particular convergence distribution κ .

(ii) P(κn) is the probability of having the data κn. This term,
called evidence, is simply a constant that ensures that the posterior
probability is correctly normalized.

(iii) P(κ) is the prior probability of the estimated convergence
map κ . This term codifies our expectations about the convergence
distribution before acquisition of the data κn.

Searching for a solution that maximizes posterior probability
P(κ|κn) is the same as searching for a solution that minimizes the
following quantity

Q = − log(P (κ|κn)), (15)

Q = − log(P (κn|κ)) − log(P (κ)). (16)

If the noise is uncorrelated and follows a Gaussian distribution, the
likelihood term P(κn|κ) can be written as

P (κn|κ) ∝ exp −χ2

2
, (17)

with the sum of squares of the residuals

χ2 =
∑
x,y

(κn(x, y) − κ(x, y))2

σ 2
κn

. (18)

Equation (16) can then be expressed as

Q = 1

2
χ2 − log(P (κ)) = 1

2
χ2 − βH, (19)

where β is a constant that can be seen as a parameter of regulariza-
tion and H represents the prior that is added to the solution.

If we have no expectation about the distribution of the conver-
gence field κ , the prior probability P(κ) is uniform and search-
ing for the maximum of the posterior P(κ|κn) is equivalent to the
well-known maximum likelihood search. This maximum likelihood
method has been used by Bartelmann et al. (1996) and Seljak (1998)
to reconstruct weak lensing fields, but the solution has to be regu-
larized in some way to prevent overfitting of the data.

Choosing the prior is one of the most critical aspects in Bayesian
analysis. An Entropic prior is frequently used but there are many
definitions for Entropy (see Gull & Skilling 1984). One currently
in use is the Maximum Entropy Method (MEM) (i.e. Bridle et al.
1998). A multi-scale maximum entropy prior has also been pro-
posed by Marshall et al. (2002) which uses the intrinsic correlation
functions (ICF) with varying width.

The MRLens filtering uses a prior based on the sparse represen-
tation of the data that consists in replacing the standard Entropy
prior by a wavelet based prior (Pantin & Starck 1996). The entropy
is now defined by

H (I ) =
J−1∑
j=1

∑
k,l

h(wj,k,l) , (20)

where J is the number of wavelet scales, and we set β = 1 in
equation (19). In this approach, the information content of an image

I is viewed as sum of information at different scales wj. The function
h defines the amount of information relative to a given wavelet
coefficient (see Starck et al. 2006, for details on the choice of
this function). In Pantin & Starck (1996), it has been suggested
to not apply the regularization on wavelet coefficients which are
clearly detected (i.e. significant wavelet coefficients). The multi-
scale entropy then becomes

hn(wj,k,l) = M̄(j, k, l)h(wj,k,l) (21)

where M̄(j, k, l) = 1 − M(j, k, l), and M is the multiresolution
support (Murtagh, Starck & Bijaoui 1995):

M(j, k, l) =
{

1 if wj,k,l is significant

0 if wj,k,l is not significant.
(22)

This describes, in a Boolean way, whether the data contain infor-
mation at a given scale j and at a given position (k, l). Commonly,
in the case of Gaussian noise, wj, k, l is said to be significant if
|wj, k, l| > kσ j, where σ j is the noise standard deviation at scale j,
and k is a constant, generally taken between 3 and 5.

The False Discovery Rate (FDR) method offers an effective way
to select this constant k (Benjamini & Hochberg 1995; Miller et al.
2001; Hopkins et al. 2002). The FDR is defined as the ratio

FDR = V

D
(23)

where V is the number of pixels erroneously identified as pixels
with signal, and D is the number of pixels identified as pixels with
signal, both truly and erroneously.

This method requires to fix a rate α between 0 and 1. And it
ensures that on average, the FDR will not be bigger than α

E(FDR) ≤ T

V
.α ≤ α. (24)

The unknown factor T
V

is the proportion of truly noisy pixels. A
complete description of the FDR method can be found in Miller
et al. (2001). Here we apply the FDR method at each wavelet scale,
which gives us a detection threshold Tj per scale. We then consider a
wavelet coefficient wj, k, l as significant if its absolute value is larger
than Tj. This procedure is totally different from a kσ thresholding,
that only controls the ratio between the number of pixels erroneously
identified over the total number of pixels in the map.

The proposed filter called MRLens (Multi-Resolution for weak
Lensing1) outperforms other techniques (Gaussian, Wiener, MEM,
MEM-ICF) in the reconstruction of dark matter. For this reason, it
has also been used to reconstruct the dark matter mass map from
the HST in the COSMOS field (Massey et al. 2007).

Dealing with reduced shear. In practice, the observed galaxy ellip-
ticities, however, are induced not by the shear γ but by the reduced
shear

g = γ

1 − κ
. (25)

The distinction between the true and the reduced shear is negligible
in the weak shear regime (κ ≈ 0). However in galaxy cluster fields,
as we focus on in the work, the weak shear regime is not perfectly
satisfied, and the discrepancy in the reconstructions can be as high
as 10 per cent if the reduced shear is not properly taken into account.

In order to recover the true shear from the measured reduced
shear, we consider an iterative algorithm. At the first iteration, we

1 The MRLens denoising software is available at the following address:
http://irfu.cea.fr/Ast/mrlens_software.php.
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Weak lensing galaxy cluster field 3973

assume that the true shear is equal to the reduced shear. Then a
convergence map is derived, and used along with equation (25) to
compute a more accurate true shear for the next iteration. We found
this procedure to effectively correct for the bias in the reconstruc-
tion, but found no improvement after three iterations.

2.3 The multi-scale grid model

2.3.1 RBF model description

RBFs are commonly used to solve interpolation problems (see e.g.
Gentile, Courbin & Meylan 2012). Let us consider an unknown
function f : R

n → R probed at a set of locations ξ ∈ R
n, and ap-

proximated by a function s : R
n → R, a linear combination of trans-

lates of a set of RBFs φi

s(x) =
∑

λi φi(|| · −x||) (26)

with unknown real coefficients λi. Those coefficients are obtained
by solving the linear system f (ξ ) = s(ξ ). A unique solution exists
if there are as many RBFs as data points and the RBF profiles are
positive definite (Buhmann 2003). However in our case, since data
points are noisy and we want to avoid overfitting, we arbitrarily
restrict the number of RBFs to a few, thus practically compressing
the data to a smaller basis set.

In Jullo & Kneib (2009), we found that RBFs distributed on
a hexagonal grid, and described by a Truncated Isothermal Mass
Distribution (TIMD) (see e.g. Kassiola & Kovner 1993; Kneib et al.
1996; Elı́asdóttir et al. 2009), were giving good results. In our model,
we approximate the true convergence field κ with

κ(θ ) = 1

	crit

∑
i

σ 2
i f ( ||θi − θ ||, si, ti) (27)

where the RBFs on grid nodes θ i are described by

f (R, s, t) = 1

2G

t

t − s

(
1√

s2 + R2
− 1√

t2 + R2

)
. (28)

In the TIMD model, the scaling factor σ 2
i is the velocity dispersion

at the centre of the gravitational potential, and radii s and t mark
two changes in the slope respectively from κ ∝ R0 to κ ∝ R−1 and
κ ∝ R−3, respectively.

In a similar manner, we approximate the true shear field with

γ1(θ ) =
∑

σ 2
i �1( ||θi − θ ||, si, ti) (29)

γ2(θ ) =
∑

σ 2
i �2( ||θi − θ ||, si, ti) (30)

where analytical expressions also exist for �1 and �2 (see equation
A8 in Elı́asdóttir et al. 2009).

Let us now consider a set of M ellipticity measurements ordered
in a vector e = [e1, e2]†, and a model made of N RBFs distributed
in the field with unknown weights σ 2

i ordered in a vector v =
[σ 2

1 , . . . , σ 2
N ]. In the weak lensing approximation, we can write the

linear relation

e = Mγvv + n, (31)

where n is the galaxy shape noise as in equation (8), and the trans-
form matrix Mγ v = [�1, �2]† is a block-2 matrix. Its individual
elements are the contribution of each unweighted RBF scaled by a
ratio of angular diameter distances

�
(j,i)
1 = DLSi

DOSi
�i

1(||θi − θj ||, si, ti), (32)

�
(j,i)
2 = DLSi

DOSi
�i

2(||θi − θj ||, si, ti), (33)

where subscript j ∈ [1, M] and i ∈ [1, N] denote the rows and the
columns of Mγ ν , respectively.

2.3.2 Comparison of TIMD and Gaussian filters

By construction, we use the same parameters for the RBFs
(σ 2

i , si, ti) in the convergence and shear spaces. However, the corre-
sponding functions f, �1 and �2 have different profiles in these two
spaces. In Fig. 2, we actually show that the TIMD filter is sharper in
convergence space than in shear space. In practice, this makes the
TIMD filter very efficient at picking shear information far away for
a given RBF, and concentrate it to produce high-resolution conver-
gence maps. For example, from Fig. 2 we see that if we use a TIMD
filter of core radius s = 20 arcsec (equivalent to a Gaussian filter
of width σ � 30 arcsec in shear space), the reconstructed conver-
gence field is smoothed similarly as with a Gaussian filter of width
σ � 22 arcsec. In contrast with the standard KS93 method, the size
of the Gaussian filter is the same in shear and convergence space.

2.3.3 Estimation of the RBFs weights

Linear SVD inversion method. Assuming the galaxy shape noise n
is Gaussian distributed, we can write the sum of the squares of the
residuals

χ2 = (e − 2Mγvv)†N−1
ee (e − 2Mγvv), (34)

where Nee ≡ < ee† > is the covariance matrix of the measured
ellipticities. In this work, we assume this matrix is diagonal and
its elements are N (i,j )

ee = (σ 2
m + σ 2

int) δij where δij is the Kronecker
symbol, σ m is the measurement uncertainty and σ int is the scatter

Figure 2. Comparison between the TIMD profiles in convergence and shear
spaces. In dashed-line, we also show the best-fitting Gaussian profiles. The
bottom panel shows that the TIMD profile in shear space is systematically
broader than its equivalent in convergence space, in comparison to a self-
similar Gaussian filter.
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in the distribution of the intrinsic shapes of the galaxies. Note also
that we have a factor of 2 in this equation because in LENSTOOL

the ellipticity e = a2−b2

a2+b2 is computed as a function of the square of
the major and minor axes (Bartelmann & Schneider 2001). With
Gaussian distributed errors, linear inversion theory tells us that an
unbiased estimator of the RBF weights is

ṽ = [
M†

γ vN
−1
ee Mγv

]−1
M†

γ vN
−1
ee e (35)

and their covariance is

Nvv = [
M†

γ vN
−1
ee Mγv

]−1
. (36)

The convergence field is obtained by the matrix product

κ̃ = Mκv ṽ (37)

and the corresponding covariance matrix Nκ̃κ̃ by

Nκ̃κ̃ = MκvNvvM
†
κv , (38)

where the transform matrix Mκv is built from equations (27) and
(28). In the following, we reconstruct the convergence field in grids
of regularly spaced pixels.

There are several ways of speeding the calculations in the expres-
sions above. In particular, it happens that in our case, the transform
matrix Mγ v is sufficiently sparse so that we can perform a SVD.
Details of the SVD decomposition can be found in VanderPlas et al.
(2011) and Diego et al. (2005).

Bayesian MCMC optimization. In this section, we describe the
Bayesian MCMC algorithm used to reconstruct the mass map in
Jauzac et al. (2012). This algorithm called MassInf is also part of
the BAYESYS package (Jullo et al. 2007), but it is the first time we use
it in LENSTOOL.2 It aims at inverting linear systems of equations in a
Bayesian manner, i.e. with input priors.

Based on our definition of the χ2 in equation (34), we define
the likelihood of having a set of weights v given the measured
ellipticities e as

P (v | e) = 1

ZL

exp −χ2

2
. (39)

The normalization factor is given by ZL =
√

(2π )2M det Nee.
As a prior, we want the individual weights σ 2

i to be positive, so
that the final mass map is positive everywhere. This conducted us
to assume they are described by a Poisson probability distribution
function (pdf)

Pr(σ 2
i ) = exp(−σ 2

i /q)/q , (40)

where the normalization factor q is a nuisance parameter with a pdf
given by the following expression:

π (q) = q2
0qe−q/q0 . (41)

This expression has been chosen to be tractable analytically whilst
keeping q away from 0 and ∞. The parameter q0 is fixed and seeded
by the user. In our case, we found that q0 = 10 was giving good
performances in terms of computation time, and reconstruction fi-
delity against the simulated data. In Fig. 3, we show that its exact
value has little impact on the final reconstruction.

In contrast to the standard BAYESYS algorithm implemented in
LENSTOOL, Massinf does not explore all the correlations between the
parameters, but searches for the most relevant parameters (keeping

2 LENSTOOL public package is available at the following address
http://projects.lam.fr/projects/lenstool

Figure 3. Impact of different user-defined nuisance parameters on the
LENSTOOL reconstruction of a simulated convergence map. Parameter q0 has
the strongest impact on the reconstruction result. These reconstructions are
without shape noise, and with a multi-scale grid of 575 RBFs.

the others fixed meanwhile), and explores their PDF individually,
reproducing thus somehow the Gibbs sampling approach. It also
makes use of an additional nuisance parameter called n, which is
the number of RBFs the sampler estimates necessary to reproduce
the data. We obtained good results with this number described by a
geometric pdf

Pr(n) = (1 − c)cn−1 where c = α

α + 1
, (42)

and parameter α = 2 per cent of the total number of RBFs. Again
we show in Fig. 3 that this parameter has little impact on the recon-
struction.

3 SI MULATED FI LAMENT STUDY

We applied our reconstruction algorithms to a simulated mass
map made of three NFW haloes at redshift z = 0.5. The field
of view is 10 × 10 arcmin2 , and the three haloes are located at
(0, 0.5 arcmin), (−1 arcmin, 0) and (2 arcmin, 0) in equatorial co-
ordinates. They form a 3 arcmin long filamentary structure aligned
along the right ascension axis. To emphasize the extended aspect
of the structure we made the haloes elliptical with an ellipticity
e = a2−b2

a2+b2 = 0.4. For each halo, the scale radius is rs = 300 kpc
(50 arcsec), and their concentration are c = 3 and c = 3.5 for the
halo central halo. This translates into masses M200 = 1.4 × 1014 M�
and M200 = 2.3 × 1014 M� in a �cold dark matter cosmology
(�m = 0.3, �� = 0.7, H0 = 70 km s−1 Mpc−1, w0 = −1).

From this mass model, we generated a convergence map by set-
ting the sources at redshift z = 1.2, which is reasonable for data
coming from the HST, alike the COSMOS data. This convergence
map is shown in Fig. 4. We also produced reduced shear catalogues
with sources taken randomly across the field of view, and to which
we added a random intrinsic ellipticity drawn from a Gaussian pdf
of width σ int = 0.27. Again, this is a reasonable value for data
coming from HST (Leauthaud et al. 2007).
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Weak lensing galaxy cluster field 3975

Figure 4. Simulated filamentary structure with three elliptical NFW
clumps. The cross indicates the centre of the field. Contour levels are in
log scale between 10−4 < κ < 0.2.

3.1 Standard galaxy density catalogue

First, we compare the reconstruction obtained with a catalogue con-
taining 5000 sources, i.e. with a density of 50 galaxies per arcmin2.
Results are shown in the top panel of Fig. 5. At first, we note
that LENSTOOL and FLens produce less noisy reconstructions than
the SVD inversion method. The LENSTOOL reconstruction has high
resolution, but also contains spurious peaks, whereas the FLens
reconstruction has lower resolution, but no spurious peaks.

In this simulation, the FLens map is 64 × 64 pixels, and the pixel
size is 0.156 arcmin. To filter out the reconstructed noise, Flens
uses a wavelet decomposition procedure that only keeps scales with
J > 3, i.e. structures larger than eight pixels in size. As described in
Section 2.2.3, this wavelet scales thresholding is controlled by the
FDR method. If a scale is noise dominated, the detection threshold
will be very high and the scale will be removed, thus degrading the
resolution of the reconstructed map. This global estimation of the
detection threshold per scale is more robust to the noise but less
sensitive to small structures. A more local approach would increase
the resolution and the detection of small structures, but would also
increase the number of false detections.

For the LENSTOOL and SVD inversion methods, we adjust the reso-
lution of the grid-based reconstruction to the power spectrum of the
input signal. Peaks can still be resolved by cutting high frequencies
at k > 10 arcmin−1 (k = 2π

R
). This translates into RBFs with core

radius s = 0.3 arcmin. We choose an hexagonal grid of RBFs in
order to limit high-frequency noise at the junction between nearby
RBFs. We can cover the whole FOV with a grid of 817 RBFs. The
LENSTOOL reconstruction is less noisy than the SVD reconstruction
essentially because of the priors implemented in LENSTOOL.

3.2 High galaxy density catalogue

In order to increase the resolution of the FLens reconstruction, we
produce a catalogue with 10 000 sources, i.e. with 100 galaxies

Figure 5. Convergence maps reconstructed with the three methods. Top
panel reconstructions are made with 50 gals/arcmin2, middle and bottom
panels with 100 gals/arcmin2. Bottom panel is obtained after resampling
100 times the shape noise of the input catalogue. Globally, LENSTOOL and
FLens reconstructions have a lower noise level than SVD reconstruction.
LENSTOOL reconstructions have high resolution, but also contain spurious
peaks, whereas FLens reconstructions have lower resolution, but no spurious
peaks. Resampling is efficient at removing the spurious peaks in all three
cases and increases the signal-to-noise ratio of the SVD reconstructed peaks.

per arcmin2. Results are shown in the middle panel of Fig. 5. By
doubling the size of the catalogue, we could decrease by 4 the
pixel size (0.04 arcmin), and detect the halo on the right in the
FLens reconstructed map. The LENSTOOL reconstruction still contains
spurious peaks.

3.3 Shape noise resampling

In the two previous analysis, we observed some overfitting of the
galaxy shape noise, especially with LENSTOOL and the SVD inversion,
leading to spurious peaks.

In order to mitigate this issue, we resample 100 times the intrinsic
galaxy shape noise in the input catalogue of 10 000 sources. We
run LENSTOOL, FLens and the SVD reconstructions on each of 100
catalogues, and average the reconstructed convergence maps. The
outcome of this procedure is presented in the bottom panel of Fig. 5.

We note not only that the spurious peaks have disappeared from
the averaged maps, but also that the power in the peaks is globally
less than in the original map.

3.4 Reconstructed density profile

It is a very common procedure in galaxy cluster studies to average
the reconstructed mass maps azimuthally to produce a radial density
profile. We perform this measurement for our three methods and
compute the errors by taking the standard deviation of the 100
reconstructed maps.

In Fig. 6, we show the comparison of the azimuthally averaged
density profiles. The striking point of this figure is the amount of
noise in the SVD reconstruction. The second point is the fact that
the FLens density profile becomes negative at radius R > 180 arcsec
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Figure 6. Comparison of the convergence profile recovered with FLens,
LENSTOOL and the SVD inversion, assuming 100 galaxies per arcmin2, and
resampling of the noise. Errors are given at 68.2 per cent C.L.

and over-estimates the density at small radius. This is due to the fact
that wavelets are compensated filters with null mean. In contrast,
LENSTOOL reconstruction is unbiased, and contains the input profile in
its 1σ confidence contours. The correct normalization at large radius
is due to the fact that LENSTOOL takes into account the redshifts of
the lens and the individual sources in the fit.

3.5 Errors on the reconstructed maps

We compute the errors of the reconstructed maps following two
approaches. The LENSTOOL and the SVD inversion methods output
an estimate of the error in each pixel, either by means the analysis of
the MCMC samples, or the covariance matrix computed in equation
(38), respectively. Nonetheless to get rid of overfitting, we resample
the galaxy shape noise in the input catalogues, and compute the
variance of the pixels reconstructed both with LENSTOOL, Flens and
the SVD inversion. Fig. 7 shows that with the three methods, the
errors scale with the input density field.

It is worth noticing that the SVD error map also scales with the
input signal, although the covariance matrix Nκκ does not directly
depend on the ellipticity measurements e. We have done some tests,
and found that with a uniform distribution of galaxies, this effect
vanishes. Therefore, it seems this effect is due to lensing amplifica-

Figure 7. Errors on the reconstructed convergence maps with the three
methods. In theory SVD errors are independent of the underlying shear
signal, but we still notice that locally they depend on the galaxy density.
SVD errors have been divided by four to fit the colour-map range.

tion, which decreases the amount of galaxies in this region, and as
a result increases the variance in the reconstruction.

Finally, we have found that using RBFs with larger core radius
increases the correlations between the RBF weights in Nvv, and
decreases the resolution, as well as the overall signal-to-noise ratio.
In contrast, using RBFs with smaller core radius produces higher
resolution but noisier reconstructions. We found that matching size
of the RBFs to the grid resolution yields the best compromise.

3.6 Errors on the reconstructed density profiles

We then focus on the estimated errors on the azimuthally averaged
density profiles. In Fig. 8, we find that the errors scale with the
reconstructed density, in agreement with what we observed in the
errors on the reconstructed maps. With this figure, we clearly see
that the SVD inversion produces errors about four times larger than
what can be achieved with LENSTOOL or FLens methods.

Besides, it is reassuring to see that the errors estimated from the
LENSTOOL MCMC samples or the covariance matrix Nκ̃κ̃ agree with
errors estimated after resampling.

Regarding the bias between the reconstructed and the true con-
vergence profiles, we note from Fig. 6 that LENSTOOL bias is almost
constant at less than 5 per cent from the input values, whereas FLens
and SVD biases increase with κ and reach about 30 per cent at
κ = 0.07.

3.7 Signal-to-noise ratio estimates

It is a common procedure to compute the signal-to-noise ratio by
dividing the estimated signal by the variance of the noise. However
in the top panel of Fig. 9, we show that in our case, the pdf of the
reconstructed noise is not necessarily Gaussian distributed. This is
particularly evident for the LENSTOOL method.

Figure 8. Scaling of reconstructed noise as a function of reconstructed
signal for different reconstruction methods. SVD inversion and LENSTOOL

methods both provide a way to directly estimate errors on the reconstruction.
This is what we call Theoretical errors. These errors are in good agreement
with errors estimated with noise resampling.
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Figure 9. Top panel: from left to right, pdfs of the convergence recon-
structed from 1000 noise maps, as obtained with LENSTOOL, FLens and the
SVD inversion, respectively. The dashed curve corresponds to LENSTOOL

without the prior on positive convergence. Bottom panel: reconstructed con-
vergence maps with 100 galaxies per arcmin2 and noise resampling. Con-
tours indicate the levels of confidence at 68.2, 95.5, 99.7 and 99.9 per cent.

From each pdf, we therefore compute the threshold X, for which
we have the probability of finding a value x, P(x ≤ X) equals to 68.2,
95.5, 99.7 and 99.9 per cent. We found that with 1000 realizations
of noise, we had enough statistics to estimate up to only 4σ level.

In the bottom panel of Fig. 9, we observe that the SVD inversion is
more noisy than the LENSTOOL or the FLens methods. The 1σ region
of the confidence is larger with LENSTOOL and smaller with the SVD
inversion. Globally, the regions of equal confidence are similar in
size with LENSTOOL and FLens, especially at larger signal-to-noise
ratio.

4 A P P L I C ATI O N TO MAC S J 0 7 1 7+3 7 4 5

In this section, we apply our three methods to the real case of the
galaxy cluster MACS J0717+3745, in which a filament was recently
detected with LENSTOOL multi-scale grid reconstruction (Jauzac et al.
2012).

4.1 Modelling description

The analysis in Jauzac et al. (2012) was based on a mosaic of
18 multi-passband images obtained with the Advanced Camera for
Surveys aboard the HST, covering an area of ∼10 × 20 arcmin2. The
weak-lensing pipeline developed for the COSMOS survey, modified
for the analysis of galaxy clusters, was used to produce a weak-
lensing catalogue of roughly 52 galaxies per arcmin2. A uBV colour
diagram was used to distinguish the background sources from the
foreground and cluster-member galaxies. Their redshift distribution
was derived from photometric and spectroscopic redshifts obtained
from Subaru and CFHT/WIRcam imaging in the same field (Ma
et al. 2008). Because they are in the strong lensing regime area, all
the galaxies inside an elliptical region of 5 × 3 arcmin in size and
45◦-rotated centred on the cluster core were also removed from the
catalogue. The details of the catalogue construction are thoroughly
described in Jauzac et al. (2012).

In order to compute error bars on the reconstructions, we resam-
pled the weak lensing catalogue with a bootstrap strategy, i.e. each
galaxy in the catalogue can be removed or duplicated, in order to
increase its weight in the reconstruction. We produced 50 of such
bootstrapped catalogues.

For the LENSTOOL and the SVD inversion methods, we built a grid
of RBFs. In contrast to the model described above, in which all
the RBFs had the same size, in Jauzac et al. we used a multi-scale
grid with smaller RBF in regions where the cluster luminosity was
brighter. First, we built a smoothed cluster luminosity map from
the catalogue of magnitudes in K band of cluster member galaxies.
Then, we computed a multi-scale grid of RBFs, making sure that the
luminosity in each triangle was lower than a predefined threshold.
As a result, we obtained a grid made of 468 RBFs, the smallest ones
having a core radius s = 26 arcsec.

4.2 Reconstructed maps

Fig. 10 shows the reconstructed convergence maps of MACS J0717
obtained with the three methods. Globally, they all agree on the
location of the cluster core, and the presence of an extension to
the South-East. In the cluster core where data are missing, both the
LENSTOOL and FLens reconstructions are smooth, whereas the SVD
reconstruction is more clumpy. We attribute this difference to the
priors assumed in both LENSTOOL and FLens.

Figure 10. Reconstructed convergence maps of MACS J0717 with the three methods. Signal-to-noise ratio contours are based on 1000 noise maps computed
by randomizing the ellipticities of the galaxies in the input catalogue. They assess the level of confidence of the detected structures at 68.2, 95.5, 99.7 and
99.9 per cent. Cyan contours in the LENSTOOL panel correspond to a reconstruction without the prior of positive convergence. North is up, East is left. Coordinates
are in arcmin relative to the cluster centre α = 109.391 02 and δ = 37.746 639.
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We also observe some disagreement on the exact shape of the
filament. LENSTOOL reconstruction suggests MACS J0717 lies into
an extended over-dense region. In contrast, FLens reconstruction
shows that the cluster is compact and connected to a long filament.
In both the FLens and the LENSTOOL reconstructions, the filament is
detected at 95 per cent C.L. The SVD reconstruction presents two
filaments next to each other.

4.3 Reconstructed density profile

Fig. 11 shows the corresponding radial convergence profiles
obtained with the three methods. We took the coordinates
α = 109.39102 and δ = 37.746639 as the central point of the
azimuthal average. Based on the photometric redshift analysis per-
formed in Jauzac et al. (2012), we assumed in the LENSTOOL re-
construction that the redshift of the weak lensing sources to be
zs = 0.65.

As already observed in the simulations, the noise level estimated
from bootstrap is about four times larger in the SVD reconstruction,
especially close to the cluster centre. The LENSTOOL method agrees
with FLens at small radii, and with the SVD inversion at large
radius. The FLens method predicts steeper radial profile between
500 and 1000 kpc, and a bump at 3 Mpc, corresponding to the
over-density in the filament. This feature is much less evident in the
other reconstructions.

Note as well that the convergence profiles derived from single
catalogue and bootstrap catalogues reconstructions with LENSTOOL

agree together. LENSTOOL error estimates from the MCMC sampling
are therefore reliable.

Figure 11. Reconstructed convergence profiles obtained with the three
methods. The FLens profile is in good agreement with the other profiles
in the core, but deviates at large radius, where it becomes negative. The
SVD reconstruction is not able to reproduce the central high-density re-
gion. Without the positive prior on κ , we obtain a better agreement between
LENSTOOL and FLens at large radius.

5 C O N C L U S I O N

Systematic errors in lensing map reconstruction, especially due to
the reconstruction methods, is a concerning issue. With the current
and forthcoming data sets, they start to dominate the error budget
over the statistical errors.

In this work, we have studied three methods of reconstruction of
10 arcmin scale structures, i.e. the environment of galaxy clusters.
We limited our study to a toy-model structure in order to focus on the
effect of priors. In a forthcoming paper, we will increase the level of
complexity by using N-body simulations. The FLens method starts
from a pixelated map of shear, with about one galaxy per pixel on
average, and filter the noisy reconstructed convergence map by only
keeping wavelet scales that contain non-Gaussian signal.

The LENSTOOL and the SVD inversion methods share the same
underlying multi-scale grid model. The field is paved with a set
of RBF, whose number density and size scale with the smoothed
surface brightness of the cluster member galaxies. LENSTOOL uses
a Bayesian MCMC sampler to estimate the weight of each RBF
in the reconstruction, where the SVD inversion makes use of the
linear formalism of the weak-lensing approximation to estimate the
weights. The RBF shape is defined from the TIMD, which can
either give the shear for the inversion or the convergence for the
reconstruction.

So far with LENSTOOL, we have forced the density field and there-
fore the convergence to be positive everywhere. This assumption
is valid here, because we consider the case of massive structures.
Nonetheless, in order to be exhaustive in this study, we also turned
this prior off in LENSTOOL and redid all the computations. We found
very similar results both for the simulated case and for MACSJ0717.

From the simulations, we found the following.

(i) All three methods can detect clusters and surrounding fil-
aments in the convergence range 0.01 < κ < 1, although with
different levels of significance.

(ii) Doubling the galaxies number density from 50 to 100 per
arcmin2 allows us to reduce the pixel size and increase the resolution
of the FLens reconstruction. The resolution of LENSTOOL and the
SVD inversion methods is more driven by the density of RBFs than
by the galaxy density. However, the signal-to-noise ratio per pixel
increases with galaxy number density.

(iii) The error on the reconstructed convergence scales with the
underlying signal, and depends on the method used for the recon-
struction. The residual is offset from zero by a small amount, that
decreases when we increase the grid resolution.

(iv) Thanks to the inpainting technique implemented in FLens,
we could recover the shape of the cluster even in reasonably high
density regions (κ ∼ 0.16).

(v) We compared these results to the forward fitting method pre-
sented in Jauzac et al. (2012) and implemented in LENSTOOL. The
forward fitting method recovers the true density map with devia-
tions less than 5 per cent at κ > 0.5, and less than 20 per cent at
0.5 > κ > 0.01. In contrast to the other method, the redshift of the
cluster and sources are used as a constraint to break the mass-sheet
degeneracy. As a result no significant offset is found in the residual.

(vi) We found FLens to be more robust against shape noise than
LENSTOOL or standard inversion methods. Resampling techniques
increase the signal-to-noise ratio of regions with low signal, but
decrease signal-to-noise ratio of regions with high signal.

We applied the new method to the galaxy cluster MACSJ0717,
and confirmed the presence of the filament at 3σ C.L. We also re-
peated the LENSTOOL analysis previously done in Jauzac et al. (2012),
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but this time with a bootstrap of the input source catalogue. The
consistent results obtained with these two techniques give us more
confidence in the detection of the structures around MACSJ0717.
Without the prior of positive convergence applied, we obtained a
very similar map and consistent signal-to-noise ratio contours in
Fig. 10, and a density profile in better agreement with FLens at
large radius in Fig. 11.

To conclude, it is very encouraging to see that priors can signifi-
cantly enhance the signal-to-noise ratio in weak lensing reconstruc-
tions. FLens priors are strictly limited to the properties of the galaxy
shape noise. In contrast, LENSTOOL priors enforce the mass-follows-
light assumption to build the multi-scale grid. Ideally, the science
goals condition the type of priors to choose. A weak lensing peak
counting analysis to characterize dark energy might prefer limited
priors in order to better compare to theory, whereas the exploration
of the cosmic web might heavily rely on external priors coming
from other observables, such as galaxy density, X-ray or SZ maps.
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